タグ

Stanに関するcartman0のブックマーク (6)

  • Stan Functions Reference

    This is the reference for the functions defined in the Stan math library and available in the Stan programming language. For more information the Stan language and inference engines and how to use Stan for Bayesian inference, see the Stan User’s Guide. The Stan user’s guide provides example models and programming techniques for coding statistical models in Stan. It also serves as an example-driven

  • Home page for the book, "Bayesian Data Analysis"

    This is the home page for the book, Bayesian Data Analysis, by Andrew Gelman, John Carlin, Hal Stern, David Dunson, Aki Vehtari, and Donald Rubin. Here is the book in pdf form, available for download for non-commercial purposes. Teaching Bayesian data analysis Aki Vehtari's course material, including video lectures, slides, and his notes for most of the chapters. 77 best lines from my course A stu

    Home page for the book, "Bayesian Data Analysis"
  • Stan モデリング言語: ユーザーガイド・リファレンスマニュアル

    図4.4: Stanの変数宣言の型と対応するプリミティブな実装の型の表. Stanの関数・演算子・確率関数は引数と戻り値の型を持ち, それらはプリミティブな型と配列次元数によって宣言されます. 型推定の規則 Stanの型推定規則は, 変数宣言の背後にある組み合わせに基づいて, ある式の実装の型を定義します. この規則は, プリミティブなリテラルと変数の式から, 複合した式へとボトムアップに作用します. リテラル 42のような整数リテラルの式はint型です. 42.0のような実数リテラルはreal型です. 変数 局所的に, あるいは前のブロックで宣言された変数の型はその宣言で決定されます. ループ変数の型はintです. 各変数の宣言は, スコープ毎に常に唯一となります. Stanでは, 既に宣言された変数をもう一度宣言することを禁止しているからです. 5 インデックス操作 xが全体の次元数が

  • Stanによるベイズ推定の基礎 | Logics of Blue

    新規作成日:2015年12月5日 最終更新日:2016年9月22日 理論がわかっても、実践ができなければ意味がありません。 ここでは、Stanというフリーソフトを使って、ベイズ統計学をもとにしたパラメタ推定をパソコンで実行する方法を説明します。 ベイズとMCMCの組み合わせでもって統計モデルのパラメタを推定することができるのでした。この方法を、以下では「ベイズ推定」と呼ぶことにします。 ここでは、Stanを用いて統計モデルのパラメタのベイズ推定をする方法を説明します。 重要な点は、「Stanの使い方」を覚えるだけではうまくいかないということです。 Stanの内部で使われているのは乱数生成アルゴリズムです。乱数を生成してパラメタを推定するという行為は、最小二乗法なりで方程式を解き、パラメタを一発で推定するやり方とは大きく異なります。 その違いをぜひ理解なさってください。 コードをまとめたもの

  • 広く使える情報量規準(WAIC)

    このページをご覧いただき、ありがとうございます。 ここでは、情報量規準 WAIC を紹介しています。 ベイズ推測のための情報量規準(WAIC)が導出されました。 WAIC は(真の分布、確率モデル、事前分布)がどのような場合でも使う ことができます。他の規準と異なり理論的な基盤を持っています。 (0) モデル選択やハイパーパラメータの最適化に使えます。 (1) 漸近的に汎化損失と同じ平均値と同じ分散を持ちます。 (2) WAIC は簡単に計算できます。 (3) 真の分布が確率モデルで実現可能でなくても使えます。事前分布が真の事前分布でなくても使えます。 (4) 平均対数損失を最小にするパラメータがユニークでなくても使えます。 平均対数損失を最小にするパラメータが特異点を含む解析的集合であっても 使えます(注1)。 (5) フィッシャー情報行列が正則でなくても使えます。 (6) 事後分布が正

  • 岩波データサイエンス

    岩波データサイエンス サポートページ 各巻に対応する内容は,上のバーの3線「三」をクリックして左に表示されるメニューからご覧ください (トップページの内容が空白の場合も,メニューで下位の階層をクリックして頂くと内容が表示される場合があります) 新グーグル・サイトに移行しました.自動変換のため,見難くなっている部分,表示されない部分がありますが,ご容赦ください シリーズ「岩波データサイエンス」では、統計科学や機械学習など、データを扱うさまざまな分野について、多様な視点からの情報を提供することをめざします。まったくの初歩からやや高度な話までのいろいろな手法の解説、実務に役立つソフトの使い方、さらには各領域のサイエンスや応用に踏み込んだ内容まで、多彩な記事を掲載します。 装丁には蛯名優子さんの作品を使わせて頂いています。蛯名さんのホームページはこちらです。 【公式ツイッターアカウント】ツイッタ

    岩波データサイエンス
  • 1