- 線形代数・回転の表現 - 株式会社 セガ 開発技術部 こちらからも↓PDFをダウンロードできます https://techblog.sega.jp/entry/2021/06/15/100000
このコーナーでは、2014年から先端テクノロジーの研究を論文単位で記事にしているWebメディア「Seamless」(シームレス)を主宰する山下裕毅氏が執筆。新規性の高い科学論文を山下氏がピックアップし、解説する。 X: @shiropen2 2023年、米国の高校生ネキヤ・ジャクソンさんとカルセア・ジョンソンさんは、地元の高校のコンテストで驚くべき成果を披露した。それは、三角関数を用いてピタゴラスの定理を証明するという方法の発見であった。 「a^2+b^2=c^2」で表されるピタゴラスの定理は、よく知られている数学の基本定理である。この式は、直角三角形において、最も長い辺(斜辺)の2乗が、残りの二辺の2乗の和に等しいことを示している。 これまで数多くの数学者たちが代数学や幾何学を用いてこの定理を証明してきたが、三角関数による証明はより難しかった。三角関数の基本公式自体がピタゴラスの定理を前
「Immersive Math」は、数学のうちベクトルや行列などの計算を研究する分野である「線形代数」についてインタラクティブな図を用意することでわかりやすさを向上させた無料の教科書サイトです。 Immersive Math https://immersivemath.com/ila/index.html サイトのトップページはこんな感じ。「完全にインタラクティブな図を備えた世界で最初の線形代数本」と述べられています。 中央に表示されている三角形の図はインタラクティブで、左上をクリックすることで回転・停止を切り替えられるほか、各頂点をクリックしてドラッグ&ドロップすることで位置を調整可能。自由に図を編集できるため理解しやすいというわけです。 ページをスクロールすると目次が現れました。まずは「Preface(序文)」をクリック。 「『百聞は一見に如かず』という言葉の通り、たくさんの言葉を重ね
仏紙「ル・モンド」は2023年5月、米スタンフォード大学の数学教授である時枝をこう評した。 「数学者は2つのグループに分けられがちだ。黒板にチョークで数式を書く理論派とプラスチックのシートにフェルトペンで書き込む応用数学者──しかし、日本の時枝正は第三のカテゴリーに属している」 ル・モンドは、パリのアンリ・ポアンカレ研究所での時枝の講義に注目する。彼は数学や物理学における古典的な内容を取り扱う際に、チョークではなく大きなコインを用意し、それで理論を視覚的に伝えているのだ。 時枝が注目される理由は、「わかりやすく数学を広める」という彼の特殊能力にある。シンプルな道具を使い、深淵な数学理論を親しみやすく解説するその手法は「手品のよう」とも形容される。 時枝の経歴もまた非常にユニークだ。もともと彼は画家としての将来を嘱望されるほど絵画に長けていた。日本を離れ、フランスに発ったのは14歳のころ。「
スタンフォード大学の教授で数学者の時枝正(ときえだ・ただし)は、「おもちゃ」を使って数学や物理の定理を解き明かす。スープ皿や木のレール、大きなコインを手に、「ショー」とも呼べそうな講義をいかにも楽しげに始めるその姿に、聴衆は一瞬にして心を惹きつけられるという。 数学者には二つのタイプがいるという──。一つは、チョークを握り黒板に向かう、理論派タイプ。もう一つは、フェルトペンとホワイトボードを使う、どちらかというと応用数学系の人である。 その伝でいうと、時枝正は第三のタイプの数学者である。しかもこの第三のタイプは、世界広しといえども彼一人だけの可能性がある。 時枝は仕事道具をどれも煎餅の空箱から取り出すのだが、箱は「すべて同じブランドのもの」なのだそうだ。たとえばその中身は、見かけはそっくりなのに、転がるものと転がらないものがある二つの不思議な構造物。ひもや輪ゴム、クリップの扱い方は、まるで
エヌユル @ncaq 数学得意な人って「公式なんて覚えなくてもその場で導出すれば良い」ってよく言うけどマジで言ってるの? 公式を導出するのにはその前提を相当知っている必要があるので、その場で導出するには公式を覚えるより多くを覚える必要があるとしか思えない 数学と暗記が苦手な人に真顔でアドバイスしてるの? 2023-05-20 11:05:04 エヌユル @ncaq それとも「公式が覚えられなくて数学のテストが一切出来ない/出来なかった」に対して「出来ない人は一生出来ないのは仕方ないね」と言いたくなくて誤魔化したいから? 数学と暗記が苦手な人がその場で導出とか必死に暗記するよりよほど難しいと思うんですが… 2023-05-20 11:14:36 エヌユル @ncaq 「一つの公式から複数の公式がたくさん導出できるってことですよ」と言う指摘がドシドシ寄せられてきますが、それその一つの公式は記憶
どうも、木村(@kimu3_slime)です。 大学数学の各分野、一般的なロードマップを紹介したいと思います。 東京大学数学科のカリキュラムを参考に、自分なりに図を作りました。 このマップに合わせて入門書を紹介しています:「趣味の大学数学」おすすめ入門書籍・教科書・参考文献 この画像の分野名をクリックすれば、その分野のまとめ記事へ飛びます(一部分のみ対応)。 教養数学微積分学、線形代数学は、大学で数学をする人はもちろん、自然科学や工学、社会科学や人文科学を学ぶすべての人が身につけて損はない数学です。高校数学から大学数学への接続をするきっかけとなります。 統計学は、特に数学以外への応用に役立つ分野です。ただし、数学の(諸分野の)基礎としての役割は、微積分や線形代数に比べると小さいでしょう。 数学基礎論理学は、通常数学科のカリキュラムに明示されていませんが、集合論や教養数学で教えられるので明示
スペクトル不変量とその応用について 助教・石川 卓 大学で習う幾何学の基本的な話に Morse 理論というものがあります。これは多様体の性質を、その上の函 数を用いて調べる理論です。これは基本的にはどのような関数を用いても同じ答えを出しますが、これを逆 に利用して、各関数に対してスペクトル不変量とよばれる値を紐づけることができます。シンプレクティッ ク幾何学等で用いられる Floer 理論は Morse 理論を手本としてつくられた理論であり、これに対するスペク トル不変量が、幾何学的性質を導きだすことに応用されています。このあたりのことについて、紹介する予 定です。 体構造の復元を通した遠アーベル幾何学入門 助教・辻村 昇太 遠アーベル幾何学では(体に対するガロア群のような)構造の対称性のなす群が元の構造の情報をどの程 度保持しているかについて考察します。この対称性のなす群が(高度に)非可
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く