4色に塗り分けられている(常にさらに外側の領域を想定することで、地図の外縁部は3色で塗り分け可能で、球面においても四色定理が成立することがわかる) 四色定理(よんしょくていり/ししょくていり、英: Four color theorem)とは、厳密ではないが日常的な直感で説明すると「平面上のいかなる地図も、隣接する領域が異なる色になるように塗り分けるには4色あれば十分だ」という定理である。 グラフ理論的に言えば、この定理はループのない平面グラフに対して次のことを述べている。平面グラフに対して、その彩色数はである。 四色定理の直観的な記述 - 「平面を連続した領域に分割したとき、隣接する2つの領域が同じ色を持たないように、領域は最大でも4つの色を使って着色できる」 - を正しく解釈する必要がある。 これを「地図の塗り分け」とすると、例えば飛び地を所属地と常に同じ色にしなければならない、とした場