googleの中の人たちが作ったword2vecというモノがあります。deep learningを自然言語(N-gram?)に適用することにより単語を100次元くらいのベクトル空間にマップする物だと思います。面白さは以下のベージの通りですが、たったこれだけの事で、ほとんど意味理解の一歩手前まで到達していると思います。 Taku Kudo : word2vec で少し遊んでみた。いわゆる deep… 面白いのは、2つのベクトルの差が、2つの単語の関係をよく近似してくれること。 (中略) A B C → X (A → Bの関係に対し、 C → X に当てはまるXを探す) グーグル ヤフー トヨタ → 日産 渋谷 新宿 札幌 → 旭川 警察 泥棒 正義 → くそ 平和 戦争 左 → 右 社員 会社 生徒 → 小学校 空 海 天井 → 床板 生きる 死ぬ 動く → 止まる ・・・ Deep-le
![自然言語処理をなにも知らない私がword2vecを走らせるまで - 最尤日記](https://cdn-ak-scissors.b.st-hatena.com/image/square/c67404da4281dbfbe4287ac53a59290ac190f509/height=288;version=1;width=512/https%3A%2F%2Ffanyv88.com%3A443%2Fhttp%2Fsaiyu.cocolog-nifty.com%2F.shared-cocolog%2Fnifty_managed%2Fimages%2Fweb%2Fogp%2Fdefault.png)