タグ

DeepLearningに関するbelka333のブックマーク (5)

  • 深層学習の数理

    2. 1946: ENIAC,高い計算能力 フォン・ノイマン「俺の次に頭の良い奴ができた」 1952: A.Samuelによるチェッカーズプログラム 機械学習人工知能歴史 2 1957:Perceptron,ニューラルネットワークの先駆け 第一次ニューラルネットワークブーム 1963:線形サポートベクトルマシン 1980年代:多層パーセプトロン,誤差逆伝搬, 畳み込みネット 第二次ニューラルネットワークブーム 1992: 非線形サポートベクトルマシン (カーネル法) 統計的学習 線形モデルの限界 非凸性の問題 1996: スパース学習 (Lasso) 2003: トピックモデル (LDA) 2012: Supervision (Alex-net) 第三次ニューラルネットワークブーム データの増加 +計算機の強化 1960年代前半: ELIZA(イライザ), 擬似心理療法士 1980年代

    深層学習の数理
  • ディープラーニングの判断根拠を理解する手法 - Qiita

    Deleted articles cannot be recovered. Draft of this article would be also deleted. Are you sure you want to delete this article? ディープラーニングは特定分野で非常に高い精度が出せることもあり、その応用範囲はどんどん広がっています。 しかし、そんなディープラーニングにも弱点はあります。その中でも大きい問題点が、「何を根拠に判断しているかよくわからない」ということです。 ディープラーニングは、学習の過程でデータ内の特徴それ自体を学習するのが得意という特性があります。これにより「人が特徴を抽出する必要がない」と言われたりもしますが、逆に言えばどんな特徴を抽出するかはネットワーク任せということです。抽出された特徴はその名の通りディープなネットワークの中の重みに潜在してお

    ディープラーニングの判断根拠を理解する手法 - Qiita
  • コーディング不要のディープラーニング開発ツール、ソニーが無償提供

    ソニーは8月17日、コーディングの知識がなくても、ディープラーニング(深層学習)のプログラムを生成できるソフトウェア「Neural Network Console」の無償提供を始めた。自社の製品・サービス開発にも利用しているツールを多くの開発者や研究者に使ってもらうことで「ディープラーニング技術の発展につなげる」という。 Neural Network Console。ドラッグ&ドロップ操作で「関数ブロック」を自由に配置し、ニューラルネットワークを視覚的に構築できる 同社は今年6月、ディープラーニングのプログラムを生成する際に使うコアライブラリー(基盤ソフトウェア)「Neural Network Libraries」(以下、Libraries)をオープンソース化した。人間の脳を模倣した「ニューラルネットワーク」の設計、製品・サービスへの搭載を効率化する演算モジュール群だが、利用には高度なプロ

    コーディング不要のディープラーニング開発ツール、ソニーが無償提供
  • Convolutional Neural Networkとは何なのか - Qiita

    Deleted articles cannot be recovered. Draft of this article would be also deleted. Are you sure you want to delete this article? 機械学習の世界において、画像といえばConvolutional Neural Network(以下CNN)というのは、うどんといえば香川くらい当たり前のこととして認識されています。しかし、そのCNNとは何なのか、という解説は意外と少なかったりします。 そこで、記事ではCNNについてその仕組みとメリットの解説を行っていきたいと思います。 なお、参考文献にも記載の通り解説の内容はStanfordのCNNの講座をベースにしています。こちらの講座はNeural NetworkからCNN、はてはTensorflowによる実装まで解説される予定な

    Convolutional Neural Networkとは何なのか - Qiita
  • 2016年のディープラーニング論文100選 - Qiita

    Deleted articles cannot be recovered. Draft of this article would be also deleted. Are you sure you want to delete this article? これはFujitsu Advent Calendar 2016の11日目の記事です。 掲載内容は個人の意見・見解であり、富士通グループを代表するものではありません。なお、内容の正確性には注意を払っていますが無保証です。 はじめに この記事では先月今年発表されたディープラーニング論文(ArXivでの発表時期、発表された国際会議が2016年開催またはジャーナル掲載が2016年のもの)から私が個人的に重要だと思った論文を収集しています。また、2015年末ごろの論文も重要なものは採用しています。 以下の投稿も合わせてご覧ください。 2017年の

    2016年のディープラーニング論文100選 - Qiita
  • 1