CVPR
#2439

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

CVPR 2019 Submission #2439. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

DeepView: View synthesis with learned gradient descent
Supplemental Materials

Anonymous CVPR submission

Paper ID 2439

1. Reducing Memory Usage

A naive implementation of our model requires a pro-
hibitive amount of RAM for both inference and training.
Internally, convolutional layers within the CNNs compute
activations with as many as 128 channels. The required
RAM for the activations for even a single one of these lay-
ers would be K x D x N, x N. x 128 — for even moder-
ately sized MPIs this would require hundreds of gigabytes
of GPU RAM, and this is for a single network layer within
a single iteration of the network.

Reducing RAM during inference is relatively simple as
we can tile the inference of each per-iteration CNN across
the D x N, x N. MPI volume, recomputing the gradient
components for each view as needed. The tiled inference of
the per-iteration CNNs can then be run on GPU. Using this
strategy inference takes 50s for a 12 input 64 x 980 x 580
MPI on a P100 GPU.

Reducing RAM at training time is more complex. The
inference method described above is not directly applica-
ble since we need to back-propagate the gradients. More
importantly, a deep network typically requires tens or hun-
dreds of thousands of iterations to converge and a per step
time of 50s would make the training time impractical. In-
stead, during training the network is trained to produce a
small 32 x 32 crop within a target image. By carefully con-
sidering both the CNN padding and the MPI and view ge-
ometry at each iteration we can compute both the needed
crops from each input view and the minimal volume of the
MPI that needs to be computed at each iteration in order to
produce a given target image patch without border effects.
Note that this calculation is complex since in order to pro-
duce the gradient components for a specific input view crop
at iteration n we need to have available the MPI volume vis-
ible to that crop at the previous iteration n — 1, but in order
to compute that MPI volume in n — 1 we need to have more
of the input view’s area etc. The required MPI volume that
needs to computed for a given target crop thus increases as
the number of LGD iterations increases.

To further reduce RAM we discard activations within

each of the per-iteration networks, as described in [3] and
tile computation along the depth plane dimension. Even
with these memory optimizations, at higher resolutions we
are limited to training a single example patch at a time and
rely on synchronized replicas to get large effective batch
sizes.

2. Generating training samples from the
Spaces dataset

To generate a sample we first randomly select a scene
and a random rig position. We then randomly select the in-
put views from the set of possible view sets within the rig
(see Figure 4). These views form the input to the network.
The target view is then randomly selected from the remain-
ing views across all rigs that are within 6cm of of the con-
vex hull of the input views, and a maximum of 7cm from
the plane of the input views. A 32 x 32 crop is then chosen
from the target view.

3. Training hyperparameters

We used distributed training with synchronized replicas
to increase the effective batch size. We typically used 16
replicas, but for some experiments we used less replicas but
computed gradients from two examples in each replica be-
fore accumulating the batch.

As in Adler et al. [1] we used global gradient clipping,
with a threshold of 8.0.

We use feature similarity [2, 5] as our training loss Ly,
specifically the convl_2, conv2_2 and conv3_3 layers of a
pre-trained VGG-16 network [4]. The conv3_3 layer has
a receptive field of 40 x 40, so we first reflect padded the
32 x 32 target and training crop to be 40 x 40. Follow-
ing Chen et al. [2] we then computed the loss by summing
the L, difference of the layers, weighted by the empirically
determined weights of [11.17, 35.04,29.09]. Finally, we di-
vided the loss by the area of the crop 32 x 32, producing a
loss in a more reasonable range which improved the numer-
ical stability of global gradient clipping.

CVPR
#2439

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107



CVPR CVPR

#2439 #2439
CVPR 2019 Submission #2439. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

122 References 122
110 [1] J. Adler and O. Oktem. Learned primal-dual reconstruction. 164
111 IEEE Transactions on Medical Imaging, 37:1322-1332,2018. 165
112 1 166
113 [2] Q. Chen and V. Koltun. Photographic image synthesis with 167
114 cascaded refinement networks. CoRR, abs/1707.09405, 2017. 168
115 ! e 169
116 [3] T.Chen, B. Xu, C. Zhang, and C. Guestrin. Training deep nets 170

117 with sublinear memory cost. CoRR, abs/1604.06174, 2016. 1 171
[4] K. Simonyan and A. Zisserman. Very deep convolu-

18 tional networks for large-scale image recognition. CoRR, 172
119 abs/1409.1556, 2014. 1 173
120 [5]1 R. Zhang, P. Isola, A. A. Efros, E. Shechtman, and O. Wang. 174
121 The unreasonable effectiveness of deep features as a percep- 175
122 tual metric. CoRR, abs/1801.03924, 2018. 1 176
123 177
124 178
125 179
126 180
127 181
128 182
129 183
130 184
131 185
132 186
133 187
134 188
135 189
136 190
137 191
138 192
139 193
140 194
141 195
142 196
143 197
144 198
145 199
146 200
147 201
148 202
149 203
150 204
151 205
152 206
153 207
154 208
155 209
156 210
157 211
158 212
159 213
160 214
161 215



