
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

CVPR
#2439

CVPR
#2439

CVPR 2019 Submission #2439. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

DeepView: View synthesis with learned gradient descent
Supplemental Materials

Anonymous CVPR submission

Paper ID 2439

1. Reducing Memory Usage

A naive implementation of our model requires a pro-
hibitive amount of RAM for both inference and training.
Internally, convolutional layers within the CNNs compute
activations with as many as 128 channels. The required
RAM for the activations for even a single one of these lay-
ers would be K ×D ×Nr ×Nc × 128 — for even moder-
ately sized MPIs this would require hundreds of gigabytes
of GPU RAM, and this is for a single network layer within
a single iteration of the network.

Reducing RAM during inference is relatively simple as
we can tile the inference of each per-iteration CNN across
the D × Nr × Nc MPI volume, recomputing the gradient
components for each view as needed. The tiled inference of
the per-iteration CNNs can then be run on GPU. Using this
strategy inference takes 50s for a 12 input 64 × 980 × 580
MPI on a P100 GPU.

Reducing RAM at training time is more complex. The
inference method described above is not directly applica-
ble since we need to back-propagate the gradients. More
importantly, a deep network typically requires tens or hun-
dreds of thousands of iterations to converge and a per step
time of 50s would make the training time impractical. In-
stead, during training the network is trained to produce a
small 32× 32 crop within a target image. By carefully con-
sidering both the CNN padding and the MPI and view ge-
ometry at each iteration we can compute both the needed
crops from each input view and the minimal volume of the
MPI that needs to be computed at each iteration in order to
produce a given target image patch without border effects.
Note that this calculation is complex since in order to pro-
duce the gradient components for a specific input view crop
at iteration n we need to have available the MPI volume vis-
ible to that crop at the previous iteration n− 1, but in order
to compute

¯
that MPI volume in n− 1 we need to have more

of the input view’s area etc. The required MPI volume that
needs to computed for a given target crop thus increases as
the number of LGD iterations increases.

To further reduce RAM we discard activations within

each of the per-iteration networks, as described in [3] and
tile computation along the depth plane dimension. Even
with these memory optimizations, at higher resolutions we
are limited to training a single example patch at a time and
rely on synchronized replicas to get large effective batch
sizes.

2. Generating training samples from the
Spaces dataset

To generate a sample we first randomly select a scene
and a random rig position. We then randomly select the in-
put views from the set of possible view sets within the rig
(see Figure 4). These views form the input to the network.
The target view is then randomly selected from the remain-
ing views across all rigs that are within 6cm of of the con-
vex hull of the input views, and a maximum of 7cm from
the plane of the input views. A 32× 32 crop is then chosen
from the target view.

3. Training hyperparameters

We used distributed training with synchronized replicas
to increase the effective batch size. We typically used 16
replicas, but for some experiments we used less replicas but
computed gradients from two examples in each replica be-
fore accumulating the batch.

As in Adler et al. [1] we used global gradient clipping,
with a threshold of 8.0.

We use feature similarity [2, 5] as our training loss Lf ,
specifically the conv1 2, conv2 2 and conv3 3 layers of a
pre-trained VGG-16 network [4]. The conv3 3 layer has
a receptive field of 40 × 40, so we first reflect padded the
32 × 32 target and training crop to be 40 × 40. Follow-
ing Chen et al. [2] we then computed the loss by summing
the L1 difference of the layers, weighted by the empirically
determined weights of [11.17, 35.04, 29.09]. Finally, we di-
vided the loss by the area of the crop 32 × 32, producing a
loss in a more reasonable range which improved the numer-
ical stability of global gradient clipping.

1



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

CVPR
#2439

CVPR
#2439

CVPR 2019 Submission #2439. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

References
[1] J. Adler and O. Öktem. Learned primal-dual reconstruction.

IEEE Transactions on Medical Imaging, 37:1322–1332, 2018.
1

[2] Q. Chen and V. Koltun. Photographic image synthesis with
cascaded refinement networks. CoRR, abs/1707.09405, 2017.
1

[3] T. Chen, B. Xu, C. Zhang, and C. Guestrin. Training deep nets
with sublinear memory cost. CoRR, abs/1604.06174, 2016. 1

[4] K. Simonyan and A. Zisserman. Very deep convolu-
tional networks for large-scale image recognition. CoRR,
abs/1409.1556, 2014. 1

[5] R. Zhang, P. Isola, A. A. Efros, E. Shechtman, and O. Wang.
The unreasonable effectiveness of deep features as a percep-
tual metric. CoRR, abs/1801.03924, 2018. 1

2


