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Abstract
Background Several healthcare-associated infection outbreaks have been caused by waterborne Pseudomonas 
aeruginosa exhibiting its ability to colonize water systems and resist conventional chlorine treatment. This study aims 
to investigate the occurrence of Pseudomonas aeruginosa in hospital drinking water systems and the antimicrobial 
resistance profiles (antibiotic and chlorine resistance) of isolated strains.

Methods We investigated the presence of Pseudomonas aeruginosa in water and biofilms developed in nine hospital 
water systems (n = 192) using culture-based and molecular methods. We further assessed the survival of isolated 
strains after exposure to 0.5 and 1.5 ppm concentrations of chlorine. The profile of antibiotic resistance and presence 
of antibiotic resistance genes in isolated strains were also investigated.

Results Using direct PCR method, Pseudomonas aeruginosa was detected in 22% (21/96) of water and 28% (27/96) 
of biofilm samples. However, culturable Pseudomonas aeruginosa was isolated from 14 samples. Most of P. aeruginosa 
isolates (86%) were resistant to at least one antibiotic (mainly β-lactams), with 50% demonstrating multidrug 
resistance. Moreover, three isolates harbored intI1 gene and two isolates contained blaOXA−24,blaOXA−48, and blaOXA−58  
genes. Experiments with chlorine disinfection revealed that all tested Pseudomonas aeruginosa strains were resistant 
to a 0.5 ppm concentration. However, when exposed to a 1.5 ppm concentration of chlorine for 30 min, 60% of the 
strains were eliminated. Interestingly, all chlorine-resistant bacteria that survived at 30-minute exposure to 1.5 ppm 
chlorine were found to harbor the intI1 gene.

Conclusions The detection of antimicrobial resistant Pseudomonas aeruginosa in hospital water systems raises 
concerns about the potential for infections among hospitalized patients. The implementation of advanced mitigation 
measures and targeted disinfection methods should be considered to tackle the evolving challenges within hospital 
water systems.
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Introduction
Despite improvements in medical care and disease pre-
vention, healthcare-associated infections (HAIs) remain 
a significant global health threat, leading to increased 
morbidity, mortality, and economic burdens [1]. Antimi-
crobial-resistant (AMR) microorganisms play a key role 
in this challenge, complicating treatment and elevating 
risks. The environment serves as a reservoir for AMR 
and facilitating their dissemination through complex 
pathways [2]. Combating this growing challenge requires 
acting within the One-Health framework emphasizing 
collaborative efforts across diverse healthcare disciplines, 
encompassing human, animal, and environmental sectors 
[3]. Water systems, as a critical environmental compo-
nent, play a significant role in influencing the propaga-
tion of antimicrobial resistance within the One-Health 
framework.

Evidence suggests that waterborne transmission signifi-
cantly contributes to a substantial portion of documented 
HAIs, estimated at approximately 21.6% [4]. Among 
waterborne microorganisms, opportunistic premise 
plumbing pathogens (OPPPs) require particular atten-
tion due to their unique ability to persist in water dis-
tribution systems (WDSs) [5]. Their ability to survive in 
low-nutrient environments, resist common disinfectants, 
and form biofilm makes them particularly worrisome 
for HAIs [5]. Biofilms within WDSs represent complex 
microbial communities that adhere to solid-liquid inter-
faces. These communities are embedded within a matrix 
of extracellular polymeric substances (EPS) [6]. Bacteria 
within biofilm are closely clustered and can acquire anti-
biotic resistance genes (ARGs) from each other thorough 
horizontal gene transfer (HGT) [7]. Therefore, biofilm 
detachment from various WDSs components can then 
disseminate antibiotic resistant bacteria into the hospital 
environment, posing a risk to exposed patients.

Pseudomonas aeruginosa is a gram-negative gamma-
proteobacterium with intrinsic and acquired resistance 
to many antibiotics, which makes infections difficult to 
treat and contributes to a major healthcare challenge. 
World Health Organization (WHO) classified P. aerugi-
nosa as a “high-priority pathogen” due to its global threat, 
particularly affecting healthcare settings [8]. Addition-
ally, its classification as one of the “ESKAPE” pathogens 
(Enterococcus faecium, Staphylococcus aureus, Klebsiella 
pneumoniae, Acinetobacter baumannii, P. aeruginosa and 
Enterobacter spp.) emphasizes its significant contribution 
on HAIs and its ability to “escape” the effects of antimi-
crobial agents [9]. It has been estimated that P. aerugi-
nosa was responsible for over 250,000 deaths associated 
with AMR in 2019, with the highest burden in Sub-Saha-
ran Africa and the lowest in Australia [10, 11].

P. aeruginosa is a ubiquitous bacterium found in vari-
ous environments and is a prominent example of an 

OPPP identified within both water and biofilms of WDSs, 
often exhibiting high levels of resistance to antimicro-
bial agents [4]. Globally, several waterborne outbreaks 
of HAIs caused by AMR P. aeruginosa have been docu-
mented [12–14]. It can cause various HAIs, including 
hospital-acquired pneumonia, urinary tract infections, 
surgical site infections, and bloodstream infections. 
Hospitalized patients can acquire waterborne P. aerugi-
nosa infections through various routes, such as inhaling 
droplets from contaminated water in showers or faucets, 
exposure of open wounds to contaminated water during 
surgery or bathing, and rinsing of medical devices like 
nebulizers or catheters with contaminated water [13, 15].

P. aeruginosa has developed resistance to a wide range 
of antibiotics through the acquisition of various resis-
tance genes. This resistance is driven by both chro-
mosomal mutations and the increasing prevalence of 
transferable resistance mechanisms. These mechanisms 
primarily involve carbapenemases and extended-spec-
trum β-lactamases (ESBLs), often accompanied by ami-
noglycoside-modifying enzymes encoded by associated 
genes [16, 17]. OXA genes encode for a class of enzymes 
known as OXA-type β-lactamases confer resistance to 
β-lactam antibiotics and have been identified in ESKAPE 
pathogens, including P. aeruginosa, Acinetobacter bau-
mannii, and Klebsiella pneumoniae [18]. As reviewed 
by del Barrio-Tofiño et al. (2020), OXA genes, along 
with VIM, IMP, CTX, and TEM, are among the most 
frequently detected horizontally acquired β-lactamases 
in P. aeruginosa epidemic high-risk clones [16]. Encode 
aminoglycoside-modifying enzymes, aac genes, inacti-
vate aminoglycoside antibiotics which is crucial for treat-
ing severe P. aeruginosa infections [19]. The presence of 
these ARGs in P. aeruginosa isolated from hospital envi-
ronments is concerning due to the potential exposure of 
patients.

Studies on antibiotic and chlorine resistance have pri-
marily been conducted within municipal drinking water 
distribution systems [20–23]. However, research specifi-
cally focusing on both antibiotic and disinfectant resis-
tance of waterborne microorganisms in hospital water 
systems remains limited [24]. Our understanding of P. 
aeruginosa occurrence and resistance within these sys-
tems primarily relies on post-outbreak reports, and to the 
best of our knowledge, no prior studies have investigated 
the specific chlorine resistance characteristics of P. aeru-
ginosa strains isolated from these settings. Acknowledg-
ing the crucial role of chlorine disinfection in preventing 
the spread of waterborne bacteria in hospitals, this study 
aims to: (1) determine the occurrence of P. aeruginosa 
in both water and biofilm samples collected from hos-
pital WDSs. (2) evaluate the antimicrobial resistance 
(antibiotic and chlorine resistance) of isolated P. aeru-
ginosa strains. (3) determine the frequency of a number 
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of common ARGs, encoding resistance to β-lactams and 
aminoglycosides in isolated P. aeruginosa.

Methods
Sample collection and preparation
The occurrence and resistance of P. aeruginosa in the 
WDSs of nine large hospitals of Isfahan province, Iran 
were investigated. A total of 192 samples were obtained 
from hand-washing faucets and shower hoses situated in 
high-risk areas, such as intensive care units and operat-
ing rooms. This sample set included 96 water samples 
and 96 biofilm samples. Water samples were collected in 
100 mL sterile glass bottles containing 0.1 g/L of sodium 
thiosulfate to neutralize the chlorine. Biofilm samples 
were gathered using Dacron swabs following the U.S. 
Center for Disease Control and Prevention (CDC) pro-
tocol [25]. Water samples were analyzed on-site for free 
chlorine residual and pH using an AB 142 portable pH/
chlorine meter (Behin Ab, Iran). Additionally, turbidity 
and electrical conductivity measurements were obtained 
using a 2100Q Portable Turbidimeter and an Eutech EC 
meter, respectively.

To prepare samples for microbial testing, water sam-
ples (50 mL) were concentrated tenfold by centrifugation 
(6000 rpm, 20 min). After discarding 45 mL of superna-
tant, the concentrated pellet in the remaining 5 mL was 
used for subsequent analyses. Biofilm samples were sub-
jected to ultrasonic vibration and vortexing to detach 
cells. The resulting PBS solution containing detached 
biofilm cells was used for further testing. Heterotrophic 
plate count (HPC) analysis of the water samples was con-
ducted by spreading 200 µL of the concentrated water 
sample on R2A agar (Merck, Darmstadt, Germany), fol-
lowed by incubation at 25 °C for 72–120 h [26].

Pseudomonas aeruginosa detection
The presence of P. aeruginosa in water and biofilm 
samples was investigated using both molecular and cul-
ture-based methods. Direct PCR was used to identify 
the presence of both culturable and non-culturable P. 
aeruginosa cells potentially present in the samples. Cul-
ture-based methods were employed to detect viable P. 
aeruginosa and to assess antimicrobial resistance profiles.

P. aeruginosa detection using PCR
DNA extraction from water and biofilm samples was 
carried out directly using a combination of proteinase 
K, sodium dodecyl sulfate (SDS), and repeated freezing-
thawing cycles [27]. The extracted DNA was further 
purified by RIBO-prep nucleic acid extraction kit (Ampli-
Sens®) following the manufacturer’s instructions. Water 
and biofilm samples were subjected to conventional PCR 
using a species-specific primer set to detect the presence 
of P. aeruginosa, as previously described [27].

Additionally, a StepOne real-time PCR system was 
employed to quantify P. aeruginosa in water samples. 
For the quantitative PCR (qPCR) assay, a reaction mix-
ture was prepared containing 7.5 µL of 2x Power SYBR 
Green Master Mix, 0.2 µM of each primer [27], 3 µL of 
template DNA, and double-distilled water. The thermal 
cycling protocol consisted of an initial denaturation at 
95  °C for 10  min, followed by 40 cycles of denaturation 
at 94 °C for 15 s and annealing at 58 °C for 45 s. Melting 
curve analysis was performed from 65 °C to 95 °C to ver-
ify amplicon specificity. A standard curve for qPCR was 
generated using a serial dilution of P. aeruginosa genomic 
DNA, ranging from 106 to 1 cell-equivalent, quantified 
with a Qubit fluorometer (Eq. S1). Quantification of P. 
aeruginosa in biofilm samples from swabbed faucets was 
not feasible due to the inability to accurately measure the 
inner surface area. Therefore, qPCR analysis was per-
formed on water samples only.

P. aeruginosa identification and isolation using culture-based 
method
To identify viable P. aeruginosa, 200 µL of each biofilm 
and concentrated water samples were plated on blood 
agar (Merck, Darmstadt, Germany) and incubated for 
24–48  h at 37  °C. Suspected colonies from both blood 
agar and R2A agar were isolated and subcultured on 
selective Cetrimide agar plates (Difco, Detroit, USA). 
After 18–24 h of incubation at 37 °C, colonies from Cet-
rimide agar were subjected to DNA extraction using the 
boiling method and confirmed as P. aeruginosa by con-
ventional PCR using a species-specific primer set [27]. 
Confirmed P. aeruginosa isolates were preserved in 1-mL 
Tryptic Soy Broth (Merck, Darmstadt, Germany) supple-
mented with glycerol (15%) at -20 °C for subsequent anti-
biotic and chlorine resistance testing.

Antibiotic resistance tests
The confirmed P. aeruginosa isolates underwent antibi-
otic susceptibility testing using the Kirby-Bauer disk dif-
fusion method, as outlined in Clinical and Laboratory 
Standards Institute (CLSI) document M100 [28]. Anti-
biotic disks used in this study and the breakpoints are 
presented in Table 1. The antibiotics were selected from 
group A and B antibiotics recommended by CLSI for rou-
tine and occasional antibiotic susceptibility testing of P. 
aeruginosa. All P. aeruginosa isolated colonies were also 
screened for the presence of class 1 integron gene (intl1) 
as well as genes conferring resistance against aminogly-
coside-fluoroquinolone (aac(6’)-Ib-cr) and β-lactams 
(blaCTX−M, blaTEM, blaOXA−23, blaOXA−24, blaOXA−58 , bla-
OXA−48, blaKPC) using PCR as previously described [24, 
29]. Primer sets used for ARG detection are presented in 
Table S1.
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Chlorine resistance experiment
P. aeruginosa isolates were tested for chlorine resistance 
as described [24]. Briefly, P. aeruginosa colonies were cul-
tured in Tryptic Soy Broth (Merck, Darmstadt, Germany) 
and adjusted to a 0.5 McFarland standard (OD600). 
Chlorine resistance testing involved exposing bacte-
rial suspensions to two concentrations of free chlorine 
(0.5 and 1.5 ppm) for durations of 5 and 30  min. Post-
exposure chlorine residuals were inactivated via sodium 
thiosulfate treatment. Subsequently, serial dilutions of 
the treated samples were plated onto Tryptic Soy Agar 
(Merck, Darmstadt, Germany) and incubated at 37 °C for 
24 h. The survival rate was determined by comparing the 
colony counts of the exposed samples to those of unex-
posed control samples.

Statistical analysis
Data visualization was achieved using Microsoft Excel 
2016, while statistical analyses were conducted with SPSS 
version 24. To assess the relationship between physico-
chemical parameters, HPC, and P. aeruginosa concen-
tration in water samples, Spearman’s correlation was 
employed. Correlations exhibiting a P-value below 0.05 
were deemed statistically significant.

Results and discussion
Water quality
Biofilm provides an ideal environment for the prolonged 
survival of waterborne opportunistic bacteria such as P. 
aeruginosa, and facilitates HGT between bacterial cells, 
potentially leading to antibiotic resistance in hospital 
water systems. Moreover, long-term exposure to sub-
optimal disinfectants in WDSs may result in chlorine 
resistance of opportunistic bacteria and even co-resis-
tance to antimicrobial agents [29].

Heterotrophic bacteria count and physicochemi-
cal characteristics of water samples are provided in 
Table  2. HPC in water samples ranged between 0 and 
3240 CFU/mL. Notably, the average HPC exceeded the 
potable water standard of 500 CFU/mL [30] in six of the 
nine hospital WDSs. Negative correlations were found 
between chlorine residual levels and both turbidity and 
HPC in the water samples, indicating that lower chlorine 
concentrations were associated with higher turbidity and 
bacterial counts. These results indicate a potential asso-
ciation between insufficient chlorine residual levels and 
an increased risk of microbial proliferation and biofilm 
development, emphasizing critical importance of main-
taining adequate chlorine concentrations within WDSs 
[24].

Presence of P. aeruginosa in water and biofilm samples
The presence and concentration of P. aeruginosa detected 
by PCR in the samples are illustrated in Fig.  1A-C. P. 
aeruginosa was identified in 28% of biofilm samples 
(27/96) and 22% of water samples (21/96) (Fig. 1A), with 
nine samples exhibiting its presence in both water and 
biofilm samples (Fig.  1B). In most hospitals, P. aerugi-
nosa was more prevalent in biofilm samples compared 
to water samples, except for hospitals No. 2, 8, and 9 
where water samples showed a higher prevalence of P. 
aeruginosa than biofilms (Fig.  1A). Based on the results 
obtained by qPCR, quantities of P. aeruginosa in positive 
water samples ranged from 0.25 to 50 No./mL (Fig. 1C). 
However, the culture-based method yielded lower detec-
tion rates for P. aeruginosa (Fig.  2). Culturable P. aeru-
ginosa was found in 14 samples (eight biofilm and six 

Table 1 Antibiotic panel used for the isolated P. Aeruginosa from water and biofilm samples
Antibiotic group Antibiotic Disk content (µg) [28] Zone diameter breakpoints (mm) [28]

Susceptible Intermediate Resistant
β-lactam (cepham) Ceftazidime A 30 ≥ 18 15–17 ≤ 14
β-lactam (cepham) Cefepime B 30 ≥ 18 15–17 ≤ 14
β-lactam (monobactam) Aztreonam B 30 ≥ 22 16–21 ≤ 15
β-lactam (carbapenem) Imipenem B 10 ≥ 19 16–18 ≤ 15
Aminoglycoside Gentamicin A 10 ≥ 15 13–14 ≤ 12
Aminoglycoside Amikacin B 30 ≥ 17 15–16 ≤ 14
Fluoroquinolone Ciprofloxacin B 5 ≥ 25 19–24 ≤ 18
a Antibiotics listed as Group A should be routinely tested, B antibiotics listed as Group B should be tested occasionally [28]

Table 2 Physicochemical characteristics of water samples and 
HPC
Parameter Mean ± STD Min Max WHO 

recom-
mended 
values

pH - 6.2 7.7 6.5–8.5
Free chlorine residual 
(mg/L)

0.24 ± 0.13 0 0.5 0.2

Turbidity (NTU) 0.68 ± 0.47 0.14 3.4 5
EC a (µmho/cm) 975 ± 795 345 3000 -
HPC b (CFU/mL) 653 ± 841 0 3240 500
a Electrical conductivity
b Heterotrophic plate count
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water samples) (Fig.  2A), with simultaneous occurrence 
in two samples (Fig.  2B). The numbers of P. aeruginosa 
in water samples using the culture-based method ranged 
from 2 to 50 CFU/mL. Statistical analysis showed a sig-
nificant positive correlation between the concentrations 
of culturable P. aeruginosa and HPC. No correlation was 
observed between the physicochemical characteristics of 
water and P. aeruginosa concentrations.

Our findings indicate that P. aeruginosa was detected 
in hospital water systems in both planktonic and biofilm 
forms, suggesting that these systems represent a hotspot 
for the dissemination of P. aeruginosa into the hospi-
tal environment and potentially pose health risks for 
patients. Previous studies have also reported the occur-
rence of P. aeruginosa in hospital water systems. For 
instance, a nine-year study in a French hospital using 

Fig. 2 Frequency of culturable P. aeruginosa detected in water and biofilm samples (A) Frequency of detection of P. aeruginosa in hospital water systems, 
(B) The numbers of shared and unique P. aeruginosa detected in water and biofilm samples, (C) Concentration of P. aeruginosa in water samples

 

Fig. 1 Frequency of detection and concentration of P. aeruginosa in water and biofilm samples using PCR. (A) Frequency of detection of P. aeruginosa in 
hospital water systems, (B) The numbers of shared and unique P. aeruginosa detected in water and biofilm samples, (C) Concentration of P. aeruginosa in 
water samples
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culture-based methods reported a detection frequency 
of 17% for P. aeruginosa in water samples [31]. Similarly, 
a study in Taiwanese hospitals identified 14 isolates of P. 
aeruginosa among 162 faucet aerators located in ICUs 
[32]. In contrast, direct PCR analysis revealed a 50% 
positivity rate for P. aeruginosa occurrence in the water, 
compared to only 7% recovered by culture methods in a 
pediatric university hospital in Montreal, Canada [33]. 
Furthermore, a previous investigation in Isfahan also 
detected P. aeruginosa in 32% of hospital water samples 
using direct PCR assays [34].

The increased frequency of detecting P. aeruginosa 
through direct PCR assays compared to culture-based 
methods suggest the potential presence of this bacterium 
in a viable but nonculturable (VBNC) state. It has been 
documented that a significant portion of the bacterial 
population in water system biofilms exists in the VBNC 
state [35]. When bacteria transit to the VBNC state, they 
retain metabolic activity and pathogenicity, thereby pre-
senting a potential threat to water quality [36].

Antibiotic resistance analysis
Antimicrobial susceptibility testing using the disk diffu-
sion method revealed that 86% of P. aeruginosa isolates 
were resistant to at least one antibiotic, with 50% dem-
onstrating multidrug resistance (Fig.  3A). Notably, the 
majority (83%) of antibiotic-resistant P. aeruginosa were 
isolated from biofilm samples, highlighting the increased 
resistance of biofilm bacteria compared to planktonic 
ones.

As shown in Fig.  3B, the highest resistance was 
observed against β-lactam antibiotics. Among the iso-
lated P. aeruginosa, 71% were resistant to aztreonam, 
and the remaining isolates demonstrated intermediate 
susceptibility. Ceftazidime and cefepime resistance rates 
were 43% and 29%, respectively, whereas all isolates were 

susceptible to imipenem. β-lactams are often considered 
the last resort for treating severe bacterial infections such 
as urinary tract, bloodstream, wound, and pneumonia 
infections. Therefore, resistance to this group of antibiot-
ics poses a significant threat to patients [37].

In contrast to other studies reporting high aminoglyco-
side resistance in waterborne P. aeruginosa [38–40], our 
findings indicated lower resistance levels. Only 14% of 
our isolates were resistant to amikacin, and 29% showed 
intermediate susceptibility to gentamicin. This lower 
resistance might be attributed to the restricted use of 
these antibiotics in Iran during recent years. Moreover, 
while we did not find any imipenem-resistant P. aerugi-
nosa, a recent study on shower water from a hospital in 
London, UK, reported approximately 50% of isolated 
P. aeruginosa as imipenem-resistant [41]. P. aeruginosa 
isolated from bathroom water in Indonesian hospitals 
exhibited resistance to ceftazidime (20%), piperacillin/
tazobactam (4%), ciprofloxacin (20%), and gentamicin 
(20%) [39]. All of Pseudomonas spp. isolates from Italian 
hospital water systems demonstrated resistance to ami-
noglycosides. Fewer isolates were resistant to merope-
nem (5.89%) and ceftazidime (17.64%), and no strains 
were resistant to high levels of ciprofloxacin, aztreonam, 
or cefepime [40].

Among analyzed genes, blaOXA−24,blaOXA−48, and bla-
OXA−58 were simultaneously detected in one water and 
one biofilm sample, both obtained from the same fau-
cet. OXA-type β-lactamases have been reported to have 
profound effect on hydrolysis of cephalosporines, peni-
cillin, piperacillin, aztreonam and carbapenems in Aci-
netobacter spp., Enterobacteriaceae, and P. aeruginosa 
[18]. blaOXA−24 and blaOXA−58 are typically associated 
with carbapenem resistance in Acinetobacter baumannii 
[42]. Interestingly, in our study these genes were found 
in isolates which have shown resistance to ceftazidime, 

Fig. 3 Resistance of P. aeruginosa to antibiotics (A) Frequency of resistant isolates to one and more than one antibiotic, (B) Frequency of resistant/ inter-
mediate/ susceptible isolates to each antibiotic
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aztreonam, and cefepime. However, none of the P. aerugi-
nosa in our study identified as carbapenem resistant. The 
emergence of these types of genes in clinical isolates of P. 
aeruginosa has been recently reported [43, 44]. The pres-
ence of these genes in our samples suggests that hospital 
water systems could serve as a reservoir for the dissemi-
nation of β-lactam -resistant P. aeruginosa, underscoring 
the role of hospital WDSs in the transmission of antibi-
otic-resistant healthcare-associated infections. How-
ever, other β-lactam resistance genes (blaCTX−M, blaTEM, 
blaKPC,blaOXA−23), and aac(6’)-Ib-cr were not detected in 
P. aeruginosa isolates.

Class 1 integron gene (intI1) was detected in 21% of the 
isolates from water and biofilm samples. The intI1 gene 
has the ability to accumulate a diverse range of resis-
tance genes, which facilitates the emergence of bacterial 
strains resistant to multiple antimicrobial agents [45]. All 
isolates carrying the intI1 gene were exclusively found in 
samples from one of the hospitals, which specialized in 
pediatrics. This finding raises serious concerns about the 
potential for pediatric patients to acquire infections from 
waterborne, multi-drug-resistant P. aeruginosa. Earlier 
studies have reported outbreaks of multi-drug-resistant 
P. aeruginosa linked to faucet biofilms in neonatal ICUs 
in Turkey and Ireland. These outbreaks led to fatalities, 
as well as cases of pneumonia and bloodstream infections 
among neonates [13, 46].

Chlorine resistance of P. aeruginosa
The frequency of resistant P. aeruginosa in different con-
centrations of applied chlorine is depicted in Fig.  4. As 

recommended by the WHO, effective disinfection of 
drinking WDSs can be achieved by applying a free chlo-
rine concentration of 0.5  mg/l for a duration of 30  min 
[47]. As a result, bacteria that tolerate this disinfection 
dosage are defined as chlorine-resistant bacteria [48]. In 
our study, all tested P. aeruginosa isolates exhibited resis-
tance to a chlorine concentration of 0.5 ppm for both 
5- and 30-minute exposure durations. However, when 
exposed to a higher chlorine concentration (1.5 ppm), 
80% of the isolates were able to survive after a 5-minute 
exposure, with 40% remaining viable even after a 30-min-
ute exposure. A recent study has shown that certain bac-
teria, such as Bacillus and Staphylococcus, present in 
biofilms of hospital water systems can tolerate chlorine 
concentrations of up to 4 ppm [24]. Jathar et al. (2021) 
also reported the high resistance of bacteria isolated from 
water reservoirs, with the highest resistance observed for 
Acinetobacter and Serratia [49]. Pseudomonas peli was 
isolated from an urban water supply network in northern 
China and exhibited a high resistance to chlorine [22]. 
It has been suggested that bacterial resistance to vari-
ous antibiotics and disinfectants often relies on shared 
mechanisms, including expression of efflux pumps and 
drug resistance operons, as well as inducible mutations 
in certain genes [50, 51]. Hou et al. (2019) reported that 
exposure of P. aeruginosa to low concentrations of chlo-
rine can lead to the overexpression of drug efflux pumps, 
resulting in increased antibiotic resistance [52]. Interest-
ingly, in our study,   all chlorine-resistant bacteria surviv-
ing a 30-minute exposure to 1.5 ppm chlorine were found 
to harbor the intI1 gene. Similarly, a study by Chen et al. 

Fig. 4 Frequency of resistant P. aeruginosa in different concentrations of applied chlorine
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(2023) observed a strong association between resistance 
to disinfectants and presence of intI1 gene in Salmo-
nella [53]. Class 1 integrons in environmental bacteria 
typically contain a 5′ conserved segment (5′CS) with the 
intI1 gene and a 3′ conserved sequence (3′CS) containing 
efflux pump genes (particularly sul1, qacE, and qacEΔ1) 
that confer resistance to disinfectants [45]. Therefore, 
intI1 may serve as an indicator for the presence of disin-
fectants resistance genes.

Conclusions
This study reported the occurrence of Pseudomonas 
aeruginosa, a major causative agent of HAIs, in water and 
biofilm samples collected from nine different hospital 
water systems. While the number of P. aeruginosa isolates 
harboring ARGs was low, with OXA-type β-lactamase 
genes and intI1 detected in only two and three isolates, 
respectively, phenotypic antimicrobial susceptibility 
testing revealed high resistance to β-lactam antibiotics, 
which are widely used in HAIs treatment. This highlights 
the potential role of water systems as hotspots for dis-
seminating β-lactam-resistant P. aeruginosa in hospitals 
and raises concerns about the potential risk of infections 
among hospitalized patients, particularly those who are 
immunocompromised or have open wounds. Notably, 
the resistance of these isolates to conventional chlorine 
disinfection further emphasizes the urgent need for a 
multifaceted approach to addressing waterborne patho-
gens in healthcare settings.

To address the growing challenge of antimicrobial-
resistant HAIs, collaboration between healthcare pro-
fessionals, facility managers, and policymakers for 
developing a comprehensive infection prevention 
and control (IPC) strategy is required. This should be 
included not only routine monitoring of hospital water 
systems but also the implementation of advanced mitiga-
tion measures such as innovative faucet technologies and 
the development of alternative disinfection methods. By 
prioritizing IPC and adopting a One-Health perspective, 
healthcare facilities can effectively combat the dissemi-
nation of antibiotic-resistant bacteria within the hospital 
environment.
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