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XII 

AB1STAUCHUS    OF    SAMOS 

HISTORIANS  of  mathematics  have,  as  a  rule,  given  too  little 
attention  to  Aristarchus  of  Samos.  Tlie  reason  is  no  doubt 

that  he  was  an  astronomer,  and  therefore  it  might  be  supposed 
that  his  work  would  have  no  sufficient  interest  for  the  mathe- 

matician. The  Greeks  knew  better;  they  called  him  Aristar- 

ehus  '  the  mathematician ',  to  distinguish  him  from  the  host 
of  other  Aristarchuses ;  he  is  also  included  by  Vitruvius 

among  the  i'ew  great  men  who  possessed  an  equally  profound 
knowledge  of  all  branches  of  science,  geometry,  astronomy, 
music,  &c. 

'  Men  of  this  type-  are  rare,  men  such  as  were,  in  limes  past, 
Aristarchus  of  Samos,  Philolaus  and  Arehytas  of  Tarentum, 
Apollonius  of  Perga,  Eratosthenes  of  Cyreiie,  Archimedes  and 
Scopinas  of  Syracuse,  who  left  to  posterity  many  mechanical 

and  gnomonic*  appliances  which  they  invented  and  explained 

on  mathematical  (lit.  'numerical')  principles.'1 

That  Aristarchus  was  a  very  capable  geometer  is  proved  by 

his  extant  work  On  the  shcs  <in<l  <li$t<t  iiees  of  the  Siai  and 

Moon  which  will  be  noticed  later  in  this  chapter:  in  the 

mechanical  line  he  is  credited  with  the  discovery  of  an  im- 

proved sun-dial,  the  so-called  o-/c«</>?;,  which  had,  not  a  plane, 
but  a  concave  hemispherical  surface,  with  a  pointer  erected 

vertically  in  the  middle  throwing  shadows  and  so  enabling 

the  direction  and  the  height  of  the  sun  to  be  read  oft'  by  means 
of  lines  marked  on  the  surface  of  the  hemisphere.  He  also 

wrote  on  vision,  light  and  colours.  His  views  on  the  latter 

subjects  were  no  doubt  largely  influenced  by  his  master,  Strato 

of  Lampsacus;  thus  Strato  held  that  colours  were  emanations 

from  bodies,  material  molecules,  as  it  won*,  which  imparted  to 
the  intervening  air  the  same  colour  as  that  possessed  by  the 

body,  while  Aristarchus  said  that  colours  are  v  shapes  or  forms 

Vitruvius,  DC  architect  lira,  i.  1.  10. 
1B28.2  Ji 
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stamping  the  air  with  impressions  like  themselves,  as  it  were ', 
that '  colours  in  darkness  have  no  colouring ',  and  that c  light 
is  the  colour  impinging  on  a  substratum '. 

Two  facts  enable  us  to  fix  Aristarchus's  date  approximately. 
In  281/280  B.C.  he  made  an  observation  of  the  summer 
solstice ;  and  a  book  of  his,  presently  to  be  mentioned,  was 

published  before  the  date  of  Archimedes's  Psammites  or  Sand- 
reckoner,  a  work  written  before  216  B.C.  Aristarchus,  there- 

fore, probably  lived  circa  310-230  B.C.,  that  is,  he  was  older 
than  Archimedes  by  about  25  years. 

To  Aristarchus  belongs  the  high  honour  of  having  been 
the  first  to  formulate  the  Copernican  hypothesis,  which  was 
then  abandoned  again  until  it  was  revived  by  Copernicus 

himself.  His  claim  to  the  title  of  '  the  ancient  Copernicus  '  is 
still,  in  my  opinion,  quite  unshaken,  notwithstanding  the  in- 

genious and  elaborate  arguments  brought  forward  by  Schia- 
parelli  to  prove  that  it  was  Heraclides  of  Pontus  who  first 
conceived  the  heliocentric  idea.  Heraclides  is  (along  with  one 
Ecphantus,  a  Pythagorean)  credited  with  having  been  the  iirst 
to  hold  that  the  earth  revolves  about  its  own  axis  every  24 
hours,  and  he  was  the  first  to  discover  that  Mercury  and  Venus 
revolve,  like  satellites,  about  the  sun.  But  though  this  proves 
that  Heraclides  came  near,  if  he  did  not  actually  reach,  the 
hypothesis  of  Tycho  Brahe,  according  to  which  the  earth  was 
in  the  centre  and  the  rest  of  the  system,  the  sun  with  the 
planets  revolving  round  it,  revolved  round  the  earth,  it  does 
not  suggest  that  he  moved  the  earth  away  from  the  centre. 

The  contrary  is  indeed  stated  by  Acitius,  who  says  that  '  Hera- 
clides and  Ecphantus  make  the  earth  move,  not  in  the  sense  of 

translation,  but  by  way  of  turning  on  an  axle,  like  a  wheel, 
from  west  to  east,  about  its  own  centre  V  None  of  the 

champions  of  Heraclides  have  been  able  to  moot  this  positive 
statement.  But  we  have  conclusive  evidence  in  favour  of  the 

claim  of  Aristarchus ;  indeed,  ancient  testimony  is  unanimous 
on  the  point.  Not  only  does  Plutarch  tell  us  that  Cleanthes 
held  that  Aristarchus  ought  to  be  indicted  for  the  impiety  of 

'  putting  the  Hearth  of  the  Universe  in  motion  '  2 ;  we  have  the 
best  possible  testimony  in  the  precise  statement  of  a  great 

1  Aet.  iii.  13.  3,  Vors.  i3,  p.  341.  8. 
2  Plutarch,  De  facie  in  orbe  Iwiae,  c.  6,  pp.  922  F-923  A. 



ARISTARCHUS  OF  SAMOS  3 

contemporary,  Archimedes.  In  the  Sand-reckoner  Archi- 
medes has  this  passage. 

1  You  [King  Celon]  are  aware  that  ''universe"  is  the  name 
given  l>y  most  astronomers  to  the  sphere  the  centre  of  which 
is  the  cojitre  of  the  earth,  while  its  radius  is  equal  to  the 
straight  line  between  the  centre  of  the  sun  and  the  centre  of 
the  earth.  This  is  the  common  account,  as  you  have  heard 
from  astronomers.  But  Aristarchus  brought  out  a  book  con- 
ninting  of  certain  hypotheses,  wherein  it  appears,  as  a  conse- 

quence of  the  assumptions  made,  that  the  universe  is  many 

times  greater  than  the  "  universe  "just  mentioned.  His  hypo- 
theses are  that  the  fixed  stars  and  the  HUH  remain  unmoved, 

that  the,  earth  revolves  about  the  sun  in  the  circumference  of  a 
circle,  the  sun  lying  in  the  middle,  of  the  orhit,  and  that  the 
sphere  of  the  fixed  stars,  situated  about  the  same  centre  as  the 
sun,  is  so  great  that  the  circle  in  which  he  supposes  the  earth 
to  revolve  bears  such  a  proportion  to  the  distance  of  the  fixed 
stars  as  the  centre  of  the  sphere  bears  to  its  surface/ 

(The  last  statement  is  a  variation  of  a  traditional  phrase,  for 

which  there  are  many  parallels  (cf.  Aristarchus' s  Hypothesis  2 
'  that  the  earth  is  in  the  relation  of  a  point  and  centre  to  the 
sphere  in  which  the  moon  moves'),  and  is  a  method  of  saying 
that  the  *  universe*  is  infinitely  great  in  relation  not  merely  to the  size  of  the  sun  but  even  to  the  orbit  of  the  earth  in  its 

revolution  about  it ;  the  assumption  was  necessary  to  Aris- 
tarchus in  order  that  he  might  not  have  to  take  account  of 

parallax.) 
Plutarch,  in  the  passage  referred  to  above,  also  makes  it 

clear  that  Aristarchus  followed  Heraclides  in  attributing  to 

the  earth  the  daily  rotation  about  its  axis.  The  bold  hypo- 
thesis of  Aristarchus  found  few  adherents.  Seleucus,  of 

Seleucia  on  the  Tigris,  is  the  only  convinced  supporter  of  it  of 
whom  we  hear,  and  it  was  speedily  abandoned  altogether, 

mainly  owing  to  the  groat  authority  of  Hipparchus.  Nor'do 
we  find  any  trace  of  the  heliocentric  hypothesis  in  Aris- 

tarchus's  extant  work  0)i  the  sizes  and  distances  of  the 
Hun  and  Moon.  This  is  presumably  because  that  work  was 
written  before  the  hypothesis  was  formulated  in  the  book 
referred  to  by  Archimedes.  The  geometry  of  the  treatise 
is,  however,  unaffected  by  the  difference  between  the  hypo- 
theses. 

B   2 
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Archimedes  also  says  that  it  was  Aristarchus  who  dis- 
covered that  the  apparent  angular  diameter  of  the  sun  is  about 

l/720th  part  of  the  zodiac  circle,  that  is  to  say,  half  a  degree. 
We  do  not  know  how  he  arrived  at  this  pretty  accurate  figure  : 
but,  as  he  is  credited  with  the  invention  of  the  cr/ca^T/,  lie  may 
have  used  this  instrument  for  the  purpose.  But  here  again 

the  discovery  must  apparently  have  been  later  than  the  trea- 
tise On  sizes  ami  distances,  for  the  value  of  the  subtended 

angle  is  there  assumed  to  be  2°  (Hypothesis  6).  How  Aris- tarchus  came  to  assume  a  value  so  excessive  is  uncertain.  As 

the  mathematics  of  his  treatise  is  not  dependent  on  the  actual 

value  taken,  2°  may  have  been  assumed  merely  by  way  of 
illustration ;  or  it  may  have  been  a  guess  at  the  apparent 

diameter  made  before  he  had  thought  of  attempting  to  mea- 
sure it.  Aristarchus  assumed  that  the  angular  diameters  of 

the  sun  and  moon  at  the  centre  of  the  earth  are  equal. 

The  method  of  the  treatise*  depends  on  the,  just  observation, 

which  is  Aristarchus's  third  '  hypothesis ',  that '  when  the  moon 
appears  to  us  halved,  the  great  circle  which  divides  the1,  dark 
and  the  bright  portions  of  the  moon  is  in  the,  direction  of  our 

eye' ;  the  effect  of  this  (since  the  moon  receives  its  light  from 
the  sun),  is  that  at  the  time  of  the  dichotomy  the  centres  of 

the  sun,  moon  and  earth  form  a  triangle  right-angled  at  the 
centre  of  the  moon.  Two  other  assumptions  were  necessary  : 
first,  an  estimate  of  the  size  of  the  angle  of  the  latter  triangle, 
at  the  centre  of  the  earth  at  the  moment  of  dichotomy  :  this 

Aristarchus  assumed  (Hypothesis  4)  to  be,  Mess  than  a  quad- 

rant by  one-thirtieth  of  a  quadrant',  i.e.  87°,  again  an  inaccu- 
rate estimate,  the  true  value  being  89°  50' ;  secondly,  an  esti- 

mate of  the  breadth  of  the  earth's  shadow  where  the  moon 
traverses  it:  this  he  assumed  to  be  'the  breadth  of  two 

moons'  (Hypothesis  5). 
The  inaccuracy  of  the  assumptions  docs  not,  however,  detract 

from  the  mathematical  interest  of  the  succeeding  investigation. 

Here  we  find  the  logical  sequence  of  propositions  and  the  abso- 
lute rigour  of  demonstration  characteristic  of  Greek  geometry ; 

the  only  remaining  drawback  would  be,  the  practical  difficulty 

of  determining  the  exact  moment  when  the  moon  'appears  to 

us  halved'.  The  form  and  style,  of  the  book  are  thoroughly 
classical,  as  befits  the  period  between  Euclid  and  Archimedes  ; 
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the  Greek  is  even  remarkably  attractive.  The  content  from 
the  mathematical  point  of  view  is  no  less  interesting,  for  we 
have  here  the  first  specimen  extant  of  pure  geometry  used 
with  a  trigonometrical  object,  in  which  respect  it  is  a  sort  of 

forerunner  of  Archimedcs's  Measurement  of  a  Circle.  Aristar- 
chus  does  not  actually  evaluate  the  trigonometrical  ratios 
on  which  the  ratios  of  the  sixes  and  distances  to  be  obtained 

depend ;  he  finds  limits  between  which  they  lie,  and  that  by 
means  of  certain  propositions  which  he  assumes  without  proof, 
and  which  therefore  must  have  been  generally  known  to 

mathematicians  of  his  day.  These  propositions  are  the  equi- 
valents of  the  statements  that, 

(1)  if  a  is  what  we  call  the  circular  measure  of  an  angle 
and  a  is  less  than  \  TT,  then  the  ratio  sin  y/oi  decreases,  and  the 
ratio  tan  a/cx  increase*,  as  a  increases  from  0  to  £  TT  ; 

(2)  if  /3  lie  the  circular  measure  of  another  angle  less  than 
\  TT,  and  a>/3,  then 

sin  a       3       tan  a 

sin/^<  ft<  tan/3' 
• 

Aristarchus  of  course  deals,  not  with  actual  circular  measures, 

sines  and  tangents,  but  with  angles  (expressed  not  in  degrees 
but  as  fractions  of  right  angles),  arcs  of  circles  and  their 
chords.  Particular  results  obtained  by  Aristarchus  are  the 
equivalent  of  the  Following: 

^  >sin3°  >  ,*0,  [Prop.  7] 

4\  >sinl°>G10,  [Prop,  llj 

1  >cosl°  >  §g,  [Prop.  12J 

1  >cosM°>  J-f.  [Prop.  13] 

The  book  consists  of  eighteen  propositions.  Beginning  with 
six  hypotheses  to  the  effect  already  indicated,  Aristarchus 
declares  that  he  is  now  in  a  position  to  prove 

(1)  that  the  distance  of  the  sun  from  the  earth  is  greater  than 
eighteen  times,  but  less  than  twenty  times,  the  distance  of  the 
moon  from  the  earth ; 

(2)  that  the  diameter  of  the  sun  has  the  same  ratio  as  afore- 
said to  the  diameter  of  the  moon; 
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(3)  that  the  diameter  of  the  sun  has  to  the  diameter  of  the 
earth  a  ratio  greater  than  19:3,  but  less  than  43  :  6. 

The  propositions  containing  these  results  are  Props.  7,  9 
and  15. 

Prop.  1  is  preliminary,  proving  that  two  equal  spheres  are 
comprehended  by  one  cylinder  ,  and  two  unequal  spheres  by 
one  cone  with  its  vertex  in  the  direction  of  the  lesser  sphere, 
and  the  cylinder  or  cone  touches  the  spheres  in  circles  at 
right  angles  to  the  line  of  centres.  Prop.  2  proves  that,  if 
a  sphere  be  illuminated  by  another  sphere  larger  than  itself, 
the  illuminated  portion  is  greater  than  a  hemisphere.  Prop.  3 
shows  that  the  circle  in  the  moon  which  divides  the  dark  from 

the  bright  portion  is  least  when  the  cone  comprehending  the 

sun  and  the  moon  has  its  vertex  at  our  eye.  The  '  dividing 

circle  ',  as  we  shall  call  it  for  short,  which  was  in  Hypothesis  3 
spoken  of  as  a  great  circle,  is  proved  in  Prop.  4  to  be,  not 
a  great  circle,  but  a  small  circle  not  perceptibly  different 
from  a  great  circle.  The  proof  is  typical  and  is  worth  giving 
along  with  that  of  some  connected  propositions  (11  and  12). 

B  is  the  centre  of  the  moon,  A  that  of  the  earth,  CD  the 

diameter  of  the  '  dividing  circle  in  the  moon  ',  EF  the  parallel 
diameter  in  the  moon.  BA  meets  the  circular  section  of  the 

moon  through  A  and  EF  in  G,  and  CD  in  L.  Gil,  GK 
are  arcs  each  of  which  is  equal  to  half  the  arc  CE.  By 

Hypothesis  6  the  angle  CAD  is  '  one-fifteenth  of  a  sign'  =  2°, 
and  the  angle  BAG  =  1°. 

Now,  says  Aristarchus, 

1°:45°[>  tan  1°:  tan  45°] 
>BC:CA, 

and,  a  fortiori, 
BG:BA  or  BG:BA 

<  1:45; 

that  is,  BG<  - 

therefore,  a  fortiori, 



Now 
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BIl  :11A[  =  sin  HAB :  sin  1IBA\ 

>  LHAE-.LILEA, 
L11AE<  &LURA, 

F     D 

and  (taking  the  doubles)  Z  II  A  K  <  ̂   Z  II  BK. 

But  Z  HBK  =  Z  EBG  =  ̂ 0  /*  (where  U  is  a  right  angle)  ; 

therefore  Z  //^i/f  <  ̂         R. 

But  'a  magnitude  (arc  UK)  seen  under  such  an  angle  is 

imperceptible  to  our  eye  '  ; 
therefore,  a  fortiori,  the  arcs  CE,  DF  are  severally  imper- 

ceptible to  our  eye.  Q.  E.  I). 
An  easy  deduction  from  the  same  figure  is  Prop.  12,  which 

shows  that  the  ratio  of  CD,  the  diameter  of  the  c  dividing 

circle',  to  EF,  the  diameter  of  the  moon,  is  <  1  but  >  f{J  . 

We  have  Z  EBC  =  Z  BAG  =  1°  ; 

therefore  (arc  ATCf)  =  /0  (arc  AY?), 

and  accordingly     (arc  CO)  :  (arc  fr'A')  =  81)  :  90. 
Doubling  the  arcs,  we  have 

(arc  G(!D)  :  (arc  EGF)  =  89  :  90. 

But  CD  :  EF  >  (arc  CGD)  :  (arc  EGF) 

[equivalent  to  sin  a  /sin  /3  >  a//3,  where  /.CBD  =  2  a, and  2  /S  =  TT]  ; 

therefore  CW  :  EF  [  =  cos  1°]  >  89  :  1)0, 
while  obviously  CD  :  EF  <  1. 

Prop.  11  finds  limits  to  the  ratio  EF:BA  (the  ratio  of  the 
diameter  of  the  moon  to  the  distance  of  its  centre  from 

the  centre  of  the  earth)  ;  the  ratio  is  <  2  :  45  but  >  1  :  30. 
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The  first  part  follows  from  the  relation  found  in  Prop.  4, 

namely  BC:BA  <  1 :45, 

for  EF=2BC. 

The  second  part  requires  the  use  of  the  circle  drawn  with 
centre  A  and  radius  AC.  This  circle  is  that  on  which  the 

ends  of  the  diameter  of  the  '  dividing  circle '  move  as  the  moon 
moves  in  a  circle  about  the  earth.  If  r  is  the  radius  AC 

of  this  circle,  a  chord  in  it  equal  to  r  subtends  at  the  centre 

A  an  angle  of  §U  or  60°;  and  the  arc  CD  subtends  at  A 

an  angle  of  2°. 

But      (arc  subtended  by  CD) :  (arc  subtended  by  r) 

<  CD:r, 

or  2  :  GO  <  CD :  r  ; 

that  is,  CD:CA  >  1 :30. 

And,  by  similar  triangles, 

GL:GA  =  OB:£A,  or  GD:GA  =  2CB-.HA  =  FKiBA. 
Therefore  FE:BA  >  1  :  30. 

The  proposition  which  is  of  the  greatest  interest  011  the 
whole  is  Prop.  7,  to  the  effect  that  the  distance  of  the  xiin 

from  the  earth  is  greater  titan  18  tidies,  but  tess  than  kJO 
times,  the  distance  of  the  motiii  from  the  earth.  This  result 
represents  a  great  improvement  on  all  previous  attempts  to 
estimate  the  relative  distances.  The  first  speculation  on  the 

subject  was  that  of  Aiiaximander  (circa  61 1-545  B.C.),  who 
seems  to  have  made  the  distances  of  the  sun  and  moon  from 

the  earth  to  be  in  the  ratio  3 : 2.  Eudoxus,  according  to 
Archimedes,  made  the  diameter  of  the  sun  9  times  that  of 

the  moon,  and  Phidias,  Archimedes's  father,  12  times;  and, 
assuming  that  the  angular  diameters  of  the;  two  bodies  are 
equal,  the  ratio  of  their  distances  would  be  the  same. 

Aristarchtis's  proof  is  shortly  as  follows.  A  is  the  centre  of 
the  sun,  7i  that  of  the  earth,  and  C  that  of  the  moon  at  the 

moment  of  dichotomy,  so  that  the  angle  ACIi  is  right.  AllEF 

is  a  square,  and  AE  is  a  quadrant  of  the  sun's  circular  orbit. 
Join  BF,  and  bisect  the  angle  FJiK  by  EG,  so  that 

ZG'BA'=  \R  or  22  J°. 
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I.  Now,  by  Hypothesis  4,    Z  ABC  =  87°, 

so  that  LUBE—  LBAC  —  3°; 

therefore  Z  GBE :  L  UBE  =%R:  -/0  R 
=  15:2, 

A          

so  that  (1E:11E[  =  Ian  (,'HE:tnn  1UM]  >  Z  HUE:  L  HBE 
>  15  :2.  (1) 

The  ratio  which  lias  lo  bo  proved    >  18:1   is  AB:B(J  or 
FK-.Kll. 

Now  FG:GE  =  FB:RE, 

whence  F({*  :  (!E~  =  F1P :  BE*  =  2:1, 

and  FG  :  GE  =  V2  : 1 

>  7:5 

(this  is  the  approximation  to    \/2  mentioned    by  Plato  and 
known  to  the  Pythagoreans). 
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Therefore         FE :  EG  >  1 2  :  5  or  36  : 1 5. 

Compounding  this  with  (1)  above,  we  have 

FE<EH  >  36:2  or  18:1. 

II.  To  prove  BA  <  20  EC. 

Let  BH  meet  the  circle  AE  in  A  and  draw  DK  parallel 

to  EB.  Circumscribe  a  circle  about  the  triangle  BK D,  and 

let  the  chord  EL  be  equal  to  the  radius  (/•)  of  the  circle. 

Now  Z  SDK  =  Z  DBE  =  &  R> 

so  that  arc  BK  =  ̂   (circumference  of  circle). 

Thus  (arc  BK) :  (arc  BL)  =  &  :  | , 
=  1  :  10. 

And  (arc  BK ) :  (arc  BL)  <  BK :  r 

[this  is  equivalent  to  a//J  <  sin  a/sin  j8,  where  a  <  j8  <  ̂TT]* 

so  that  r  <  lO^Jf, 

and  7?D  <  20  BK. 

But  BD:J3K  =  AB:BC', 

therefore  AB  <  20  ̂ 6f.  Q.  E.  1). 

The  remaining  results  obtained  in  the  treatise  can  be 
visualized  by  means  of  the  three  figures  annexed,  which  have 
reference  to  the  positions  of  the  sun  (centre  A),  the  earth 
(centre  B)  and  the  1110011  (centre  C)  during  an  eclipse.  Fig.  I 

shows  the  middle  position  of  the  moon  relatively  to  the  earth's 
shadow  which  is  bounded  by  the  cone  comprehending  the  sun 
and  the  earth.  ON  is  the  arc  with  centre  K  along  which 
move  the  extremities  of  the  diameter  of  the  dividing  circle  in 
the  moon.  Fig.  3  shows  the  same  position  of  the  moon  in  the 
middle  of  the  shadow,  but  on  a  larger  scale.  Fig.  2  shows 
the  moon  at  the  moment  when  it  has  just  entered  the  shadow  ; 

and,  as  the  breadth  of  the  earth's  shadow  is  that  of  two  moons 
(Hypothesis  5),  the  moon  in  the  position  shown  touches  BN  at 
J^aiid  BL  at  Z,  where  L  is  the  middle  point  of  the  arc  ON. 
It  should  be  added  that,  in  Fig.  1,  Z7Fis  the  diameter  of  the 
circle  in  which  the  sun  is  touched  by  the  double  cone  with  B 
as  vertex,  which  comprehends  both  the  sun  and  the  moon, 
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while  Y,  X  are  the  points  in  which  the  perpendicular  through 
A,  the  centre  of  the  sun,  to  BA  meets  the  cone  enveloping  the sun  and  the  earth. 

N 

FIG.  1. 

This    being    premised,    the    main    results    obtained  are    as 
follows : 

Prop.  13. 

0) 

but 

ON  :  (diam.  of  moon)  <  2  :  1 

>  88:45. 
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(2)  0-ZV:(diam.  of  sun)  <  1 :9 

but  >  22  :  225. 

(3)  ON:YZ>  979:10125. 

Prop.  14  (Fig.  3). 

Prop.  15. 
BC:CS>  675:1. 

but 
(Diaiu.  of  sun) :  (diain.  of  earth)  >  19  : 3 

<  43:6. 

B 

Via.  2. 

Prop.  17. 

(Diam.  of  earth);  (cliam.  of  moon)  >  108  :  43 

but  <60:19. 

It  is  worth  while  to  show  how  these  results  are  proved. 

Prop.  13. 

(1)  In  Fig.  2  it  is  clear  that 

ON  <  2/,iVand,  a  fortiori,  <  2/,P. 

The  triangles  LON,  CLN  being  similar, 

therefore ON:NL  =  NL  :  |  LP 

>  89  :  45.  (by  Prop.  1  2) 
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Hence  ON :  LC  =  ON2 :  NL* 

>  892:452; 

therefore                      ON:  LP  >  7921  :  4050 

>  88  :  45,  says  Aristarchus. 

[If  '4050   *)(>  Developed  as  a  continued  fraction,  we  easily 
1        11  88    1 

obtain   1  +  ^,  which  is  in  tact     -• 

(2)  ON  <  2  (diam.  of  moon). 

But  (diam.  of  moon)  <  -£g  (diam.  of  sun) ;         (Prop.  7) 

therefore  ON  <  |  (diam.  of  sun). 

Again     ON:  (diam.  of  moon)  >  88:45,   from  above, 

and  (diam.  of  moon) :  (diam.  of  sun)  >  1  :  20  ;       (Prop.  7) 

therefore,  ex  ae<jiiali, 

ON:  (diam.  of  sun)  >  88  :  000 

>  22  :  225. 

(3)  Siii<v  tht*  same  conn  comprehends  the  sun  and  the  moon, 
the  triangle  HUV  (Fig.  1)  and  the  triangle  BLN  (Fig.  2)  are 
similar,  and 

LN:LP  =  UV:  (diam.  of  sun) 

=  WIT:UA 

=  UA:AS 

<  CA:AY. 

But  LN:  LP  >  89 : 1)0 ;  (Prop.  12) 

thrrefon*,  </  fortiori,     UA  :  A  Y  >  89  :  90. 

And  UA  :  A  V  =  2  [7^1 :  F^T 

=  (diam.  of  sun) :  YZ. 

Jiut  OiV:  (diam.  of  sun)  >  22  :  225  ;  (Prop.  1 3) 

therefore,  ex  a  equal  i, 

ON:  YZ  >  89  x  22  :  90  x  225 

>  979:10125. 
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Prop.  14  (Fig.  3). 

The  arcs  OM,  ML,  LP,  PN  are  all  equal  ;  therefore  so  are 
the  chords.  EM,  BP  are  tangents  to  the  circle  MQP,  so  that 

CM  is  perpendicular  to  BM,  while  BM  is  perpendicular  to  ()L. 
Therefore  the  triangles  LOS,  GMR  are  similar. 

Therefore  SO  :  MR  =  SL  : 

But  80  <  2  MR,  since  ON  <  2MP:          (Prop.  13) 
therefore  SL  <  2  RC, 

and,  a  fortiori,      SR<2  RC,  or  SC  <  3  RC, 

that  is,  CR:CS>1  :3. 

Again,  MC  :  CR  =  BC  :  CM 

>  45:  1  ;  (see  Prop.  11) 

therefore,  ex  aequ-ali, 
CM:C8>  15:1. 

And  BC:CM  >  45  :  1  ; 

therefore  BCiVS  >  675  :  1. 

Prop.  15  (Fig.  1). 

We  have  NO  :  (diam.  of  sun)  <  1  :  9,  (Prop.  13) 

and,  a  fortiori,  YZ  :  NO  >  9  :  1  ; 

therefore,  by  similar  triangles,  if  Y(),  ZN  meet  in  X, 

AXiXR  >  9:1, 

and  convertendo,  XA  :AR<  9:8. 

But          AB  >  \$BC,  and,  a  fortiori,  >  18  BR, 

whence      AB  >  \%(AR-AB),  or  19  AB  >  \%AR; 

that  is,  AR:AB  <  19:18. 

Therefore,  ex  aequali, 
XA:AB<  19:16, 

and,  convertendo,         AX  :  XB  >  19:3; 

therefore     (diam.  of  sun)  :  (diam.  of  earth)  >  19:3. 

Lastly,  since  OB  :  CR  >  675  :  1,  (Prop.  1  4) 
OBiBR  <  675:674. 
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But  AB-.BC  <  20:1; 

therefore,  ex  aequali, 

AB.BR  <  13500:  674 

<  6750:337, 

whence,  by  inversion  anr]  componendo, 

RAiAB  >  7087:6750.  (1) 

But  AXiXR  =  YZ-.NO 

<  10125:979;  (Prop.  13) 

therefore,  conrertendo, 

XA  :AR>  10125:9146. 

From  this  and  (1)  we  have,  ex  aerjiutli, 

XA  :AI1>  101  25  X  7087:  9146  X  6750 

>  71755875 : 61735500 

>  43  :  37,  a  fortiori. 

[It  is  difficult  not  to  see  in  43  :  37  the  expression    1  -h  , 6  -f-   ft 

which  suggests  that  43  :  37   was  obtained  by  developing  the 
ratio  as  a  continued  fraction.] 

Therefore,  conrertendo, 

XA  :XB  <  43:6, 

whence         (diaiu.  of  sun)  :  (diain.  of  earth)  <  43  :  6.      Q.  E.  D. 



XIII 

ARCHIMEDES 

THE  siege  and  capture  of  Syracuse  by  Marcellus  during  the 
second  Punic  war  furnished  the  occasion  for  the  appearance  of 

Archimedes  as  a  personage  in  history;  it  is  witli  this  histori- 
cal event  that  most  of  the  detailed  stories  of  him  are  con- 

nected ;  and  the  fact  that  he  was  killed  in  the  sack  of  the  city 
in  212  B.C.,  when  he  is  supposed  to  have  been  75  years  of  age, 
enables  us  to  fix  his  date  at  about  287-212  B.C.  He  was  the 
son  of  Phidias,  the  astronomer,  and  was  on  intimate  terms 
with,  if  not  related  to,  King  Hicron  and  his  son  Gelon.  It 

appears  from  a  passage  of  Diodorus  that  he  spent  some*  time 
in  Egypt,  which  visit  was  the  occasion  of  his  discovery  of  the 

so-called  Archimedean  screw  as  a  means  of  pumping  water.1 
It  may  be  inferred  that  he  studied  at  Alexandria  with  the 
successors  of  Euclid.  It  was  probably  at  Alexandria  that  he 
made  the  acquaintance  of  COIIOTI  of  Samos  (for  whom  he  had 
the  highest  regard  both  as  a  mathematician  and  a  friend)  and 
of  Eratosthenes  of  Gyrene,.  To  the  former  he  was  in  the  habit 
of  communicating  his  discourses  before  their  publication ; 
while  it  was  to  Eratosthenes  that  he  sent  The  Method,  with  an 
introductory  letter  which  is  of  the,  highest  interest,  as  well  as 

(if  we  may  judge  by  its  heading)  the  famous  Cattle-Problem. 

Traditions. 

It  is  natural  that  history  or  legend  should  say  more  of  his 
mechanical  inventions  than  of  his  mathematical  achievements, 
which  would  appeal  less  to  the  average  mind.  His  machines 
were  used  with  great  effect  against  the  Romans  in  the  siege 
of  Syracuse.  Thus  he  contrived  (so  we  are  told)  catapults  so 
ingeniously  constructed  as  to  be  equally  serviceable  at  long  or 

1  Diodorus,  v.  37.  3. 
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short  range,  machines  for  discharging  showers  of  missiles 
through  holes  made  in  the  walls,  and  others  consisting  of 
long  movable  poles  projecting  beyond  the  walls  which  either 

dropped  heavy  weights  on  the  enemy's  ships,  or  grappled, 
tkeir  prows  by  means  of  an  iron  hand  or  a  beak  like  that  of 

a  crane,  then  lifted  them  into  the  air  and  let  them  fall  again.1 
Marcelhis  is  said  to  have  derided  his  own  engineers  with  the 

words,  '  Shall  we  not  make  an  end  of  fighting  against  this 
geometrical  Briareus  who  uses  our  ships  like  cups  to  ladle 
water  from  the  sea,  drives  off  our  sambuca  ignominiously 
witli  cudgel-blows,  and  by  the  multitude  of  missiles  that  he 
hurls  at  us  all  at  once  outdoes  the  hundred-handed  giants  of 

mythology?';  but  all  to  no  purpose,  for  the  Romans  were  in 
such  abject  terror  that,  'if  they  did  but  see  a  piece-  of  rope 
or  wood  projecting  abow  the  wall,  they  would  cry  "there  it 
is",  declaring  that  Archimedes  was  setting  some  engine  in 
motion  against  them,  and  would  turn  their  backs  and  run 

away  Y2  These  things,  however,  were  merely  the  '  diversions 
of  geometry  at  play ',:?  and  Archimedes  himself  attached  no 
importance  to  them.  According  to  Plutarch, 

'  though  these  inventions  had  obtained  for  him  the  renown  of 
more  than  human  sagacity,  he  yet  would  not  even  deign  to 
leave  behind  him  any  written  work  on  such  subjects,  but, 
regarding  as  ignoble  and  sordid  the  business  of  mechanics  and 
every  sort  of  art  which  is  directed  to  use  and  profit,  he  placed 
his  whole  ambition  in  those  speculations  the  beauty  and 
subtlety  of  which  is  untainted  by  any  admixture  of  the  com- 

mon needs  of  life/  4 

(a)   Astronomy. 
Archimedes  did  indeed  write  one  mechanical  book,  On 

Sphere-making,  which  is  lost;  this  described  the  construction 
of  a  spheiv  to  imitate  the  motions  of  the  sun,  moon  and 

planets/'  Cicero  saw  this  contrivance  and  gives  a  description 
of  it ;  he  says  that  it  represented  the  periods  of  the  moon 
and  the  apparent  motion  of  the  sun  with  such  accuracy  that 
it  would  even  (over  a  short  period)  show  the  eclipses  of  the 

sun  and  moon/1  As  Pappus  speaks  of  '  those  who  understand 
1   Polybius,  Hist.  viii.  7,  8  ;  Livy  xxiv.  34  ;  Plutarch,  Marcellus,  cc.  15-17. 
*  lh.,  c.  17.  3  /&.,  c.  14.  4  /&.,  c.  17. 
5  Carpus  in  Pappus,  viii,  p.  1026.  9;  Proclus  on  Eucl.  I,  p.  41.  16. 
6  Cicero,  De  rep.  i.  21,  22,  Tu*c.  i.  63,  De  nat*  rfeor.  ii.  88. 
1628.2  C 
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the  making  of  spheres  and  produce  a  model  of  the  heavens  by 

means  of  the  circular  motion  of  water',  it  is  possible  that 
Archirnedes's  sphere  was  moved  by  water.  In  any  case  Archi- 

medes was  much  occupied  with  astronomy.  Livy  calls  him 

'  unicus  spectator  caeli  siderumque  '.*  Hipparchus  says,  '  From 
these  observations  it  is  clear  that  the  differences  in  the  years 
are  altogether  small,  but,  as  to  the  solstices,  I  almost  think 
that  Archimedes  and  I  have  both  erred  to  the  extent  of  a 

quarter  of  a  day  both  in  the  observation  and  in  the  deduction 

therefrom'.2  Archimedes  then  had  evidently  considered  the 
length  of  the  year.  Macrobius  says  he  discovered  the  dis- 

tances of  the  planets,3  and  he  himself  describes  in  his  Sand- 
reckoner  the  apparatus  by  which  he  measured  the  apparent 
angular  diameter  of  the  sun. 

(/3)  Mechanic*. 
Archimedes  wrote,  as  wo  shall  see,  on  theoretical  mechanics, 

and  it  was  by  theory  that  he  solved  the  problem  To  'move  a 
given  weight  by  a  tjiven  force,  for  it  was  in  reliance  '  on  the 

irresistible  cogency  of  his  proof 'that  he  declared  to  Hieron 
that  any-  given  weight  could  be  moved  by  any  given  force; 

(however  small),  and  boasted  that,  fiif  he  were  given  a  place  to 
stand  on,  he  could  move  the  earth  '  (na  /3o>,  KOL  KLV£>  rav  ydv, 
as  he  said  in  his  Doric  dialect).  The  story,  told  by  Plutarch, 
is  that,  'when  Hieron  was  struck  with  amazement  and  asked 
Archimedes  to  reduce  the  problem  to  practiee  and  to  give  an 
illustration  of  some  great  weight  moved  by  a  small  force,  he- 

fixed  upon  a  ship  of  burden  with  three  masts  from  the  king's 
arsenal  which  had  only  been  drawn  up  with  great  labour  by 
many  men,  and  loading  her  with  many  passengers  and  a  full 
freight,  himself  the  while  sitting  far  off,  with  no  great  effort 
but  only  holding  the  end  of  a  compound  pulley  (rro\v(nra(TTos) 
quietly  in  his  hand  and  pulling  at  it,  he  drew  the  ship  along 

smoothly  and  safely  as  if  she  were  moving  through  the  sea.' 4 
The  story  that  Archimedes  set  the  Roman  ships  on  fire  by 

an  arrangement  of  burning-glasses  or  concave  mirrors  is  not 
found  in  any  authority  earlier  than  Lucian ;  but  it  is  quite 

1  Livy  xxiv.  34.  2.  2  Ptolemy,  Syntaxis,  111.  1,  vol.  i,  p.  194.  23. 
3  Maorobius,  In  Somn.  Scip.  ii.  3 ;  cf.  the  figures  in  Tlippolytus,  Refnt., p.  66.  52  sq.,  ed.  Duncker. 
4  Plutarch,  Marcellus,  c.  14. 



MECHANICS  19 

likely  that  he  discovered  some  form  of  burning-mirror,  e.g.  a 
paraboloid  of  revolution,  which  would  reflect  to  one  point  all 
rays  falling  on  its  concave  surface  in  a  direction  parallel  to 
its  axis. 

Archimedes's  own  view  of  the  relative  importance  of  his 
many  discoveries  is  well  shown  by  his  request  to  his  friends 
and  relatives  that  they  should  place  upon  his  tomb  a  represen- 

tation of  a  cylinder  circumscribing  a  sphere,  with  an  inscrip- 
tion giving  the  ratio  which  the  cylinder  bears  to  the  sphere ; 

from  which  we  may  infer  that  he  regarded  the  discovery  of 
this  ratio  as  his  greatest  achievement.  Cicero,  when  quaestor 

in  Sicily,  found  the  tomb  in  a  neglected  state  and  repaired  it1; 
but  it  has  now  disappeared,  and  no  one  knows  whew,  he  was 
buried. 

Archimedes's  entire  preoccupation  by  his  abstract  studies  is 
illustrated  by  a  number  of  stories.  We  are  told  that  he  would 
forget  all  about  his  food  and  such  necessities  of  life,  and  would 
bo  drawing  geometrical  figures  in  the  ashes  of  the  fire  or,  when 

anointing  himself,  in  the  oil  on  his  body.2  Of  the  same  sort 
is  the  tale  that,  when  lie  discovered  in  a  bath  the  solution  of 

the  question  referred  to  him  by  Hieron,  as  to  whether  a  certain 
crown  supposed  to  haw  been  made  of  gold  did  not  in  fact  con- 

tain a  certain  proportion  of  silver,  he  ran  naked  through  the 

street  to  his  home  shouting  tvpjjKa,  tvprjKa*  He  was  killed 
in  the  sack  of  Syracuse  by  a  Roman  soldier.  The  story  is 
told  in  various  forms;  the,  most  picturesque  is  that  found  in 
Txet/es,  which  represents  him  as  saying  to  a  Roman  soldier 
who  found  him  intent  on  some  diagrams  which  he  had  drawn 

in  the  dust  and  came  too  close,  '  Stand  away,  fellow,  from  my 
diagram  ',  whereat  the  man  was  so  enraged  that  he  killed 
him.4 

Summary  of  main  achievements. 

In  geometry  Archimedes's  work  consists  in  the  main  of 
original  investigations  into  the  quadrature  of  curvilinear 
plane  figures  and  the,  quadrature  and  cubature  of  curved 

surfaces.  These  investigations,  beginning  where  Euclid's 
Book  XII  left  off,  actually  (in  the  words  of  Chaslea)  '  gave 

1  Cicero,  TM.W.  v.  fi4  sq.  2  Tlutarcli,  MarctUus,  c.  17. 
"'  Vitrnvius,  De  architectum,  ix.  1.  9,  10. 
4  Tzetzes,  Chiliad,  ii.  35.  135. 

c  2 
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birth  to  the  calculus  of  the  infinite  conceived  and  brought  to 
perfection  successively  by  Kepler,  Cavalieri,  Fermat,  Leibniz 

and  Newton'.  He  performed  in  fact  what  is  equivalent  to 
integration  in  finding  the  area  of  a  parabolic  segment,  and  of 
a  spiral,  the  surface  and  volume  of  a  sphere  and  a  segment  of 
a  sphere,  and  the  volumes  of  any  segments  of  the  solids  of 
revolution  of  the  second  degree.  In  arithmetic  he  calculated 

approximations  to  the  value  of  TT,  in  the  course  of  which  cal- 
culation he  shows  that  he  could  approximate  to  the  value  of 

square  roots  of  large  or  small  non-square  numbers ;  he  further 
invented  a  system  of  arithmetical  terminology  by  which  he 
could  express  in  language  any  number  lip  to  that  which  wo 
should  write  down  with  1  followed  by  80,000  million  million 
ciphers.  In  mechanics  he  not  only  worked  out  the  principles  of 
the  subject  but  advanced  so  far  as  to  find  the  centre  of  gravity 
of  a  segment  of  a  parabola,  a  semicircle,  a  cone,  a  hemisphere, 
a  segment  of  a  sphere,  a  right  segment  of  a  paraboloid  and 
a  spheroid  of  revolution.  His  mechanics,  as  we  shall  see,  lias 
become  more  important  in  relation  to  his  geometry  since  the 
discovery  of  the  treatise  called  The  Method  which  was  formerly 
supposed  to  be  lost.  Lastly,  he  invented  the  whole  science  of 
hydrostatics,  which  again  he  carried  so  far  as  to  give  a  most 
complete  investigation  of  the  positions  of  rest  and  stability  of 
a  right  segment  of  a  paraboloid  of  revolution  floating  in  a 
fluid  with  its  base  either  upwards  or  downwards,  but  HO  that 
the  base  is  either  wholly  above  or  wholly  below  the  surface  of 
the  fluid.  This  represents  a  sum  of  mathematical  achieve- 

ment unsurpassed  by  any  one  man  in  the  world's  history. 

Character  of  treatises. 

The  treatises  are,  without  exception,  monuments  of  mathe- 
matical exposition;  the  gradual  revelation  of  the  plan  of 

attack,  the  masterly  ordering  of  the  propositions,  the  stern 
elimination  of  everything  not  immediately  relevant  to  the 
purpose,  the  finish  of  the  whole,  are  so  impressive  in  their 
perfection  as  to  create  a  feeling  akin  to  awe  in  the  mind  of 

the  reader.  As  Plutarch  said,  'It  is  not  possible  to  find  in 
geometry  more  difficult  and  troublesome  questions  or  proofs 

set  out  in  simpler  and  clearer  propositions'.1  There  is  at  the 
1  Plutarch.  Marcellus,  c.  17. 
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same  time  a  certain  mystery  veiling  the  way  in  which  he 
arrived  at  his  results.  For  it  is  clear  that  they  were  not 
discovered  by  the  steps  which  lead  up  to  them  in  the  finished 
treatises.  If  the  geometrical  treatises  stood  alone,  Archi- 

medes might  seem,  as  Wallis  said,  '  as  it  were  of  set  purpose 
to  have  covered  up  the  traces  of  his  investigation,  as  if  lie  had 
grudged  posterity  the  secret  of  his  method  of  inquiry,  while 

lie  wished  to  extort  from  them  assent  to  his  results'.  And 
indeed  (again  in  the  words  of  Wallis)  'not  only  Archimedes 
but  nearly  all  the  ancients  so  hid  from  posterity  their  method 
of  Analysis  (though  it  is  clear  that  they  had  one)  that  more 
modern  mathematicians  found  it  easier  to  invent  a  new 

Analysis  than  to  seek  out  the  old'.  A  partial  exception  is 
now  furnished  by  The  Method  of  Archimedes,  so  happily  dis- 

covered by  Heiberg.  In  this  book  Archimedes  tells  us  how 
h(3  discovered  certain  theorems  in  quadrature  and  cubature, 
namely  by  the  use  of  mechanics,  weighing  elements  of  a 

figure  against  elements  oi'  another  simpler  figure  the  mensura- 
tion of  which  was  already  known.  At  the  same  time  he  is 

careful  to  insist  on  the  difference  between  (1)  the  means 
which  may  be  sufficient  to  suggest  the  truth  of  theorems, 
although  not  furnishing  scientific  proofs  of  them,  and  (2)  the 
rigorous  demonstrations  of  them  by  orthodox  geometrical 
methods  which  must  follow  before  they  can  be  finally  accepted 
us  established  : 

'certain  things',  lie  says,  'first  became  clear  to  me  by  a 
mechanical  method,  although  they  had  to  be  demonstrated  by 
geometry  afterwards  because  their  investigation  by  the  said 
method  did  not  furnish  an  actual  demonstration.  But  it  is 
of  course  easier,  when  we  have  previously  acquired,  by  the 
method,  some  knowledge  of  the  questions,  to  supply  the  proof 

than  it  is  to  find  it  without  any  previous  knowledge/  'This', 
he  adds,  4  is  a  reason  why,  in  the  case  of  the  theorems  that 
the,  volumes  of  a  cone  and  a  pyramid  are  one-third  of  the 
volumes  of  the  cylinder  and  prism  respectively  having  the 
same  base  and  equal  height,  the  proofs  of  which  Eudoxus  was 
the  first  to  discover,  no  small  share1  of  the  credit  should  be 
given  to  Democritus  who  was  the  first  to  state  the  fact, 

though  without  proof.' 
Finally,  he  says  that  the  very  first  theorem  which  he  found 
out  by  means  of  mechanics  was  that  of  the  separate  treatise 
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on  the  Quadrature  of  the  parabola,  namely  that  the  area  of  any 
segment  of  a  section  of  a  right-angled  cone  (i.e.  a  parabola]  is 
four-thirds  of  that  of  the  triangle  which  has  the  same  base  and 
height.  The  mechanical  proof,  however,  of  this  theorem  in  the 
Quadrature  of  the  Parabola  is  different  from  that  in  the 
Method,  and  is  more  complete  in  that  the  argument  is  clinched 
by  formally  applying  the  method  of  exhaustion. 

List  of  works  still  extant. 

The  extant  works  of  Archimedes  in  the  order  in  which  they 

appear  in  Heiberg's  second  edition,  following  the  order  of  the 
manuscripts  so  far  as  the  first  seven  treatises  are  concerned, 
are  as  follows : 

(5)  On  the  Sphere  and  Cylinder:  two  Books. 
(9)  Meamreineiitufa  Circle. 
(7)  On  Conoids  and  fyheroidt*. 
(6)  On  Mpiral*. 
(1)  On  Plane  Equilibrium*,  Book  I. 
(3)  „  „  „  Book  II. 

(10)  The  Hand- reckoner  (Psammites). 
(2)  Quadrature  of  the  Parabola. 
(8)  On  Floating  Bodlex:  two  Books. 

?     titovutchion  (a  fragment). 

(4)  The  Method. 

This,  however,  was  not  the  order  of  composition;  and, 

judging  (a)  by  statements  in  Archimedes's  own  prefaces  to 
certain  of  the  treatises  and  (b)  by  the  use  in  certain  treatises 
of  results  obtained  in  others,  wo  can  make  out  an  approxi- 

mate chronological  order,  which  I  have  indicated  in  the  above 

list  by  figures  in  brackets.  The  treatises  On  Floating  Kodiw 
was  formerly  only  known  in  the  Latin  translation  by  William 
of  Moerbeke,  but  the  Greek  text  of  it  has  now  been  in  great r") 

part  restored  by  Heiberg  from  the.  Constantinople  manuscript 
which  also  contains  The  Method  and  the  fragment  of  the 
Otowutchion. 

Besides  these  works  we  have  a  collection  of  propositions 
(Liber  assumptorum)  which  has  reached  us  through  the 
Arabic.  Although  in  the  title  of  the  translation  by  Thabit  b. 
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Qurra  the  book  is  attributed  to  Archimedes,  the  propositions 
cannot  be  his  in  their  present  form,  since  his  name  is  several 
times  mentioned  in  them ;  but  it  is  quite  likely  that  some 
of  them  are  of  Archimedean  origin,  notably  those  about  the 
geometrical  figures  called  ap/^Aoy  ('shoemaker's  knife')  and 
(rd\ivw  (probably  '  salt-cellar ')  respectively  and  Prop.  8  bear- 

ing on  the  trisection  of  an  angle. 
There  is  also  the  Cattle- Problem  in  epigrammatic  form, 

which  purports  by  its  heading  to  have  been  communicated  by 
Archimedes  to  the  mathematicians  at  Alexandria  in  a  letter 
to  Eratosthenes.  Whether  the  epigrammatic  form  is  due  to 
Archimedes  himself  or  not,  there  is  110  sufficient  reason  for 
doubting  the  possibility  that  the  substance  of  it  was  set  as  a 
problem  by  Archimedes. 

Traces  of  lost  works. 

Of  works  which  are  lost  we  have  the  following  traces. 
1.  Investigations  relating  to  polyltnlra  are  referred  to  by 

Pappus  who,  after   alluding  to  the  five   regular   polyhedra, 
describes  thirteen  others  discovered  by  Archimedes  which  are 
semi-regular,  being   contained    by   polygons   equilateral    and 
equiangular  but  not  all  similar.1 

2.  Then;  was  a  book  of  arithmetical  content  dedicated  to 
Xeuxippus.     We  learn  from  Archimedes  himself  that  it  dealt 

with  the  nainiiuj  of  nuuilu'rx  (/earoi/o/za£*9  rS>v  dpidfjL£>v)'*  and 
expounded  the  system,  which  we  find  in  the  tfa  ad-reckoner,  of 
expressing  numbers  higher  than  those  which  could  be  written 
in  the  ordinary  Greek  notation,  numbers  in  fact  (as  we  have 
said)  up  to  the  enormous  tigure  represented  by  1  followed  by 
80,000  million  million  ciphers. 

3.  One  or  more  works  on  mechanics  are  alluded  to  contain- 
ing propositions  not  included  in  the  extant  treatise  On  Plane 

KquttiLriwfUH.    Pappus  mentions  a,  work  0  n  Balu  nces  or  Levers 

(irtpl  £vy$>v)  in  which  it  was  pro  VIM  I  (as  it  also  was  in  Philon's 

and  Heron's  Mechanic*)  that  ' greater  circles  overpower  lesser circles  when  they  revolve  about  the  same  centre  V    Heron,  too, 
speaks  of  writings  of  Archimedes  *  which    bear  the  title  of 

1  Pappus,  v,  pp.  352  8. 
2  Archimedes,  vol.  ii,  pp.  1216.  18, 236.  17  22  ;  rf.  p.  220.  4. 
3  Pappus,  viii,  p.  1068. 
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"  works  on  the  lever  "  f.1  Simplicius  refers  to  problems  on  Ike 
centre  of  gravity,  KevrpoftapiKd,  such  as  the  many  elegant 
problems  solved  by  Archimedes  and  others,  the  object  of  which 
is  to  show  how  to  find  the  centre  of  gravity,  that  is,  the  point 
in  a  body  such  that  if  the  body  is  hung  up  from  it,  the  body 

will  remain  at  rest  in  any  position.2  This  recalls  the  assump- 
tion in  the  Quadrature  of  the  Parabola  (6)  that,  if  a  body  hangs 

at  rest  from  a  point,  the  centre  of  gravity  of  the  body  and  the 
point  of  suspension  are  in  the  same  vertical  line.  Pappus  lias 
a  similar  remark  with  reference  to  a  point  of  support,  adding 
that  the  centre  of  gravity  is  determined  as  the  intersection  of 
two  straight  lines  in  the  body,  through  two  points  of  support, 
which  straight  lines  are  vertical  when  the  body  is  in  equilibrium 

so  supported.  Pappus  also  gives  the  characteristic  of  the  centre 
of  gravity  mentioned  by  Simplicius,  observing  that  this  is 
the  most  fundamental  principle  of  the  theory  of  the  centre  of 
gravity,  the  elementary  propositions  of  which  are  found  in 

Archimedes's  On  Equilibriums  (Trtpl  i<roppo7ri£>i')  and  Heron's 
Mechanics.  Archimedes  himself  cites  propositions  which  must 
have  been  proved  elsewhere,  e.g.  that  the  centre  of  gravity 
of  a  cone  divides  the  axis  in  the  ratio  3:1,  the  longer  segment 

being  that  adjacent  to  the  vertex 3 ;  he  also  says  that  l  it  is 

proved  in  the  Equilibriums '  that  the  centre  of  gravity  of  any 
segment  of  a  right-angled  conoid  (i.  e.  paraboloid  of  revolution) 

divides  the  axis  in  such  *a  way  that  the  portion  towards  the 
vertex  is  double  of  the  remainder.4  It  is  possible  that  there 
was  originally  a  larger  work  by  Archimedes  On  KrjuilUtriuinH 
of  which  the  surviving  books  On  Plane  Equilibriums  formed 
only  a  part ;  in  that  case  irepl  £vyS>v  and  KtvTpofHapiKd  may 

only  be  alternative  titles.  Finally,  Heron  says  that  Archi- 
medes laid  down  a  certain  procedure  in  a  book  bearing  the 

title  '  Book  on  Supports  *.6 
4.  Theon  of  Alexandria  quotes  a  proposition  from  a  work 

of  Archimedes  called  Catoptrica  (properties  of  mirrors)  to  the 
effect  that  things  thrown  into  water  look  larger  and  still 

larger  the  farther  they  sink.G  Olympiodorus,  too,  mentions 

Heron,  Mechanics,  i.  32. 
Simpl.  on  Arist.  De  caelo,  ii,  p.  508  a  30,  Brandis ;  p.  543.  24,  Heib. 
Method,  Lemma  10.  4  On  Floating  Bodies,  ii.  2. 
Heron,  Mechanics,  i.  25. 

Theon  on  Ptolemy's  Syntaxis,  i,  p.  29,  Halma. 
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that  Archimedes  proved  the  phenomenon  of  refraction  'by 

means  of  the  ring  placed  in  the  vessel  (of  water)  '.*  A  scholiast 
to  the  Pseudo-Euclid's  Catoptrica  quotes  a  proof,  which  he 
attributes  to  Archimedes,  of  the  equality  of  the  angles  of 
incidence  and  of  reflection  in  a  mirror. 

The  text  of  Archimedes. 

Heron,  Pappus  and  Theon  all  cite  works  of  Archimedes 
which  no  longer  survive,  a  fact  which  shows  that  such  works 
were  still  extant  at  Alexandria  as  late  as  the  third  and  fourth 
centuries  A.D.  But  it  is  evident  that  attention  came  to  be 

concentrated  on  two  works  only,  the  Measurement  of  a  Circle 

and  On  the  Sphere  and  Cylinder.  Eutocius  (fl.  about  A.D.  500) 
only  wrote  commentaries  on  these  works  and  on  the  Plane 

Equilibriums,  and  he  does  not  seem  even  to  have  been 
acquainted  with  the  (Quadrature  of  tfie  Parahola  or  the  work 
On  Spirals,  although  these  have  survived.  Isidorus  of  Miletus 
revised  the  commentaries  of  Eutocius  on  the  Measurement 

of  (t  (Circle  and  the  two  Books  On  the  ti[)ltere  and  Cylinder, 
and  it  would  soem  to  have  been  in  the  school  of  Isidorus 

that  these  treatises  were  turned  from  their  original  Doric 
into  the  ordinary  language,  with  alterations  designed  to  make 
them  nurfe  intelligible  to  elementary  pupils.  But  neither  in 

Isidorus's  time  nor  earlier  was  there,  any  collected  edition 
of  Archimedes's  works,  so  that  those  which  were  less  read 
tended  to  disappear. 

In  the  ninth  century  Leon,  who  restored  the  University 
of  Constantinople,  collected  together  all  the  works  that  he 
could  find  at  Constantinople,  and  had  the  manuscript  written 

(the  archetype,  lleiberg's  A)  which,  through  its  derivatives, 
was,  up  to  the  discovery  of  the  Constantinople  manuscript  (C) 
containing  Tlie  Method,  the  only  source  for  the  Greek  text. 

Leon's  manuscript  came,  in  the  twelfth  century,  to  the 
Norman  Court  at  Palermo,  and  thence  passed  to  the  House 

of  Hohenstaufen.  Then,  with  all  the  library  of  Manfred,  it 
was  given  to  the  Pope  by  Charles  of  Anjou  after  the  battle 
of  Benevento  in  1266.  It  was  in  the  Papal  Library  in  the 

years  1269  and  1311,  but,  some  time  after  1368,  passed  into 

1  Olympiodoma  on  Arist.  Meteorofayica,  ii,  p.  94,  Ideler ;  p.  211.18, Busse. 
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private  hands.  In  1491  it  belonged  to  Georgius  Valla,  who 
translated  from  it  the  portions  published  in  his  posthumous 
work  De  expetendis  et  fugiendis  rebus  (1501),  and  intended  to 

publish  the  whole  of  Archimedes  with  Eutocius's  commen- 

taries. On  Valla's  death  in  1500  it  was  bought  by  Alberius 
Pius,  Prince  of  Carpi,  passing  in  1530  to  his  nephew,  Rodolphus 
Pius,  in  whose  possession  it  remained  till  1544.  At  some 
time  between  1544  and  1564  it  disappeared,  leaving  no 
trace. 

The  greater  part  of  A  was  translated  into  Latin  in  1269 
by  William  of  Moerbeke  at  the  Papal  Court  at  Viterbo.  This 

translation,  in  William's  own  hand,  exists  at  Rome  (Cod. 
Ottobon.  lat.  1850,  Heiberg's  B),  and  is  one  of  our  prime 
sources,  for,  although  the  translation  was  hastily  done  qnd 
the  translator  sometimes  misunderstood  the  Greek,  he  followed 

its  wording  so  closely  that  his  version  is,  for  purposes  of 
collation,  as  good  as  a  Greek  manuscript.  William  used  also, 
for  his  translation,  another  manuscript  from  the  same  library 
which  contained  works  not  included  in  A.  This  manuscript 
was  a  collection  of  works  on  mechanics  and  optics ;  William 
translated  from  it  the  two  Books  On  Floating  Bodies,  and  it 
also  contained  the  Plane  Equilibriums  and  the  Quadrature 
of  the  Parabola,  for  which  books  William  used  both  manu- 
scripts. 

The  four  most  important  extant  Greek  manuscripts  (except 
C,  the  Constantinople  manuscript  discovered  in  1906)  were 
copied  from  A*  The  earliest  is  E,  the  Venice  manuscript 
(Marcianus  305),  which  was  written  between  the  years  1449 
ai\d  1472.  The  next  is  D,  the  Florence  manuscript  (Laurent. 
XXVIII.  4),  which  was  copied  in  1491  for  Angelo  Poliziano, 
permission  having  been  obtained  with  some  difficulty  in  con- 

sequence of  the  jealousy  with  which  Valla  guarded  his  treasure. 
The  other  two  are  G  (Paris.  2360)  copied  from  A  after  it  had 
passed  to  Albertus  Pius,  and  H  (Paris.  2361)  copied  in  1544 

by  Christopherus  Auverus  for  Georges  d'Armagnac,  Bishop 
of  Rodez.  These  four  manuscripts,  with  the  translation  of 
William  of  Moerbeke  (B),  enable  the  readings  of  A  to  be 
inferred. 

A  Latin  translation  was  made  at  the  instance  of  Pope 
Nicholas  V  about  the  year  1450  by  Jacobus  Cremonensis. 
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It  was  made  from  A,  which  was  therefore  accessible  to  Pope 
Nicholas  though  it  does  not  seem  to  have  belonged  to  him. 
Regiomontanus  made  a  copy  of  this  translation  about  1468 
and  revised  it  with  the  help  of  E  (the  Venice  manuscript  of 
tlie  Greek  text)  and  a  copy  of  the  same  translation  belonging 

to  Cardinal  Bessarion,  as  well  as  another  'old  copy'  which seems  to  have  been  B. 

The  editio  prinwps  was  published  at  Basel  (apad  Herva- 
gium)  by  Thomas  Gechauff  Venatorius  in  1544.  The  Greek 
text  was  based  on  a  Niirnberg  MS.  (Norirnberg.  Cent.  V, 
app.  12)  which  was  copied  in  the  sixteenth  century  from  A 

but  witli  interpolations  derived  from  B;  the  Latin  transla- 

tion was  Regiomontamis's  revision  of  Jacobus  Cremonensis 
(Norimb.  Cent.  V,  15). 

A  translation  by  F.  Commandinus  published  at  Venice  in 
1558  contained  the  Measurement  of  a  Circle,  On  Spirals,  the 
Quadrature  of  the  Parabola,  On  do  no  ids  and  fyke  raids,  and 
the  tia  nd-reckoner.  This  translation  was  based]  on  the  Basel 
edition,  but  Commandinus  also  consulted  E  and  other  Greek 
manuscripts. 

Torelli's  edition  (Oxford,  1792)  also  followed  the  editio 
{>ri  itcep**  in  the  main,  but  Tore  Hi  also  collated  E.  The  book 

was  brought  out  after  Torelli's  death  by  Abram  Robertson, 
who  also  collated  five  more  manuscripts,  including  I),  G 
and  II.  The  collation,  however,  was  not  well  done,  and  the 
edition  was  not  properly  corrected  when  in  the  press. 

The  second  edition  of  Hei berg's  text  of  all  the  works  of 
Archimedes  with  Eutocius's  commentaries,  Latin  translation, 
apparatus  criticus,  &c.,  is  now  available  (1910-15)  and,  of 
course,  supersedes  the  first  edition  (1880-1)  and  all  others. 
It  naturally  includes  The  Method,  the  fragment  of  the  tftoma- 

'chion,  and  so  much  of  the  Greek  text  of  the  two  Books  On 
FloatiiKj  Bodies  as  could  be  restored  from  the  newly  dis- 

covered Constantinople  manuscript.1 

Contents  of  Tlw.  Method. 

Our  description  of  the  extant  works  of  Archimedes 
may  suitably  begin  with  The,  Method  (the  full  title  is  On 

1  The  Works  of  Archimedes,  edited  in  modern  notation  by  the  present 
writer  in  1897,  was  based  on  Heiberg's  first  edition,  and  the  Supplement 
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Mechanical  Theorems,  Method  (communicated)  to  Eratosthenes). 
Premising  certain  propositions  in  mechanics  mostly  taken 
from  the  Plane  Equilibriums,  and  a  lemrna  which  forms 
Prop.  1  of  On  Conoids  and  Spheroids,  Archimedes  obtains  by 
his  mechanical  method  the  following  results.  The  area  of  any 

segment  of  a  section  of  a  right-angled  cone  (parabola)  is  f  of 
the  triangle  with  the  same  base  and  height  (Prop.  1).  The 

right  cylinder  circumscribing  a  sphere  or  a  spheroid  of  revolu- 
tion and  with  axis  equal  to  the  diameter  or  axis  of  revolution 

of  the  sphere  or  spheroid  is  1^  times  the  sphere  or  spheroid 
respectively  (Props.  2,  3).  Props.  4, 7,  8, 11  find  the  volume  of 
any  segment  cut  off,  by  a  plane  at  right  angles  to  the  axis, 

from  any  right-angled  conoid  (paraboloid  of  revolution), 
sphere,  spheroid,  and  obtuse-angled  conoid  (hyperboloid)  in 
terms  of  the  cone  which  has  the  same  base  as  the  segment  and 
equal  height.  In  Props.  5, 6,  9, 10  Archimedes  uses  his  ftiethod 
to  find  the  centre  of  gravity  of  a  segment  of  a  paraboloid  of 
revolution,  a  sphere,  and  a  spheroid  respectively.  Props. 

12-15  and  Prop.  16  are  concerned  with  the  cubature  of  two 
special  solid  figures.  (1)  Suppose  a  prism  witji  a  square  base 
to  have  a  cylinder  inscribed  in  it,  the  circular  bases  of  the 
cylinder  being  circles  inscribed  in  the  squares  which  are 
the  bases  of  the  prism,  and  suppose  a  plane  drawn  through 
one  side  of  one  base  of  the  prism  and  through  that  diameter  of 
the  circle  in  the  opposite  base  which  is  parallel  to  the  said 
side.  This  plane  cuts  off  a  solid  bounded  by  two  planes  and 
by  part  of  the  curved  .surface  of  the  cylinder  (a  solid  shaped 

like  a  hoof  cut  off  by  a  plane);  and  Props.  12-15  prove  that 
its  volume  is  one-sixth  of  the  volume  of  the  prism.  (2)  Sup- 

pose a  cylinder  inscribed  in  a  cube,  so  that  the  circular  bases 
of  the  cylinder  are  circles  inscribed  in  two  opposite  faces  of 
the  cube,  and  suppose  another  cylinder  similarly  inscribed 
with  reference  to  two  other  opposite  faces.  The  two  cylinders 

enclose  a  certain'  solid  which  is  actually  made  up  of  eight 
'hoofs'  like  that  of  Prop.  12.  Prop.  16  proves  that  the 
volume  of  this  solid  is  two-thirds  of  that  of  the  cube.  Archi- 

medes observes  in  his  preface  that  a  remarkable  fact  about 

(1912)   containing  The  Method,  on  the  "original  edition  of  Heiberg  (in 
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those  solids  respectively  is  that  each  of  them  is  equal  to  a 
solid  enclosed  by  planes,  whereas  the  volume  of  curvilinear 
solids  (spheres,  spheroids,  &c.)  is  generally  only  expressible  in 
terms  of  other  curvilinear  solids  (cones  and  cylinders).  In 
accordance  with  his  dictum  that  the  results  obtained  by  the 
mechanical  method  are  merely  indicated,  but  not  actually 

proved,  unless  confirmed  by  the  rigorous  methods  of  pure 

geometry,  Archimedes  proved  the  facts  about  the  two  last- 
named  solids  by  the  orthodox  method  of  exhaustion  as 

regularly  used  by  him  in  his  other  geometrical  treatises ;  the 
proofs,  partly  lost,  were  given  in  Props.  15  and  16. 

We  will  first  illustrate  the  method*  by  giving  the  argument 
of  Froj).  1  about  the  area  of  a  parabolic  segment. 

Lot  AB(!  be  the  segment,  BD  its  diameter,  (-F  the  tangent 
at  (\  Lot  P  1)0  any  point  on  the  segment,  and  lot  AKF, 

M 

OPNM  bo  drawn  parallel  to  BI).  Join  (1B  and  produce  it  to 
meet  MO  in  N  and  FA  in  K,  and  lot  KH  bo  made  equal  to 
K(\ 

Now,  by  a  proposition  '  proved  in  a  lemma  '  (cf.  Quadrature 
of  the  Parabola,  Prop.  5) 

=  CA  :A() 
=  CK  :  KN 

Also,  by  tho  property  of  the  parabola,  EB  =  BD,  so  that 

It  follows  that,  if  HC  be  regarded  as  tho  bar  of  a  balance, 

a  lino  TG  equal  to  PO  and  placed  with  its  middle  point  at  // 
balances,  about  K,  the  straight  line  MO  placed  where  it  is, 
i.e.  with  its  middle  point  at  N. 

Similarly  with  all  linos,  as  MO,  PO,  in  the  triangle  CFA 
and  the  segment  CBA  respectively. 

And  there  are  the  same  number  of  these  lines.    Therefore* 



30  ARCHIMEDES 

the  whole  segment  of  the  parabola  acting  at  H  balances  the 
triangle  CFA  placed  where  it  is. 

But  the  centre  of  gravity  of  the  triangle  CFA  is  at  TT, 
where  CW  =  2  WK  [and  the  whole  triangle  may  be  taken  as 
acting  at  W], 

Therefore     (segment  ABC)  :  &CFA  =  WK  :  KH 
=  1:3, 

so  that  (segment  ABC)  =  §&CFA 

Q.E.D. 
It  will  be  observed  that  Archimedes  takes  the  segment  and 

the  triangle  to  be  made  up  of  parallel  lines  indefinitely  close 
together.  In  reality  they  are  made  up  of  indefinitely  narrow 
strips,  but  the  width  (dx,  as  we  might  say)  being  the  same 
for  the  elements  of  the  triangle  and  segment  respectively, 
divides  out.  And  of  course  the  weight  of  each  element  in 
both  is  proportional  to  the  area.  Archimedes  also,  without 
mentioning  momenta,  in  effect  assumes  that  the  sum  of  the 
moments  of  each  particle  of  a  figure,  acting  where  it  is,  is 

equal  to  the  moment  of-  the  whole  figure  applied  as  one  mass 
at  its  centre  of  gravity. 
We  will  now  take  the  case  of  any  segment  of  a  spheroid 

of  revolution,  because  that  will  cover  several  propositions  of 
Archimedes  as  particular  cases. 

The  ellipse  with  axes  AA',  BB'  is  a  section  made  by  the 
plane  of  the  paper  in  a  spheroid  with  axis  A  A'.  It  is  require*  1 
to  find  the  volume  of  any  right  segment  AD(!  of  the  spheroid 
in  terms  of  the  right  cone  with  the  same  base  and  height. 

Let  DC  be  the  diameter  of  the  circular  base  of  the  segment. 

Join  ABy  AB',  and  produce  them  to  meet  the  tangent  at  A'  to 
the  ellipse  in  K,  K',  and  DC  produced  in  E,  F. 

Conceive  a  cylinder  described  with  axis  AAf  and  base  the 
circle  on  KKf  as  diameter,  and  cones  described  with  AG  as 
axis  and  bases  the  circles  on  EF,  DC  as  diameters. 

Let  N  be  any  point  on  AG,  and  let  MOPQNQ'P'O'M'  be 

drawn  through  N  parallel  to  BB'  or  DC  as  shown  in  the 
figure. 

Produce  A'  A  to  H  so  that  HA  =  A  A'. 
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HA  :  AN  =  A'  A:  AN 
=  KA:AQ 

=  MN:NQ 
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It  is  now  necessary  to  prove  that  MN  .  NQ  =  NP2  +  NQ*. 

H 

M 

W 
G       C 

0' 

B'
 

K  A'  K' 

By  the  property  of  the  ellipse, 

AN.NA':  NP2  =  (|  A  A')'*  :  (%  BB'f 

therefore 

whence  ^V7)2  =  MQ  .  QN. 

Add  NQZ  to  each  side,  and  we  have 

XQ*  :  Nl™  =  A  X'2  :AN.  NA' 

Therefore,  from  above, 

HA  :  AN  =  MN2 :  (NP*  +  NQ*).  (1) 

But  MN*,  NP2,  NQ2  are  to  one  another  as  the  areas  of  the 

circles  with  MM',  PP',  QQ'  respectively  as  diameters,  and  these 
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circles  arc  sections  made  by  the  plane  though  iV  at  right 

angles  to  AAf  in  the  cylinder,  the  spheroid  and  the  cone  AEF 
respectively. 

Therefore,  if  HA  A'  be  a  lever,  and  the  sections  of  the 
spheroid  and  cone  be  both  placed  witli  their  centres  of  gravity 
at  JET,  these  sections  placed  at  II  balance,  about  A,  the  section 

MM'  of  the  cylinder  where  it  is. 
•  Treating  all  the  corresponding  sections  of  the  segment  of 
the  spheroid,  the  cone  and  the  cylinder  in  the  same  way, 
we  find  that  the  cylinder  with  axis  AG,  where  it  is,  balances, 
about  Ay  the  cone  AEF  and  the  segment  ADG  together,  when 
both  are  placed  with  their  centres  of  gravity  at  //;  and, 
if  IF  be  the  centre  of  gravity  of  the  cylinder,  i.e.  the  middle 
point  of  AGt 

HA  :AW=  (cylinder,  axis  A  G)  :  (cone  AEF+  segmt.  A  DC). 

If  we  call  V  the  volume*  of  the  cone  AEF,  and  >Sf  that  of  the 
segment  of  the  spheroid,  we  have 

(cylinder)  :  (  K+  ti)  =  3  V.        ,,  :  (  V  +  ,S'), 

while  HA  :  A  W  =  A  A'  :  £  A  G. 

Therefore      AA':%AG  =  3V.          :(V  + 

and 

whence 

Again,  let  V  be  the  volume  of  the  cone  A  DC. 

Then  V:V'=  RGZ:DG* 

But  DG2:AG.GA'=  BB'Z:AA'2. 

Therefore  F:  V  =  AG2  :  AG  .  OA' 
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It*  follows  that    8  =  V 

r,  %AA'-AG 
•    -A>Q 

_  Y'  v.-^-^'  +  A'G
 A'G 

which  is  the  result  stated  by  Archimedes  in  Prop.  8. 
The  result  is  the  same  for  the  segment  of  a  sphere.  The 

proof,  of  course  slightly  simpler,  is  given  in  Prop.  7. 
In  the  particular  case  where  the  segment  is  half  the  sphere 

or  spheroid,  the  relation  becomes 

>S'  =  2  V,  (Props.  2,  3) 

and  it  follows  that  the  volume  of  the  whole  sphere  or  spheroid 

is  4  V  ,  where  V  is  the  volume  of  the  cone  ABB'  \  i.e.  the 
volume  of  the  sphere  or  spheroid  is  two-thirds  of  that  of  the 
circumscribing  cylinder. 

In  order  now  to  find  th<»  centre  of  gravity  of  the  segment 
of  a  spheroid,  we  must  have  the  segment  acting  where  it  is, 
not  at  II. 

Therefore  formula  (1)  above  will  not  serve.     But  we  found 

that  MN  .  NQ  =  (NP*  +  iVQ2), 

whence       J/iV2  :  (.VP2  +  .VQ2)  =  (iVP2  +  .VQ2)  :  JVrQa  ; 

therefore  HA  :  AN  =  (NP*  +  NQ*)  :  NQ*. 

(This  is  separately  proved  by  Archimedes  for  the  sphere 
in  Prop.  9.) 

From  this  we  derive,  as  usual,  that  the  cone  AEF  and  the 
segment  ADC  both  acting  where  they  (ire  balance  a  volume 
equal  to  the  cone  A  EV  placed  with  its  centre  of  gravity  at  //. 
Now  the  centre  of  gravity  of  the  cone  AEF  is  on  the  line 

AG  at  a  distance  f  AG  from  A.  Let  ̂ Y  be  the  required  centre 
of  gravity  of  the  segment.  Then,  taking  moments  about  A, 

we  have  V.  HA  =  ti.  AX  +  V.%AG, 
or 

-l)AX,  from  above. 
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Therefore    AX:AG  =  (AA'-%AG)  :  (%AA'-AG) 

whence  AXiXG  =  (*AA'-SAG):(2AA'-AG) 

which  is  the  result  obtained  by  Archimedes  in  Prop.  9  for  the 
sphere  and  in  Prop.  10  for  the  spheroid. 

In  the  case  of  the  hemi-spheroid  or  hemisphere  the  ratio 
AX  :  XG  becomes  5  :  3,  a  result  obtained  for  the  hemisphere  in 
Prop.  6. 

The  cases  of  tho  paraboloid  of  revolution  (Props.  4,  5)  and 
the  hyperboloid  of  revolution  (Prop.  1  1)  follow  the  same  course, 
and  it  is  unnecessary  to  reproduce  them. 

For  the  cases  of  the  two  solids  dealt  with  at  the  ond  of  tho 

treatise  the  reader  must  bo  referred  to  the  propositions  them- 
selves. Incidentally,  in  Prop.  13,  Archimedes  finds  the  centre 

of  gravity  of  the  half  of  a  cylinder  cut  by  a  piano  through 
the  axis,  or,  in  other  words,  the  centre  of  gravity  of  a  semi- 
circle. 

We  will  now  take  the  other  treatises  in  tho  order  in  which 

they  appear  in  the  editions. 

On  the  Sphere  and  Cylinder,  I,  II. 

The  main  results  obtained  in  Book  I  are  shortly  stated  in 
a  prefatory  letter  to  Dositheus.  Archimedes  tells  us  that 
they  are  new,  and  that  he  is  now  publishing  them  for  the 
first  time,  in  order  that  mathematicians  may  be  able  to  ex- 

amine the  proofs  and  judge  of  their  value.  The  results  are 
(1)  that  the  surface  of  a  sphere  is  four  times  that  of  a  great 
circle  of  the  sphere,  (2)  that  the  surface  of  any  segment  of  a 
sphere  is  equal  to  a  circle  the  radius  of  which  is  equal  to  the 
straight  line  drawn  from  the  vertex  of  the  segment  to  a  point 
on  the  circumference  of  the  base,  (3)  that  the  volume  of  a 
cylinder  circumscribing  a  sphere  and  with  height  equal  to  the 
diameter  of  the  sphere  is  f  of  the  volume  of  the  sphere, 
(4)  that  the  surface  of  the  circumscribing  cylinder  including 
its  bases  is  also  f  of  the  surface  of  the  sphere.  It  is  worthy 
of  note  that,  while  the  first  and  third  of  these  propositions 

appear  in  the  book  in  this  order  (Props.  33  and  34  respec- 



ON    THE   SPHERE   AND   CYLINDER,   I          35 

tively),  this  was  not  the  order  of  their  discovery;  for  Archi- 
medes tells  us  in  The  Method  that 

'  from  the  theorem  that  a  sphere  is  four  times  as  great  as  the 
cone  with  a  great  circle  of  the  sphere  as  base  and  wi^h  height 
equal  to  the  radius  of  the  sphere  I  conceived  the  notion  that 
the  surface  of  any  sphere  is  four  times  as  great  as  a  great 
circle  in  it ;  for,  judging  from  the  fact  that  any  circle  is  equal 
to  a  triangle  with  base  equal  to  the  circumference  and  height 
equal  to  the  radius  of  the  circle,  I  apprehended  that,  in  like 
manner,  any  sphere  is  equal  to  a  cone  with  base  equal  to  the 

surface  of  the  sphere  and  height  equal  to  the  radius '. 

Book  I  begins  with  definitions  (of  'concave  in  the  same 

direction '  as  applied  to  curves  or  broken  lines  and  surfaces,  of 
«•{,  'solid  sector*  and  a  'solid  rhombus')  followed  by  five 
Assumptions,  all  of  importance.  Of  all  line*  irhlch  hare  the 
wniw  extremities  the  xtraijfkt  line  /x  the  lea*t,  and,  if  there  are 
two  curved  or  bent  lines  in  a  plane  having  the  same  extremi- 

ties and  concave  in  the  same  direction,  but  one  is  wholly 
included  by,  or  partly  included  by  and  partly  common  with, 
the  other,  then  that  which  is  included  is  the  lesser  of  the  two. 
Similarly  with  plane  surfaces  and  surfaces  concave  in  the 

same  direction.  Lastly,  Assumption  5  is  the  famous  'Axiom 
of  Archimedes',  which  however  was,  according  to  Archimedes 
himself,  used  by  earlier  geometers  (Eudoxus  in  particular),  to 
the  effect  that  Of  unequal  magnitudes  the  (jreatcr  exceed* 
the  Jew  fry  such  a  inuynitiule  as,  when  added  to  itself,  can  be 
made  to  exceed  tiny  awiffued  magnitude  of  the  same  kind] 
the  axiom  is  of  course  practically  equivalent  to  Eucl.  V,  Def.  4, 
and  is  closely  connected  with  the  theorem  of  Eucl.  X.  1. 

As,  in  applying  the  method  of  exhaustion,  Archimedes  uses 
both  circumscribed  and  inscribed  figures  with  a  view  to  com- 
prcsshu)  them  into  coalescence  with  the  curvilinear  figure  to 
be  measured,  he  has  to  begin  with  propositions  showing  that, 
given  two  unequal  magnitudes,  then,  however  near  the  ratio 
of  the  greater  to  the  less  is  to  1,  it  is  possible  to  find  two 
straight  lines  such  that  the  greater  is  to  the  less  in  a  still  less 
ratio  ( >  1),  and  to  circumscribe  and  inscribe  similar  polygons  to 
a  circle  or  sector  such  that  the  perimeter  or  the  area  of  the 
circumscribed  polygon  is  to  that  of  the  inner  in  a  ratio  less 
than  the  given  ratio  (Props.  2  6):  also,  just  as  Euclid  proves 
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that,  if  we  continually  double  the  number  of  the  sides  of  the 
regular  polygon  inscribed  in  a  circle,  segments  will  ultimately  be 
left  which  are  together  less  than  any  assigned  area,  Archimedes 
has  to  supplement  this  (Prop.  6)  by  proving  that,  if  wo  increase 
the  number  of  the  sides  of  a  circumscribed  regular  polygon 
sufficiently,  we  can  make  the  excess  of  the  area  of  the  polygon 
over  that  of  the  circle  less  than  any  given  area.  Archimedes 
then  addresses  himself  to  the  problems  of  finding  the  surface  of 
any  right  cone  or  cylinder,  problems  finally  solved  in  Props.  1 3 
(the  cylinder)  and  14  (the  cone).  Circumscribing  and  inscrib- 

ing regular  polygons  to  the  bases  of  the  cone  and  cylinder,  he 
erects  pyramids  and  prisms  respectively  on  the  polygons  as 
bases  and  circumscribed  or  inscribed  to  the  cone  and  cylinder 
respectively.  In  Props.  7  and  8  he  finds  the  surface  of  the 
pyramids  inscribed  and  circumscribed  to  the  cone,  and  in 
Props.  9  and  10  he  proves  that  the  surfaces  of  the  inscribed 
and  circumscribed  pyramids  respectively  (excluding  the  base) 
are  less  and  greater  than  the  surface  of  the  cone  (excluding 
the  base).  Props.  11  and  12  prove  the  same  thing  of  the 
prisms  inscribed  and  circumscribed  to  the  cylinder,  and  finally 
Props.  13  and  14  prove,  by  the  method  of  exhaustion,  that  the 
surface  of  the  cone  or  cylinder  (excluding  the  bases)  is  equal 
to  the  circle  the  radius  of  which  is  a  mean  proportional 

between  the  'side'  (i.e.  generator)  of  the  cone  or  cylinder  and 
the  radius  or  diameter  of  the  base  (i.e.  is  equal  to  TTTS  in  the 
case  of  the  cone  and  2nrs  in  the  case  of  the  cylinder,  where 
r  is  the  radius  of  the  base  and  s  a  generator).  As  Archimedes 
here  applies  the  method  of  exhaustion  for  the  first  time,  we 
will  illustrate  by  the  case  of  the  cone  (Prop.  14). 

Let  A  be  the  base  of  the  cone,  C  a  straight  line  equal  to  its 

radius,  D  a  line  equal  to  a  generator  of  the  cone,  E  a  mean 
proportional  to  (7,  D,  and  JB  a  circle  with  radius  equal  to  E. 
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If  S  is  the  surface  of  the  cone,  we  have  to  prove  that  $  =  B. 
For,  if  S  is  not  equal  to  B,  it  must  be  either  greater  or  less. 

I.   Suppose  B  <  & 

Circumscribe  a  regular  polygon  about  B,  and  inscribe  a  similar 
polygon  in  it,  such  that  the  former  lias  to  the  latter  a  ratio  less 
than  S:  B  (Prop.  5).  Describe  about  A  a  similar  polygon  and 
set  up  from  it  a  pyramid  circumscribing  the  cone. 

Thou         (polygon  about  4)  :  (polygon  about  B) 

=  (polygon  about  A)  -.(surface  of  pyramid). 
Therefore     (surface  of  pyramid)  =  (polygon  about  B). 

But  (polygon  about  B)  :  (polygon  in  B)  <  S:  JS; 

therefore       (surface  of  pyramid)  :  (polygon  in  B)  <  ti  :  B. 

But  this  is  impossible,  since  (surface  of  pyramid)  >  >S',  while 
(polygon  in  B)  <  B', therefore  B  is  not  less  than  & 

II.    Suppose  B  >  S. 

Circumscribe  and  inscribe  similar  regular  polygons  to  B 
such  that  the  former  has  to  the  latter  a  ratio  <  B  :X.  Inscribe 

in  A  a  similar  polygon,  and  erect  on  A  the  inscribed  pyramid. 

Then       (polygon  in  A)  :  (polygon  in  B)  =  (!*  :  E2 
=  0:7J 

>  (polygon  in  ̂ 4)  :  (surface  of  pyramid). 

(The  latter  inference  is  clear,  because  the  ratio  of  C:D  is 
greater  than  the  ratio  of  the  perpendiculars  from  the  centre  of 
A  and  from  the  vertex  of  the  pyramid  respectively  on  any 

side  of  the  polygon  in  A]  in  other  words,  if  /?  <  &  <  -|TT, 
sin  a  >  sin  /3.) 

Therefore     (surface  of  pyramid)  >  (polygon  in  B). 

But  (polygon  about  B)  :  (polygon  in  B)  <  B:  8, 

whence  (a  fortiori) 

(polygon  about  B)  :  (surface  of  pyramid)  <  B  :  8, 

which  is  impossible,  for  (polygon  about  B)  >  B,  while  (surface 
of  pyramid)  <  & 
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Therefore  B  is  not  greater  than  #. 

Hence  8,  being  neither  greater  nor  less  than  ti,  is  equal  to  B. 

Archimedes  next  addresses  himself  to  the  problem  of  finding 

the  surface  and  volume  of  a  sphere  or  a  segment  thereof,  but 

has  to  interpolate  some  propositions  about  'solid  rhombi' 
(figures  made  up  of  two  right  cones,  unequal  or  equal,  with 

bases  coincident  and  vertices  in  opposite  directions)  the  neces- 
sity of  which  will  shortly  appear. 

Taking  a  great  circle  of  the  sphere  or  a  segment  of  it,  he 

inscribes  a  regular  polygon  of  an  even  number  of  sides  bisected 

FIG.  1. 

by  the  diameter  AA',  and  approximates  to  the  surface  and 
volume  of  the  sphere  or  segment  by  making  the  polygon 

revolve  about  A  A'  and  measuring  the  surface  and  volume  of 
solid  so  inscribed  (Props.  21-7).  He  then  does  the  same  for  the 

a  circumscribed  solid  (Props.  28-32).  Construct  the  inscribed 

polygons  as  shown  in  the  above  figures.  Joining  BB',  CC',  ... , 
CB',  DC' ...  we  see  that  BE',  CO'  ..v  are  all  parallel,  and  so  are 
AB,  CB',  DC'.... 

Therefore,  by  similar  triangles,  BF:FA  =  A'B:BA,  and 
=  B'F:FK 

=  E'I:IA'  in  Fig.  1 

(=  PM:  MN  in  Fig.  2), 
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whence,  adding  antecedents  and  consequents,  we  have 

(Fig.  1)    (BB'  +  QC'  +  .  .  .  +  EE')  :  A  A'  =  A'B  :  BA,    (Prop.  21) 

(Fig.  2)   (BB'  +  CC'+...  +  %PP'):AM=A'B:BA.    (Prop.  22) 

When  we  make  the  polygon  revolve  about  AA  ',  the  surface 
of  the  inscribed  figure  so  obtained  is  made  up  of  the  surfaces 
of  cones  and  frusta  of  cones;  Prop.  14  has  proved  that  the 

surface  of  the  cone  ABB'  is  what  we  should  write  TT  .  AB  .  BF, 
and  Prop.  16  has  proved  that  the  surface  of  the  frustum 

BCC'J?  is  7r.B(!(BF+CG).  It  follows  that,  since  AB  = 
BC  =  .  .  .  ,  the  surface  of  the  inscribed  solid  is 

that  is,      TT  .  AB(BB'  +  CC'+  ...  +  EE')    (Fig.  1),     (Prop.  24) 

or  TT  .  AB  (BB'  +  CC'  +  ...  +%PP')  (Fig.  2).     (Prop.  35) 
Hence,  from  above,  the  surface  of  the  inscribed  solid  is 

IT.  A'B.  A  A'  or  ?r  .  A'B  .  A  J/,  and  is  therefore  less  than 

TT  .  AA'2  (Prop.  25)  or  TT  .  A'  A  .  AM,  that  is,  ?r  .  AP2  (Prop.  37). 

Similar  propositions  with  regard  to  surfaces  formed  by  the 

revolution  about  AA'  of  regular  circumscribed  solids  prove 
that  their  surfaces  aiv  greater  than  tr.AA'*  and  n.AP2 
respectively  (Props.  28-30  and  Props.  39-40).  The  case  of  the 
segment  is  more  complicated  because  the  circumscribed  poly- 

gon with  its  sides  parallel  to  AB,  J3C  ...  DP  circumscribes 

the  sector  POP'.  Consequently,  if  the  segment  is  less  than  a 
semicircle,  as  CAC',  the  base  of  the  circumscribed  polygon 
(cc')  is  on  the  side  of  GY"  towards  A,  and  therefore  the  circum- 

scribed polygon  leaves  over  a  small  strip  of  the  inscribed.  This 
complication  is  dealt  with  in  Props.  39-40.  Having  then 
arrived  at  circumscribed  and  inscribed  figures  with  surfaces 

greater  and  less  than  n.AA'*  and  TT.  AP*  respectively,  and 
having  proved  (Props.  32,  41)  that  the  surfaces  of  the  circum- 

scribed and  inscribed  figures  are  to  one  another  in  the  duplicate 
ratio  of  their  sides,  Archimedes  proceeds  to  prove  formally,  by 
the  method  of  exhaustion,  that  the  surfaces  of  the  sphere  and 
segment  are  equal  to  these  circles  respectively  (Props.  33  and 

42);  IT.  A  A'*  is  of  course  equal  to  four  times  the  great  circle 
of  the  sphere.  The  segment  is,  for  convenience,  taken  to  be 
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less  than  a  hemisphere,  and  Prop.  43  proves  that  the  same 
formula  applies  also  to  a  segment  greater  than  a  hemisphere. 

As  regards  the  volumes  different  considerations  involving 

'  solid  rhombi '  come  in.  For  convenience  Archimedes  takes, 
in  the  case  of  the  whole  sphere,  an  inscribed  polygon  of  4?i 
sides  (Fig.  1).  It  is  easily  seen  that  the  solid  figure  formed 
by  its  revolution  is  made  up  of  the  following :  first,  the  solid 

rhombus  formed  by  the  revolution  of  the  quadrilateral  ABOB' 
(the  volume  of  this  is  shown  to  be  equal  to  the  cone  with  base 

equal  to  the  surface  of  the  cone  ABB'  and  height  equal  to  py 
the  perpendicular  from  0  on  AB,  Prop.  18);  secondly,  the 

extinguisher-shaped  figure  formed  by  the  revolution  of  the 

triangle  BOO  about  A  A'  (this  figure  is  equal  to  the  difference 
between  two  solid  rhombi  formed  by  the  revolution  of  TBOB' 
and  TCOC'  respectively  about  AA',  where  T  is  the  point  of 
intersection  of  CB>  C  B'  produced  with  A' A  produced,  and 
this  difference  is  proved  to  be  equal  to  a  cone  with  base  equal 
to  the  surface  of  the  frustum  of  a  cone  described  by  BC  in  its 
revolution  and  height  equal  to  p  the  perpendicular  from  0  on 
BC,  Prop.  20) ;  and  so  on ;  finally,  the  figure  formed  by  the 

revolution  of  the  triangle  COD  about  AA'  is  the  difference 
between  a  cone  and  a  solid  rhombus,  which  is  proved  equal  to 
a  cone  with  base  equal  to  the  surface  of  the  frustum  of  a  cone 
described  by  CD  in  its  revolution  and  height  p  (Prop.  19). 
Consequently,  by  addition,  the  volume  of  the  whole  solid  of 
revolution  is  equal  to  the  cone  with  base  equal  to  its  whole 
surface  and  height  p  (Prop.  26).  But  the  whole  of  the  surface 

of  the  solid  is  less  than  4  ?rr2,  and  p<  r ;  therefore  the  volume 
of  the  inscribed  solid  is  less  than  four  times  the  cone  with 

base  ?rr2  and  height  r  (Prop.  27). 
It  is  then  proved  in  a  similar  way  that  the  revolution  of 

the  similar  circumscribed  polygon  of  4n  sides  gives  a  solid 
the  volume  of  which  is  greater  than  four  times  the  same  cone 

(Props.  28-31  Cor.).  Lastly,  the  volumes  of  the  circumscribed 
and  inscribed  figures  are  to  one  another  in  the  triplicate  ratio  of 
their  sides  (Prop.  32) ;  and  Archimedes  is  now  in  a  position  to 
apply  the  method  of  exhaustion  to  prove  that  the  volume  of 

the  sphere  is  4  times  the  cone  with  base  ?rr2  and  height  r 
(Prop.  34). 

Dealing  with  the  segment  of  a  sphere,  Archimedes  takes,  for 
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convenience,  a  segment  less  than  a  hemisphere  and,  by  the 
same  chain  of  argument  (Props.  38,  40  Corr.,  41  and  42),  proves 
(Prop.  44)  that  the  volume  of  the  sector  of  the  sphere  bounded 
by  the  surface  of  the  segment  is  equal  to  a  cone  with  base 
equal  to  the  surface  of  the  segment  and  height  equal  to  the 

radius,  i.e.  the  cone  with  base  7T.AP2  and  height  r  (Fig.  2). 
It  is  noteworthy  that  the  proportions  obtained  in  Props.  21, 

22  (see  p.  39  above)  can  be  expressed  in  trigonometrical  form. 
If  471  is  the  number  of  the  sides  of  the  polygon  inscribed  in 
the  circle,  and  2n  the  number  of  the  sides  of  the  polygon 
inscribed  in  the  segment,  and  if  the  angle  AOP  is  denoted 
by  a,  the  trigonometrical  equivalents  of  the  proportions  are 
respectively 

(1)  sin-^   +  sin0~  +...+  fiin(2?i  —  1)     -  =  cot-^-; v  '  2n  2/i  '  2  ti  4/i 

(2)  2  }  sin      +  sin —  +  ...  +  sin  (n~  !)->  +sin<x 
x  '          (       n  n  n) 

=  (1  —cos a)  cot   2/<, 

Thus  the  two  proportions  give  in  effect  a  summation  of  the 
series 

sin0  +  sin  20  +  ...  +Hin(*i  — 1)  0, 

both  generally  where  nd  is  equal  to  any  angle  a  less  than  n 
and  in  the  particular  case  where  n  is  even  and  0  =  ir/n. 
Props.  24  and  35  prove  that  the  areas  of  the  circles  equal  to 
the  surfaces  of  the  solids  of  revolution  described  by  the 
polygons  inscribed  in  the  sphere  and  segment  are  the  above 

7T  Oi 

series  multiplied  by  4?rr2  sin        .and  nr?'2  .  2  sin  —  respectively 4  ?t  M  tl 

and   are   therefore    4?rr2cos  —  and    nrr2  .  2  cos  — -  (1  —  cos  a) 
4  n  2n-  } 

respectively.  Archimedes's  results  for  the  •  surfaces  of  the 
sphere  and  segment,  4?rrL'  and  2?rr2(l  —  cos  a),  are  the 
limiting  values  of  these  expressions  when  n  is  indefinitely 

increased  and   when   therefore    cos  —     and    cos   -    become 471,  2n 

unity.     And  the  two   series  multiplied  by  47rr2sin —   and 
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?rr2 .  2  sin  —  respectively  are  (when  n  is  indefinitely  increased) 2  7i/ 

precisely  what  we  should  represent  by  the  integrals 

and 

r° 

j. 

Jo 

Jo 

or 

,  or  27rr2(l—  eosa). 

Book  11  contains  six  problems  and  three  theorems.  Of  the 
theorems  Prop.  2  completes  the  investigation  of  the  volume  of 
any  segment  of  a  sphere,  Prop.  44  of  Book  I  having  only 
brought  us  to  the  volume  of  the  corresponding  sector.  If 

ABB'  be  a  segment  of  a  sphere  cut  off  by  a  plane  at  right 
angles  to  A  A',  we  learnt  in  I.  44  that  the  volume  of  the  sector 

OBAB'  is  equal  to  the  cone  with  base  equal  to  the  surface 
of  the  segment  and  height  equal  to  the  radius,  i.e.  JTT  .  AB2  .  r, 
where  r  is  the  radius.  The  volume  of  the  segment  is  therefore 

Archimedes  wishes  to  express  this  as  a  cone  with  base  the 
same  as  that  of  the  segment.  Let  AM,  the  height  of  the  seg- 

ment, =  h. 

Now         AB2  :  BAP  =  A'  A  :  A'M  =  2r  :  (2r-h). 
Therefore 

That  is,  the  segment  is  equal  to  the  cone  with  the  same 

base  as  that  of  the  segment  and  height  Ti(^r—h)/(2r  —  h). 
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This  is  expressed  by  Archimedes  thus.     If  1IM  is  the  height 
of  the  required  cone, 

A'M):A'M,  (1) 

and  similarly  the  cone  equal  to  the  segment  A'  BE'  has  the 
height  H'M,  where 

If'M  :  A'M  =  (OA  +  AM)  :  AM.  (2) 
His  proof  is,  of  course,  not  in  the  above  form  but  purely 
geometrical. 

This  proposition  leads  to  the  most  important  proposition  in 
the  Book,  Prop.  4,  which  solves  the  problem  To  cut  a  given 
sphere  by  a  jjlane  in  sack  a  any  that  the  volumes  of  the 
segments  are  to  one  another  in  a  glren  ratio. 

Cubic  equation  arising  out  of  II.  4. 

If  m  :  n  be  the  given  ratio  of  the  cones  which  are  equal  to 

the  segments  and  the  heights  of  which  an;  /t,  h',  we  have 

and,  if  we  eliminate  h'  by  means  of  the  relation  h  +  hf  =  2r, 
we  easily  obtain  the  following  cubic  equation  in  A, 

_  . 
m+  n 

Archimedes  in  effect  reduces  the  problem  to  this  equation, 
which,  however,  he  treats  as  a  particular  case  of  the  more 
general  problem  corresponding  to  the  equation 

where  b  is  a  given  length  and  c*2  any  given  area, 

or  x2(a  —  x)  =  be'2,  where  x  =  2r  —  h  and  3?'  =  a. 
Archimedes  obtains  his  cubic  equation  with  one  unknown 

by   means  of  a  geometrical  elimination  of  11,  IV  from  the 
7Ai/ 

equation  UM  =  —  .  //'J/,  where  HiW,  H'M  have  the  values 11 

determined  by  the  proportions  (1)  and  (2)  above,  after  which 
the  one  variable  point  M  remaining  corresponds  to  the  one 
unknown  of  the  cubic  equation.  His  method  is,  first,  to  find 
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values  for  each  of  the  ratios  A'H'  :  H'M  and  H'H  :  A'H'  which 

are  alike  independent  of  H,  H'  and  then,  secondly,  to  equate 
the  ratio  compounded  of  these  two  to  the  known  value  of  the 

ratio  HH':H'M. 

(a)  We  have,  from  (2), 

A'H'  :  H'M  =  OA  :  (OA  +  AM).  (3) 
(£)  From  (1)  and  (2),  separando, 

AH:AM=OA':A'M,  (4) 

A'H':A'M  =  OA:AM.  (5) 

Equating  the  values  of  the  ratio  A'M  :  AM  given  by  (4),  (5), 

we  have  OA'  :  AH  =  Air  :OA 
=  OIF:  OH, 

whence         HH'  :  OH'  =  OH'  :  A'  11',  (since  OA  =  OA') 

or  Elf.  A'  IF  =  011'*, 

so  that  HE'  :  A'H'  =  OH'2  :  A'H'Z.  (6) 

But,  by  (5),          OA'  :  A'H'  =  AM:  A'M, 

and,  componendo,    OH'  :  A'H'  =  A  A'  :  A'M. 

By  substitution  in  (6), 

HH'  :  A'  It'  =  A  A'2  :  A'M'2.  (7) 

Compounding  with  (3),  we  obtain 

HH'  :  H'M  =  (A  A'z  :  A'M*)  .  (OA  :  OA  +  AM).  (8) 
[The  algebraical  equivalent  of  this  is 

m  +  n  4  r3 

,  .  ,        ,          ,  4rl which  reduces  to          -----  =  —~  -  =-  3 
m          3h2r—h* 

or  7^--3A2r+  -  r3  =  0,  as  above.] J 

Archimedes  expresses  the  result  (8)  more  simply  by  pro- 
ducing OA  to  D  so  that  OA  =  AD,  and  then  dividing  AD  at 
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E  %o  that   AD:DE  =  HH'iH'M  or    (m  +  n):n.     We   have 
then  OA  =  AD  and  OA  +  AM  =  MD,  so  that  (8)  reduces  to 

AD : DE  =  (A A'* : A'M*)  .(AD: MD), 

or  MI):I)E=  AA'*:A'M*. 

Now,  says  Archimedes,  D  is  {riven,  since  AD  —  OA.  Also, 

yt/):  /)/?  being  a  given  ratio,  DE  is  given.  Hence  the  pro- 

blem reduces  itself  to  that  of  dividing  A'D  into  two  parts  at 
^f  such  that 

AID :  (a  given  length)  =  (a  given  area) :  A'M*. 

That  is,  the  generalized  equation  is  of  the  form 

x2  (a  —  x)  =  bo2,  as  above. 

(i)    Archimedes's  own  solution  of  the  cubic. 

Archimedes  adds  that,  'if  the.  problem  is  propounded  in  this 

general  form,  it  requires  a  Siopta-pos  [i.e.  it  is  necessary  to 
investigate  tae  limits  of  possibility],  but  if  the  conditions  are 
added  which  exist  in  the,  present  case  [i.e.  in  the  actual 

problem  of  Prop.  4],  it  does  not  require  a  ̂opjoyjoy'  (in  other 
words,  a  solution  is  always  possible).  He  then  promises  to 

give  '  at  the  end '  an  analysis  and  synthesis  of  both  problems 
[i.e.  the  Siopia/jLos  and  the  problem  itself].  The  promised 
solutions  do  not  appear  in  the  treatise  as  we  have  it,  but 

Eutocius  gives  solutions  taken  from  '  an  old  book '  which  he 
managed  to  discover  after  laborious  search,  iind  which,  since  it 

was  partly  written  in  Archimedes's  favourite  Doric,  he  with 
fair  reason  assumed  to  contain  the  missing  addendum  by 
Archimedes. 

In  the  Archimedean  fragment  preserved  by  Eutocius  the 

above  equation,  x*(a  —  x)  =  6c2,  i?  solved  by  means  of  the  inter- 
section of  a  parabola  and  a  rectangular  hyperbola,  the  equations 

of  which  may  be  written  thus 

<'2 

or 
 
=  —  ;y, 

    
(a
—x
) 
 

y  =  ab.
 (Jb 

The  SiopicrfjLos  takes  the  form  of  investigating  the  maximum 

possible  vplue  of  x2(a  —  x),  and  it  is  proved  that  this  maximum 
value  for  a  real  solution  is  that  corresponding  to  the  value 

x  =  §a.  This  is  established  by  showing  that,  if  6c*2  =  ̂ \aa, 
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the  curves  touch  at  the  point  for  which  x  =  fa.  If  on  the 

other  hand  be2  <  ̂ a3,  it  is  proved  that  there  are  two  real 
solutions.  In  the  particular  case  arising  in  Prop.  4  it  is  clear 
that  the  condition  for  a  real  solution  is  satisfied,  for  the 

expression  corresponding  to  be2  is         -    4r3,  and  it  is  only 

4r3  should  be  not  greater  than  ̂ V6"  or necessary  that   ~- J  m  +  n 

4  r3,  which  is  obviously  the  case. 

(ii)    Solution  of  the  cubic  by  Dionysodorus. 

It  is  convenient  to  add  here  that  Eutocius  gives,  in  addition 
to  the  solution  by  Archimedes,  two  other  solutions  of  our 
problem.  One,  by  Dionysodorus,  solves  the  cubic  equation  in 

the  less  general  form  in  which  it  is  required  for  Archimedes's 
proposition.  This  form,  obtained  from  (8)  above,  by  putting 
A'M  =  .r,  is 

4r2:^2=  (3  r -,i-):          -   r, 
in  + 'ii 

and   the  solution  is   obtained   by  drawing  the  parabola  and 
y 

the  rectangular  hyperbola  which  we  should  represent  by  the, 
equations 

  ?'(3r  —  x)  =  y2  and  —  -   2r~  =  try, 

referred  to  A' A  and  the  perpendicular  to  it  through  A  as  axes 
of  x,  y  respectively. 

(We  make  FA  equal  to  OA,  and  draw  the  perpendicular 
AH  of  such  a  length  that 

FA  :AH  —  CE :  ED  =  (m  +  n) :  n.) 
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(iii).  Solution  of  the  original  problem  of  II.  4  by  Diocles. 

Diocles  proceeded  in  a  different  manner,  satisfying,  by 
a  geometrical  construction,  not  the  derivative  cubic  equation, 
but  the  three  simultaneous  relations  which  hold  in  Archi- 

medes's  proposition,  namely 

HA  :    h     =  r  :h' 
ll'A':   h'     =  r:h 

with   the  slight  generalization  that  he   substitutes  for  r  in 
these  equations  another  length  a. 

H        R 

The  problem  is,  given  a  straight  line  A  A',  a  ratio  m:n,  and 
another  straight  line  AK  (=  a),  to  divide  A  A'  at  a  point  M 
and  at  the  same  time  to  find  two  points  77,  II'  on  AA' 
produced  such  that  the  above  relations  (with  a  in  place 
of  r)  hold. 

The  analysis  leading  to  the  construction  is  very  ingenious. 

Place  AK  (  =  a)  at  right  angles  to  AAr,  and  draw  A'K'  equal 
and  parallel  to  it. 

Suppose  the  problem  solved,  and  the  points  M,  //,  11'  all found. 

Join  KM,  produce  it,  and  complete  the  rectangle  KG-EK'. 
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Draw  QMN  through  M  parallel  to  AK.     Produce  K'M  to 
meet  KG  produced  in  F. 

By  similar  triangles, 

FA  :  AM  =  K'A'  :  A'M,  or  FA  :  h  =  a  :  h', 

whence     FA  =  AH  (k,  suppose). 

Similarly  A'E  =  A'U'  (k',  suppose). 
Again,  by  similar  triangles, 

(FA  +  AM)  :  (A'K'  +  A'M)  =  AM:  A'M 

=  (AK  +  A  M)  :(EA'  +  A'M), 

or  (k  +  h)  :  (a  +  h')  =  (a  +  h)  :  (k'  +  h'), 

i.  e.  (k  +  h)  (k'  +  h')  =  (a  +  h)  (n  +  h').  (  1  ) 

Now,  by  hypothesis, 

m  :  n  =  (k  +  h)  :  (k'  +  h') 

=  (a  +  h)  (a  +  h')  :  (k'  +  h')2  [by  (  1  )].  (2) 

Measure  AH,  A'R'  on  A  A'  produced  both  ways  equal  to  a. 
Draw  RP,  R'P'  at  right  angles  to  RR'  as  shown  in  the  figure. 
Measure  along  MN  the  length  MV  equal  to  MA'  or  k',  and 
draw  PP'  through  V,  A'  to  meet  RP,  R'P'. 

Then  QV=k'  +  h', 

whence  PV.P'V=2(a  +  k)  (a,  +  h')  ; 
and,  from  (2)  above, 

2  w  :  n  =  2  (a  +  h)  (a  +  h')  :  (k'  +  h')  * 
=  PV.P'V:QV\  (3) 

Therefore  Q  is  on  an  ellipse  in  which  PP'  is  a  diameter,  and 
QVis  an  ordinate  to  it. 

Again,  oGQNK  is  equal  to  dAA'K'K,  whence 

GQ.QN=  AA'.  A'K'  =(h  +  h')  a  =  2ra,  (4) 
and  therefore  Q  is  on  the  rectangular  hyperbol^  with  KF, 

KK'  as  asymptotes  and  passing  through  A'. 
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How  this  ingenious  analysis  was  suggested  it  is  not  possible 
to  say.  It  is  the  equivalent  of  reducing  the  four  unknowns 

h>  h'y  />',  k'  to  two,  by  putting  h  =  r  +  x,  hf  ==  r—x  and  k'  =  y, 
and  then  reducing  the  given  relations  to  two  equations  in  x,y, 
which  are  coordinates  of  a  point  in  relation  to  Ox,  Oy  as  axes, 

where  0  is  the  middle  point  of  A  A  ',  and  Ox  lies  along  OA', 
while  Oy  is  perpendicular  to  it. 

Our  original  relations  (p.  47)  give 

7/      ah'          r  —  x       ,       ah         r  +  x  ^    m        h  +  k 
=  A;  =  -=-  =  a        -  >      A*  =  -,-/•  =  &  ------  '     and    —  =  r7  —  r/' 

A          r  +  .i:  A  r—x  n       h  '  +  k 

We  have  at  once,  from  the  first  two  equations, 

whence  ( 

am  1  .  (;/:  -f  r)  (//  +  rt)  =  2  m, 

which  is  the  rectangular  hyperbola  (-1)  above. 

m 

whence  we  obtain  a  cubic  CM  [nation  in  ./', 
Oil 

/         .          \9  /  \  iiv  /  ,) 

(r-f  xY  (r  +  a  —  s)  =  -    (r  —  ,r)~ 
which  mves 

u    .            //             a           ,  V  4  /'  —  .''       r  +  a-f.r But          —  -  =        -,  whence  -  --  =    --- 
r  —  x       r  +  M  r  —  x 

and  the  equation  becomes 

—  (y  +  r  -  a:)2  =  (r  +  a)2  -  ̂ 2, 

'/i/ 

wliich  is  the  ellipse  (3)  above. 

1523.2 
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To  return  to  Archimedes.  Book  II  of  our  treatise  contains 

further  problems :  To  find  a  sphere  equal  to  a  given  cone  or 
cylinder  (Prop.  1),  solved  by  reduction  to  the  finding  of  two 
mean  proportionals;  to  cut  a  sphere  by  a  plane  into  two 
segments  having  their  surfaces  in  a  given  ratio  (Prop.  3), 
which  is  easy  (by  means  of  I.  42,  43) ;  given  two  segments  of 
spheres,  to  find  a  third  segment  of  a  sphere  similar  to  one 
of  the  given  segments  and  having  its  surface  equal  to  that  of 
the  other  (Prop.  6) ;  the  same  problem  with  volume  substituted 
for  surface  (Prop.  5),  which  is  again  reduced  to  the  finding 
of  two  mean  proportionals;  from  a  given  sphere  to  cut  off 
a  segment  having  a  given  ratio  to  the  cone  with  the  same 
base  and  equal  height  (Prop.  7).  The  Book  concludes  with 
two  interesting  theorems.  If  a  sphere  be  cut  by  a  plane  into 
two  segments,  the  greater  of  which  has  its  surface  equal  to  fl 

and  its  volume  equal  to  F,  while  $',  V  are  the  surface  and 
volume  of  the  lesser,  then  V:  V  <  AS'2 :  >S"2  but  >&'5:jS"J 
(Prop.  8) :  and,  of  all  segments  of  spheres  which  haves  their 
surfaces  equal,  the  hemisphere  is  the  greatest  in  volume 
(Prop.  9). 

Measurement  of  a  Circle. 

The  book  on  the  Measurement  of  a  Circle  consists  of  throe 
propositions  only,  and  is  not  in  its  original  form,  having  lost 
(as  the  treatise  On  the  Sphere  and  Cylinder  also  has)  prac- 

tically all  trace  of  the  Doric  dialect  in  which  Archimedes 

wrote ;  it  may  be  only  a  fragment  of  a  larger  treatise4.  The 
three  propositions  which  survive  prove  (1)  that  the  area  of 

a  circle  is  equal  to  that  of  a  right-angled  triangle  in  which 
the  perpendicular  is  equal  to  the  radius,  and  the  base  to  the 
circumference,  of  the  circle,  (2)  that  the  area  of  a  circle  is  to 

the  square  on  its  diameter  as  11  to  14  (tho  text  of  this  pro- 
position is,  however,  unsatisfactory,  and  it  cannot  have  been 

placed  by  Archimedes  before  Prop.  3,  on  which  it  depends), 
(3)  that  the  ratio  of  the  circumference  of  any  circle  to  Us 
diameter  (i.e.  TT)  is  <  3^  but  >  3^£.  Prop.  1  is  proved  by 

the  method  of  exhaustion  in  Archimedes's  usual  form :  he 
approximates  to  the  area  of  the  circle  in  both  directions 
(a)  by  inscribing  successive  regular  polygons  with  a  number  of 
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sides%  continually  doubled,  beginning  from  a  square,  (6)  by 
circumscribing  a  similar  set  of  regular  polygons  beginning 
from  a  square,  it  being  shown  that,  «if  the  number  of  the 
sides  of  these  polygons  be  continually  doubled,  more  than  half 
of  the  portion  of  the  polygon  outside  the  circle  will  be  taken 
away  each  time,  so  that  we  shall  ultimately  arrive  at  a  circum- 

scribed polygon  greater  than  the  circle  by  a  space  less  than 
any  assigned  area. 

Prop.  3,  containing  the  arithmetical  approximation  to  TT,  is 
the  most  interesting.  The  method  amounts  to  calculating 
approximately  the  perimeter  of  two  regular  polygons  of  96 
sides,  one  of  which  is  circumscribed,  and  the  other  inscribed, 
to  the  circle :  and  the  calculation  starts  from  a  greater  and 
a  lesser  limit  to  the  value  of  \/3,  whicil  Archimedes  assumes 
without  remark  as  known,  namely 

265    ̂     A/  Q    ̂     1  35  1 

How  did  Archimedes  arrive,  at  those  particular  approxi- 
mations? No  puzzle  has  exercised  more  fascination  upon 

writers  interested  in  the  history  of  mathematics.  De  Lagny, 
Mollwcide,  ttu/engeiger,  Hauber,  Zeuthen,  P.  Tannery,  Heiler- 
mann,  Hultsch,  Hunrath,  Wertheim,  Bobyniii  :  these  are  the 
names  of  sonic*  of  the  authors  of  different  conjectures.  The 
simplest  supposition  is  certainly  that  of  Hunrath  and  Hultsch, 
who  suggested  that  the  formula  used  was 

where  a~  is  the  nearest  square  number  above  or  below  (t~±bt 
as  the  case  may  be,.  The  use  of  the  first  part  of  this  formula 
by  Heron,  who  made  a  number  of  such  approximations,  is 

proved  by  a  passage  in  his  Metrica  ',  where  a  rule  equivalent 
to  this  is  applied  to  \/720;  the  second  part  of  the  formula  is 
used  by  the  Arabian  Alkarkhi  (eleventh  century)  who  drew 
from  Greek  sources,  and  one  approximation  in  Heron  may  be 

obtained  in  this  way.-  Another  suggestion  (that  of  Tannery 

1  Heron,  Metrica,  i.  8. 

2  Sterrom.  ii,  p.  184.  19,  Hultsch;   p.   154.  19,  Heib.  V^4  =  7J=71V 
instead  of  7  />4. K2 
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and  Zeuthen)  is  that  the  successive  solutions  in  integers  of 
the  equations 

o;a-32/2=l      ) 

j52-3ya  =  -2) 

may  have  been  found  in  a  similar  way  to  those  of  the 

equations  &2  —  2  y1  =  +1  given  by  Theon  of  Smyrna  after 
the  Pythagoreans.  The  rest  of  the  suggestions  amount  for  the 
most  part  to  the  use  of  the  method  of  continued  fractions 
more  or  less  disguised. 

Applying  the  above  formula,  we  easily  find 

or 

Next,  clearing  of  fractions,  we  consider  5  as  an  approxi- 

mation to  \/3  .  3-  or  \/27,  and  we  have 

whence  ff  >  ̂ 3  >  T 

T- 

Clearing  of  fractions  again,  and  taking  20  as  an  approxi- 

mation to  \/3  .  15-  or  >/675,  we  have 

28—  ra  >  15v/3  >  2*>-5T> 

which  reduces  to 
1351    v.     A/o    -.     265 
~T50-   >  V  «5    >  T^. 

Archimedes  first  takes  the  case  of  the  circumscribed  polygon. 
Let  CA  be  the  tangent  at  A  to  a  circular  arc  with  centre  0. 

Make  the  angle  AOC  equal  to  one-third  of  a  right  angle. 
Bisect  the  angle  AOG  by  OD,  the  angle  AOD  by  OK,  the 
angle  AOEby  OF,  and  the  angle  AOF  by  OG.  Produce  GA 
to  .4.#,  making  ̂ l//  equal  to  AG.  The  angle  GOlf  is  them 
equal  to  the  angle  FOA  which  is  ̂ th  of  a  right  angle,  so 
that  GH  is  the  side  of  a  circumscribed  regular  polygon  with 
96  sides. 

Now  UA:AC[=  V3:l]  >  265:153,  (l) 

and  OC  :  CA  =  2:1  =  306:153.  (2) 
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And,  since  01)  bisects  the  angle  CO  A, 

so  that 

or 

Hence 

53 

(CO  +  OA):  OA  =  CA  :  DA, 

(CO  +  04)  :CA  =  OA:A  D. 

OA  :AD>  571  :  153,  by  (1)  and  (2). 

And  Oir-:AD*  =  (OA~  + AD2)  :AD~ 

>  (571-+153-):  153- 

>  349450:23109. 

Therefore,  says  Archimedes, 

OD:DA  >  591 1 :  153. 

Next,  just  as  we  have  found  the  limit  of  OD:AD 
from  00:  ('A  ami  the  limit  of  OA  :  AC?,  we  find  the  limits 
of  OA:AK  and  OKiAE  from  the  limits  of  OD:DA  and 

OA  :  AD,  and  so  on.  This  gives  ultimately  the  limit  of 
OA-.AG. 

Dealing  with  the  inscribed  polygon,  Archimedes  gets  a 
similar  series  of  approximations.  ABC  being  a  semicircle,  the 

angle  JiAO\a  made  equal  to  one-third  of  a  right  angle.  Then, 
if  the  angle  KAC  is  bisected  by  AD,  the  angle  BAD  by  AK, 
the  angle  BAK  by  AF,  and  the  angle  7M.F  by  AG,  the 
straight  line  BG  is  the  side  of  an  inscribed  polygon  with 
96  sides. 
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Now  the  triangles  ADB,  BDd,  ACd  are  similar; 

therefore        AD:DB  =  BD:Dd  =  AC  :  Cd 

=  AB  :  Bd,  since  AD  bisects  Z  BAG, 

But  AC:GB  <  1351  :  780, 

while  BA  :  BC  =  2  :  1  =  1560  :  780. 

Therefore  AD  :  DB  <  2911  :  780. 

Hence 
AB2  :  BD*  <  (291  1'2  +  7  80-)  :  780- 

<  9082321  :  608400, 
and,  says  Archimedes, 

AB:BD  <  301  3;|:  780. 

Next,  just  as  a  limit  is  found  for  AD:Dli  and  AB:BD 
from  AB:BC  and  the  limit  of  AC:(JB,  so  we  find  limits  tor 
AE  :  EB  and  AB  :  BE  from  the  limits  of  AB  :  BD  and  AD  :  DH, 
and  so  on,  and  finally  we  obtain  the  limit  of  AB  :  BG. 

We  have  therefore  in  both  cases  two  series  of  terms  a0,  a,, 
<72  ...  an  and  6(),  bl9b.2...bn,  for  which  the  rule  of  formation  is 

where  ^  =  v'  (^^  +  c2),  62  =  /(a/  +  c2)  .  .  .  ; 
and  in  the  first  case 

a0  =  265,     60  =  306,     c  =  153, 
while  in  the  second  case 

aa  =  1351,  bn  =  1560,  c  =  780. 
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The  series  of  values  found  by  Archimedes  are  shown  in  the 
following  table  : 

a  b  c      n    a  b  c 

265  306  153     0   1351  1560  780 

571    >    |V(571~-H532)]          153     1    2911       <  i/(2911a  +  7802)   780 

153     2/5924J-J  ...  780| 

1823     (<i/(18232  +  2402)  240] 

<  1838T9T 

2334}>[Vr{(2334})a+15358}]    153     3    3661T9T  ...  240f 

>  2339J  1007    (<V(l  007'2  +  662)        66 

4673$  153     4    2016JJ  <  ̂ {(2016j)-  +  66*  }  66 
1      <  2017} 

and,  bearing  in  mind  that  in  the  first  case  the  final  ratio 

«4  :  c  is  the  ratio  OA  :AG  =  2  OA  :  Gil,  and  in  the  second  case 
the  final  ratio  fe4:c  is  the  ratio  AB  :  BG,  while  GH  in  the  first 

figure  and  BG  in  the  second  are  the  sides  of  regular  polygons 
of  96  sides  circumscribed  and  inscribed  respectively,  we  have 
finally 

96x153  96x66 

4673J    >?r>   2017}  " 
Archimedes  simply  infers  from  this  that 

35    >7T  >   3#. 

A  r   f    i  96X153      Q  667£  667-£ 

As  a  matter  of  iact    wjjr=*W7^  aiid  ̂   =  1. »  1     1 
It  is  also  to  be  observed  that  3^£  =  3+  —  •-   ,  and  it  may 

have  been  arrived  at  by  a  method  equivalent  to  developing f\  n  o  t* 

the  fraction    '  *  .in  the  form  of  a  continued  fraction. 
2017} 

It  should  be  noted  that,  in  the  text  as  we  have  it,  the  values 

of  ftp  62,  63,  />4  are  simply  stated  in  their  final  form  without 
the  intermediate  step  containing  the  radical  except  in  the  first 

*  t  Here  the  ratios  of  a  to  c  are  in  the  first  instance  reduced  to  lower terms. 
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case  of  all,  where  we  are  told  that  OD*:AD*  >  349450  :  23409 
and  then  that  OD:DA  >  591|:153.  At  the  points  marked 

*  and  f  in  the  table  Archimedes  simplifies  the  ratio  a2 :  c  and 
r*3 :  c  before  calculating  &2,  &3  respectively,  by  multiplying  each 
term  in  the  first  case  by  T\  and  in  the  second  case  by  £-J. 
He  gives  no  explanation  bf  the  exact  figure  taken  as  the 
approximation  to  the  square  root  in  each  case,  or  of  the 
method  by  which  he  obtained  it.  We  may,  however,  be  sure 

that  the  method  amounted  to  the  use  of  the  formula  (ce  +  6)2 
=  a2 ±2ab  +  b1)  much  as  our  method  of  extracting  the  square 
root  also  depends  upon  it. 
We  have  already  seen  (vol.  i,  p.  232)  that,  according  to 

Heron,  Archimedes  made  a  still  closer  approximation  to  the 
value  of  77. 

On  Conoids  and  Spheroids. 

The  main  problems  attacked  in  this  treatise  are,  in  Archi- 

medes's  manner,  stated  in  his  preface  addressed  to  Dositheus, 
which  also  sets  out  the  premisses  with  regard  to  the  solid 
figures  in  question.     These  premisses  consist  of  definitions  and 

obvious  inferences  from  them.     The  figures  are  (1)  the  right- 
angled  conoid  (paraboloid  of  revolution),  (2)  the  obtuse-angled 
conoid   (hyperboloid   of   revolution),   and   (3)    the    spheroids 
(a)  the  oblong,  described  by  the  revolution  of  an  ellipse  about 

its  'greater  diameter'  (major  axis),  (6)  the  flat,  described  by. 
the  revolution  of  an  ellipse  about  its  *  lesser  diameter '  (minor 
axis).     Other  definitions  are  those  of  the  vertex  and  w/.s  of  the 
figures  or  segments  thereof,  the  vertex  of  a  segment  being 
the  point  of  contact  of  the  tangent  plane  to  the  solid  which 
is  parallel  to  the   base  of  the  segment.     The  centre  is   only 
recognized  in  the  case  of  the  spheroid;  what  corresponds  to 

the  centre  in  the  case  of  the  hyperboloid  is  the  'vertex  of 
the  enveloping  cone'  (described  by  the  revolution  of  what 
Archimedes   calls   the    *  nearest    lines   to   the  section  of  the 

obtuse-angled  cone',  i.e.  the  asymptotes  of  the  hyperbola), 
and  the  line  between  this  point  and  the  vertex  of  the  hyper- 

boloid or  segment  is  called,  not  the  axis  or  diameter,  but  (the 

line)  'adjacent  to  the  axis'.     The  axis  of  the  segment  is  in 
the  case  of  the  paraboloid  the  line  through  the  vertex  of  the 
segment  parallel  to  the  axis  of  the  paraboloid,  in  the  case 
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of  the  hyperboloid  the  portion  within  the  solid  of  the  line 

joining  the  vertex  of  'the  enveloping  cone  to  the  vertex  of 
the  segment  and  produced,  and  in  the  case  of  the  spheroids  the 
line  joining  the  points  of  contact  of  the  two  tangent  planes 
parallel  to  the  base  of  the  segment.  Definitions  are  added  of 

a  £  segment  of  a  cone  '  (the  figure  cut  off  towards  the  vertex  by 
an  elliptical,  not  circular,  section  of  the  cone)  and  a  '  frustum 
of  a  cylinder'  (cut  off  by  two  parallel  elliptical  sections). 

Props.  1  to  18  with  a  Lemma  at  the  beginning  are  preliminary 
to  the  main  subject  of  the  treatise.  The  Lemma  and  Props.  1,  2 
are  general  propositions  needed  afterwards.  They  include 
propositions  in  summation, 

2  *ta  +  2a  +  Sa+...  +n«,}  >  n  .  na  >  2  \a  +  2<t  +  ...  +  (/&—!)«} 
(Lemma) 

(this  is  clear  from  tfw  =  $ii(n+l)a)  ; 

+  2a  +  3a+  ...  +na) 

(Lemma  to  Prop.  2) 
whence  (Cor.) 

* 
)*}  >  n(na) 

lastly,  Prop.  2  gives  limits  for  the  sum  of  n  terms  of  the 

series  ax  +  ,/r,  a  .2x  +  (2  ;i:)2,  a  .  3  x  4-  (3  a)2,  .  .  .  ,  in  t  ho  form  of 
inequalities  of  ratios,  thus: 

11  {  a  .nx  +  (  nx)'2  \  :  S1  "-1  [  a  .  rx  +  (rx)2  } 
>  (a  -f  nx)  :  (\<t  4-  -3  i*»v) 

>  n  \  a  .  nx  -f  (natf*  \  :  S,7'  {  a  .  rx  4-  (rx)-  \  . 

Prop.  3  proves  that,  if  QQ'  be  a  chord  of  a  parabola  bisected 
at  V  by  the  diameter  PV,  then,  if  PV  be  of  constant  length, 

the  areas  of  the  triangle  PQQ?  and  of  the  segment  PQQ'  are 
also  constant,  whatever  be  the  direction  of  (J$  \  to  prove  it 

Archimedes  assumes  a  proposition  '  proved  in  the  conies  '  and 
by  no  means  easy,  namely  that,  if  QI)  be  perpendicular  to  PV, 
and  if  p,  pa  be  the  parameters  corresponding  to  the  ordinates 

parallel  to  QQ'  and  the  principal  ordinates  respectively,  then 

Props.  4-6  deal  with  the  area  of  an  ellipse,  which  is,  in  the 
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first  of  the  three  propositions,  proved  to  be  to  the  area  of 
the  auxiliary  circle  as  the  minor  axis  to  the  major ;  equilateral 
polygons  of  4  n  sides  are  inscribed  in  the  circle  and  compared 
with  corresponding  polygons  inscribed  in  the  ellipse,  which  are 
determined  by  the  intersections  with  the  ellipse  of  the  double 
ordinates  passing  through  the  angular  points  of  the  polygons 
inscribed  in  the  circle,  and  the  method  of  exhaustion  is  then 
applied  in  the  usual  way.  Props.  7,  8  show  how,  given  an  ellipse 
with  centre  C  and  a  straight  line  CO  in  a  plane  perpendicular  to 
that  of  the  ellipse  and  passing  through  an  axis  of  it,  (1)  in  the 
case  where  OC  is  perpendicular  to  that  axis,  (2)  in  the  case 
where  it  is  not,  we  can  find  an  (in  general  oblique)  circular 
cone  with  vertex  0  such  that  the  given  ellipse  is  a  section  of  it, 
or,  in  other  words,  how  we  can  find  the  circular  sections  of  the 

cone  with  vertex  0  which  passes  through  the  circumference  of 
the  ellipse ;  similarly  Prop.  9  shows  how  to  find  the  circular 
sections  of  a  cylinder  with  CO  as  axis  and  with  surface  parsing 

through  the  circumference  of  an  ellipse  with  centre  6',  where 
CO  is  in  the  plane  through  an  axis  of  the  ellipse  and  perpen- 

dicular to  its  plane,  but  is  not  itself  perpendicular  to  that 

axis.  Props.  11-18  give  simple  properties  of  the  conoids  and 
spheroids,  easily  derivable  from  the  properties  of  the  respective 
conies;  they  explain  the  nature  and  relation  of  the  sections 
made  by  planes  cutting  the  solids  respectively  in  different  ways 
(planes  through  the  axis,  parallel  to  the  axis,  through  the  centre 
or  the  vertex  of  the  enveloping  cone,  perpendicular  to  the  axis, 
or  cutting  it  obliquely,  respectively),  with  especial  reference  to 
the  elliptical  sections  of  each  solid,  the  similarity  of  parallel 
elliptical  sections,  &c.  Then  with  Prop.  19  the  real  business 
of  the  treatise  begins,  namely  the  investigation  of  the  volume 
of  segments  (right  or  oblique)  of  the  two  conoids  and  the 
spheroids  respectively. 

The  method  is,  in  all  cases,  to  circumscribe  and  inscribe  to 

the  segment  solid  figures  made  up  of  cylinders  or  *  frusta  of 
cylinders ',  which  can  be  made  to  differ  as  little  as  we  please 
from  one  another,  so  that  the  circumscribed  and  inscribed 
figures  are,  as  it  were,  compressed  together  and  into  coincidence 
with  the  segment  which  is  intermediate  between  them. 

In  each  diagram  the  plane  of  the  paper  is  a  plane  through 
the  axis  of  the  conoid  or  spheroid  at  right  angles  to  the  plane 
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of  the^section  which  is  the  base  of  the  segment,  and  which 
is  a  circle  or  an  ellipse  according  as  the  said  base  is  or  is  not 
at  right  angles  to  the  axis ;  the  plane  of  the  paper  cuts  the 
base  in  a  diameter  of  the  circle  or  an  axis  of  the  ellipse  as 
the  case  may  be. 

The  nature  of  the  inscribed  and  circumscribed  figures  will 
be  seen  from  the  above  figures  showing  segments  of  a  para- 

boloid, a  hyperboloid  and  a  spheroid  respectively,  cut  oft* 
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by  planes  obliquely  inclined  to  the  axis.  The  base  of  the 

segment  is  an  ellipse  in  which  BB'  is  an  axis,  and  its  plane  is 
at  right  angles  to  the  plane  of  the  paper,  which  passes  through 
the  axis  of  the  solid  and  cuts  it  in  a  parabola,  a  hyperbola,  or 
an  ellipse  respectively.  The  axis  of  the  segment  is  cut  into  a 
number  of  equal  parts  in  each  case,  and  planes  are  drawn 
through  each  point  of  section  parallel  to  the  base,  cutting  the 

solid  in  ellipses,  similar  to  the  base,  in  which  PPt  \  QQ',  &c.,  are 
axes.  Describing  frusta  of  cylinders  with  axis  AD  and  passing 

through  these  elliptical  sections  respectively,  we  draw  the 
circumscribed  and  inscribed  solids  consisting  of  these  frusta. 
It  is  evident  that,  beginning  from  A,  the  first  inscribed  frustum 
is  equal  to  the  first  circumscribed  frustum,  the  second  to  the 
second,  and  so  on,  but  there  is  one  more  circumscribed  frustum 
than  inscribed,  and  the  difference  between  the  circumscribed 

and  inscribed  solids  is  equal  to  the  last  frustum  of  which  BR' 
is  the  base,  and  ND  is  the  axis.  Since  ND  can  be  made  as 

small  as  we  please,  the  difference  between  the  circumscribed 
and  inscribed  solids  can  be  made  less  than  any  assigned  solid 

whatever.  Hence  we  have  the  requirements  for  applying  the 
method  of  exhaustion. 

Consider  now  separately  the  cases  of  the  paraboloid,  the 
hyperboloid  and  the  spheroid. 

I.   The  paraboloid  (Props.  20-22). 

The  fruvstum  the  base  of  which  is  the  ellipse  in  which  PP'  is 
an  axis  is  proportional  to  PP'*  or  PN~,  i.e.  proportional  to 
AX.  Suppose  that  the  axis  AD  (=  c)  is  divided  into  n  equal 
parts.  Archimedes  compares  each  frustum  in  the  inscribed 
and  circumscribed  figure  with  the  frustum  of  the  whole  cylinder 

BF  cut  off*  by  the  same  planes.  Thus 
(first  frustum  in  BF)  :  (first  frustum  in  inscribed  figure) 

=  BD*  :  PN* 

=  BD  :  TN. 
Similarly 

(second  frustum  in  BF)  :  (second  in  inscribed  figure) 
=  HN:SM, 

and  so  on.     The  last  frustum  in  the  cylinder  BF  has  none  to 
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correspond  to  it  in  the  inscribed  figure,  and  we  should  write 
the  ratio  as  (BD  :  zero). 

Archimedes  concludes,  by  means  of  a  lemma  in  proportions 
forming  Prop.  1,  that 

(frustum  BF)  :  (inscribed  figure) 

where  XO  =  k,  so  that  BD  =  TI/J. 

In  like  manner,  lie  concludes  that 

(frustum  BF)  :  (circumscribed  figure) 

But,  by  the  Lemma  preceding  Prop.  1, 

whence 

(Frustum  BF)  :  (inscr.  fig.)  >  2  >  (frustum  BF)  :  (circumscr.  fig.). 

This  indicates  the  desired  result,  which  is  then  confirmed  by 
the  method  of  exhaustion,  namely  that 

(frustum  BF)  =  2  (segment  of  paraboloid), 

or,  if  V  be  the  volume  of  the  '  segment  of  a  cone  ',  with  vertex 
A  and  base  the  same  as  that  of  the  segment,      * 

(volume  of  segment)  =  f  V. 

Archimedes,  it  will  be  seen,  proves  in  ett'ect  that,  if  k  be 
indefinitely  diminished,  and  n  indefinitely  increased,  while  nk 
remains  equal  to  ct  then 

limit  of  k{k+2k  +  3lc+...+(u-  l)k\  =  |<r, 

that  is,  in  our  notation, 

pc 

xdx  = f 
Jo 

Prop.  23  proves  that  the  volume  is  constant  for  a  given 

length  of  axis  AD,  whether  the  segment  is  cut  oft"  by  a  plane 
perpendicular  or  not  perpendicular  to  the  axis,  and  Prop.  24 
shows  that  the  volumes  of  two  segments  are  as  the  squares  on 
their  axes. 
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II.  In  the  case  of  the  hyperboloid  (Props.  25,  26)  let  the  axis 

AD  be  divided  into  n  parts,  each  of  length  h,  and  let  AA'*=a. 
Then  the  ratio  of  the  volume  of  the  frustum  of  a  cylinder  on 

the  ellipse  of  which  any  double  ordinate  QQ'  is  an  axis  to  the 
volume  of  the  corresponding  portion  of  the  whole  frustum  BF 
takes  a  different  form  ;  for,  if  AM  =  rh,  we  have 

(frustum  in  BF)  :  (frustum  on  base  QQ') 

=  BD*  :  QM* 

=  AD.A'D:AM.A'M 

By  means  of  this  relation  Archimedes  proves  that 

(frustum  BF)  :  (inscribed  figure) 

and 

(frustum  BF) :  (circumscribed  figure) 

=  n  { a .  nh  +  (nh)2 } :  S^*  [  a .  rh  +  (rh)2 } . 
But,  by  Prop.  2, 

From  these  relations  it  is  inferred  that 

(frustum  BF)  :  (volume  of  segment)  =  (a  +  nh)  :  (%a  +  ̂  nh), 

or         (volume  of  segment)  :  (volume  of  cone  ABB') 
=  (AD  +30  A):  (AD  +  20  A); 

and  this  is  confirmed  by  the  method  of  exhaustion. 
The  result  obtained  by  Archimedes  is  equivalent  to  proving 

that,  if  h  be  indefinitely  diminished  while  n  is  indefinitely 
increased  but  nh  remains  always  equal  to  6,  then 

limit  of 

or  limit  of     tin  =  &2  (%a  +  §  &), 76 

where 
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so  thai 

The  limit  of  this  latter  expression  is  what  we  should  write ,6 

I 
Jo 

and  Archimedes's  procedure  is  the  equivalent  of  this  integration. 

III.   In  the  case   of  the  spheroid   (Props.  29,  30)   we  take 
a  segment  less  than  half  the  spheroid. 

As  in  the  case  of  the  hyperboloid, 

(frustum  in  BF)  :  (frustum  on  bavse  QQ') 

=  BD2  :  QM2 

=  AD.A'DiAM.A'M\ 

but,  in  order  to  reduce  the  summation  to  the  same  as  that  in 

Prop.  2,  Archimedes  expresses  AM  .  A'M  in  a  different  form 
equivalent  to  the  following. 

Let  AD  (=b)  be  divided  into  n,  equal  parts  of  length  h, 

and  suppose  that  A  A'  '=  a,  CD  =  \c. 

Then  AD.4'/)  =  Ja2-Je2, 

and  AM  .  A'M  =  £a2-  (£c  +  rh)2         (DM  =  r/i) 

Thus  in  this  case  we  have 

(frustum  BF)  :  (inscribed  figure) 

=  n  (cb  +  b2)  :  [n  (cb  +  62)  -  ̂   {c.rk  +  (rh)2  }  ] arid 

(frustum  BF)  :  (circumscribed  figure) 

=  n  (cb  +  b2)  :  [n  (cb  +  b2)  -  S^"1  J  c  .  rh  +  (rh)2  }  ]. 

And,  since  b  =  nh,  we  have,  by  means  of  Prop.  2, 

n(cb  +  b2)  :  [n(cb  +  b2)-^n{c  .  rh  +  (rh)2}] 
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The  conclusion,  confirmed  as  usual  by  the  method  of  ex- 
haustion, is  that 

(frustum  BF)  :  (segment  of  spheroid)  =  (c  +  b)  :  {c  +  b  -  (|c  +  ̂b)  } 

=  (o  +  6):fto  +  |6), 

whence     (volume  of  segment)  :  (volume  of  cone  ABB') 

=  (3CA-AD):(2CA-AD),  since  GA  =  J 

As  a  particular  case  (Props.  27,  28),  half  the  spheroid  is 
double  of  the  corresponding  cone. 

Props.  31,  32,  concluding  the  treatise,  deduce  the  similar 
formula  for  the  volume  of  the  greater  segment,  namely,  in  our 
figure, 

(greater  segmt.)  :  (cone  or  segmt.of  cone  with  same  base  and  axis) 

On  Spirals. 

The  treativse  On  Spirals  begins  with  a  preface  addressed  to 
Dositheus  in  which  Archimedes  mentions  the  death  of  Conon 

as  a  grievous  loss  to  mathematics,  and  then  summarizes  the 
main  results  of  the  treatises  On  the  Sphere  and  Cylinder  and 

On  Conoids  and  Spheroids,  observing  that  the  last  two  pro- 
positions of  Book  II  of  the  former  treatise  took  the  place 

of  two  which,  as  originally  enunciated  to  Dositheus,  were 
wrong;  lastly,  he  states  the  main  results  of  the  treatise 
On  Spirals,  premising  the  definition  of  a  spiral  which  is  as 
follows  : 

1  If  a  straight  line  one  extremity  of  which  remains  fixed  be 
made  to  revolve  at  a  uniform  rate  in  a  plane  until  it  returns 
to  the  position  from  which  it  started,  and  if,  at  the  same  time 
as  the  straight  line  is  revolving,  a  point  move  at  a  uniform 
rate  along  the  straight  line,  starting  from  the  fixed  extremity, 

the  point  will  describe  a  spiral  in  the  plane.' 
As  usual,  we  have  a  series  of  propositions  preliminary  to 

the  main  subject,  first  two  propositions  about  uniform  motion, 
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then  .two  simple  geometrical  propositions,  followed  by  pro- 
positions (5-9)  which  are  all  of  one  type.  Prop.  5  states  that, 

given  a  circle  with  centre  0,  a  tangent  to  it  at  A,  and  c,  the 

FIG.  1. 

circumference  of  any  circle  whatever,  it  is  possible  to  draw 
a  straight  line  OPF  meeting  the  circle  in  P  and  the  tangent 
in  F  such  that 

FP  :  OP  <  (arc  AP)  :  c. 

Archimedes  takes  I)  a  straight  line  greater  than  c>9  draws 

077  parallel  to  the  tangent  at  A  and  then  says  *  let  PH  be 
placed  equal  to  7)  verging  (vtvovora}  towards  A  '.  This  is  the 
usual  phraseology  of  the  type  of  problem  known  as  i/eCo-*? 
where  a  straight  line  of  given  length  has  to  be  placed  between 
two  lines  or  curves  in  such  a  position  that,  if  produced,  it 
passes  through  a  given  point  (this  is  the  meaning  of  verging). 
Each  of  the  propositions  5-9  depends  on  a  vtvvis  of  this  kind, 

FIG.  2. 

which  Archimedes  assumes  as  '  possible '  without  showing  how 
it  is  effected.  Except  in  the  case  of  Prop.  5,  the  theoretical 
solution  cannot  be  effected  by  means  of  the  straight  line  and 
circle;  it  depends  in  general  on  the  solution  of  an  equation 
of  the  fourth  degree,  which  can  be  solved  by  means  of  tbe 
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points  of  intersection  of  a  certain  rectangular  hyperbola 
and  a  certain  parabola.  It  is  quite  possible,  however,  that 
such  problems  were  in  practice  often  solved  by  a  mechanical 
method,  namely  by  placing  a  ruler,  by  trial,  in  the  position  of 
the  required  line :  for  it  is  only  necessary  to  place  the  ruler 
so  that  it  passes  through  the  given  point  and  then  turn  it 
round  that  point  as  a  pivot  till  the  intercept  becomes  of  the 

given  length.  In  Props.  6-9  we  have  a  circle  with  centre  0, 
a  chord  AB  less  than  the  diameter  in  it,  OM  the  perpendicular 
from  0  on  AB,  BT  the  tangent  at  By  OT  the  straight  line 
through  0  parallel  to  A B ;  D :  E  is  any  ratio  less  or  greater, 
as  the  case  may  be,  than  the  ratio  BM :  MO.  Props.  6,  7 
(Fig.  2)  show  that  it  is  possible  to  draw  a  straight  line  OFP 

FIG.  3. 

meeting  AB  in  F  and  the  circle  in  P  such  that  FP :  PB—D:  E 
(OP  meeting  AB  in  the  case  where  D\E<BM:MO,  and 
meeting  AB  produced  when  D  :  E  >  BM :  MO).  In  Props.  8,  9 
(Fig.  3)  it  is  proved  that  it  is  possible  to  draw  a  straight  line 
OFP  meeting  AB  in  F,  the  circle  in  P  and  the  tangent  at  B  in 
<?,  such  that  FP:BG=D:E  (OP  meeting  AB  itself  in  the  case 
where  D:E<BM:MO,  and  meeting  AB  produced  in  the 
case  where  D:E  >  BM : MO). 
We  will  illustrate  by  the  constructions  in  Props.  7,  8, 

as  it  is  these  propositions  which  are  actually  cited  later. 
Prop.  7.  If  D  :  E  is  any  ratio  >  BM :  MO,  it  is  required  (Fig.  2) 

to  draw  OP/F/  meeting  the  circle  in  P'  and  AB  produced  in 
F/  so  that 

FT*:  P'B  =  D  :  E. 

Draw  OT  parallel  to  AB,  and  let  the  tangent  to  the  circle  at 
B  meet  OT  in  T. 
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Than         D  :  E  >  BM :  MO,  by  hypothesis, 

>  OB :  BT,  by  similar  triangles. 

Take  a  straight  line  P'H'  (less  than  BT)  such  that  D :  E 
=  OB :  P'H',  and  place  P'H'  between  the  circle  and  OT 
'  verging  towards  B '  (construction  assumed). 
Then  F'P' :  P'B  =  OP' :  P'H' 

=  OB :  P'H' =  D:E. 

Prop.  8.  If  D  :  E  is  any  given  ratio  <  BM:  MO,  it  is  required 
to  draw  OFPG  meeting  AB  in  F,  the  circle  in  P,  and  the 
tangent  at  B  to  the  circle  in  G  so  that 

FP :  BG  =  D :  E. 

If  OT  is  parallel  to  AB  and  meets  the  tangent  at  B  in  T, 

BM:  MO  =  OB :  BT,  by  similar  triangles, 
whence  D:E<OB:  BT. 

Produce  TB  to  C,  making  BG  of  such  length  that 
D:E  =OB:BC, 

ip  that  BG  >  BT. 
Describe  a  circle  through  the  three  points  0,  T,  C  and  let  OB 

produced  meet  this  circle  in  K. 

'  Then,  since  BC  >  BT,  and  OK  is  perpendicular  to  GT,  it  is 
possible  to  place  QG  [between  the  circle  TKG  and  BC]  equal  to 

BK  and  verging  towards  0 '  (construction  assumed). 
F-  2 
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Let  QGO  meet  the  original  circle  in  P  and  AB  in  F.     Then 
OFPG  is  the  straight  line  required. 

For  CG.GT=OG.GQ  =  OG.  BK. 

But  OF:  OG  =  BT:  GT,  by  parallels, 

whence  OF.GT=OG.BT. 

Therefore     CG  .  GT :  OF .  GT  =  OG  .  BK  :  OG  .  BT, 

whence  CG:OF=BK:BT 
=  BC:OB 

=  BC:OP. 

Therefore  OP  :  OF  =  BC :  CG, 

and  hence  PF:  OP  =  BG  :  BC, 

or  PF:  BG  =  OU  :  J56Y  =  1)  :  K. 

Pappus  objects  to  Archimedes's  use  of  the  i/€C(r*y  assumed  in 
Prop.  8,  0  in  those  words : 

'it  seems  to  be  a  grave  error  into  which  geometers  fall 
whenever  any  one  discovers  the  solution  of  a  plane  problem 
by  means  of  conies  or  linear  (higher)  curves,  or  generally 
solves  it  by  means  of  a  foreign  kind,  as  is  the  case  e.g.  (1)  with 
the  problem  in  the  fifth  Book  of  the  Conies  of  Apollonius 
relating  to  the  parabola,  and  (2)  when  Archimedes  assumes  in 

his  work  on  the  spiral  a  i/sCcny  of  a  "  solid "  character  with 
reference  to  a  circle ;  for  it  is  possible  without  calling  in  the 
aid  of  anything  solid  to  find  the  proof  of  the  theorem  given  by 
Archimedes,  that  is,  to  prove  that  the  circumference  of  the 
circle  arrived  at  in  the  first  revolution  is  equal  to  the  straight 
line  drawn  at  right  angles  to  the  initial  line  to  meet  the  tangent 
to  the  spiral  (i.e.  the  subtangent)/ 

There  is,  however,  this  excuse  for  Archimedes,  that  he  only 
assumes  that  the  problem  can  be  solved  and  does  not  assume 

the  actual  solution.  Pappus l  himself  gives  a  solution  of  the 
particular  i/evcris  by  means  of  conies.  Apollonius  wrote  two 

Books  of  i>€i5<m9,  and  it  is  quite  possible  that  by  Archimedes's 
time  there  may  already  have  been  a  collection  of  such  problems 
to  which  tacit  reference  was  permissible. 

Prop.  10  repeats  the  result  of  the  Lemma  to  Prop.  2  of  On 

1  Pappus,  iv,  pp.  298-302.     * 
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Conoicls  and  Spheroids  involving  the  summation  of  the  series 

!2  +  22-f  32-f  ...  +  n2.  Prop  11  proves  another  proposition  in 
summation,  namely  that 

>  (na)2  :  {  na  .  a  4-  -J  (na  —  a)2  } 

The  same  proposition  is  also  true  if  the  terms  of  the  series 

are  a2,  (a  +  6)2,  (a  +  2b)2  ...  (a  +  ?i—  l6)a,  and  it  is  assumed  in 
the  more  general  form  in  Props.  25,  26. 

Archimedes  now  introduces  his  Definitions,  of  the  spiral 
itself,  the  origin,  the  initial  line,  the  first  distance  (=  the 
radius  vector  at  the  end  of  one  revolution),  the  second  distance 

(=  the  equal  length  added  to  the  radius  vector  during  the 
second  complete  revolution),  and  so  on  ;  the  first  area  (the  area 
bounded  by  the  spiral  described  in  the  first  revolution  and 

the  '  first  distance  '),  the  second  area  (that  bounded  by  the  spiral 
described  in  the  second  revolution  and  the  '  second  distance  '), 

and  so  on;  the  first  circle  (the  circle  witli  the  'first  distance' 
as  radius),  the  second  circle  (the  circle  with  radius  equal  to  the 

sum  of  the  'first*  and  'second  distances',  or  twice  the  first 
distance),  and  so  on. 

Props.  12,  14,  15  give  the  fundamental  property  of  the 
spiral  connecting  the  length  of  the  radius  vector  with  the  angle 
through  which  the  initial  line  has  revolved  from  its  original 

position,  and  corresponding  to  the  equation  in  polar  coordinates 
r  =  a  0.  As  Archimedes  does  not  speak  of  angles  greater 
than  TT,  or  2  TT,  he  has,  in  the  case  of  points  on  any  turn  after 
the  first,  to  use  multiples  of  the  circumference 
of  a  circle  as  well  as  arcs  of  it.  He  uses  the 

'first  circle*  for  this  purpose.  Thus,  if  P,  Q 
are  two  points  on  the  first  turn, 

OP  :  OQ  =  (arc  AKP')  :  (arc  AK  (/)  ; 

if  P,   Q  are  points  on  the  nth  turn  of  the 

spiral,  and  c  is  the  circumference  of  the  first  circle, 

Prop.  13  proves  that,  if  a  straight  line  touches  the  spiral,  it 
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touches  it  at  one  point  only.  For,  if  possible,  let  the  tangent 
at  P  touch  the  spiral  at  another  point  Q.  Then,  if  we  bisect 
the  angle  POQ  by  OL  meeting  PQ,  in  L  and  the  spiral  in  11, 

OP  +  OQ—20R  by  the  property  of  the  spiral.  But  by 
the  property  of  the  triangle  (assumed,  but  easily  proved) 
OP  +  OQ>  20L,  so  that  OL  <  OR,  and  some  point  of  PQ 
lies  within  the  spiral.  Hence  PQ  cuts  the  spiral,  which  is 
contrary  to  the  hypothesis. 

Props.  16,  17  prove  that  the  angle  made  by  the  tangent 
at  a  point  with  the  radius  vector  to  that  point  is  obtuse  on  the 

'  forward '  sMe,  and  acute  on  the  *  backward '  side,  of  the  radius 
vector. 

Props.  18-20  give  the  fundamental  proposition  about  Jhe 
tangent,  that  is  to  say,  they  give  the  length  of  the  subtanyent 

at  any  point  P  (the  distance  between  0  and  the  point  of  inter- 
section of  the  tangent  with  the  perpendicular  from  0  to  OP). 

Archimedes  always  deals  first  with  the  first  turn  and  then 
with  any  subsequent  turn,  and  with  each  complete  turn  before 
parts  or  points  of  any  particular  turn.  Thus  he  deals  with 
tangents  in  this  order,  (1)  the  tangent  at  A  the  end  of  the  first 

turn,  (2)  the  tangent  at  the  end  of  the  second  and  any  subse- 
quent turn,  (3)  the  tangent  at  any  intermediate  point  of  the 

first  or  any  subsequent  turn.  We  will  take  as  illustrative 
the  case  of  the  tangent  at  any  intermediate  point  P  of  the  first 
turn  (Prop.  20). 

If  0 A  be  the  initial  line,  P  any  point  on  the  first  turn,  PT 
the  tangent  at  P  and  OT  perpendicular  to  OP,  then  it  is  to  be 
proved  that,  if  ASP  be  the  circle  through  P  with  centre  0, 
meeting  PT  in  $,  then 

(subtangent  OT)  =  (arc  ASP). 

I.  If  possible,  let  OT  be  greater  than  the  arc  ASP. 
Measure  off  OU  such  that  OU  >  arc  AS'P  but  <  OT. 
Then  the  ratio  PO:OU  is  greater  than  the  ratio  PO :  OT, 

i.e.  greater  than  the  ratio  of  %PS  to  the  perpendicular  from  0 
on  PS. 

Therefore  (Prop.  7)  we  can  draw  a  straight  line  OQF  meeting 
TP  produced  in  F,  and  the  circle  in  Q,  such  that 
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Let  OF  meet  the  spiral  in  Q'. 

Then  we  have,  alternando,  since  PO  =  QO, 

71 

<  (arc  PQ)  :  (arc  ASP),  by  hypothesis  and  a  fortiori. 

Componendo,    FO:QO  <  (arc  4#Q)  :  (arc  ASP) 

<OQ':OP. 

But  QO  =  OP;  therefore  FO  <  OQ';  which  is  impossible. 

Therefore  OT  is  not  greater  than  the  arc  ASP. 

II.  Next  suppose,  if  possible,  that  OT  <  arc  ASP. 

Measure  OF  along  OT  such  that  pF  is  greater  than  OTbut 
less  than  the  arc  A  SI*. 

Then  the  ratio  PO  :  OF  is  less  than  the  ratio  PO  :  OT,  i.e. 

than  the  ratio  of  %PS  to  the  perpendicular  from  0  on  P/S'; 
therefore  it  is  possible  (Prop.  8)  to  draw  a  straight  line  OF'RG 
meeting  P$,  the  circle  PSA,  and  the  tangent  to  the  circle  at  P 

in  F',  R,  G  respectively,  and  such  that 
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Let  OF'G  meet  the  spiral  in  R'. 

Then,  since     PO  =  RO,  we  have,  alter  nando, 

>  (arc  PR)  :  (arc  ASP),  a  fortiori, 

whence  F'O  :  RO  <  (arc  ASR)  :  (arc  4/SP) 

<  OR':  OP, 

so  that  jF'O  <  OJS';  wliich  is  impossible. 
Therefore  OT  is  not  less  than  the  arc  ASP.     And  it  was 

proved  not  greater  than  the  same  arc.     Therefore 

As  particular  cases  (separately  proved  by  Archimedes),  if 
P  be  the  extremity  of  the  first  turn  and  CT  the  circumference 
of  the  first  circle,  the  subtangent  =  q  ;  if  P  be  the  extremity 
of  the  second  turn  and  ctt  the  circumference  of  the  'second 

£t circle',  the  subtangent  =  2r2;  and  generally,  if  cn  be  the 
circumference  of  the  nth  circle  (the  circle  with  the  radius 

vector  to  the  extremity  of  the  nth  turn  as  radius),  the  sub- 
tangent  to  the  tangent  at  the  extremity  of  the  nth  turn  =  ncn. 

If  P  is  a  point  on  the  nth  turn,  not  the  extremity,  and  the 
circle  with  0  as  centre  and  OP  as  radius  cuts  the  initial  line 

in  K,  while  p  is  the  circumference  of  the  circle,  the  sub- 
tangent  to  the  tangent  at  P  =  (n—  l)p  +  arc  KP  (measured 

c  forward  ').* 
The  remainder  of  the  book  (Props.  21-8)  is  devoted  to 

finding  the  areas  of  portions  of  the  spiral  and  its  several 
turns  cut  off  by  the  initial  line  or  any  two  radii  vectores. 
We  will  illustrate  by  tlie  general  case  (Prop.  26).  Take 
OBy  0(7,  two  bounding  radii  vectores,  including  an  arc  BG 
of  the  spiral.  With  centre  0  and  radius  00  describe  a  circle. 
Divide  the  angle  BOG  into  any  number  of  equal  parts  by 
radii  of  this  circle.  The  spiral  meets  these  radii  in  points 
P,  Q  ...  F,  Z  such  that  the  radii  vectores  OJB,  OP,  OQ  ...  OZ,  00 

1  On  the  whole  course  of  Archimedes's  proof  of  the  property  of  the 
subtangent,  see  note  in  the  Appendix. 
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are  in, arithmetical  progression.  Draw  arcs  of  circle*  with 
radii  OB,  OP,  OQ  ...  as  shown;  this  produces  a  figure  circum- 

scribed to  the  spiral  and  consisting  of  the  sum  of  small  sectors 
of  circles,  and  an  inscribed  figure  of  the  same  kind.  As  the 
first  sector  in  the  circumscribed  figure  is  equal  to  the  second 
sector  in  the  inscribed,  it  is  easily  seen  that  the  areas  of  the 
circumscribed  and  inscribed  figures  differ  by  the  difference 

between  the  sectors  OzG  and  OBp' ';  therefore,  by  increasing 
the  number  of  divisions  of  the  angle  BOG,  we  can  make  the 

difference  between  the  areas  of  the  circumscribed  and  in- 
scribed figures  as  small  as  we  please ;  we  have,  therefore,  the 

elements  necessary  for  the  application  of  the  method  of 
exhaustion. 

If  there  are  n  radii  OB,  OP ...  00,  there  are  (n—  1)  parts  of 
the  angle  BOG.  Since  the  angles  of  tall  the  small  sectors  are 
equal,  the  sectors  are  as  the  square  on  their  radii. 

Thus     (whole  sector  0//C1) :  (circumscribed  figure) 

=  (TI-  l)OC* :  (OP2  +  OQ2  +  ...  +  OC2), 

and          (whole  sector  Ob'C) :  (inscribed  figure) 
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And  OB,  OP,  OQ, . . .  OZ,  OG  is  an  arithmetical  progression 
of  n  terms ;  therefore  (cf.  Prop.  1 1  and  Cor.), 

(»  - 1)  OC2 :  (OP2  +  OQ2  + . . .  +  OC2) 

Compressing  the  circumscribed  and  inscribed  figures  together 
in  the  usual  way,  Archimedes  proves  by  exhaustion  that 

(sector  OVC)  :  (area  of  spiral  OBC) 

If  05  =  6,  OC=c,  and  (c-b)  =  (n-l)h,  Archimedes's 
result  is  the  equivalent  of  saying  that,  when  h  diminishes  and 
11  increases  indefinitely,  while  c  —  b  remains  constant, 

limit  of  h  {1 

that  is,  with  our  notation, 

!'
 

Jb 
Jb 

In  particular,  the  area  included  by  the  first  turn  and  the 
initial  line  is  bounded  by  the  radii  vectores  0  and 
the  area,  therefore,  is  to  the  circle  with  radius  2?ra  as  ̂ | 

to  (2?ra)2,  that  is  to  say,  it  is  ̂   of  the  circle  or  ̂  
This  is  separately  proved  in  Prop.  24  by  means  of  Prop.  10 
and  Corr.  1,  2. 

The  area  of  the  ring  added  while  the  radius  vector  describes 
the  second  turn  is  the  area  bounded  by  the  radii  vectores  2  no, 
and  4?ra,  and  is  to  the  circle  with  radius  4?ra  in  the  ratio 

the  ratio  is  7  : 12  (Prop.  25). 
If  jRj  be  the  area  of  the  first  turn  of  the  spiral  bounded  by 

the  initial  line,  JK2  the  area  of  the  ring  added  by  the  second 
complete  turn,  R.6  that  of  the  ring  added  by  the  third  turn, 
and  so  on,  then  (Prop.  27) 

Also   ̂ = 
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Lastly,  if  E  be  the  portion  of  the  sector  b'OC  bounded  by 
b'B,  the  arc  b'zC  of  the  circle  and  the  arc  BG  of  the  spiral,  and 
F  the  portion  cut  oft1  between  the  arc  BG  of  the  spiral,  the 
radius  OG  and  the  arc  intercepted  between  OB  and  OG  of 
the  circle  with  centre  0  and  radius  OJ5,  it  is  proved  that 

E:F=  {05 +  §(0(7- 05)}  :  (05  +  4(0(7-05)}  (Prop.  28). 

On  Plane  Equilibriums,  I,  II. 

In  this  treatise  we  have  the  fundamental  principles  of 
mechanics  established  by  the  methods  of  geometry  in  its 
strictest  sense.  There  were  doubtless  earlier  treatises  on 

mechanics,  but  it  may  be  assumed  that  none  of  them  had 
been  worked  out  with  such  geometrical  rigour.  Archimedes 

begins  with  seven  Postulates  including  the  following  prin- 
ciples. Equal  weights  at  equal  distances  balance ;  if  unequal 

weights  operate  at  equal  distances,  the  larger  weighs  down 
the  smaller.  If  when  equal  weights  are  in  equilibrium  some- 

thing be  added  to,  or  subtracted  from,  one  of  them,  equilibrium 
is  not  maintained  but  the  weight  which  is  increased  or  is  not 
diminished  prevails.  When  equal  and  similar  plane  figures 
coincide  if  applied  to  one  another,  their  centres  of  gravity 
similarly  coincide;  and  in  figures  which  are  unequal  but 

similar  the  centres  of  gravity  will  be  'similarly  situated'. 
In  any  figure  the  contour  of  which  is  concave  in  one  and  the 
same  direction  the  centre  of  gravity  must  be  within  the  figure. 

Simple  propositions  (1—5)  follow,  deduced  by  reductio  ad 

absurdum',  these  load  to  the  fundamental  theorem,  proved 
first  for  commensurable  and  then  by  reductio  ad  abswrdum 
for  incommensurable  magnitudes,  that  Two  magnitudes, 
whether  commensurable  or  incommensurable,  balance  at.  dis- 

tances reciprocally  proportional  to  the  magnitudes  (Props. 
6,  7).  Prop.  8  shows  how  to  find  the  centre  of  gravity  of 
a  part  of  a  magnitude  when  the  centres  of  gravity  of  the 
other  part  and  of  the  whole  magnitude  are  given.  Archimedes 
then  addresses  himself  to  the  main  problems  of  Book  I,  namely 
to  find  the  centres  of  gravity  of  (l)  a  parallelogram  (Props. 

9,  10),  (2)  a  triangle  (Props.  13,  14),  and  (3)  a  parallel- 
trapezium  (Prop.  15),  and  here  we  have  an  illustration  of  the 
extraordinary  rigour  which  he  requires  in  his  geometrical 



76  ARCHIMEDES 

proofs.  We  do  not  find  him  here  assuming,  as  in  The  Method, 
that,  if  all  the  lines  that  can  be  drawn  in  a  figure  parallel  to 
(and  including)  one  side  have  their  middle  points  in  a  straight 
line,  the  centre  of  gravity  must  lie  somewhere  on  that  straight 
line ;  he  is  not  content  to  regard  the  figure  as  made  up  of  an 
infinity  of  such  parallel  lines;  pure  geometry  realizes  that 
the  parallelogram  is  made  up  of  elementary  parallelograms, 
indefinitely  narrow  if  you  please,  but  still  parallelograms,  and 
the  triangle  of  elementary  trapezia,  not  straight  lines,  so 
that  to  assume  directly  that  the  centre  of  gravity  lies  on  the 
straight  line  bisecting  the  parallelograms  would  really  be 

a  petitio  principii.  Accordingly  the  result,  no  doubt  dis- 
covered in  the  informal  way,  is  clinched  by  a  proof  by  reductio 

ad  absurdum  in  each  case.  In  the  case  of  the  parallelogram 
ABCJJ  (Prop.  9),  if  the  centre  of  gravity  is  not  on  the  straight 
line  EF  bisecting  two  opposite  sides,  let  it  be  at  H.  Draw 
HK  parallel  to  AD.  Then  it  is  possible  by  bisecting  AE,  ED, 
then  bisecting  the  halves,  and  so  on,  ultimately  to  reach 
a  length  less  than  KIL  Let  this  be  done,  and  through  the 

points  of  division  of  AD  draw  parallels  to  AB  or  DO  making 
a  number  of  equal  and  similar  parallelograms  as  in  the  figure. 
The  centre  of  gravity  of  each  of  these  parallelograms  is 
similarly  situated  with  regard  to  it.  Hence  we  have  a  number 
of  equal  magnitudes  with  their  centres  of  gravity  at  equal 
distances  along  a  straight  line.  Therefore  the  centre  of 
gravity  of  the  whole  is  on  the  line  joining  the  centres  of  gravity 
of  the  two  middle  parallelograms  (Prop.  5,  Cor.  2).  But  this 
is  impossible,  because  //  is  outside  those  parallelograms. 
Therefore  the  centre  of  gravity  cannot  but  lie  on  EF. 

Similarly  the  centre  of  gravity  lies  on  the  straight  line 
bisecting  the  other  opposite  sides  AB,  CD;  therefore  it  lies  at 
the  intersection  of  this  line  with  EF,  i.e.  at  the  point  of 
intersection  of  the  diagonals. 
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Tho  proof  in  the  case  of  the  triangle  is  similar  (Prop.  13). 
Let  AD  be  .the  median  through  A.  The  centre  of  gravity 
must  lie  on  AD. 

For,  if  not,  let  it  be  at  //,  and  draw  111  parallel  to  BC. 
Then,  if  we,  bisect  DC,  then  bisect  the  halves,  and  so  on, 
we  shall  arrive  at  a  length  DE  less  than  IH.  Divide  BC  into 
lengths  equal  to  DE,  draw  parallels  to  DA  through  the  points 
of  division,  and  complete  the  small  parallelograms  as  shown  in 
the  figure. 

The  centres  of  gravity  of  the  whole  parallelograms  8N,  Tl\ 
lie  on  AD  (Prop.  9) ;  therefore  the  centre  of  gravity  of  the 

ligure  formed  by  them  all  lies  on  AD\  let  it  bo  (>.     Join  OH, 
and  produce  it  to  meet  in  F  the  parallel  through  C  to  AD. 

Now  it  is  easy  to  see  that,  if  n  be  the  number  of  parts  into 
which  DC,  AC  are  divided  respectively, 

(sum  of  small  teAMR,  MLti  ...  ARN,  NUP  ...)  :  (±AttC) 

~  1  :  it,  ; 

whence 

(sum  of  small  As)  :  (sum  of  parallelograms)  =  1  :  (?i—  I). 

Therefore  the  centre  of  gravity  of  the  figure  made  up  of  all 
the  small  triangles  is  at  a  point  X  on  OH  produced  such  that 

But  VII  :  110  <  CE  :  ED  or  (n  -  1)  :  1  ;  therefore  X  H  >  VII. 

It  follows  that  the  centre  of  gravity  of  all  the  small 
triangles  taken  together  lies  at  X  notwithstanding  that  all 
the  triangles  lie  on  one  side  of  the  parallel  to  A  D  drawn 
through  X  :  which  is  impossible. 
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Hence  the  centre  of  gravity  of  the  whole  triangle  cannot 
but  lie  on  AD. 

It  lies,  similarly,  on  either  of  the  other  two  medians;  so 
that  it  is  at  the  intersection  of  any  two  medians  (Prop.  14). 

Archimedes  gives  alternative  proofs  of  a  direct  character, 
both  for  the  parallelogram  and  the  triangle,  depending  on  the 
postulate  that  the  centres  of  gravity  of  similar  figures  are 

*  similarly  situated'  in  regard  to  them  (Prop.  10  for  the 
parallelogram,  Props.  11,  12  and  part  2  of  Prop.  13  for  the 
triangle). 

The  geometry  of  Prop.  15  deducing  the  centre  of  gravity  of 
a  trapezium  is  also  interesting.  It  is  proved  that,  if  AD,  BO 
are  the  parallel  sides  (AD  being  the  smaller),  and  EF  is  the 
straight  line  joining  their  middle  points,  the  centre  of  gravity 
is  at  a  point  (?  on  EF  such  that 

GE:GF  =  (2BC  +  AD) :  (2AD  +  BC). 

Book  II  of  the  treatise  is  entirely  devoted  to  finding  tho 

centres  of  gravity  of  a  parabolic  segment  (Props.  1-8)  and 
of  a  portion  of  it  cut  off  by  a  parallel  to  the  base  (Props.  9,  10). 

Prop.  1  (really  a  particular  case  of  I.  6,  7)  proves  that,  if  P,  P' 

be  the  areas  of  two  parabolic  segments  and  7J,  E  their  centres 
of  gravity,  the  centre  of  gravity  of  both  taken  together  is 
at  a  point  0  on  DE  such  that 

P:P'=CE:CD. 
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This  is%  merely  preliminary.  Then  begins  the  real  argument, 
the  course  of  which  is  characteristic  and  deserves  to  be  set  out. 

Archimedes  uses  a  series  of  figures  inscribed  to  the  segment, 

as  he  says,  'in  the  recognized  manner'  (yi/o>pf/bia>?).  The  rule 
is  as  follows.  Inscribe  in  the  segment  the  triangle  ABB'  witli 
the  same  base  and  height;  the  vertex  A  is  then  the  point 

of  contact  of  the  tangent  parallel  to  BB'.  Do  the  same  with 
the  remaining  segments  cut  off  by  AB,  AB',  then  with  the 
segments  remaining,  and  so  on.  If  BRQl^AP'Q'R'B'  is  such 
a  figure,  the  diameters  through  Q,  Q',  P,  P',  11,  R'  bisect  the 
straight  lines  ABy  AB',  AQ,  AQ\  QBy  $]?  respectively,  and 
BB/  is  divided  by  the  diameters  into  parts  which  are  all 
equal.  It  is  easy  to  prove  also  that  PP',  QQ',  RR'  are  all 
parallel  to  BB'y  and  that  AL:LM:MN:NO  =  1:3:5:7,  the 
same  relation  holding  if  the  number  of  sides  of  the  polygon 
is  increased;  i.e.  the  segments  of  AO  arc  always  in  the  ratio 

of  the  successive,  odd  numbers  (Lemmas  to  Pi-op.  2).  The 
centre  of  gravity  of  the  inscribed  figure  lies  on  AO  (Prop.  2). 
If  there  be  two  parabolic  segments,  and  two  figures  inscribed 

in  them  'in  the  recognized  manner'  with  an  equal  ndmber  of 
sides,  the  centres  of  gravity  divide  the  respective  axes  in  the 
same  proportion,  for  the  ratio  depends  on  the  same  ratio  of  odd 
numbers  1:3:5:7...  (Prop.  3).  The  centre  of  gravity  of  the 
parabolic  segment  itself  lies  on  the  diameter  AO  (this  is  proved 
in  Prop.  4  by  reductio  ad  absurdum  in  exactly  the  same  way 
as  for  the  triangle  in  I.  13).  It  is  next  proved  (Prop.  5)  that 
the  centre  of  gravity  of  the  segment  is  nearer  to  the  vertex  A 
than  the  centre  of  gravity  of  the  inscribed  figure  is;  but  that 
it  is  possible  to  inscribe  in  the  segment  in  the  recognized 
manner  a  figure  such  that  the  distance  between  the  centres  of 
gravity  of  the  segment  and  of  the  inscribed  figure  is  less  than 
any  assigned  length,  for  we  have  only  to  increase  the  number 
of  sides  sufficiently  (Prop.  6).  Incidentally,  it  is  observed  in 
Prop.  4  that,  if  in  any  segment  the  triangle  with  the  same 
base  and  equal  height  is  inscribed,  the  triangle  is  greater  than 
half  the  segment,  whence  it  follows  that,  each  time  we  increase 
the  number  of  sides  in  the  inscribed  figure,  we  take  away 
more  than  half  of  the  segments  remaining  over ;  and  in  Prop.  5 
that  corresponding  segments  on  opposite  sides  of  the  axis,  e.  g. 

QRBy  Q'R'B'  have  their  axes  equal-  and  therefore  are  equal  in 
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area.  Lastly  (Prop.  7),  if  there  be  two  parabolic  segments, 
their  centres  of  gravity  divide  their  diameters  in  the  same 
ratio  (Archimedes  enunciates  this  of  similar  segments  only, 

but  it  is  true  of  any  two  segments  and  is  required  of  any  two 
segments  in  Prop.  8).  Prop.  8  now  finds  the  centre  of  gravity 
of  any  segment  by  using  the  last  proposition.  It  is  the 
geometrical  equivalent  of  the  solution  of  a  simple  equation  in 
the  ratio  (m,  say)  of  A G  to  AO,  where  G  is  the  centre  of 
gravity  of  the  segment. 

Since  the  segment  =  f  (&ABB')t  the  sum  of  the  two  seg- 
ments AQB,  AQ'B'  =  %(&ABB'). 

Further,  if  QD,  Q'D'  are  the  diameters  of  these  segments, 
QD,  Q'D'  are  equal,  and,  since  the  centres 

of  gravity  //,  H'  of  the  segments  divide 

QD,  Q'D'  proportionally,  HH'  is  parallel 
to  QQ',  and  the  centre  of  gravity  of  the 
two  segments  together  is  at  K,  the  point 

where  HH'  meets  AO. 
Now  AO  =  4^17  (Lemma  3  to  Prop. 

2),  and  QD  =  %AO-AV=AV.  But 
H  divides  QD  in  the  same  ratio  as  (7 

divides  AO  (Prop.  7);  therefore 

VK  =  QH  =  m.  QD  =  m.AV. 

Taking  moments  about  A  of  the  segment,  the  triangle  A  KB' 
and  the  sum  of  the  small  segments,  we  have  (dividing  out  by 

AV  and  A  ABB') 

or 

and  in  =  -|. 

That  is, 

=  9, 

or  A  (f :  (]()  =  3:2. 

The  final  proposition  (10)  finds  the  centre  of  gravity  of  the 

portion  of  a  parabola  cut  oft*  between  two  parallel  chords  PP'9 
BB'.  If  PP'  is  the  shorter  of  the  chords  and  the  diameter 

bisecting  PP',  BB'  meets  them  in  N,  0  respectively,  Archi- 
medes proves  that,  if  NO  be  divided  into  five  equal  parts  of 

which  LM  is  the  middle  one  (L  being  nearer  to  J\T  than  M  is), 
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the  centre  of  gravity  G  of  the  portion  of  the  parabola  between 

PP'  and  BB'  divides  LM  in  such  a  way  that 

LG  :  GM  =  BO*  .  (2PN+  BO)  :  PN*  .  (2  BO  +  PN). 
The  geometrical  proof  is  somewhat  difficult,  and  uses  a  very 

remarkable  Lemma  which  forms  Prop.  9.  If  a,  6,  c,  d,  x,  y  are 
straight  lines  satisfying  the  conditions 

a       b       c  , 

d     _        x 

a  —  d  ~~~  •§(&•— 
,  2a  +  4b  +  6v  +  3d 

and  -  - 
5a+106  +  10c  +  5 

then  must  x  +  y  =  fa. 

The  proof  is  entirely  geometrical,  but  amounts  of  course  to 
the  elimination  of  three  quantities  6,  c,  (/  from  the  above  four 
equations. 

The  Sand-reckoner  (Psammites  or  Arenarius). 

I  have  already  described  in  a  previous  chapter  the  remark- 
able system,  explained  in  this  treatise  and  in  a  lost  work, 

'Apxai,  Principles,  addressed  to  Zeuxippus,  for  expressing  very 
large  numbers  which  were  beyond  the  range  of  the  ordinary 
Greek  arithmetical  notation.  Archimedes  showed  that  his 

system  would  enable  any  number  to  be  expressed  up  to  that 
which  in  our  notation  would  require  80,000  million  million 
ciphers  and  then  proceeded  to  prove  that  this  system  more 
than  sufficed  to  express  the  number  of  grains  of  sand  which 
it  would  take  to  fill  the  universe,  on  a  reasonable  view  (as  it 
seemed  to  him)  of  the  size  to  be  attributed  to  the  universe. 

Interesting  as  the  book  is  for  the  course  of  the  argument  by 
which  Archimedes  establishes  this,  it  is,  in  addition,  a  docu- 

ment of  the  first  importance  historically.  It  is  here  that  we 
learn  that  Aristarchus  put  forward  the  Copernican  theory  of 
the  universe,  with  the  *^un  in  the  centre  and  the  planets 
including  the  earth  revolving  round  it,  and  that  Aristarchus 
further  discovered  the  angular  diameter  of  the  sun  to  be  ̂ oth 
of  the  circle  of  the  zodiac  or  half  a  degree.  Since  Archimedes, 
in  order  to  calculate  a  safe  figure  (not  too  small)  for  the  size 
1533.2  ft 
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of  the  universe,  has  to  make  certain  assumptions  as  to  the 
sizes  and  distances  of  the  sun  and  moon  and  their  relation 

to  the  size  of  the  universe,  he  takes  the  opportunity  of 
quoting  earlier  views.  Some  have  tried,  he  says,  to  prove 
that  the  perimeter  of  the  earth  is  about  300,000  stades;  in 
order  to  be  quite  safe  he  will  take  it  to  be  about  ten  times 
this,  or  3,000,000  stades,  and  not  greater.  The  diameter  of 
the  earth,  like  most  earlier  astronomers,  he  takes  to  be 
greater  than  that  of  the  moon  but  less  than  that  of  the  sun. 
Eudoxus,  he  says,  declared  the  diameter  of  the  sun  to  be  nine 
times  that  of  the  moon,  Phidias,  his  own  father,  twelve  times, 
while  Aristarchus  tried  to  prove  that  it  is  greater  than  1 8  but 
less  than  20  times  the  diameter  of  the  moori;  he  will  again  be 
on  the  safe  side  and  take  it  to  be  30  times,  but  not  mom  The 
position  is  rather  more  difficult  as  regards  the  ratio  of  the 
distance  of  the  sun  to  the  size  of  the  universe.  Here  he  seizes 

upon  a  dictum  of  Aristarchus  that  the  sphere  of  the  fixed 
stars  is  so  great  that  the  circle  in  which  he  supposes  the  earth 

to  revolve  (round  the  sun)  '  bears  such  a  proportion  to  the 
distance  of  the  fixed  stars  as  the  centre  of  the  sphere  bears  to 

its  surface '.  If  this  is  taken  in  a  strictly  mathematical  sense, 
it  means  that  the  sphere  of  the  fixed  stars  is  infinite  in  size, 

which  would  not  suit  Archimcdes's  purpose  ;  to  get  another 
meaning  out  of  it  he  presses  the  point  that  Aristarchus's 
words  cannot  be  taken  quite  literally  because  the  centre,  being 
without  magnitude,  cannot  be  in  any  ratio  to  any  other  mag- 

nitude ;  hence  he  suggests  that  a  reasonable  interpretation  of 
the  statement  would  be  to  suppose  that,  if  we  conceive  a 
sphere  with  radius  equal  to  the  distance  between  the  centre 
of  the  sun  and  the  centre  of  the  earth,  then 

(diam.  of  earth) :  Cdiam.  of  said  sphere) 

=  (diam.  of  said  sphere) :  (diam.  of  sphere  of  fixed  stars). 

This  is,  of  course,  an  arbitrary  interpretation ;  Aristarchus 
presumably  meant  no  such  thing,  but  merely  that  the  size  of 
the  earth  is  negligible  in  comparison  with  that  of  the  sphere 

of  the  fixed  stars.  However,  the  solution  of  Archimedes's 
problem  demands  some  assumption  of  the  kind,  and,  in  making 
this  assumption,  he  was  no  doubt  awai;c  that  he  was  taking 
a  liberty  with  Aristarchus  for  the  sake  of  giving  his  hypo- 

thesis an  air  of  authority. 
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Arahimedes  has,  lastly,  to  compare  the  diameter  of  the  sun 
with  the  circumference  of  the  circle  described  by  its  centre. 
Aristarchus  had  made  the  apparent  diameter  of  the  sun  y^th 
of  the  said  circumference  ;  Archimedes  will  prove  that  the 

said  circumference  cannot  contain  as  many  as  1,000  sun's 
diameters,  or  that  the  diameter  of  the  sun  is  greater  than  the 
side  of  a  regular  chiliagon  inscribed  in  the  circle.  First  he 
made  an  experiment  of  his  own  to  determine  the  apparent 
diameter  of  the  sun.  With  a  small  cylinder  or  disc  in  a  plane 
at  right  angles  to  a  long  straight  stick  and  movcablc  along  it, 
he  observed  the  sun  at  the  moment  when  it  cleared  the 

horizon  in  rising,  moving  the  disc  till  it  just  covered  and  just 
failed  to  cover  the  sun  as  he  looked  along  the  straight  stick. 
He  thus  found  the  angular  diameter  to  lie  between  Tf^JB  and 

^ J0  Li,  where  R  is  a  right  angle.  But  as,  under  his  assump- 
tions, the  size  of  the  earth  is  not  negligible  in  comparison  with 

the  sun's  circle,  he  had  to  allow  for  parallax  and  find  limits 
for  the  angle  subtended  by  the  sun  at  the  centre  of  the  earth. 
This  hr  does  by  a  geometrical  argument  very  much  in  the 
manner  of  Aristarchus. 

Let  the  circles  with  centres  0,  C  represent  sections  of  the  sun 
and  earth  respectively,  E  the  position  of  the  observer  observing 

G2 
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the  sun  when  it  has  just  cleared  the  horizon.  Draw  from  E 
two  tangents  EP,  EQ  to  the  circle  with  centre  0,  and  from 
C  let  CF,  GG  be  drawn  touching  the  same  circle.  With  centre 
C  and  radius  CO  describe  a  circle :  this  will  represent  the  path 
of  the  centre  of  the  sun  round  the  earth.  Let  this  circle  meet 

the  tangents  from  C  in  A,  B,  and  join  AB  meeting  CO  in  M. 

Archimedes's  observation  has  shown  that 

^R>  Z.PEQ  >jfaR; 

and  he  proceeds  to  prove  that  AB  is  less  than  the  side  of  a 
regular  polygon  of  656  sides  inscribed  in  the  circle  AOB, 
but  greater  than  the  side  of  an  inscribed  regular  polygon  of 
1,000  sides,  in  other  words,  that 

The  first  relation  is  obvious,  for,  since  CO  >  EO, 

L  PEQ  >  Z  FCG. 

Next,  the  perimeter  of  any  polygon  inscribed  in  the  circle 

AOB  is  less  than  ̂   CO  (i.e.  -2T2-  times  the  diameter) ; 

Therefore  AB  <  ̂   •  -\4-  CO  or  T£|¥  CO, 
and,  a  fortiori,  AB  <  T^  CO. 

Now,  the  triangles  CAM,  COF  being  equal  in  all  respects, 
AM=  OF,  so  that  AB  =  20F=  (diameter  of  sun)  >  C//+  OK, 
since  the  diameter  of  the  sun  is  greater  than  that  of  the  earth  ; 

therefore     CH+OK  <  yfoCO,  and  HK  >  -f^CO. 

And     CO  >  CF,  while  HK  <  EQ,  so  that  EQ  >  ft 

We  can  now  compare  the  angles  OCF,  OEQ ; 

£  L  OCF  r      tan  OCF} 
\C\\*   I     ̂   I 

/  f\  ~Hi~\  I  i.  f\  I/V1   I 

EQ 

>  CF 

>  -loci  a  fortiori. 
Doubling  the  angles,  we  have 
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Hence  AB  is  greater  than  the  side  of  a  regular  polygon  of 
812  sides,  and  a  fortiori  greater  than  the  side  of  a  regular 
polygon  of  1,000  sides,  inscribed  in  the  circle  AOB. 

The  perimeter  of  the  chiliagon,  as  of  any  regular  polygon 
with  more  sides  than  six,  inscribed  in  the  circle  AOB  is  greater 

than  3  times  the  diameter  of  the  sun's  orbit,  but  is  less  than 
1,000  times  the  diameter  of  the  sun,  and  a  fortiori  less  than 
30,000  times  the  diameter  of  the  earth; 

therefore  (diameter  of  sun's  orbit)  <  10,000  (diam.  of  earth) 
<  10,000,000,000  stades. 

But     (diam.  of  earth)  :  (diam.  of  sun's  orbit) 
=  (diam.  of  sim's  orbit) :  (diam.  of  universe) ; 

therefore  the  universe,  or  the  sphere  of  the  fixed  stars,  is  less 

than   10,0003  times  the  sphere  in  which  the  sun's  orbit  is  a 
great  circle. 

Archimedes  takes  a  quantity  of  sand  not  greater  than 

a  poppy-seed  and  assumes  that  it  contains  not  more  than  1 0,000 
grains ;  the  diameter  of  a  poppy-seed  he  takes  to  be  not  less 
than  4*Q-th  of  a  finger-breadth ;  thus  a  sphere  of  diameter 
1  finger-breadth  is  not  greater  than  64,000  poppy-seeds  and 
therefore  contains  not  more  than  640,000,000  grains  of  sand 

('6  units  of  second  order  +  40,000,000  units  of  first  order') 
and  a  fortiori  not  more  than  1,000,000,000  ('10  units  of 
second  order  of  numbers ').  Gradually  increasing  the  diameter 
of  the  sphere  by  multiplying  it  each  time  by  100  (making  the 
sphere  1,000,000  times  larger  each  time)  and  substituting  for 

10,000  finger-breadths  a  stadium  (<  10,000  finger-breadths), 
lie  finds  the  number  of  grains  of  sand  in  a  sphere  of  diameter 

10,000,000,000  stadia  to  bo  less  than  '1,000  units  of  seventh 

order  of  numbers'  or  10fll,  and  the  number  in  a  sphere  10,0003 
times  this  size  to  be  less  than  '  10,000,000  units  of  the  eighth 
order  of  numbers'  or  10c:i. 

The  Quadrature  of  the  Parabola. 
In  the  preface,  addressed  to  Dositheus  after  the  death  of 

Coiion,  Archimedes  claims  originality  for  the  solution  of  the 
problem  of  finding  the  area  of  a  segment  of  a  parabola  cut  off 
by  any  chord,  which  he  says  he  first  discovered  by  means  of 
mechanics  and  then  confirmed  by  means  of  geometry,  using 
the  lemma  that,  if  there  are  two  unequal  areas  (or  magnitudes 
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generally),  then  however  small  the  excess  of  the  greater  over 
the  lesser,  it  can  by  being  continually  added  to  itself  be  made 
to  exceed  the  greater ;  in  other  words,  he  confirmed  the  solution 
by  the  method  of  exhaustion.  One  solution  by  means  of 
mechanics  is,  as  we  have  seen,  given  in  The  Method;  the 
present  treatise  contains  a  solution  by  means  of  mechanics 

confirmed  by  the  method  of  exhaustion  (Props.  1-17),  and 
then  gives  an  entirely  independent  solution  by  means  of  pure 

geometry,  also  confirmed  by  exhahstion  (Props.  18-24). 

I.   The  mechanical  solution  depends  upon  two  properties  of 
the  parabola  proved  in  Props.  4,  5.     If  Qq  be  the  base,  and  P 

the  vertex,  of  a  parabolic  segment,  P  is  the  point  of  contact 
of  the  tangent  parallel  to  Qq,  the  diameter  PV  through  P 
bisects  Qq  in  V9  and,  if  VP  produced  meets  the  tangent  at  Q 
in  T,  then  TP  =  PV.  These  properties,  along  with  the  funda- 

mental property  that  QV'2  varies  as  PV9  Archimedes  uses  to 
prove  that,  if  EO  be  any  parallel  to  TV  meeting  QT,  QP 
(produced,  if  necessary),  the  curve,  and  Qq  in  E,  t\  11,  0 
respectively,  then 

QV:  VO  =  OF:FR, 

and  QO :  Oq  =  ER :  RO.  (Props.  4,  5.) 

Now  suppose  a  parabolic  segment  Ql^q  so  placed  in  relation 
to  a  horizontal  straight  line  Q  A  through  Q  that  the  diameter 
bisecting  Qq  is  at  right  angles  to  QA,  i.e.  vertical,  and  let  the 
tangent  at  Q  meet  the  diameter  qO  through  q  in  E.  Produce 
QO  to  A,  making  OA  equal  to  OQ. 

Divide  Qq  into  any  number  of  equal  parts  at  Ol ,  02 . . .  On , 
and  through  these  points  draw  parallels  to  OE,  i.  e.  vertical 
lines  meeting  OQ  in  H19  H.2,  ...,  EQ  in  E19  E^  ...,  and  the 
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curve  in  Rly  R^  ... .     Join  QRl ,  and  produce  it  to  meet  OE  in 
F,  Q/?2  meeting  OlEl  in  t\,  and  so  on. 

O     HI    H2    H3 

Now  Archimedes  has  proved  in  a  series  of  propositions 

(6-13)  that,  if  a  trapezium  such  as  01E1E^O%  is  suspended 

from  //^Y^and  an  area  P  suspended  at  A  balances  01/?1A?202 
so  suspended,  it  will  take  a  greater  area  than  P  suspended  at 
A  to  balance  the  same  trapezium  suspended  from  J/2  and 
a  less  area  than  P  to  balance  the  same  trapezium  suspended 
from  //,  .  A  similar  proposition  holds  with  regard  to  a  triangle 
such  as  EnllltQ  suspended  where  it  is  and  suspended  at  Q  and 
lln  respectively. 

Suppose  (Props.  14,  15)  the  triangle  QqE  suspended  where 
it  is  from  OQ,  and  suppose  that  the  trapezium  EO^  suspended 
where  it  is,  is  balanced  by  an  area  l\  suspended  at  A,  the 

trapezium  AT,(A,,  suspended  where  it  is,  is  balanced  by  7£ 
suspended  at  A,  and  so  on,  and  finally  the  triangle  MnOnQ, 
suspended  where  it  is,  is  balanced  by  Pn+l  suspended  at  A  ; 

then  Pl  +  J^  +  .  .  .  -f  jfji+1  at  A  balances  the  whole  triangle,  so  that 

.since  the  whole  triangle  may  be  regarded  as  suspended  from 
the  point  on  OQ  vertically  above  its  centre  of  gravity. 

Now        AO:OJIl  =  QO:OJll 

=  #,0^0^,  by  Prop.  5, 

=  (trapezium  EO^)  :  (trapezium 
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that  is,  it  takes  the  trapezium  F0l  suspended  at  A  to  balance 
the  trapezium  E0l  suspended  at  Hr  And  Pl  balances  E0l 
where  it  is. 

Therefore  (FOJ  >  Pr 

Similarly  (^1^2)  >  P»  «'ind  so  °n- 

Again   AO'.OH^  =  E,  Ol  :  0^ 

=  (trapezium  E^O^  :  (trapezium  K^0^9 

that  is,  (R>i02)  at  A  will  balance  (#a02)  suspended  at  H19 

while  P2  at  A  balances  (Efl^)  suspended  where  it  is 

whence  F2  >  U/^. 

Therefore  (^02)  >  ̂2  >  (#1^)* 

(^2^3)  >  ̂  >  ̂2^a>  an(l  so  on  ; 

and  finally,         AATwOnQ  >  7^41  > 
By  addition, 

therefore,  a  fortiori, 

That  is  to  say,  we  have  an  inscribed  figure  consisting  of 
trapezia  and  a  triangle  which  is  less,  and  a  circumscribed 
figure  composed  in  the  same  way  which  is  greater,  than 

.e. 

It  is  therefore  inferred,  and  proved  by  the  method  of  ex- 
haustion, that  the  segment  itself  is  equal  to  %AJKqQ  (Prop.  16). 

In  order  to  enable  the  method  to  be  applied,  it  has  only 
to  be  proved  that,  by  increasing  the  number  of  parts  in  Qq 
sufficiently,  the  difference  between  the  circumscribed  and 
inscribed  figures  can  be  made  as  small  as  we  please.  This 
can  be  seen  thus.  We  have  first  to  show  that  all  the  parts,  as 
qF,  into  which  qE  is  divided  are  equal. 

We  have    E^iO^  =  QO  -.01^  =  (n+1):  1, 

or       0^  =  ----  -  .  El  019  whence  also  02$  =  -  -  .  O^E2. 
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And  E202 :  02jK2  =  QO  :  0#2  =  (71+  1) :  2, 
2 

2      2  —  ,^+1"'      2    '*' 

It  follows  that  02#  =  /S'JB2,  and  so  on. 
Consequently  01RIJ  O^JR.2J  037ia  ...  are  divided  into  1, 2,  3  ... 

equal  parts  respectively  by  the  lines  from  Q  meeting  qE. 
It  follows  that  the  difference  between  the  circumscribed  and 

inscribed  figures  is  equal  to  the  triangle  FqQ,  which  can  be 

made  as  small  as  we  please  by  increasing  the  number  of 
divisions  in  Qqy  i.e.  in  qE. 

Since  the  area  of  the  segment  is  equal  to  %AEqQ,  and  it  is 

easily  proved  (Prop.  17)  that  AEqQ  =:  4  (triangle  with  same 
base  and  equal  height  with  segment),  it  follows  that  the  area 

of  the  segment  =  -3  times  the  latter  triangle. 

It  is  easy  to  see  that  this  solution  is  essentially  the  same  as 

that  given  in  The  Method  (see  pp.  29-30,  above),  only  in  a  more 

orthodox  form  (geometrically  speaking).  For  there  Archi- 
medes took  the  sum  of  all  the  straight  line*,  as  OlRl,  02R2  •••  > 

as  making  up  the  segment  notwithstanding  that  there  are  an 
infinite  number  of  them  and  straight  lines  have  no  breadth. 

Here  he  takes  inscribed  and  circumscribed  trapezia  propor- 
tional to  the  straight  lines  and  having  finite  breadth,  and  then 

compresses  the  figures  together  into  the  segment  itself  by 
increasing  indefinitely  the  number  of  trapezia  in  each  figure, 
i.e.  diminishing  their  breadth  indefinitely. 

The  procedure  is  equivalent  to  an  integration,  thus : 
If  X  denote  the  area  of  the  triangle  FqQ,  we  have,  if  n  be 

the  number  of  parts  in  (<)</, 

(circumscribed  figure) 

=  sum  of  AsQqF,  QRYFly  QU^,  ... 

=  sum  of  AnQqF,  QO^,,  QO^S, ... 

n2 

Similarly,  we  find  that 

(inscribed  figure)  =         -2.  X  \X*  +  2*X*+  ...  +  (n-  1)2.Y2}- 
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Taking  the  limit,  we  have,  if  A   denote  the  area  of  the 
triangle  EqQ,  so  that  A  =  nX, 

1    CA 

area  of  segment  =  -r^       J 

•"•  Jo 

II.    The   purely  geometrical  method  simply  exhausts  the 

parabolic  segment  by  inscribing   successive   figures   '  in   the 

recognized  manner'  (see  p.  79,  above).      For  this  purpose 
it  is  necessary  to  find,  in  terms  of  the  triangle  with  the  same 

base   and   height,   the   area    added    to    the 
inscribed  figure  by  doubling  the  number  of 
sides  other  than  the  base  of  the  segment. 

Let  QPq  be  the  triangle  inscribed  c  in  the 
recognized  manner',  P  being  the  point  of 
contact  of  the  tangent  parallel  to  Qq,  and 
PV  the  diameter  bisecting  Qq.  If  QV,  Vq 
be  bisected  in  M,  m,  and  RM,  rm  be  drawn 
parallel  to  PV  meeting  the  curve  in  R,  r, 
the  latter  points  are  vertices  of  the  next 

figure  inscribed  cin  the  recognized  manner ', 
for  RY,  ry  are  diameters  bisecting  PQ,  Pq 
respectively. 

Now  QV*  =  4/ilK2,  so  that  PV  =  4PW,  or  RM  =  3P\\r. 

But  YM  =  APF  =  2P H',  so  that  YM  =  2  RY. 

Therefore       A  PRQ  =  |  A  PQ  M  =  £  A  PQ  ]  r. 
Similarly 

APr0  =  JAPFg;  whence  (APRQ  +  &Prq)=  %PQq.  (Prop.  21.) 

In  like  manner  it  can  be  proved  that  the  next  addition 
to  the  inscribed  figure  adds  %  of  the  sum  of  AsPRQ,  Prq, 
and  so  on. 

Therefore  the  area  of  the  inscribed  figure 

=  { 1+  i  +  (J)a  +...}•  AP<&.  (Prop.  22.) 
Further,  each  addition  to  the  inscribed  figure  is  greater 

than  half  the  segments  of  the  parabola  left  over  before  the 
addition  is  made.  For,  if  we  draw  the  tangent  at  P  and 
complete  the  parallelogram  EQqe  with  side  EQ  parallel  to  PV, 
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the  triangle  PQq  is  half  of  the  parallelogram  and  therefore 
more  than  half  the  segment.     And  so  on  (Prop.  20). 
We  now  have  to  sum  u  terms  of  the  above  geometrical 

series.  Archimedes  enunciates  the  problem  in  the  form,  Given 
a  series  of  areas  A,  B,  C,  D  .  .  .  %,  of  which  A  is  the  greatest,  and 
each  is  equal  to  four  times  the  next  in  order,  then  (Prop.  23) 

The  algebraical  equivalent  of  this  is  of  course 

To  find  the  area  of  the  segment,  Archimedes,  instead  of 

taking  the  limit,  as  we  should,  uses  the  method  of  reductio  ad 
abswrdwin. 

Suppose  K  =  §  -  A7J(^/. 
(1)  If  possible,  let  the  area  of  the  segment  be  greater  than  K. 

We  then  inscribe  a  figure  '  in  the  recognized  manner  '  such 
that  the  segment  exceeds  it  by  an  area  less  than  the  excess  of 

the  segment  over  K.  Therefore  the  inscribed  figure  must  be 

greater  than  Ar,  which  is  impossible  since 

where  A  =  A  7%  (Prop.  23). 

(2)   If  possible,  let  the  area  of  the  segment  be  less  than  K. 

Ff  then  &PQq  =  A,  K  =  %At  0  =  J/J,  and  so  on,  until  we 

arrive  at  an  area  A"  less  than  the  excess  of  K  over  the  area  of 
the  segment,  we  have 

A  +]*  +  (!  +  ...  +X  +  $X  =  $A  =  K. 

Thus  K  exceeds  A  -f  K  +  (J+  ...  +  X  by  an  area  less  than  A", 
and  exceeds  the  segment  by  an  area  greater  than  X. 

It  follows  that  A  +H  +  G+  ...  +X>  (the  segment)  ;  which 
is  impossible  (Prop.  22). 

Therefore  the  area  of  the  segment,  being  neither  greater  nor 

less  than  K,  is  equal  to  A'  or  % 

On  Floating  Bodies,  I,  II. 

In  Book  J  of  this  treatise  Archimedes  lays  down  the  funda- 
mental principles  of  the  science  of  hydrostatics.     These  are 
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deduced  from  Postulates  which  are  only  two  in  number.  The 
first  which  begins  Book  I  is  this  : 

'  let  it  be  assumed  that  a  fluid  is  of  such  a  nature  that,  of  the 
parts  of  it  which  lie  evenly  and  are  continuous,  that  which  is 
pressed  the  less  is  driven  along  by  that  which  is  pressed  the 
more;  and  each  of  its  parts  is  pressed  by  the  fluid  whicli  is 
perpendicularly  above  it  except  when  the  fluid  is  shut  up  in 
anything  and  pressed  by  something  else ' ; 

the  second,  placed  after  Prop.  7,  says 

c  let  it  be  assumed  that,  of  bodies  which  are  borne  upwards  in a  fluid,  each  is  borne  upwards  along  the  perpendicular  drawn 
through  its  centre  of  gravity  '. 

Prop.  1  is  a  preliminary  proposition  about  a  sphere,  and 
then  Archimedes  plunges  in  med'Utu  res  with  the  theorem 
(Prop.  2)  that  'the  surface  of  any  fluid  at  rest  is  a  sjthere  the 
centre  of  which  is  the  same  as  that  of  the  earth  ',  and  in  the 
whole  of  Book  I  the  surface  of  the  fluid  is  always  shown  in 
the  diagrams  as  spherical.  The  method  of  proof  is  similar  to 
what  we  should  expect  in  a  modern  elementary  textbook,  the 
main  propositions  established  being  the  following.  A  solid 
which,  size  for  size,  is  of  equal  weight  with  a  fluid  will,  if  let 
down  into  the  fluid,  sink  till  it  is  just  covered  but  not  lower 
(Prop.  3) ;  a  solid  lighter  than  a  fluid  will,  if  let  down  into  it, 
be  only  partly  immersed,  in  fact  just  so  far  that  the  weight 
of  the  solid  is  equal  to  the  weight  of  the  fluid  displaced 
(Props.  4,  5),  and,  if  it  is  forcibly  immersed,  it  will  be  driven 
upwards  by  a  force  equal  to  the  difference  between  its  weight 
and  the  weight  of  the  fluid  displaced  (Prop.  6). 

The  important  proposition  follows  (Prop.  7)  that  a  solid 
heavier  than  a  fluid  will,  if  placed  in  it,  sink  to  the  bottom  of 
the  fluid,  arid  the  solid  will,  when  weighed  in  the  fluid,  be 
lighter  than  its  true  weight  by  the  weight  of  the  fluid 
displaced. 

The  problem  of  the  Crown. 

This  proposition  gives  a  method  of  solving  the  famous 
problem  the  discovery  of  which  in  his  bath  sent  Archimedes 
home  naked  crying  evpijKa,  tvprjKa,  namely  the  problem  of 
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determining  the  proportions  of  gold  and  silver  in  a  certain 
crown. 

Let  W  be  the  weight  of  tho  crown,  wl  and  u\2  the  weights  of 
the  gold  and  silver  in  it  respectively,  so  that  W  =  wl  +  w2 . 

(1)  Take  a  weight  PFof  pure  gold  and  weigh  it  in  the  fluid. 

The  apparent  loss  of  weight  is  then  equal  to  the  weight  of  the 
fluid  displaced  ;  this  is  ascertained  by  weighing.    Let  it  be  Fr 

It  follows  that  the  weight  of  the  fluid  displaced  by  a  weight 

M!  of  gold  is  ̂   .  Fr 

(2)  Take   a   weight    W  of    silver,   and   perform    the    same 
operation.     Let   the    weight   of   the   fluid   displaced   be   F2. 
Then   the  weight  of  the  fluid  displaced  by  a  weight  iv2  of 

silver  is  ̂   •  F2. 

(3)  Lastly  weigh  the  crown  itself  in  the  fluid,  and  let  F  be 
loss  of  weight  or  the  weight  of  the  fluid  displaced. 

We  have  then  * .  Fl  +  TTJ?  .  F2  =  F, 

that  is,  '</>!  Fl  -f  w2 F^  =  (wi  +  w>)  F, 

whence  —  =  J2     ,T  • 

According  to  the  author  of  the  poem  de  ponderibus  et  men- 

suriH  (written 'probably  about  A.D.  500)  Archimedes  actually 
used  a  muthod  of  this  kind.  We  first  take,  says  our  authority, 
two  equal  weights  of  gold  and  silver  respectively  and  weigh 
them  against  each  other  when  both  are  immersed  in  water; 
this  gives  the  relation  between  their  weights  in  water,  and 
therefore  between  their  losses  of  weight  in  water.  Next  we 
take  the  mixture  of  gold  and  silver  and  an  equal  weight  of 
silver,  and  weigh  them  against  each  other  in  water  in  the 
same  way. 

Nevertheless  I  do  not  think  it  probable  that  this  was  the 

way  in  which  the  solution  of  the  problem  was  discovered.  As 
we  are  told  that  Archimedes  discovered  it  in  his  bath,  and 
that  he  noticed  that,  if  the  bath  was  full  when  he  entered  it, 
so  much  water  overflowed  as  was  displaced  by  his  body,  he  is 

more  likely  to  have  discovered  the  solution  by  the  alternative 
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method  attributed  to  him  by  Vitruvius,1  namely  by  measuring 
successively  the  volumes  of  fluid  displaced  by  three  equal 
weights,  (1)  the  crown,  (2)  an  equal  weight  of  gold,  (3)  an 
equal  weight  of  silver  respectively.  Suppose,  as  before,  that 

the  weight  of  the  'crown  is  W  and  that  it  contains  weights 
wl  and  w.j,  of  gold  and  silver  respectively.  Then 

(1)  the  crown  displaces  a  certain  volume  of  the  fluid,  V,  say  ; 

(2)  the  weight   W  of  gold  displaces  a  volume  Vv  say,  of  the 
fluid; 

7/' 

therefore  a  weight  ̂ vl  of  gold  displaces  a  volume  TJT«  Vl  of 
the  fluid  ; 

(3)  the  weight   W  of  silver  displaces  F2,  say,  of  the  fluid; 

therefore  a  weight  m2  of  silver  displaces  -y^-  F2. 

i  u  fif 
It  follows  that       V  =  -yj  •  F,  +  '.;  -  F,,, W  W 

whence  we  derive  (since  W  =  iul  +  w>2) 

™.  _  T/2~  v 
<"»  ~  V-Vi 

the  latter  ratio  being  obviously  equal  to  that  obtained  by  the 
other  method. 

The  last  propositions  (8  and  9)  of  Book  I  deal  with  the  case 

of  any  segment  of  a  sphere'  lighter  than  a  fluid  and  immersed 
in  it  in  such  a  way  that  either  (1)  the  curved  surface  is  down- 

wards and  the  base  is  entirely  outside  the  fluid,  or  (2)  tho 
curved  surface  is  upwards  and  the  base  is  entirely  submerged, 
and  it  is  proved  that  in  either  case  the  segment  is  in  stable 
equilibrium  when  the  axis  is  vertical.  This  is  expressed  hero 
and  in  the  corresponding  propositions  of  Book  II  by  saying 

that,  '  if  the  figure  be  forced  into  such  a  position  that  the  base 
of  the  segment  touches  the  fluid  (at  one  point),  the  figure  will 

not  remain  inclined  but  will  return  to  the  upright  position'. 
Book  II,  which  investigates  fully  the  conditions  of  stability 

of  a  right  segment  of  a  paraboloid  of  revolution  floating  in 
a  fluid  for  different  values  of  the  specific  gravity  and  different 
ratios  between  the  axis  or  height  of  the  segment  and  the 

1  De  architechira,  ix.  3. 
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principal  parameter  of  the  generating  parabola,  is  a  veritable 
tour  de  force  which  must  be  read  in  full  to  be  appreciated. 
Prop.  1  is  preliminary,  to  the  effect  that,  if  a  solid  lighter  than 
a  fluid  be  at  rest  in  it,  the  weight  of  the  solid  will  be  to  that 
of  the  same  volume  of  the  fluid  as  the  immersed  portion  of 
the  solid  is  to  the  whole.  The  results  of  the  propositions 
about  the  segment  of  a  paraboloid  may  be  thus  summarized. 
Let  h  be  the  axis  or  height  of  the  segment,  p  the  principal 
parameter  of  the  generating  parabola,  s  the  ratio  of  the 
specific  gravity  of  the  solid  to  that  of  the  fluid  (s  always  <  1). 
The  segment  is  supposed  to  be  always  placed  so  that  its  base 
is  either  entirely  above,  or  entirely  below,  the  surface  of  the 
fluid,  and  what  Archimedes  proves  in  each  case  is  that,  if 
the  segment  is  so  placed  with  its  axis  inclined  to  the  vertical 
at  any  angle,  it  will  not  rest  there  but  will  return  to  the 
position  of  stain lity. 

I.  If  h  is  not  greater  than  f /?,  the  position  of  stability  is  with 
the  axis  vertical,  whether  the  curved  surface  is  downwards  or 

upwards  (Props.  2,  3). 

II.  If  h  is  greater  than  f  p,  then,  in  order  that  the  position  of 
stability  may  be  with  the  axis  vertical,  s  must  be  not  loss 

than  (//  — f-/>)2//<'2  if  tin;  curved  surface  is  downwards,  and  not 
greater   than    {A2  — (A  — f j/>)2}//^2   if    the   curved    surface  is 
upwards  (Props.  4,  5). 

III.  If  7i>f/>,  but  &/|^<  15/4,  the  segment,  if  placed  with 
one  point  of  the  base  touching  the  surface,  will  never  remain 
there  whether  the  curved  surface  be  downwards  or  upwards 
(Props.  6,  7).     (The  segment  will  move  hi  the  direction  of 
bringing  the  axis  nearer  to  the  vertical  position.) 

IV.  If    /*>£/?,    but    A/i/x  15/4,    and    if    s    is    less  than 

(h  —  %p)2/Jr  in  the  case  where  the  curved  surface  is  down- 
wards, but  greater  than  {h2—(h  —  %p)*]/Jr  in  the  case  where 

the  curved  surface  is  upwards,  then  the  position  of  stability  is 
one  in  which  the  axis  is  not  vertical  but  inclined  to  the  surface 

of  the  fluid  at  a  certain  angle  (Props.  8,  9).    (The  angle  is  drawn 
in  an  auxiliary  figure.     The  construction  for  it  in  Prop.  8  is 
equivalent  to  the  solution  of  the  following  equation  in  0, 
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where  k  is  the  axis  of  the  segment  of  the  paraboloid  cut  oft'  by 
the  surface  of  the  fluid.) 

V.  Prop.  10  investigates  the  positions  of  stability  in  the  cases 
where  h/%p>15/4,  the  base  is  entirely  above  the  surface,  and 
s  has  values  lying  between  five  pairs  of  ratios  respectively. 
Only  in  the  case  where  s  is  not  less  than  (h-^pY/h?  is  the 
position  of  stability  that  in  which  the  axis  is  vertical. 
BA Bl  is  a  section  of  the  paraboloid  through  the  axis  AM. 

G  is  a  point  on  AM  such  that  AC  =  2  CM,  K  is  a  point  on  OA 
stoch  that  AM: OK  =  15:4.  CO  is  measured  along  CA  such 
that  CO  =  %p,  and  E  is  a  point  on  AM  such  that  MR  =  f  CO. 
A 2  is  the  point  in  which  the  perpendicular  to  AM  from  K 
meets  AH,  and  A3  is  the  middle  point  of  AB.  BA2  B2,  BA.^  M 
are  parabolic  segments  on  A2 M^  A^M.^  (parallel  to  AM)  as  axes 

and  similar  to  the  original  segment.  (The  parabola 

is  proved  to  pass  through  C  by  using  the  above  relation 
AM:  CK  =15:4  and  applying  Prop.  4  of  the  Quadrature  of 
the  Parabola.)  The  perpendicular  to  AM  from  0  meets  the 

parabola  BA2B2  in  two  points  P2,  (<J2,  and  straight  lines 

through  these  points  parallel  to  AM  meet  the  other  para- 

bolas inPj,  Ql  and  P3,  Q:J  respectively.  P/l1  and  Q}  U  are 
tangents  to  the  original  parabola  meeting  the  axis  MA  pro- 

duced in  T,  U.  Then 

(i)  if  *  is  not  less  than  AR*:AM*  or  (A-fy)2:^2,  there  is 
stable  equilibrium  when  AM  is  vertical ; 
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(ii)  if  s<  A  R*  :  AM*  but  >  Q,  Q32  :  A  M*,  the  solid  will  not  rest 
with  its  base  touching  the  surface  of  the  fluid  in  one  point 
only,  but  in  a  position  with  the  base  entirely  out  of  the  fluid 
and  the  axis  making  with  the  surface  an  angle  greater 
than  U  ; 

(iiia)  if  s  =  Q^^iAM2,  there  is  stable  equilibrium  with  one 
point  of  the  base  touching  the  surface  and  AM  inclined  to  it 
at  an  angle  equal  to  U\ 

(iiib)  if  s  =  P1P^  :  AAf2,  there  is  stable  equilibrium  with  one 
point  of  the  base  touching  the  surface  and  with  AM  inclined 
to  it  at  an  angle  equal  to  T  ; 

(iv)  ittoP^iAM*  but  <Q1Q.*:AM2,  there  will  be  stable 
equilibrium  in  a  position  in  which  the  base  is  more  submerged  ; 

(v)  if  8<P1P.?:AM2,  there  will  be  stable  equilibrium  with 
the  base  entirely  out  of  the  fluid  and  with  the  axis  AM 
inclined  to  the  surface  at  an  angle  less  than  T. 

It  remains  to  mention  the  traditions  regarding  other  in- 
vestigations by  Archimedes  which  have  readied  us  in  Greek 

or  through  the  Arabic. 

(a)   The 
This  is  a  difficult  problem  in  indeterminate  analysis.  It  is 

required  to  find  the  number  of  bulls  and  cows  of  each  of  four 
colours,  or  to  find  8  unknown  quantities.  The  first  part  of 

the  problem  connects  the  unknowns  by  seven  simple  equations  ; 
and  the  second  part  adds  two  more  conditions  to  which  the 
unknowns  must  be  subject.  If  W,  w  be  the  numbers  of  white 

bulls  and  cows  respectively  and  (X,  x)>  (F,  y),  (Z,  z)  represent 
the  numbers  of  the  other  three  colours,  we  have  first  the 

following  equations  : 

(I)  W=&  +  $X  +  Y,  (a) 

,  (/S) 
,  (y) 

(II)  w=(i  +  i)(*  +  s),  (S) 

,  («) 



98  ARCHIMEDES 

Secondly,  it  is  required  that 

W+X  =  a  square,  (6) 

Y  +  Z  =  a  triangular  number.  (t) 

There  is  an  ambiguity  in  the  text  which  makes  it  just  possible 
that  W+  X  need  only  be  the  product  of  two  whole  numbers 
instead  of  a  square  as  in  (0).  Jul.  Fr.  Wurm  solved  the  problem 
in  the  simpler  form  to  which  this  change  reduces  it.  The 

complete  problem  is  discussed  and  partly  solved  by  Amthor.1 
The  general  solution  of  the  first  seven  equations  is 

TF=  2.3.7.53.466771=  10366482^, 

Z=  2.  32.  89.  4657?i       =    7460514  n,, 

F=  34.  11.  465771  =  414938771, 

Z—  22.5.79.4657n      =  7358060??, 

w  =  2\3.  5.  7.  23.  37371  =  720636071, 

X  =  2.  32.  17.  15991  n   =  4893246/1, 

y=  32.  13.4648971         =  543921371, 

2  =22.  3.  5.  7.  11.  761  71  =  3515820n. 

It  is  not  difficult  to  find  such  a  value  of  n  that  W+  X  =  a 

square  number;  it  is  ri/  =  3  .  11  .  29  .  4657£2  =  4456  749  £2, 
where  £  is  any  integer.  We  then  have  to  make 
a  triangular  number,  i.e.  a  number  of  the  form  ̂ #(<7+ 

This  reduces  itself  to  the  solution  of  the  *  Pellian  '  equation 

which  leads  to  prodigious  figures  ;  one  of  the  eight  unknown 
quantities  alone  would  have  more  than  206,500  digits  ! 

()3)   On  semi-regular  polyhedra. 

In  addition,  Archimedes  investigated  polyhedra  of  a  certain 

type.  This  we  learn  from  Pappus.2  The  polyhedra  in  question 
are  semi-regular,  being  contained  by  equilateral  and  equi- 

1  Zeitschrift  fur  Math.  u.  Physik    (Hist.-litt.  Abt.)    xxv.   (1880),   pp. 156  sqq. 

2  Pappus,  v,  pp.  352-8. 
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angular,  but  not  similar,  polygons;  those  discovered  by 
Archimedes  were  13  in  number.  If  we  for  convenience 

designate  a  polyhedron  contained  by  m  regular  polygons 
of  oc  sides,  n,  regular  polygons  of  ft  sides,  &c.,  by  (?>ia,  %...), 
the  thirteen  Archimedean  polyhedra,  which  we  will  denote  by 

1\,  1*, ...  /|3,  are  as  follows: 

Figure  with      8  faces:    1\  =  (4,,    4C). 

Figures  with  14  faces:    P2  =  (83,   64),   I\  =  (64,   8G), 

I\  =  (83,  88). 

Figures  with  2(>  faces:    P5  =  (83,    184),  7J6=(124,    8G,   68). 

Figures  with  32  faces:    P7  =  (203,    125),   P8  =  (125,    206), 
P0  =  (203,1210). 

Figure  with    38  faces:    P10~  (32.,,   64). 

Figures  with  62  faces:    Pn  =  (203,  304,  125), 

P]2EE(304,20G,12]0). 

'      Figure  with    92  faces:    P1:J  =  (803,   125). 

Kepler1  showed  how  these  figures  can  be  obtained.  A 
method  of  obtaining  some  of  them  is  indicated  in  a  fragment 
of  a  scholium  to  the  Vatican  MS.  of  Pappus.  If  a  solid 

angle  of  one  of  the  regular  solids  be  cut  oft*  symmetrically  by 
a  plane,  i.e.  in  such  a  way  that  the  plane  cuts  oft*  the  same 
length  from  each  of  the  edges  meeting  at  the  angle,  the 
section  is  a  regular  polygon  which  is  a  triangle,  square  or 
pentagon  according  as  the  solid  angle  is  formed  of  three,  four, 

or  five  plane  angles.  If  certain  equal  portions  be  so  cut  off* 
from  all  the  solid  angles  respectively,  they  will  leave  regular 
polygons  inscribed  in  the  faces  of  the  solid ;  this  happens 
(A)  when  the  cutting  planes  bisect  the  sides  of  the  faces  and 
so  leave  in  each  face  a  polygon  of  the  same  kind,  and  (B)  when 
the  cutting  planes  cut  off  a  smaller  portion  from  each  angle  in 
such  a  way  that  a  regular  polygon  is  left  in  each  face  which 
has  double  the  number  of  sides  (as  when  we  make,  say,  an 
octagon  out  of  a  square  by  cutting  off  the  necessary  portions, 

1  Kepler,  Harmonice  mundi  in  Opera  (1864),  v,  pp.  123-6. H  2 
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symmetrically,  from  the  corners).  We  have  seen  that,  accord- 
ing to  Heron,  two  of  the  semi-regular  solids  had  already  been 

discovered  by  Plato,  and  this  would  doubtless  be  his  method. 
The  methods  (A)  and  (B)  applied  to  the  five  regular  solids 
give  the  following  out  of  the  13  semi-regular  solids.  We 
obtain  (1)  from  the  tetrahedron,  Pl  by  cutting  off  angles 
so  as  to  leave  hexagons  in  the  faces  ;  (2)  from  the  cube,  P2  by 
leaving  squares,  and  P4  by  leaving  octagons,  in  the  faces  ; 
(3)  from  the  octahedron,  P2  by  leaving  triangles,  and  P3  by 
leaving  hexagons,  in  the  faces ;  (4)  from  the  icosahedron, 
Pj  by  leaving  triangles,  and  J^  by  leaving  hexagons,  in  the 
faces;  (5)  from  the  dodecahedron,  P7  by  leaving  pentagons, 
and  P9  by  leaving  decagons  in  the  faces. 

Of  the  remaining  six,  four  arc  obtained  by  cutting  off  all 
the  edges  symmetrically  and  eqiially  by  planes  parallel  to  the 
edges,  and  then  cutting  off  angles.  Take  first  the  cube. 
(1)  Cut  off  from  each  four  parallel  edges  portions  which  leave 
an  octagon  as  the  section  of  the  figure  perpendicular  to  the 
edges ;  then  cut  off  equilateral  triangles  from  the  corners 
(see  Fig.  1) ;  this  gives  P5  containing  8  equilateral  triangles 
and  18  squares.  (P5  is  also  obtained  by  bisecting  all  the 
edges  of  J^  and  cutting  off  corners.)  (2)  Cut  off  from  the 
edges  of  the  cube  a  smaller  portion  so  as  to  leave  in  each 
face  a  square  such  that  the  octagon  described  in  it  has  its 
side  equal  to  the  breadth  of  the  section  in  which  each  edge  is 
cut ;  then  cut  off  hexagons  from  each  angle  (see  Fig.  2) ;  this 

FIG.  1. FIG.  2. 

gives  6  octagons  in  the  faces,  12  squares  under  the  edges  and 
8  hexagons  at  the  corners;  that  is,  we  have  P6.    An  exactly 
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similar  procedure  with  the  icosahedron  and  dodecahedron 
produces  Pn  and  Pn  (see  Figs.  3,  4  for  the  case  of  the  icosa- 
hedron). 

FIG.  3. FIG.  4. 

The  two  remaining  solids  JJ0,  PVA  cannot  be  so  simply  pro- 
duced.    They  are   represented  in   Figs.    5,   6,  which  I  have 

FIG.  5. FIG.  G. 

taken  from  Kepler.  1*0  is  the  snub  cube  in  which  each 
solid  angle  is  formed  by  the  angles  of  four  equilateral  triangles 
arid  one  square;  Pri  is  the  snub  dodecahedron,  each  solid 
angle  of  which  is  formed  by  the  angles  of  four  equilateral 
triangles  and  one  regular  pentagon. 

We  are  indebted  to  Arabian  tradition  for 

(y)    The  Liber  Asswnptorum. 

Of  the  theorems  contained  in  this  collection  many  are 
so  elegant  as  to  afford  a  presumption  that  they  may  really 
be  due  to  Archimedes.  In  three  of  them  the  figure  appears 

which  was  called  ap/Si/Ao?,  a  shoemaker's  knife,  consisting  of 
three  semicircles  with  a  common  diameter  as  shown  in  the 

annexed  figure.  If  N  be  the  point  at  which  the  diameters 
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of  the  two  smaller  semicircles  adjoin,  and  NP  be  drawn  at 
right  angles  to  AS  meeting  the  external  semicircle  in  P,  the 
area  of  the  apjSijAos  (included  between  the  three  semicircular 
arcs)  is  equal  to  the  circle  on  PN  as  diameter  (Prop.  4).  In 
Prop.  5  it  is  shown  that,  if  a  circle  be  described  in  the  space 
between  the  arcs  AP>  AN  and  the  straight  line  PN  touching 

all  three,  and  if  a  circle  be  similarly  described  in  the  space 
between  the  arcs  PB,  NB  and  the  straight  line  PN  touching 
all  three,  the  two  circles  are  equal.  If  one  circle  be  described 
in  the  #pj8r/Aoy  touching  all  three  semicircles,  Prop.  6  shows 
that,  if  the  ratio  of  AN  to  NB  be  given,  we  can  find  the 
relation  between  the  diameter  of  the  circle  inscribed  to  the 

apftrfXo?  and  the  straight  line  AB]  the  proof  is  for  the  parti- 
cular case  AN=%BN9  and  shows  that  the  diameter  of  the 

inscribed  circle  =  ̂ AB. 
Prop.   8   is  of  interest  in  connexion  with  the  problem  of 

trisecting  any  angle.  If  AB  be  any  chord  of  a  circle  with 
centre  0,  and  BG  on  AB  produced  be  made  equal  to  the  radius, 
draw  CO  meeting  the  circle  in  /),  E  ;  then  will  the  arc  BD  be 

one-third  of  the  arc  AE  (or  BF,  if  EF  be  the  chord  through  E 
parallel  to  AB).  The  problem  is  by  this  theorem  reduced  to 

(cf.  vol.  i,  p.  241). a 
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Lastly,  we  may  mention  the  elegant  theorem  about  the 

area  of  the  Salinon  (presumably  'salt-cellar')  in  Prop.  14. 
ACB  is  a  semicircle  on  AS  as  diameter,  AD,  EB  are  equal 
lengths  measured  from  A  and  B  011  AB.  Semicircles  are 
drawn  with  AD,  EB  as  diameters  on  the  side  towards  (7,  and 

a  semicircle  with  DE  as  diameter  is  drawn  on  the  other  side  of 

AB.  CF  is  the  perpendicular  to  AB  through  0,  the  centre 
of  the  semicircles  ACB,  DFE.  Then  is  the  area  bounded  by 
all  the  semicircles  (the  tialiuon)  equal  to  the  circle  on  CF 
as  diameter. 

The  Arabians,  through  whom  the  ttook  of  Lemmas  has 
readied  us,  attributed  to  Archimedes  other  works  (1)  on  the 
Circle,  (2)  on  the  Heptagon  in  a  Circle,  (3)  on  Circles  touch- 

ing one  another,  (4)  on  Parallel  Lines,  (5)  on  Triangles,  (6)  on 
the  properties  of  right-angled  triangles,  (7)  a  book  of  Data, 
(8)  De  clepsydris:  statements  which  we  are  not  in  a  position 
to  check.  But  the  author  of  a  book  on  the  finding  of  chords 

in  a  circle,1  Abu'l  Raihan  Muh.  al-Birunl,  quotes  some  alterna- 
tive proofs  as  coming  from  the  first  of  these  works. 

(8)   Formula  for  area  of  triangle. 

More  important,  however,  is  the  mention  in  this  same  work 
of  Archimedes  as  the  discoverer  of  two  propositions  hitherto 
attributed  to  Heron,  the  first  being  the  problem  of  finding 
the  perpendiculars  of  a  triangle  when  the  sides  are  given,  and 
the  second  the  famous  formula  for  the  area  of  a  triangle  in 
terms  of  the  sides, 

V{s(s-a)(s-b)(s-c)}. 

1  See  Bibliotheca  mathematica,  xis,  pp.  11-78. 
c 
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Long  as  the  present  chapter  is,  it  is  nevertheless  the  most 
appropriate  place  for  ERATOSTHENES  of  Cyrene.  It  was  to  him 
that  Archimedes  dedicated  The  Method,  and  the  Cattle-Problem 
purports,  by  its  heading,  to  have  been  sent  through  him  to 
the  mathematicians  of  Alexandria.  It  is  evident  from  the 

preface  to  The  Method  that  Archimedes  thought  highly  of  his 

mathematical  ability.  He  was,  indeed,  recognized  by  his  con- 
temporaries as  a  man  of  great  distinction  in  all  branches  of 

knowledge,  though  in  each  subject  he  just  fell  short  of  the 
highest  place.  On  the  latter  ground  he  was  called  Beta,  and 
another  nickname  applied  to  him,  Pentathlos,  has  the  same 
implication,  representing  as  it  does  an  all-round  athlete  who 
was  not  the  first  runner  or  wrestler  but  took  the  second  prize 
in  these  contests  as  well  as  in  others.  He  was  very  little 
younger  than  Archimedes ;  the  date  of  his  birth  was  probably 
284  B.C.  or  thereabouts.  He  was  a  pupil  of  the  philosopher 
Ariston  of  Chios,  the  grammarian  Lysanias  of  Cyrene,  and 
the  poet  Callimachus  ;  he  is  said  also  to  have  been  a  pupil  of 
Zeno  the  Stoic,  and  he  may  have  come  under  the  influence  of 
Arcesilaus  at  Athens,  where  he  spent  a  considerable  time. 
Invited,  when  about  40  years  of  age,  by  Ptolemy  Euergetes 
to  be  tutor  to  his  son  (Philopator),  he  became  librarian  at 
Alexandria ;  his  obligation  to  Ptolemy  he  recognized  by  the 
column  which  he  erected  with  a  graceful  epigram  inscribed  on 
it.  This  is  the  epigram,  with  which  we  are  already  acquainted 
(vol.  i,  p.  260),  relating  to  the  solutions,  discovered  up  to  date, 
of  the  problem  of  the  duplication  of  the  cube,  and  commend- 

ing his  own  method  by  means  of  an  appliance  called  /*eo-oAa/3oi>, 
itself  represented  in  bronze  on  the  column. 

Eratosthenes  wrote  a  book  with  the  title  UAaroowKoy,  and, 
whether  it  was  a  sort  of  commentary  on  the  Timaeus  of 
Plato,  or  a  dialogue  in  which  the  principal  part  was  played  by 
Plato,  it  evidently  dealt  with  the  fundamental  notions  of 

mathematics  in  connexion  with  Plato's  philosophy.  It  was 
naturally  one  of  the  important  sources  of  Theon  of  Smyrna's 
work  on  the  mathematical  matters  which  it  was  necessary  for 
the  student  of  Plato  to  know  ;  and  Theon  cites  the  work 
twice  by  name.  It  seems  to  have  begun  with  the  famous 
problem  of  Delos,  telling  the  story  quoted  by  Theon  how  the 
god  required,  as  a  means  of  stopping  a  plague,  that  the  altar 
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there,  "which  was  cubical  in  form,  should  be  doubled  in  size. 
The  book  evidently  contained  a  disquisition  on  proportion 

(dva\oyia)°,  a  quotation  by  Theon  on  this  subject  shows  that 
Eratosthenes  incidentally  dealt  with  the  fundamental  defini- 

tions of  geometry  and  arithmetic.  The  principles  of  music 
were  discussed  in  the  same  work. 

We  have  already  described  Eratosthenes' s  solution  of  the 
problem  of  Delos,  and  his  contribution  to  the  theory  of  arith- 

metic by  means  of  his  sieve  (KQVKLVQV)  for  finding  successive 
prime  numbers. 

He  wrote  also  an  independent  work  On  means.  This  was  in 
two  Books,  and  was  important  enough  to  be  mentioned  by 

Pappus  along  with  works  by  Euclid,  Aristaeus  and  Apol- 

lonius  as  forming  part  of  the  Treasury  of  Analysis1 ;  this 
proves  that  it  was  a  systematic  geometrical  treatise.  Another 
passage  of  Pappus  speaks  of  certain  loci  which  Eratosthenes 

called  'loci  with  reference  to  means'  (TOTTOL  Trpoy  /xeo-orTjray)2; 
these  were  presumably  discussed  in  the  treatise  in  question. 

What  kind  of  loci  these  were  is  quite  uncertain ;  Pappus  (if  it 
is  not  an  interpolator  who  speaks)  merely  says  that  these  loci 

1  belong  to  the  aforesaid  classes  of  loci ',  but  as  the  classes  are 

numerous  (including  '  plane  ', '  solid  ',  *  linear ', '  loci  on  surfaces ', 
&c.),  we  are  none  the  wiser.  Tannery  conjectured  that  they 
wore  loci  of  points  such  that  their  distances  from  three  fixed 

straight  lines  furnished  a  'imnlitftd',  i.e.  loci  (straight  lines 
and  conies)  which  wo  should  represent  in  trilinear  coordinates 

by  such  equations  as  2y  =  x  +  3,  y/2  =  o:s,  y(x  +  z)  =  2 ore, 
x(x  —  y)  =  z(y  —  z),  x(x  —  y)  =  y(y  —  z),  the  first  three  equations 
representing  the  arithmetic,  geometric  and  harmonic  means, 

while  the  last  two  represent  the  '  subcontraries '  to  the 
harmonic  and  geometric  means  respectively.  Zeutheii  has 

a  different  conjecture?  He  points  out  that,  if  QQ'  be  the 
polar  of  a  given  point  C  with  reference  to  a  conic,  and  CPOP' 
be  drawn  through  C  meeting  QQ'  in  0  and  the  conic  in  P,  P', 
then  CO  is  the  harmonic  mean  to  CP,  CP' ;  the  locus  of  0  for 

all  transversals  CPP'  is  then  the  straight  line  QQ'.  If  A,  tt 
are  points  on  PPf  such  that  CA  is  the  arithmetic,  and  Cti  the 

1  Pappus,  vii,  p.  636.  24.  2  lb.9  p.  662.  15  sq. 
8  Zeuthen,  Die  Lehre  von  den  Keyelschnitten  im  Altertum,  1886,  pp. 

320,  321. 
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geometric  mean  between  CP,  OP',  the  loci  of  A,  G  respectively 
are  conies.  Zeuthen  therefore  suggests  that  these  loci  and 

the  corresponding  loci  of  the  points  on  CPP*  at  a  distance 
from  0  equal  to  the  subcontraries  of  the  geometric  and 
harmonic  means  between  CP  and  GP'  are  the  'loci  with 

reference  to  means '  of  Eratosthenes ;  the  latter  two  loci  are 
'linear',  i.e.  higher  curves  than  conies.  Needless  to  say,  we 
have  no  confirmation  of  this  conjecture. 

Eratosthenes  s  measurement  of  the  Earth. 

But  the  most  famous  scientific  achievement  of  Eratosthenes 
was  his  measurement  of  the  earth.  Archimedes  mentions,  as 

we  have  seen,  that  some  had  tried  to  prove  that  the  circum- 
ference of  the  earth  is  about  300,000  stades.  This  was 

evidently  the  measurement  based  on  observations  made  at 
Lysirnachia  (on  the  Hellespont)  and  Syene.  It  was  observed 
that,  while  both  these  places  were  on  one  meridian,  the  head 
of  Draco  was  in  the  zenith  at  Lysimachia,  and  Cancer  in  the 
zenith  at  Syeiie ;  the  arc  of  the  meridian  separating  the  two 
in  the  heavens  was  taken  to  be  I/ 15th  of  the  complete  circle. 

The  distance  between  the  two  towns 

was  estimated  at  20,000  stades,  and 

accordingly  the  whole  circumference  of 
the  earth  was  reckoned  at  300,000 
stades.  Eratosthenes  improved  on  this. 
He  observed  (l)  that  at  Syene,  at 
noon,  at  the  summer  solstice,  the 
sun  cast  no  shadow  from  an  upright 
gnomon  (this  was  confirmed  by  the 
observation  that  a  well  dug  at  the 
same  place  was  entirely  lighted  up  at 

the  same  time),  while  (2)  at  the  same  moment  the  gnomon  fixed 
upright  at  Alexandria  (taken  to  be  on  the  same  meridian  with 
Syene)  cast  a  shadow  corresponding  to  an  angle  between  the 

gnomon  and  the  sun's  rays  of  I/ 50th  of  a  complete  circle  or 
four  right  angles.  The  sun's  rays  are  of  course  assumed  to  be 
parallel  at  the  two  places  represented  by  S  and  A  in  the 

annexed  figure.  If  a  be  the  angle  made  at  A  by  the  sun's  rays 
with  the  gnomon  (0 A  produced),  the  angle  80  A  is  also  equal  to 
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a,  or  r/50th  of  four  right  angles.  Now  the  distance  from  S 
to  A  was  known  by  measurement  to  be  5,000  stades;  it 
followed  that  the  circumference  of  the  earth  was  250,000 
stades.  This  is  the  figure  given  by  Cleomedes,  but  Theon  of 
Smyrna  and  Strabo  both  give  it  as  252,000  stades.  The 
reason  of  the  discrepancy  is  not  known ;  it  is  possible  that 
Eratosthenes  corrected  250,000  to  252,000  for  some  reason, 
perhaps  in  order  to  get  a  figure  divisible  by  60  and,  inci- 

dentally, a  round  number  (700)  of  stades  for  one  degree.  If 
Pliny  is  right  in  saying  that  Eratosthenes  made  40  stades 
equal  to  the  Egyptian  crxo«/oy,  then,  taking  the  o^oo/cy  at 
12,000  Royal  cubits  of  0-525  metres,  we  get  300  such  cubits, 
or  157-5  metres,  i.e.  516-73  feet,  as  the  length  of  the  stade. 
On  this  basis  252,000  stades  works  out  to  24,662  miles,  and 
the  diameter  of  the  earth  to  about  7,850  miles,  only  50  miles 
shorter  than  the  true  polar  diameter,  a  surprisingly  close 
approximation,  however  much  it  owes  to  happy  accidents 
in  the  calculation. 

We  learn  from  Heron's  Dioptra  that  the  measurement  of 
the  earth  by  Eratosthenes  was  givon  in  a  separate  work  On 

the  Measurement  of  the  Earth.  According  to  Galen1  this  work 
dealt  generally  with  astronomical  or  mathematical  geography, 

treating  of  '  the  size  of  the  equator,  the  distance  of  the  tropic 
and  polar  circles,  the  extent  of  the  polar  zone,  the  size  and 
distance  of  the  sun  and  moon,  total  and  partial  eclipses  of 
those  heavenly  bodies,  changes  in  the  length  of  the  day 

according  to  the  different  latitudes  and  seasons'.  Several 
details  are  preserved  elsewhere  of  results  obtained  by 
Eratosthenes,  which  were  doubtless  contained  in  this  work. 
He  is  supposed  to  have  estimated  the  distance  between  the 
tropic  circles  or  twice  the  obliquity  of  the  ecliptic  at  1  l/83rds 

of  a  complete  circle  or  47°  42'  39";  but  from  Ptolemy's 
language  on  this  subject  it  is  not  clear  that  this  estimate  was 

not  Ptolemy's  own.  What  Ptolemy  says  is  that  he  himself 
found  the  distance  between  the  tropic  circles  to  lie  always 

between  47°  40'  and  47°  45',  'from  which  we  obtain  about 
(vytMv)  the  same  ratio  as  that  of  Eratosthenes,  which 
Hipparchus  also  used.  For  the  distance  between  the  tropics 
becomes  (or  is  found  to  be,  yivtrai)  very  nearly  11  parts 

Galen,  Instit.  Logica,  12  (p.  26  Kalbfleiscb). 
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out  of  83  contained  in  the  whole  meridian  circle'.1  The 

mean  of  Ptolemy's  estimates,  47°  42'  30",  is  of  course  nearly 
ll/83rds  of  360°.  It  is  consistent  with  Ptolemy's  language 
to  suppose  that  Eratosthenes  adhered  to  the  value  of  the 

obliquity  of  the  ecliptic  discovered  before  Euclid's  time, 
namely  24°,  and  Hipparchus  does,  in  his  extant  Commentary 
on  the  Phaenomena  of  Aratus  and  Eudoxus,  say  that  the 

summer  tropic  is  '  very  nearly  24°  north  of  the  equator '.  . 
The  Doxographi  state  that  Eratosthenes  estimated  the 

distance  of  the  moon  from  the  earth  at  780,000  stades  and 
the  distance  of  the  sun  from  the  earth  at  804,000,000  stades 
(the  versions  of  Stobaeus  and  Joannes  Lydus  admit  4,080,000 
as  an  alternative  for  the  latter  figure,  but  this  obviously 
cannot  be  right).  Macrobius2  says  that  Eratosthenes  made 
the  'measure'  of  the  sun  to  be  27  times  that  of  the  earth. 
It  is  not  certain  whether  measure  means  '  solid  content '  or 

'  diameter '  in  this  case ;  the  other  figures  on  record  make  the 
former  more  probable,  in  which  case  the  diameter  of  the  sun 
would  be  three  times  that  of  the  earth.  Macrobius  also  tells 

us  that  Eratosthenes's  estimates  of  the  distances  of  the  sun 
and  moon  were  obtained  by  means  of  lunar  eclipses. 

Another  observation  by  Eratosthenes,  namely  that  at  Syene 
(which  is  under  the  summer  tropic)  and  throughout  a  circle 
round  it  with  a  radius  of  300  stades  the  upright  gnomon 
throws  no  shadow  at  noon,  was  afterwards  made  use  of  by 
Posidoiiius  in  his  calculation  of  the  size  of  the  sun.  Assuming 
that  the  circle  in  which  the  sun  apparently  moves  round  the 
earth  is  1 0,000  times  the  size  of  a  circular  section  of  the  earth 
through  its  centre,  and  combining  with  this  hypothesis  the 
datum  just  mentioned,  Posidonius  arrived  at  3,000,000  stades 
as  the  diameter  of  the  sun. 

Eratosthenes  wrote  a  poem  called  Hermes  containing  a  good 
deal  of  descriptive  astronomy;  only  fragments  of  this  have 
survived.  The  work  Catasterismi  (literally  '  placings  among 
the  stars ')  which  is  extant  can  hardly  be  genuine  in  the  form 
in  which  it  has  reached  us ;  it  goes  back,  however,  to  a  genuine 
work  by  Eratosthenes  which  apparently  bore  the  same  name ; 
alternatively  it  is  alluded  to  as  KaraAoyoi  or  by  the  general 

1  Ptolemy,  Syntaxis,  i.  12,  pp.  67.  22-68.  6. 
2  Macrobius,  In  Sown.  Scip.  i.  20.  9. 
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word  'Acrrpovojiia  (Suidas),  which  latter  word  is  perhaps  a  mis- 
take for  'Aa-Tpodeo-ic,  corresponding  to  the  title  'Ao-rpoOeo-iai 

g<p8ia)v  found  in  the  manuscripts.  The  work  as  we  have  it 

contains  the  story,  mythological  and  descriptive,  of  the  con- 
stellations, &c.,  under  forty-four  heads;  there  is  little  or 

nothing  belonging  to  astronomy  proper. 
Eratosthenes  is  also  famous  as  the  first  to  attempt  a  scientific 

chronology  beginning  from  the  siege  of  Troy;  this  was  the 
subject  of  his  Xpovoypafyiai,  with  which  must  be  connected 

the  separate  'OXvpirtoftKai  in  several  books.  Clement  of 
Alexandria  gives  a  short  resumt  of  the  main  results  of  the 

former  work,  and  both  works  were  largely  used  by  Apollo- 
dorus.  Another  lost  work  was  on  the  Octaeteris  (or  eight- 

yi'ars'  period),  which  is  twice  mentioned,  by  Geminus  and 
Achilles;  from  the  latter  wo  learn  that  Eratosthenes  re- 

garded tin*  work  on  the  same  subject  attributed  to  Eudoxus 
as  not  genuine.  His  (ieograpliica  in  three  books  is  mainly 

known  to  us  through  Suidas's  criticism  of  it.  It  began  with 
a  history  of  geography  down  to  his  own  time ;  Eratosthenes 
then  proceeded  to  mathematical  geography,  the  spherical  form 
of  the  earth,  the  negligibility  in  comparison  with  this  of  the 
unevennesses  caused  by  mountains  and  valleys,  the  changes  of 
features  due  to  floods,  earthquakes  and  the  like.  It  would 

appear  from  Theon  of  Smyrna's  allusions  that  Eratosthenes 
estimated  the  height  of  the  highest  mountain  to  be  10  stades 
or  about  I/ 8000th  part  of  the  diameter  of  the  earth. 
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CONIC   SECTIONS.     APOLLONIUS   OF   PERGA 

A.    HISTORY   OF  CONICS   UP  TO  APOLLONIUS 

Discovery  of  the  conic  sections  by  Menaechmus. 

WE  have  seen  that  Menaechmus  solved  the  problem  of  the 
two  mean  proportionals  (and  therefore  the  duplication  of 
the  cube)  by  means  of  conic  sections,  and  that  he  is  credited 
with  the  discovery  of  the  three  curves ;  for  the  epigram  of 

Eratosthenes  speaks  of  '  the  triads  of  Monaechmus ',  whereas 
of  course  only  two  conies,  the  parabola  and  the  rectangular 

hyperbola,  actually  appear  in  Menaechmus's  solutions.  The 
question  arises,  how  did  Menaechmus  come  to  think  of  obtain- 

ing curves  by  cutting  a  cone  ?  On  this  we  have  no  informa- 
tion whatever.  Democritus  had  indeed  spoken  of  a. section  of 

a  cone  parallel  and  very  near  to  the  base,  which  of  course 
would  be  a  circle,  since  the  cone  would  certainly  be  the  right 
circular  cone.  But  it  is  probable  enough  that  the  attention 
of  the  Greeks,  whose  observation  nothing  escaped,  would  be 
attracted  to  the  shape  of  a  section  of  a  cone  or  a  cylinder  by 
a  plane  obliquely  inclined  to  the  axis  when  it  occurred,  as  it 
often  would,  in  real  life;  the  case  where  the  solid  was  cut 
right  through,  which  would  show  an  ellipse,  would  presum- 

ably be  noticed  first,  and  some  attempt  would  be  made  to 
investigate  the  nature  and  geometrical  measure  of  the  elonga- 

tion of  the  figure  in  relation  to  the  circular  sections  of  the 
same  solid ;  these  would  in  the  first  instance  be  most  easily 
ascertained  when  the  solid  was  a  right  cylinder;  it  would 
then  be  a  natural  question  to  investigate  whether  the  curve 
arrived  at  by  cutting  the  cone  had  the  same  property  as  that 
obtained  by  cutting  the  cylinder.  As  we  have  seen,  the 
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observation  that  an  ellipse  can  be  obtained  from  a  cylinder 
as  well  as  a  cone  is  actually  made  by  Euclid  in  his  Phaeno- 

mena :  '  if ',  says  Euclid,  *  a  cone  or  a  cylinder  be  cut  by 
a  plane  not  parallel  to  the  base,  the  resulting  section  is  a 
section  of  an  acute-angled  cone  which  is  similar  to  a  Ovptos 
(shield)/  After  this  would  doubtless  follow  the  question 
what  sort  of  curves  they  are  which  are  produced  if  we 
cut  a  cone  by  a  plane  which  does  not  cut  through  the 
cone  completely,  but  is  either  parallel  or  not  parallel  to 
a  generator  of  the  cone,  whether  these  curves  have  the 
same  property  with  the  ellipse  arid  with  one  another,  and, 

if  not,  what  exactly  are  their  fundamental  properties  respec- 
tively. 

As  it  is,  however,  we  are  only  told  how  the  first  writers  on 
conies  obtained  them  in  actual  practice.  We  learn  on  the 

authority  of  Geminus l  that  the  ancients  defined  a  cone  as  the 
surface  described  by  the  revolution  of  a  right-angled  triangle 
about  one  of  the  sides  containing  the  right  angle,  and  that 
they  knew  no  cones  other  than  right  cones.  Of  these  they 
distinguished  throe  kinds  ;  according  as  the  vertical  angle  of 
the  cone  was  less  than,  equal  to,  or  greater  than  a  right  angle, 
they  called  the  cone  acute-angled,  right-angled,  or  obtuse- 
angled,  and  from  each  of  these  kinds  of  cone  they  produced 
one  and  only  one  of  the  three  sections,  the  section  being 
always  made  perpendicular  to  one  of  the  generating  lines  of 

the  cone  ;  the  curves  were,  on  this  basis,  called  '  section  of  an 

acute-angled  cone*  (=  an  ellipse),  'section  of  a  right-angled 
cone'  (=  a  parabola),  and  'section  of  an  obtuse-angled  cone  ' 
(=  a  hyperbola)  respectively.  These  names  were  still  used 
by  Euclid  and  Archimedes. 

Menaechmuss  probable  procedure. 

Menaechmus's  constructions  for  his  curves  would  presum- 
ably be  the  simplest  and  the  most  direct  that  would  show  the 

desired  properties,  and  for  the  parabola  nothing  could  be 

simpler  than  a  section  of  a  right-angled  cone  by  a  plane  at  right 
angles  to  one  of  its  generators.  Let  OBG  (Fig.  1)  represent 

1  Eutocius,  Comm.  on  Conies  of  Apollonius. 
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a  section  through  the  axis  OL  of  a  right-angled  cone,  and 
conceive  a  section  through  AG  (perpendicular  to  OA)  and  at 
right  angles  to  the  plane  of  the  paper. 

FIG.  1. 

If  P  is  any  point  on  the  curve,  and  PN  perpendicular  to 
AG,  let  J3(7be  drawn  through  N  perpendicular  to  the  axis  of 
the  cone.  Then  P  is  on  the  circular  section  of  the  cone  al>out 
BO  as  diameter. 

Draw  AD  parallel  to  EG,  and  DF,  CG  parallel  to  OL  meet- 
ing AL  produced  in  F,  G.  Then  AD,  AF  are  both  bisected 

by  OL. 

N  =  y,    AN  '= 
Know 

But  jB,  A  ,  (7,  G  are  concyclic,  so  that 

BN.NC=AN.NG 

Therefore y*  =  AN.  2AL 
.  x, 

and  2  A  L  is  the  €  parameter  '  of  the  principal  ordinates  y. 
In  the  case  of  the  hyperbola  Menaechmus  had  to  obtain  the 
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particular  hyperbola  which  we  call  rectangular  or  equilateral, 
and  also  to  obtain  its  property  with  reference  to  its  asymp- 

totes, a  considerable  advance  on  what  was  necessary  in  the 
case  of  the  parabola.  Two  methods  of  obtaining  the  particular 
hyperbola  were  possible,  namely  (1)  to  obtain  the  hyperbola 

arising  from  the  section  of  any  obtuse-angled  cone  by  a  plane 
at  right  angles  to  a  generator,  and  then  to  show  how  a 
rectangular  hyperbola  can  be  obtained  as  a  particular  case 
by  finding  the  vertical  angle  which  the  cone  must  have  to 
give  a  rectangular  hyperbola  when  cut  in  the  particular  way, 
or  (2)  to  obtain  the  rectangular  hyperbola  direct  by  cutting 

another  kind  of  cone  by  a  section  not  necessarily  perpen- 
dicular to  a  generator. 

(1)  Taking  the  first  method,  we  draw  (Fig.  2)  a  cone  with  its 
vertical  angle  BO (1  obtuse.  Imagine  a  section  perpendicular 
to  the  plane  of  the  paper  and  passing  through  AG  which  is 
perpendicular  to  OB.  Let  GA  produced  meet  CO  produced  in 

A* ',  and  complete  the  same  construction  as  in  the  case  of 
the  parabola. 

FIG.  2. 

In  this  case  we  have 

PN*  =  BN. =  AN.NG. 
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But,  by  similar  triangles, 
NO:AF=NC:AD 

=  A'N:AA'. 
A  F 

Hence  P^V2  =  A  Jf  .  A'N  .  ~, AA 

which  is  the  property  of  the  hyperbola,  AA'  being  what  we 
call  the  transverse  axis,  and  2  AL  the  parameter  of  the  principal 
ordinates. 

Now,  in  order  that  the  hyperbola  may  be  rectangular,  we 

must  have  2  AL:  A  A'  equal  to  1.  The  problem  therefore  now 
is<  given  a  straight  line  A  A',  and  AL  along  A  A  produced 
equal  to  ̂ AA  \  to  find  a  cone  such  that  L  is  on  its  axis  and 
the  section  through  AL  perpendicular  to  the  generator  through 

A  is  a  rectangular  hyperbola  with  Af  A  as  transverse«axis.  In 
other  words,  we  have  to  find  a  point  0  on  the  straight  line 

through  A  perpendicular  to  AAr  such  that  OL  bisects  the 
angle  which  is  the  supplement  of  the  angle  A'OA. 

This  is  the  case  if   A'Q  :  OA  =  A'L  :  LA  =  3:1  ; 
therefore  0  is  on  the  circle  which  is  the  locus  of  all  points 

such  that  their  distances  from  the  two  fixed  points  A',  A 
are  in  the  ratio  3:1.  This  circle  is  the  circle  on  KL  as 

diameter,  where  A'K  :  KA  =  A'L  :  LA  =  3:1.  Draw  this 
circle,  and  0  is  then  determined  as  the  point  in  which  AO 
drawn  perpendicular  to  AA  intersects  the  circle. 

It  is  to  be  observed,  however,  that  this  deduction  of  a 

particular  from  a  more  general  case  is  not  usual  in  early 
Greek  mathematics  ;  on  the  contrary,  the  particular  usually 
led  to  the  more  general.  Notwithstanding,  therefore,  that  the 
orthodox  method  of  producing  conic  sections  is  said  to  have 
been  by  cutting  the  generator  of  each  cone  perpendicularly, 
I  am  inclined  to  think  that  Menaechmus  would  get  his  rect- 

angular hyperbola  directly,  and  in  an  easier  way,  by  means  of 
a  different  cone  differently  cut.  Taking  the  right-angled  cone, 
already  used  for  obtaining  a  parabola,  we  have  only  to  make 
a  section  parallel  to  the  axis  (instead  of  perpendicular  to  a 

generator)  to  get  a  rectangular  hyperbola. 
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For,  let  the  right-angled  cone  HOK  (Fig.  3)  be  cut  by  a 

plane  through  A'  AN  parallel 
to  the  axis  0  M  and  cutting  the 
sides  of  the  axial  triangle  HOK 

in  A',  A,  N  respectively.  Let 
P  be  tho  point  on  the  curve 
for  which  PN  is  the  principal 
ordinate.  Draw  00  parallel 
to  HK.  We  have  at  once 

=  CN*-CA*,  since  MK  =  OM,  and  MN=  OC=CA. 

This  is  the  property  of  the  rectangular  hyperbola  having  A'  A 
as  axis.     To  obtain  a  particular  rectangular  hyperbola  with 
axis  of  given  length  we  have  only  to  choose  the  cutting  plane 

so  that  the  intercept  A'  A  may  have  the  given  length. 
But  Menaechmus  had  to  prove  the  asymptote-property  of 

his  rectangular  hyperbola.  As  he  can  hardly  be  supposed  to 
have  got  as  far  as  Apollonius  in  investigating  the  relations  of 
the  hyperbola  to  its  asymptotes,  it  is  probably  safe  to  assume 
that  he  obtained  the  particular  property  in  the  simplest  way, 
i.  e.  directly  from  the  property  of  the  curve  in  relation,  to 
its  axes. 

R 

FIG.  4. 

If  (Fig.  4)  OR,  OR'  be  the  asymptotes  (which  are  therefore 
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at  right  angles)  and  A'  A  the  axis  of  a  rectangular  hyperbola, 
P  any  point  on  the  curve,  PN  the  principal  ordinate,  draw 
PK,  PIC  perpendicular  to  the  asymptotes  respectively.     Let 

PN  produced  meet  the  asymptotes  in  U,  R'. 
Now,  by  the  axial  property, 

=  2PK.PK',  since  /.PRK  is  half  a  right  angle  ; 

therefore  PK  .  PK'  = 

Works  by  Aristaeus  and  Euclid. 

If  Menaechmus  was  really  the  discoverer  of  the  three  conic 
sections  at  a  date  which  we  must  put  at  about  360  or  350  B.C., 
the  subject  must  have  been  developed  very  rapidly,  for  by  the 
end  of  the  century  there  were  two  considerable  works  on 
conies  in  existence,  works  which,  as  we  learn  from  Pappus, 
were  considered  worthy  of  a  place,  alongside  the  (Ionics  of 
Apollonius,  in  the  Treasury  of  Analysis.  Euclid  flourished 
about  300  B.C.,  or  perhaps  10  or  20  years  earlier;  but  his 
Conies  in  four  books  was  preceded  by  a  work  of  Aristaeus 
which  was  still  extant  in  the  time  of  Pappus,  who  describes  it 

as  *  five  books  of  tiolid  Loci  connected  (or  continuous,  crvvt^) 

with  the  conies'.  Speaking  of  the  relation  of  Euclid's  Conies 
in  four  books  to  this  work,  Pappus  says  (if  the  passage  is 
genuine)  that  Euclid  gave  credit  to  Aristaeus  for  his  dis- 

coveries in  conies  and  did  not  attempt  to  anticipate  him  or 
wish  to  construct  anew  the  same  system.  In  particular, 

Euclid,  when  dealing  with  what  Apollonius  calls  the  three- 
and  four-line  locus,  '  wrote  so  much  about  the  locus  as  was 
possible  by  means  of  the  conies  of  Aristaeus,  without  claiming 

completeness  for  his  demonstrations  '.*  We  gather  from  these 
remarks  that  Euclid's  Conies  was  a  compilation  and  rearrange- 

ment of  the  geometry  of  the  conies  so  far  as  known  in  his 

1  Pappus,  vii,  p.  678.  4. 
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time;  whereas  the  work  of  Aristaeus  was  more  specialized  and 
more  original. 

' Solid  loci9  and  'solid  problems'. 

'  Solid  loci '  are  of  course  simply  conies,  but  the  use  of  the 
title  '  Solid  loci '  instead  of  '  conies '  seems  to  indicate  that 
the  work  was  in  the  main  devoted  to  conies  regarded  as  loci. 

As  we  have  seen, '  solid  loci '  which  are  conies  are  distinguished 
from  '  plane  loci ',  on  the  one  hand,  which  are  straight  lines 
and  circles,  and  from  '  linear  loci '  on  the  other,  which  are 
curves  higher  than  conies.  There  is  some  doubt  as  to  the 

real  reason  why  the  term  '  solid  loci '  was  applied  to  the  conic 
sections.  We  are  told  that  '  plane  '  loci  are  so  called  because 
they  are  generated  in  a  plane  (but  so  are  some  of  the  higher 
curves,  such  as  the  quadratrijc  and  the  spiral  of  Archimedes), 

ft-nd  that  'solid  loci'  derived  their  name  from  the  fact  that 
they  arise  as  sections  of  solid  figures  (but  so  do  some  higher 
curves,  e.g.  the  spiric  curves  which  are  sections  of  the  onreipa 

or  tore).  But  some  light  is  thrown  on  the  subject  by  the  corre- 

sponding distinction  which  Pappus  draws  between  'plane', 
'  solid  '  and  '  linear  '  problems. 

'Those  problems',  he  says,  'which  can  be  solved  by  means 
of  a  straight  line  and  a  circumference  of  a  circle  may  pro- 

perly be  called  />lanr  ;  for  the  lines  by  means  of  which  such 
problems  are  solved  have  their  origin  in  a  plane.  Those, 
however,  which  are  solved  by  using  for  their  discovery  one  or 
more  of  the  sections  of  the  cone  have  been  called  solid',  for 
their  construction  requires  the  use  of  surfaces  of  solid  figures, 
namely  those  of  cones.  There  remains  a  third  kind  of  pro- 

blem, that  which  is  called  linear ;  for  other  lines  (curves) 
besides  those  mentioned  are  assumed  for  the  construction,  the 
origin  of  which  is  more  complicated  and  less  natural,  as  they 
are  generated  from  more  irregular  surfaces  and  intricate 

movements.' 1 

The  true  significance  of  the  word  '  plane '  as  applied  to 
problems  is  evidently,  not  that  straight  lines  and  circles  have 
their  origin  in  a  plane,  but  that  the  problems  in  question  can 
be  solved  by  the  ordinary  plane  methods  of  transformation  of 

1  Pappus,  iv,  p.  270.  5-17. 
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areas,  manipulation  of  simple  equations  between  areas  and,  in 
particular,  the  application  of  areas ;  in  other  words,  plane 
problems  were  those  which,  if  expressed  algebraically,  depend 
on  equations  of  a  degree  not  higher  than  the  second. 

Problems,  however,  soon  arose  which  did  not  yield  to  '  plane ' 
methods.  One  of  the  first  was  that  of  the  duplication  of  the 
cube,  which  was  a  problem  of  geometry  in  three  dimensions  or 
solid  geometry.  Consequently,  when  it  was  found  that  this 
problem  could  be  solved  by  means  of  conies,  and  that  no 
higher  curves  were  necessary,  it  would  be  natural  to  speak  of 

them  as  *  solid '  loci,  especially  as  they  were  in  fact  produced 
from  sections  of  a  solid  figure,  the  cone.  The  propriety  of  the 
term  would  be  only  confirmed  when  it  was  found  that,  just  as 
the  duplication  of  the  cube  depended  on  the  solution  of  a  pure 
cubic  equation,  other  problems  such  as  the  trisection  of  an 
angle,  or  the  cutting  of  a  sphere  into  two  segments  bearing 
a  given  ratio  to  one  another,  led  to  an  equation  between 
volumes  in  one  form  or  another,  i.e.  a  mixed  cubic  equation, 
and  that  this  equation,  which  was  also  a  solid  problem,  could 
likewise  be  solved  by  means  of  conies. 

Aristaeus's  Solid  Loci 

The  Solid  Loci  of  Aristaeus,  then,  presumably  dealt  with 
loci  which  proved  to  be  conic  sections.  In  particular,  he  must 
have  discussed,  however  imperfectly,  the  locus  with  respect  to 
three  or  four  lines  the  synthesis  of  which  Apollonius  says  that 

he  found  inadequately  worked  out  in  Euclid's  (Ionics.  The 
theorems  relating  to  this  locus  are  enunciated  by  Pappus  in 
this  way : 

'  If  three  straight  lines  be  given  in  position  and  from  one  and 
the  same  point  straight  lines  be  drawn  to  meet  the  three 
straight  lines  at  given  angles,  and  if  the  ratio  of  the  rectangle 
contained  by  two  of  the  straight  lines  so  drawn  to  the  square 
on  the  remaining  one  be  given,  then  the  point  will  lie  on  a 
solid  locus  given  in  position,  that  is,  on  one  of  the  three  conic 
sections.  And  if  straight  lines  be  so  drawn  to  meet,  at  given 
angles,  four  straight  lines  given  in  position,  and  the  ratio  of 
the  rectangle  contained  by  two  of  the  lines  so  drawn  to  the 
rectangle  contained  by  the  remaining  two  be  given,  then  in 
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the  same  way  the  point  will  lie  on  a  conic  section  given  in 

position/  l 

The  reason  why  Apollonius  referred  in  this  connexion  to 

Euclid  and  not  to  Aristaeus  was  probably  that  it  was  Euclid's work  that  was  on  the  same  lines  as  his  own. 

A  very  large  proportion  of  the  standard  properties  of  conies 
admit  of  being  stated  in  the  form  of  locus-theorems;  if  a 
certain  property  holds  with  regard  to  a  certain  point,  then 
that  point  lies  on  a  conic  section.  But  it  may  be  assumed 

that  Aristaeus's  work  was  not  merely  a  collection  of  the 
ordinary  propositions  transformed  in  this  way ;  it  would  deal 
with  new  locus-theorems  not  implied  in  the  fundamental 
definitions  and  properties  of  the  conies,  such  as  those  just 
mentioned,  the  theorems  of  the  three-  and  four-line  locus. 

But  one  (to  us)  ordinary  property,  the  focus-directrix  property, 
was,  as  it  seems  to  me,  in  all  probability  included. 

Focus-directrix  property  known  to  Euclid. 

It  is  remarkable  that  the  directrix  does  not  appear  at  all  in 

Apollonius's  great  treatise1  on  conies.  The  focal  properties  of 
the  central  conies  are  given  by  Apollonius,  but  the  foci  are 
obtained  in  a  different  way,  without  any  reference  to  the 
directrix;  the  focus  of  the,  parabola  does  not  appear  at  all. 

We  may  perhaps  conclude,  that  neither  did  Euclid's  Conies 
contain  the  focus-directrix  property;  for,  according  to  Pappus, 

Apollonius  based  his  first  four  books  on  Euclid's  four  books, 
while  filling  them  out  and  adding  to  them.  Yet  Pappus  gives 

the  proposition  as  a  lemma  to  Euclid's  Harfuce-Lwi,  from which  we  cannot  but  infer  that  it  was  assumed  in  that 

treatise  without  proof.  If,  then,  Euclid  did  not  take  it  from 

his  own  ( 1onic$,  what  more  likely  than  that  it  was  contained 
in  Aristaeus's  Solid  Loei  ? 

Pappus's  enunciation  of  the  theorem  is  to  the  etfect  that  the 
locus  of  a  point  such  that  its  distance,  from  a  given  point  is  in 
a  given  ratio  to  its  distance  from  a  fixed  straight  line  is  a  conic 
section,  and  is  an  ellipse,  a  parabola,  or  a  hyperbola  according 
as  the  given  ratio  is  less  than,  equal  to,  or  greater  than  unity. 

1  Pappus,  vii,  p.  678.  15-24. 
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Proof  from  Pappus. 

The  proof  in  the  case  where  the  given  ratio  is  different  from 
unity  is  shortly  as  follows. 

Let  S  be  the  fixed  point,  SX  the  perpendicular  from  8  on 
the  fixed  line.  Let  P  be  any  point  on  the  locus  and  PN 

p 

Jv 
K  AN  SK'  A1 

A'
 

A         N 

perpendicular  to  SX,  so  that  HP  is  to  NX  in  the  given 
ratio  (e); 

thus  e2 

Take  K  on  SX  such  that 

then,  if  K'  be  another  point  on  SN,  produced  it'  necessary, 
such  that  NK  =  NK', 

:  NK2 
=  PN*:XK.XK'. 

The  positions  of  N,  K,  K'  change  with  the  position  of  P. 
If  A,  A'  be  the  points  on  which  N  falls  when  K,  K'  coincide 
with  X  respectively,  we  have 

'=  SA'  :  A'X. 

Therefore     8X:BA  =  SK  :SN=(l+e):e, 

whence  (1  +e):e  =  (SX-SK)-.(SA-SN) 
=  XK:AN. 
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Similarly  it  can  be  shown  that 

(1  ~e):e  =  XK':A'N. 

By  multiplication,   XK .  XK':  AN.  A'N  =  (1  -  e2) :  e2 ; 
and  it  follows  from  above,  ex  aequuli,  that 

PN*:  AN.  A'N  =  (I  <*#):!, 

which  is  the  property  of  a  central  conic. 

When  e  <  1,  A  and  A'  lie  on  the  same  side  of  X,  while 
X  lies  on  A  A',  and  the  conic  is  an  ellipse ;  when  e  >  1,  A  and 
A'  lie  on  opposite  sides  of  X,  while  N  lies  on  A'-A  produced, 
and  the  conic  is  a  hyperbola. 

The  case  where  e,  =  1  and  the  curve  is  a  parabola  is  easy 
and  need  not  be  reproduced  here. 

The  treatise  would  doubtless  contain  other  loci  of  types 
similar  to  that  which,  as  Pappus  says,  was  used  for  the 
trisection  of  an  angle :  I  refer  to  the  proposition  already 
quoted  (vol.  i,  p.  243)  that,  if  A,  B  are  the  base  angles  of 
a  triangle  with  vertex  P,  and  L  11  =  2 /.A,  the  locus  of  P 
is  a  hyperbola  with  eccentricity  2. 

Propositions  included  in  Euclid's  Conies. 

That  Euclid's  Conic*  covered  much  of  the  same  ground  as 
the  first  three  Books  of  Apollonius  is  clear  from  the  language 
of  Apollonius  himself.  Confirmation  is  forthcoming  in  the 

quotations  by  Archimedes  of  propositions  (1)  'proved  in 
the  elements  of  conies ',  or  (2)  assumed  without  remark  as 
already  known.  The  former  class  include  the  fundamental 
ordinate  properties  of  the  conies  in  the  following  forms : 

(1)  for  the  ellipse, 

PN* :  AN.  A'N  =  P'N'* :  AN'.  A'N'  =  BU* :  AC* ; 

(2)  for  the  hyperbola, 

PN* :  AN.  A'N  =  P'.V"2 :  AN' .  A'N' ; 

(3)  for  the  parabola,     PN*  =  pa  .AN', 
the  principal  tangent  properties  of  the  parabola ; 

the  property  that,  if  there  are  two  tangents  drawn  from  one 
point   to  any  conic  section  whatever,  and  two  intersecting 
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chords  drawn  parallel  to  the  tangents  respectively,  the  rect- 
angles contained  by  the  segments  of  the  chords  respectively 

are  to  one  another  as  the  squares  of  the  parallel  tangents  ; 

the  by  no  means  easy  proposition  that,  if  in  a  parabola  the 

diameter  through  P  bisects  the  chord  QQ'  in  F,  and  QD  is 
drawn  perpendicular  to  PF,  then 

where  pa  is  the  parameter  of  the  principal  ordinatcs  and  p  is 
the  parameter  of  the  ordinates  to  the  diameter  P  V. 

Conic  sections  in  Archimedes. 

But  we  must  equally  regard  Euclid's  Conies  as  the  source 
from  which  Archimedes  took  most  of  the  other  ordinary 

properties  of  conies  which  he  assumes  without  proof.  Before 

summarizing  these  it  will  be  convenient  to  refer  to  Archi- 

medes's  terminology.  We  have  seen  that  the  axes  of  an 
ellipse  are  not  called  axes  but  diameters,  greater  and  lesser  ; 

the  axis  of  a  parabola  is  likewise  its  diameter  and  the  other 

diameters  are  'lines  parallel  to  the  diameter',  although  in 
a  segment  of  a  parabola  the  diameter  bisecting  the  base  is 

the  '  diameter  '  of  the  segment.  *  The  two  '  diameters  '  (axes) 
of  an  ellipse  are  conjugate.  In  the  case  of  the  hyperbola  the 

1  diameter'  (axis)  is  the  portion  of  it  within  the  (single-branch) 

hyperbola  ;  the  centre  is  not  culled  the  '  centre  ',  but  the  point 
in  which  the  '  nearest  lines  to  the  section  of  an  obtuse-angled 

cone'  (the  asymptotes)  meet;  the  half  of  the  axis  (OA)  is 
1  the  line  adjacent  to  the  axis  '  (of  the  hyperboloid  of  revolution 

obtained  by  making  the  hyperbola  revolve  about  its  '  diameter  '), 
and  A'  A  is  double  of  this  line.  Similarly  CP  is  the  line 

'  adjacent  to  the  axis  J  of  a  segment  of  the  hyperboloid,  and 
P'P  double  of  this  line.  It  is  clear  that  Archimedes  did  not 

yet  treat  the  two  branches  of  a  hyperbola  as  forming  one 
curve  ;  this  was  reserved  for  Apollonius. 

The  main  properties  of  conies  assumed  by  Archimedes  in 

addition  to  those  above  mentioned  may  be  summarized  thus. 

Central  Conies. 

1.  The  property  of  the  ordinates  to  any  diameter  PP', 
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In  the  case  of  the  hyperbola  Archimedes  does  not  give 
any  expression  for  the  constant  ratios  PN*:AN.A'N  and 
QV*:PV.P'V  respectively,  whence  we  conclude  that  he  had 
no  conception  of  diameters  or  radii  of  a  hyperbola  not  meeting the  curve. 

2.  The  straight  line  drawn  from  the  centre  of  an  ellipse,  or 
the  point  of  intersection  of  the  asymptotes  of  a  hyperbola, 
through  the  point  of  contact  of  any  tangent,  bisects  all  chords 
parallel  to  the  tangent. 

3.  In  the  ellipse  the  tangents  at  the  extremities  of  either  of  two 
conjugate  diameters  are  both  parallel  to  the  other  diameter. 
4.  If  in  a  hyperbola  the  tangent  at  P  meets  the  transverse 

axis  in  ri\  and  PN  is  the  principal  ordinate,  AN  >  AT.     (It 
is  not  easy  to  see  how  this  could  be  proved  except  by  means 
of    the    general    property  that,  if    PP'  be   any  diameter  of 
a  hyperbola,  QV  the  ordinate  to  it  from  Q,  and  QT  the  tangent 

at  Q  meeting  P*P  in  77,  then  TP :  TP'  =  PV:  1>'V.) 
5.  If  a  cone,  right  or  oblique,  be  cut  by  a  plane  meeting  all 
the  generators,  the  section  is  either  It  circle  or  an  ellipse. 
<>.  If  a  line  between  the  asymptotes  meets  a  hyperbola  and 
is  bisected  at  the  point  of  concourse,  it  will  touch  the 
hyperbola. 

7.  If  x,  y  are  straight  lines  drawn,  in  fixed  directions  respec- 
tively, from  a  point  on  a  hyperbola  to  meet  the  asymptotes, 

the  rectangle  xy  is  constant. 

8.  If  7JaV  be  the  principal  ordinate  of  P,  a  point  on  an  ellipse, 
and  if  iYP  be  produced  to  meet  the  auxiliary  circle  in  p,  the 
ratio  pN:l*N  is  constant. 
9.  The   criteria   of   similarity    of    conies    and    segments   of 
conies  are  assumed  in  practically  the  same  form  as  Apollonius 
gives  them. 

The  Parabola. 

1.  The  fundamental  properties  appear  in  the  alternative  forms 

PN?  :  /"JV=  AN:  AN',  or  P.V2  =  pa  .  AN, 

QV*:$V'*=PV:PV',  or   QV*=p.PV. 

Archimedes  applies  the  term  parameter  (a  wap9  $LV  Svvavrou 
at  airo  ray  ro/zay)  to  the  parameter  of  the  principal  ordinates 
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only :  p  is  simply  the  line  to  which  the  rectangle  equal  to  QF2 
and  of  width  equal  to  PV  is  applied. 

2.  Parallel  chords  are  bisected  by  one  straight  line  parallel  to 
the  axis,  which  passes  through  the  point  of  contact  of  the 
tangent  parallel  to  the  chords. 
3.  If  the  tangent  at  Q  meet  the  diameter  P V  in  T,  and  QV  be 
the  ordinate  to  the  diameter,  P  V  =  PT. 

By  the  aid  of  this  proposition  a  tangent  to  the  parabola  can 
be  drawn  (a)  at  a  point  on  it,  (6)  parallel  to  a  given  chord. 

4.  Another  proposition  assumed  is  equivalent  to  the  property 
of  the  subnormal,  NG  =  -|/>tt. 

5.  If  QQ'  be  a  chord  of  a  parabola  perpendicular  to  the  axis 
and  meeting  the  axis  in  My  while  QVq  another  chord  parallel 
to  the  tangent  at  P  meets  the  diameter  through  P  in  V,  and 
RIIK  is  the  principal  ordinate  of  any  point  R  on  the  curve 
meeting  PV  in  //  and  the  axis  in  K,  then  PViPJI  >   or 

=  MK:KA  ;  'for  this  is  proved1  (0/6  Floating  Bodies,  II.  6). 
Where  it  was  proved  we  do  not  know;  the  proof  is  not 

altogether  easy.1 
6.  All  parabolas  are  similar. 

As  we  have  seen,  Archimedes  had  to  specialize  in  the 
parabola  for  the  purpose  of  his  treatises  on  the  Quadrature 
of  the  Parabola,  Conoids  and  tipherouls,  Floating  Bodies, 
Book  II,  and  Plane  Equilibriums,  Book  II ;  consequently  he 
had  to  prove  for  himself  a  number  of  special  propositions,  which 
have  already  been  given  in  their  proper  places.  A  few  others 
are  assumed  without  proof,  doubtless  as  being  easy  deductions 
from  the  prgpositions  which  he  does  prove.  They  refer  mainly 
to  similar  parabolic  segments  so  placed  that  their  buses  are  in 
one  straight  line  and  have  one  common  extremity. 

1.  If  any  three  similar  and  similarly  situated  parabolic 
segments  JBQ19  £Q2,  BQ.^  lying  along  the  same  straight  line 
as  bases  (BQl  <  BQ2  <  BQ3),  and  if  E  be  any  point  on  the 
tangent  at  B  to  one  of  the  segments,  and  EO  a  straight  line 
through  E  parallel  to  the  axis  of  one  of  the  segments  and 
meeting  the  segments  in  jR3,  JJ2,  Rl  respectively  and  BQZ 
in  0,  then 

RAR2 :  M.K,  =  (Q,Q3 :  BQ3) .  (BQl :  Q, Q2). 

1  See  Apollonius  ofPerga,  ed.  Heath,  p,  liv. 
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2.  If  two  similar  parabolic  segments  with  bases  BQlt  BQ2  be 
placed  as  in  the  last  proposition,  and  if  BR1R2  be  any  straight 
line  through  B  meeting  the  segments  in  Rl  ,  /J2  respectively, 

These  propositions  are  easily  deduced  from  the  theorem 
proved  in  the  Quadrature  of  the  Parabola,  that,  if  through  Ey 
a  point  on  the  tangent  at  B,  a  straight  line  ERO  be  drawn 
parallel  to  the  axis  and  meeting  the  curve  in  R  and  any  chord 
BQ  through  B  in  0,  then 

3.  On  the  strength  of  these  propositions  Archimedes  assumes 
the  solution  of  the  problem  of  placing,  between  two  parabolic 
segments  similar  to  one,  another  and  placed  as  in  the  above 
propositions,  a  straight  lino  of  a  given  length  and  in  a  direction 
parallel  to  the  diameters  of  either  parabola. 

Euclid  and  Archimedes  no  doubt  adhered  to  the  old  method 

of  regarding  the  three  conies  as  arising  from  sections  of  three 

kinds  of  right  circular  cones  (right-angled,  obtuse-angled  arid 
acute-angled)  by  planes  drawn  in  each  case  at  right  angles  to 
a  generator  of  the  cone.  Yet  neither  Euclid  nor  Archimedes 

was  unaware  that  the  'section  of  an  acute-angled  cone',  or 
ellipse,  could  bo  otherwise  produced.  Euclid  actually  says  in 

his  Pkaenomena  that  'if  a  cone  or  cylinder  (presumably  right) 
be  cut  by  a  plane  not  parallel  to  the  base,  the  resulting  section 
is  a  section  of  an  acute-angled  cone  which  is  similar  to 

a  dvpeos  (shield)  '.  Archimedes  know  that  the  non-circular 
sections  even  of  an  oblique  circular  cono  made  by  planes 
cutting  all  the  generators  are  ellipses  ;  for  he  shows  us  how, 
given  an  ellipse,  to  draw  a  cone  (in  general  oblique)  of  which 
it  is  a  section  and  which  has  its  vertex  outside  the  plane 
of  the  ellipse  on  any  straight  line  through  the  centre  of  the 
ellipse  in  a  plane  at  right  angles  to  the  ellipse  and  passing 
through  one  of  its  axes,  whether  the  straight  line  is  itself 
perpendicular  or  not  perpendicular  to  the  plane  of  the  ellipse  ; 
drawing  a  cone  in  this  case  of  course  means  finding  the  circular 
sections  of  the  surface  generated  by  a  straight  line  always 
passing  through  the  given  vertex  and  all  the  several  points  of 
the  given  ellipse.  The  method  of  proof  would  equally  serve 
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for  the  other  two  conies,  the  hyperbola  and  parabola,  and  we 
can  scarcely  avoid  the  inference  that  Archimedes  was  equally 
aware  that  the  parabola  and  the  hyperbola  could  be  found 
otherwise  than  by  the  old  method. 

The  first,  however,  to  base  the  theory  of  conies  on  the 
production  of  all  three  in  the  most  general  way  from  any 
kind  of  circular  cone,  right  or  oblique,  was  Apollonius,  to 
whose  Work  we  now  come. 

B.    APOLLONIUS  OF  PERGA 

Hardty  anything  is  known  of  the  life  of  Apollonius  except 
that  he  was  born  at  Perga,  in  Pamphylia,  that  he  went 
when  quite  young  to  Alexandria,  where  ho  studied  with  the 
successors  of  Euclid  and  remained  a  long  time,  and  that 
he  flourished  (yeyoi/e)  in  the  reign  of  Ptolemy  Eucrgetes 
(247-222  B.C.).  Ptolemaeus  Chennus  mentions  an  astronomer 
of  the  same  name,  who  was  famous  during  the  reign  of 
Ptolemy  Philopator  (222  205  B.C.),  and  it  is  clear  that  our 
Apollonius  is  meant.  As  Apollonius  dedicated  the  fourth  and 

following  Books  of  his  Comes  to  King  Attains  I  (241-197  B.C.) 
we  have  a  confirmation  of  his  approximate  date.  He  was 
probably  born  about  262  B.C.,  or  25  years  after  Archimedes. 
We  hear  of  a  visit  to  Pergamum,  where  he  made  the  acquain- 

tance of  Eudemus  of  Pergamum,  to  whom  he  dedicated  the 
first  two  Books  of  the  Conies  in  the  form  in  which  they  have 
come  down  to  us ;  they  were  the  first  two  instalments  of  a 
second  edition  of  the  work. 

The  text  of  the  Comes. 

The  Conies  of  Apollonius  was  at  once  recognized  as  the 
authoritative  treatise  on  the  subject,  and  later  writers  regu- 

larly cited  it  when  quoting  propositions  in  conies.  Pappus 
wrote  a  number  of  lemmas  to  it ;  Serenus  wrote  a  commen- 

tary, as  also,  according  to  Suidas,  did  Hypatia.  Eutocius 
(fl.  A.D.  500)  prepared  an  edition  of  the  first  four  Books  and 
wrote  a  commentary  on  them  ;  it  is  evident  that  he  had  before 
him  slightly  differing  versions  of  the  completed  work,  and  he 
may  also  have  had  the  first  unrevised  edition  which  had  got 
into  premature  circulation,  as  Apollonius  himself  complains  in 
the  Preface  to  Book  I. 
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The  edition  of  Eutocius  suffered  interpolations  which  were 
probably  made  in  the  ninth  century  when,  under  the  auspices 
of  Leon,  mathematical  studies  were  revived  at  Constantinople ; 
for  it  was  at  that  date  that  the*  uncial  manuscripts  were 
written,  from  which  our  best  manuscripts,  V  (=  Cod.  Vat.  gr. 
206  of  the  twelfth  to  thirteenth  century)  for  the  Conies,  and 
W  (=  Cod.  Vat.  gr.  204  of  the  tenth  century)  for  Eutocius, 
were  copied. 

Only  the  first  four  Books  survive  in  Greek;  the  eighth 
Book  is  altogether  lost,  but  the  three  Books  V-VII  exist  in 
Arabic.  It  was  Ahmad  and  al-Hasan,  two  sons  of  Muh.  b. 
Musa  b.  Shakir,  who  first  contemplated  translating  the  Conies 
into  Arabic.  They  were  at  first  deterred  by  the  bad  state  of 
their  manuscripts;  but  afterwards  Ahmad  obtained  in  Syria 

a  copy  of  Kutocius's  edition  of  Books  1-IV  and  had  them 
translated  by  Hilal  b.  Abl  Ililal  al-Himsi  (died  883/4). 
Books  V-V1I  were  translated,  also  for  Ahmad,  by  Thabit 

b.  Qurra(  826  901)  from  another  manuscript.  Nasiraddin's 
recension  of  this  translation  of  the  seven  Books,  made  in  1248, 
is  represented  by  two  copies  in  the  Bodleian,  one  of  the  year 

1301  (No.  943)  and  the  other  of  1626  containing  Books  V-VII 
only  (No.  885). 

A  Latin  translation  of  Books  I-IV  was  published  by 
Johannes  Baptista  Memus  at  Venice  in  1537  ;  but  the  first 
important  edition  was  the  translation  by  Commandinus 
(Bologna,  1566),  which  included  the  lemmas  of  Pappus  and 
the  commentary  of  Eutocius,  and  was  the  first  attempt  to 
make  the  book  intelligible  by  means  of  explanatory  notes. 
For  the  Greek  text  Commandinus  used  Cod.  Marcianus  518 

and  perhaps  also  Vat.  gr.  205,  both  of  which  were  copies  of  V, 
but  not  V  itself. 

The  first  published  version  of  Books  V-VII  was  a  Latin 
translation  by  Abraham  Echellensis  and  Giacomo  Alfonso 
Borelli  (Florence,  1661)  of  a  reproduction  of  the  Books  written 

in  983  by  Abu  '1  Fath  al-Isfahiim. 
The  editio  .princeps  of  the  Greek  text  is  the  monumental 

work  of  Halley  (Oxford,  1710).  The  original  intention  was 
that  Gregory  should  edit  the  four  Books  extant  in  Greek,  with 

Eutocius's  commentary  and  a  Latin  translation,  and  that 
Halley  should  translate  Books  V-VI1  from  the  Arabic  into 
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Latin.  Gregory,  however,  died  while  the  work  was  proceeding, 
and  Halley  then  undertook  responsibility  for  the  whole.  The 
Greek  manuscripts  used  were  two,  one  belonging  to  Savile 
and  the  other  lent  by  D.  Baynard  ;  their  whereabouts  cannot 
apparently  now  be  traced,  but  they  were  both  copies  of  Paris, 
gr.  2356,  which  was  copied  in  the  sixteenth  century  from  Paris, 
gr.  2357  of  the  sixteenth  century,  itself  a  copy  of  V.  For  the 
three  Books  in  Arabic  Halley  used  the  Bodleian  MS.  885,  but 

also  consulted  (a)  a  compendium  of  the  three  Books  by  'Abdel- 
melik  al-Shlrazi  (twelfth  century),  also  in  the  Bodleian  (913), 

(b)  Borelli's  edition,  and  (c)  Bodl.  943  above  mentioned, by  means 
of  which  he  revised  and  corrected  his  translation  when  com- 

pleted. Halley's  edition  is  still,  so  far  as  I  know,  the  only 
available  source  for  Books  V-VII,  except  for  the  beginning  of 
Book  V  (up  to  Prop.  7)  which  was  edited  by  L.  Nix  (Leipzig, 
1889). 

The  Greek  text  of  Books  I-IV  is  now  available,  with  the 
commentaries  of  Eutocius,  the  fragments  of  Apollonius,  &c., 

in  the  definitive  edition  of  Heiberg  (Teubner,  1891-3). 

Apollonius's  own  account  of  the  Conies. 
A  general  account  of  the  contents  of  the  great  work  which, 

according  to  Geminus,  earned  for  him  the  title  of  the  '  great 
geometer'  cannot  be  better  given  than  in  the  words  of  the 
writer  himself.  The  prefaces  to  the  several  Books  contain 
interesting  historical  details,  and,  like  the  prefaces  of  Archi- 

medes, state  quite  plainly  and  simply  in  what  way  the 
treatise  differs  from  those  of  his  predecessors,  and  how  much 
in  it  is  claimed  as  original.  The  strictures  of  Pappus  (or 
more  probably  his  interpolator),  who  accuses  him  of  being  a 
braggart  and  unfair  towards  his  predecessors,  are  evidently 
unfounded.  The  prefaces  are  quoted  by  v.  Wilamowitz- 
Moellendorff  as  specimens  of  admirable  Greek,  showing  how 
perfect  the  style  of  the  ̂   great  mathematicians  could  be 
when  they  were  free  from  the  trammels  of  mathematical 
terminology. 

Book  I.     General  Preface. 

Apollonius  to  Eudemus,  greeting. 
If  you  are  in  good  health  and  things  are  in  other  respects 

as  you  wish,  it  is  well ;  with  rne  too  things  are  moderately 
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well.  During  the  time  I  spent  with  you  at  Pergamum 
I  observed  your  eagerness  to  become  acquainted  with  my 
work  in  conies;  I  am  therefore  sending  you  the  first  book, 
which  I  have  corrected,  and  I  will  forward  the  remaining 
books  when  I  have  finished  them  to  my  satisfaction.  I  dare 
say  you  have  not  forgotten  my  telling  you  that  I  undertook 
the  investigation  of  this  subject  at  the  request  of  Naucrates 
the  geometer,  at  the  time  when  he  came  to  Alexandria  and 
stayed  with  me,  and,  when  I  had  worked  it  out  in  eight 
books,  I  gave  them  to  him  at  once,  too  hurriedly,  because  he 
was  on  the  point  of  sailing;  they  had  therefore  not  been 
thoroughly  revised,  indeed  I  had  put  down  everything  just  as 
it  occurred  to  me,  postponing  revision  till  the  end.  Accord- 

ingly I  now  publish,  as  opportunities  serve  from  time  to  time, 
instalments  of  the  work  as  they  are  corrected.  In  the  mean- 

time it  has  happened  that  some  other  persons  also,  among 
those  whom  I  have  met,  have  got  the  first  and  second  books 
before  they  were  corrected ;  do  not  be  surprised  therefore  if 
you  come  across  them  in  a  different  shape. 

Now  of  the  eight  books  the  first  four  form  an  elementary 
introduction.  The  first  contains  the  modes  of  producing  the 
three  sections  and  the  opposite  branches  (of  the  hyperbola), 
arid  the  fundamental  properties  subsisting  in  them,  worked 
out  more  fully  and  generally  than  in  th«  writings  of  others. 
The  second  book  contains  the  properties  of  the  diameters  and 
tho  axes  of  the  sections  as  well  as  the  asymptotes,  with  other 
things  generally  and  necessarily  used  for  determining  limits 

of  possibility  (&  op  *  07/01') ;  and  what  I  mean  by  diameters 
and  axes  respectively  you  will  learn  from  this  book.  The 
third  book  contains  many  remarkable  theorems  useful  for 
tho  syntheses  of  solid  loci  and  for  dioriumi ;  the  most  and 
prettiest  of  those  theorems  are  new,  and  it  was  their  discovery 
which  made  me  aware  that  Euclid  did  not  work  out  the 
synthesis  of  the  locus  with  rospect  to  throe  and  four  lines,  but 
only  a  chance  portion  of  it,  and  that  not  successfully ;  for  it 
was  not  possible  for  the  said  synthesis  to  be  completed  without 
the  aid  of  the  additional  theorems  discovered  by  me:  The 
fourth  book  shows  in  how  many  ways  the  sections  of  cones 
can  meet  one  another  and  the  circumference  of  a  circle ;  it 
contains  other  things  in  addition,-  none  of  which  have  been 
discussed  by  earlier  writers,  namely  the  questions  in  how 
many  points  a  section  of  a  cone  or  a  circumference  of  a  circle 
can  meet  [a  double-branch  hyperbola,  or  two  double-branch 
hyperbolas  can  meet  one  another]. 

The  rest  of  the  books  are  more  by  way  of  surplusage 
(7T€piov(ria<rTiK<oT€pa) :  one  of  them  deals  somewhat  fully  with 
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minima  and  maxima,  another  with  equal  and  similar  sections 
of  cones,  another  with  theorems  of  the  nature  of  determina- 

tions of  limits,  and  the  last  with  determinate  conic  problems. 

But  of  course,  when  all  of  them  are  published,  it  will  be  open* 
to  all  who  read  them  to  form  their  own  judgement  about  them, 
according  to  their  own  individual  tastes.  Farewell. 

The  preface  to  Book  II  merely  says  that  Apollonius  is 
sending  the  second  Book  to  Eudemus  by  his  son  Apollomus, 
and  begs  Eudemus  to  communicate  it  to  earnest  students  of  the 
subject,  and  in  particular  to  Philonides  the  geometer  whom 
Apollonius  had  introduced  to  Eudemus  at  Ephesus.  There  is 
no  preface  to  Book  III  as  we  have  it,  although  the  preface  to 
Book  IV  records  that  it  also  was  sent  to  Eudemus. 

Preface  to  Book  IV. 

Apollonius  to  Attains,  greeting. 
Some  time  ago  I  expounded  and  sent  to  Eudemus  of  Per- 

gamum  the  first  three  books  of  my  conies  which  I  have 
compiled  in  eight  books,  but,  as  he  has  passed  away,  I  have 
resolved  to  dedicate  the  remaining  books  to  you  because  of 
your  earnest  desire  to  possess  my  works.  I  am  sending  you 
on  this  occasion  the  fourth  book.  It  contains  a  discussion  of 
the  question,  in  how  many  points  at  most  it  is  possible  for 
sections  of  cones  to  meet  one  another  and  the  circumference 
of  a  circle,  on  the  assumption  that  they  do  not  coincide 
throughout,  and  further  in  how  many  points  at  most  a 
section  of  a  cone  or  the  circumference  of  a  circle  can  meet  the 

hyperbola  with  two  branches,  [or  two  double-branch  hyper- 
bolas can  meet  one  another];  and,  besides  these  questions, 

the  book  considers  a  number  of  others  of  a  similar  kind. 

Now  the  first  question  Conon  expounded  to  Thrasydaeus,  with- 
out, however,  showing  proper  mastery  of  the  proofs,  and  on 

this  ground  Nicoteles  of  Gyrene,  not  without  reason,  fell  foul 
of  him.  The  second  matter  has  merely  been  mentioned  by 
Nicoteles,  in  connexion  with  his  controversy  with  Conon, 
as  one  capable  of  demonstration;  but  I  have  not  found  it 
demonstrated  either  by  Nicoteles  himself  or  by  any  one  else. 
The  third  question  and  the  others  akin  to  it  I  have  not  found 
so  much  as  noticed  by  any  one.  All  the  matters  referred  to, 
which  I  have  not  found  anywhere,  required  for  their  solution 
many  and  various  novel  theorems,  most  of  which  I  have, 
as  a  matter  of  fact,  set  out  in  the  first  three  books,  while  the 
rest  are  contained  in  the  present  book.  These  theorems  are 
of  considerable  use  both  for  the  syntheses  of  problems  and  for 



THE   CONWtt  131 

diorismi*  Nicoteles  indeed,  on  account  of  his  controversy 
with  Conon,  will  not  have  it  that  any  use  can  be  made  of  the 

discoveries  of  Corion  for  the  purpose  of  diorismi',  he  is, 
however,  mistaken  in  this  opinion,  for,  even  if  it  is  possible, 
without  using  them  at  all,  to  arrive  at  results  in  regard  to 
limits  of  possibility,  yet  they  at  all  events  afford  a  readier 
means  of  observing  some  things,  e.g.  that  several  or  so  many 
solutions  am  possible,  or  again  that  no  solution  is  possible; 
and  such  foreknowledge  secures  a  satisfactory  basis  for  in- 

vestigations, while  the  theorems  in  question  are  again  useful 
for  the  analyses  of  dioriami.  And,  even  apart  from  such 
usefulness,  they  will  be  found  worthy  of  acceptance  for  the 
sake  of  the  demonstrations  themselves,  just  as  we  accept 
many  other  things  in  mathematics  for  this  reason  and  for 
no  other. 

The  prefaces  to  Books  V  Vll  now  to  be  given  are  repro- 
duced for  Book  V  from  the  translation  of  L.  Nix  and  for 

Books  VI,  VII  from  that  of  Halley. 

Preface  to  Book  V. 

Apollonius  to  Attalus,  greeting. 
In  this  fifth  book  I  have  laid  down  propositions  relating  to 

maximum  arid  minimum  straight  lines.  You  must  know 
that  my  predecessors  and  contemporaries  have  only  super- 

ficially touched  upon  the  investigation  of  the  shortest  lines, 
and  have  only  proved  what  straight  lines  touch  the  sections 
and.  conversely,  what  properties  they  have  in  virtue  of  which 
they  are  tangents.  For  my  part,  1  have  proved  these  pro- 

perties in  the  first  book  (without  however  making  any  use,  in 
the  proofs,  of  the  doctrine  of  the  shortest  lines),  inasmuch  as 
1  wished  to  place  them  in  close  connexion  with  that  part 
of  the  subject  in  which  1  treat  of  the  production  of  the  three 
conic  sections,  in  order  to  show  at  the  same  time  that  in  each 
of  the  three  sections  countless  properties  and  necessary  results 
appear,  as  they  do  with  reference  to  the  original  (transverse) 
diameter.  The  propositions  in  which  I  discuss  the  shortest 
lines  1  have  separated  into  classes,  and  I  have  dealt  with  each 
individual  case  by  careful  demonstration ;  I  have  also  con- 

nected the  investigation  of  them  with  the  investigation  of 
the  greatest  lines  above  mentioned,  because  1  considered  that 
those  who  cultivate  this  science  need  them  for  obtaining 
a  knowledge  of  the  analysis,  and  determination  of  limits  of 
possibility,  of  problems  as  well  as  for  their  synthesis:  in 
addition  to  which,  the  subject  is  one  of  those  which  seem 
worthy  of  study  for  their  own  sake.  Farewell. 
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Preface  to  Book  VI. 

Apollonius  to  Attalus,  greeting. 
I  send  you  the  sixth  book  of  the  conies,  which  embraces 

propositions  about  conic  sections  and  segments  of  conies  equal 
and  unequal,  similar  and  dissimilar,  besides  some  other  matters 
left  out  by  those  who  have  preceded  me.  In  particular,  you 
will  find  in  this  book  how,  in  a  given  right  cone,  a  section  can 
be  cut  which  is  equal  to  a  given  section,  and  how  a  right  cone 
can  be  described  similar  to  a  given  cone  but  such  as  to  contain 
a  given  conic  section.  And  these  matters  in  truth  I  have 
treated  somewhat  more  fully  and  clearly  than  those  who  wrote 
before  my  time  on  these  subjects.  Farewell. 

Preface  to  Book  VII. 

Apollonius  to  Attalus,  greeting. 
I  send  to  you  with  this  letter  the  seventh  book  on  conic 

sections.  In  it  are  contained  a  large  number  of  new  proposi- 
tions concerning  diameters  of  sections  and  the  figures  described 

upon  them  ;  and  all  these,  propositions  have  their  uses  in  many 
kinds  of  problems,  especially  in  the  determination  of  the 
limits  of  their  possibility.  Several  examples  of  those  occur 
in  the  determinate  conic  problems  solved  and  demonstrated 
by  me  in  the  eighth  book,  which  is  by  way  of  an  appendix, 
and  which  I  will  make  a  point  of  sending  to  you  as  soon 
as  possible.  Farewell. 

Extent  of  claim  to  originality. 

We  gather  from  these  prefaces  a  very  good  idea  of  the 
plan  followed  by  Apollonius  in  the  arrangement  of  the  sub- 

ject and  of  the  extent  to  which  he  claims  originality.  The 
first  four  Books  form,  as  he  says,  an  elementary  introduction, 
by  which  he  means  an  exposition  of  the  elements  of  conies, 
that  is,  the  definitions  and  the  fundamental  propositions 
which  are  of  the  most  general  use  and  application ;  the  term 

'  elements '  is  in  fact  used  with  reference  to  conies  in  exactly 
the  same  sense  as  Euclid  uses  it  to  describe  his  great  work. 
The  remaining  Books  beginning  with  Book  V  are  devoted  to 

more  specialized  investigation  of  particular  parts  of  the  sub- 
ject.  It  is  only  for  a  very  small  portion  of  the  contend  of  the 
treatise  that  Apollonius  claims  originality ;  in  the  first  three 
Books  the  claim  is  confined  to  certain  propositions  bearing  on 

the  '  locus  with  respect  to  three  or  four  lines ' ;  and  in  the 
fourth  Book  (on  the  number  of  points  at  which  two  conies 
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may  intersect,  touch,  or  both)  the  part  which  is  claimed 
as  new  is  the  extension  to  the  intersections  of  the  parabola, 

ellipse,  and  circle  with  the  double-branch  hyperbola,  and  of 
two  double-branch  hyperbolas  with  one  another,  of  the  in- 

vestigations which  had  theretofore  only  taken  account  of  the 

single-branch  hyperbola.  Even  in  Book  V,  the  most  remark- 

able of  all,  Apolloiiius  does  not  say  that  normals  as  '  the  shortest 
lines '  had  not  been  considered  before,  but  only  that  they  had 
been  superficially  touched  upon,  doubtless  in  connexion  with 
propositions  dealing  with  the  tangent  properties.  He  explains 
that  lie  found  it  convenient  to  treat  of  the  tangent  properties, 
without  any  reference  to  normals,  in  the  first  Book  in  order 

to  connect  them  with  the  chord  properties.  It  is  clear,  there- 
fore, that  in  treating  normals  as  maxima  and  minima,  and  by 

themselves,  without  any  reference  to  tangents,  as  he  does  in 
Book  V,  he  was  making  an  innovation ;  and,  in  view  of  the 
extent  to  which  the  theory  of  normals  as  maxima  and  minima 
is  developed  by  him  (in  77  propositions),  there  is  110  wonder 
that  he  should  devote  a  whole  Book  to  the  subject.  Apart 
from  the  developments  in  Books  III,  IV,  V,  just  mentioned, 
and  the  numerous  new  propositions  in  Book  VII  with  the 
problems  thereon  which  formed  the  lost  Book  VI11,  Apollonius 
only  claims  to  have  treated  the  whole  subject  more  fully  and 
generally  than  his  predecessors. 

Great  generality  of  treatment  from  the  beginning. 

So  far  from  being  a  braggart  and  taking  undue  credit  to 

himself  for  the  improvements  which  he  made  upon  his  prede- 
cessors, Apollonius  is,  if  anything,  too  modest  in  his  descrip- 

tion of  his  personal  contributions  to  the  theory  of  conic 

sections.  For  the  '  more  fully  and  generally '  of  his  first 
preface  scarcely  conveys  an  idea  of  the  extreme  generality 
with  which  the  whole  subject  is  worked  out.  This  character- 

istic generality  appears  at  the  very  outset. 

Analysis  of  the  Conies. 
Book  1. 

Apollonius  begins  by  describing  a  double  oblique  circular 
cone  in  the  most  general  way.  Given  a  circle  and  any  point 
outside  the  plane  of  the  circle  and  in  general  not  lying  on  the 
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straight  line  through  the  centre  of  the  circle  perpendicular  to 
its  plane,  a  straight  line  passing  through  the  point  and  pro- 

duced indefinitely  in  both  directions  is  made  to  move,  while 

always  passing  through  the  fixed  point,  so  as  to  pass  succes- 
sively through  all  the  points  of  the  circle ;  the  straight  line 

thus  describes  a  double  cone  which  is  in  general  oblique  or,  as 
Apollonius  calls  it,  scalene.  Then,  before  proceeding  to  the 
geometry  of  a  cone,  Apollonius  gives  a  number  of  definitions 
which,  though  of  course  only  required  for  conies,  are  stated  us 
applicable  to  any  curve. 

1  In  any  curve,'  says  Apollonius,  '  I  give  the  name  diameter  to 
any  straight  line  which,  drawn  from  the  curve,  bisects  all  thu 
straight  lines  drawn  in  the  curve  (chords)  parallel  to  any 
straight  line,  and  I  call  the  extremity  of  the  straight  line 
(i.e.  the  diameter)  which  is  at  the  curve  a  vertex  of  the  curve 
and  each  of  the  parallel  straight  lines  (chords)  an  ordinate 
(lit.  drawn  ordinate- wise,  T€ray/xej>a>y  Kar^\6ai)  to  the diameter/ 

He  then  extends  these  terms  to  a  pair  of  curves  (the  primary 
reference  being  to  the  double-branch  hyperbola),  giving  the 
name  transverse  diameter  to  any  straight  line  bisecting  all  the 
chords  in  both  curves  which  are  parallel  to  a  given  straight 
line  (this  gives  two  vertices  where  the  diameter  meets  the 
curves  respectively),  and  the  name  erect  dmmeter  (opOia)  to 
any  straight  line  which  bisects  all  straight  lines  drawn 
between  one  curve  and  the  other  which  are  parallel  to  any 
straight  line;  the  ordinates  to  any  diameter  are  again  the 
parallel  straight  lines  bisected  by  it.  Conjugate  diameters  in 
any  curve  or  pair  of  curves  are  straight  lines  each  of  which 
bisects  chords  parallel  to  the  other.  Axes  are  the  particular 
diameters  which  cut  at  right  angles  the  parallel  chords  which 
they  bisect ;  and  conjugate  axes  are  related  in  the  same  way 
as  conjugate  diameters.  Here  we  have  practically  our  modern 

definitions,  and  there  is  a  great  advance  on  Archimedes's 
terminology. 

The  conies  obtained  in  the  most  general  way  from  an 
oblique  cone. 

Having  described  a  cone  (in  general  oblique),  Apollonius 
defines  the  axis  as  the  straight  line  drawn  from  the  vertex  to 
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the  centre  of  the  circular  base.  After  proving  that  all 
sections  parallel  to  the  base  are  also  circles,  and  that  there 
is  another  set  of  circular  sections  subcontrary  to  these,  he 
proceeds  to  consider  sections  of  the  cone  drawn  in  any 
manner.  Taking  any  triangle  through  the  axis  (the  base  of 
the  triangle  being  consequently  a  diameter  of  the  circle  which 
is  the  base  of  the  cone),  he  is  careful  to  make  his  section  cut 
the  base  in  a  straight  line  perpendicular  to  the  particular 
diameter  which  is  the  base  of  the  axial  triangle.  (There  is 
110  loss  of  generality  in  this,  for,  if  any  section  is  taken, 
without  reference  to  any  axial  triangle,  we  have  only  to 
select  the  particular  axial  triangle  the  base  of  which  is  that 
diameter  of  the  circular  base  which  is 

at  right  angles  to  the  straight  line  in 
which  the  section  of  the  cone  cuts  the 

base.)  Let  ABC  be  any  axial  triangle, 
and  let  any  section  whatever  cut  the 
base  in  a  straight  line  ])E  at  right 
angles  to  BC\  if  then  PM  be  the  in- 

tersection of  the  cutting  plane  and  the 

axial  triangle,  and  if  QQ'  be  any  chord 
in  the  section  parallel  to  DE,  Apollonius 

proves  that  QQ'  is  bisected  by  PM.  In 
other  words,  PM  is  a  diameter  of  the  section.  Apollonius  is 
careful  to  explain  that, 

'  if  the  cone  is  a  right  cone,  the  straight  line  in  the  base  (DK) 
will  be  at  right  angles  to  the  common  section  (PM)  of  the 
cutting  plane,  and  the  triangle  through  the  axis,  but,  if  the 
cone  is  scalene,  it  will  not  in  general  be  at  right  angles  to  PM, 
but  will  be  at  right  angles  to  it  only  when  the  plane  through 
the  axis  (i.e.  the  axial  triangle)  is  at  right  angles  to  the  base 
of  the  cone '  (I.  7). 

That  is  to  say,  Apollonius  works  out  the  properties  of  the 
conies  in  the  most  general  way  with  reference  to  a  diameter 
which  is  not  one  of  the  principal  diameters  or  axes,  but  in 
general  has  its  ordinates  obliquely  inclined  to  it.  The  axes  do 
not  appear  in  his  exposition  till  much  later,  after  it  has  been 
shown  that  each  conic  has  the  same  property  with  reference 
to  any  diameter  as  it  has  with  reference  to  the  original 
diameter  arising  out  of  the  construction ;  the  axes  then  appear 



136 APOLLONIUS  OF  PERGA 

as  particular  cases  of  the  new  diameter  of  reference,  xne 

three  sections,  the  parabola,  hyperbola,  and  ellipse  are  made 

in  the  manner  shown  in  the  figures.  In  each  case  they  pass 

through  a  straight  line  DE  in  the  plane  of  the  base  which 
is  at  right  angles  to  BO,  the  base  of  the  axial  triangle,  or 
to  EG  produced.  The  diameter  PM  is  in  the  case  of  the 
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parabola  parallel  to  AC]  in  the  case  of  the  hyperbola  it  meets 

the  other  half  of  the  double  cone  in  P' ;  and  in  the  case  of  the 

ellipse  it  meets  the  cone  itself  again  in  P'.  We  draw,  in 

K 

the  cases  of  the  hyperbola  and  ellipse,  AF  parallel  to  PM 
to  meet  BC  or  ]$C  produced  in  F. 

Apollonius  expresses  the  properties  of  the  three  curves  by 
means  of  a  certain  straight  line  PL  drawn  at  right  angles 
to  PM  in  the  plane  of  the  section. 

In  the  case  of  the  parabola,  PL  is  taken  such  that 

PL:  PA  =  BW-.BA.AC; 

and  in  the  case  of  the  hyperbola  and  ellipse  such  that 

In  the  latter  two  cases  we  join  P'L,  and  then  dr 
parallel  to  PL  to  meet  P'L,  produced  if  necessary,  in  h. 

If  UK  be  drawn  through  V  parallel  to  J1C  and  meeting 
AB,  AC  in  //,  K  respectively,  IIK  is  the  diameter  of  the  circular 
section  of  the  cone  made  by  a  plane  parallel  to  the  base. 

Therefore  Q  V  2  =  11  V  .  VK. 

Then  (1)  for  the  parabola  we  have,  by  parallels  and  similar 
triangles, 

11V:PV=BC:CA, 

and  VK:PA  =  B 
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Therefore        QV* :  P  V .  PA  =  H V.  VK  :  PV.  PA 

=  BC*:.  BA  .  AC 

=  PL: PA,  by  hypothesis, 

=  PL.PV:PV.PA, 

whence  QV*  =  PL  .  PV. 

(2)  In  the  case  of  the  hyperbola  and  ellipse, 

UV:PV=BF:FA, 

VK:P'V=FC:AF. 

Therefore     QV'2 :  PV.  P'V  =  HV .  VK :  PV.  P'V 

=  BF.FO:AF* 

=  PL :  PP',  by  hypothesis, 

=  RV:P'V 

=  PV.VR:PV.P'V, 

whence  QV*  =  PV .  VR. 

New  names,  'parabola',  'ellipse9,  'hyperbola'. 

Accordingly,  in  the  case  of  the  parabola,  the  square  of  the 

ordinate  (QV2)  is  equal  to  the  rectangle  applied  to  PL  and 
with  width  equal  to  the  abscissa  (PV) ; 

in  the  case  of  the  hyperbola  the  rectangle  applied  to  PL 

which  is  equal  to  QV2  and  has  its  width  equal  to  the  abscissa 
PV  overlaps  or  exceeds  (irrrepfidXXti)  by  the  small  rectangle  LR 

which  is  similar  and  similarly  situated  to  the  rectangle  con- 

tained by  PL,  PP' ; 

in  the  case  of  the  ellipse  the  corresponding  rectangle  falls 
short  (eXXeiTTti)  by  a  rectangle  similar  and  similarly  situated 

to  the  rectangle  contained  by  PL,  PP'. 
Here  then  we  have  the  properties  of  the  three  curves 

expressed  in  the  precise  language  of  the  Pythagorean  applica- 
tion of  areas,  and  the  curves  are  named  accordingly :  ̂ >ara6o/ct 

(irapa/3o\rj)  where  the  rectangle  is  exactly  applied,  hyperbola 

(irTrepfJoXri)  where  it  exceeds,  and  ellipse  (eAAet^/rts')  where  it 
falls  short. 
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PL  is  called  the  latus  rectum  (opOia)  or  the  parameter  of 

the  orditiates  (irap9  $v  Svvavrai  al  Karayofjitvat  reray/zli/a)?)  in 
each  case.  In  the  case  of  the  central  conies,  the  diameter  PP' 
is  the  transverse  (17  irXayia]  or  transverse  diameter  ;  while, 
even  more  commonly,  Apollonius  speaks  of  the  diameter  and 
the  corresponding  parameter  together,  calling  the  latter  the 
latus  rectum  or  erect  side  (opOia  nXtvpd)  and  the  former 
the  transverse  side  of  tiiefigurr  (elSos)  on,  or  applied  to,  the 
diameter. 

Fundamental  properties  equivalent  to  Cartesian  equations. 

If  p  is  the  parameter,  and  d  the  corresponding  diameter, 
the  properties  of  the  curves  are  the  equivalent  of  the  Cartesian 
equations,  referred  to  the  diameter  and  the  tangent  at  its 
extremity  as  axes  (in  general  oblique), 

y2-  =  px  (the  parabola), 

y2  =  px  -f  1  x~  (the  hyperbola  and  ellipse  respectively). a 

Thus  Apollonius  expresses  the  fundamental  property  of  the 
central  conies,  like  that  of  the  parabola,  as  an  equation 
between  areas,  whereas  in  Archimedes  it  appears  as  a 

proportion 

which,  however,  is  equivalent  to  the  Cartesian  equation 
referred  to  axes  with  the  centre  as  origin.  The  latter  pro- 

perty with  reference  to  the  original  diameter  is  separately 

proved  in  I.  21,  to  the  effect  that  QV2  varies  as  PF.P'F,  as 
is  really  evident  from  the  fact  that  QV*  :  PV.P'V  =  PL  :  PP', 
seeing  that  PL  :  PP'  is  constant  for  any  fixed  diameter  PP'. 

Apollonius  has  a  separate  proposition  (1.  14)  to  prove  that 
the  opposite  branches  of  a  hyperbola  have  the  same  diameter 
and  equal  latera  recta  corresponding  thereto.  As  he  was  the 
first  to  treat  the  double-branch  hyperbola  fully,  he  generally 
discusses  the  hyperbola  (i.e.  the  single  branch)  along  with 

the  ellipse,  and  the  opposites,  as  he  calls  the  double-branch 
hyperbola,  separately.  The  properties  of  the  single-branch 
hyperbola  are,  where  possible,  included  in  one  enunciation 
with  those  of  the  ellipse  and  circle,  the  enunciation  beginning, 
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c  If  in  a  hyperbola,  an- ellipse,  or  the  circumference  of  a  circle  ' ; 
sometimes,  however,  the  double-branch  hyperbola  and  the 

ellipse  come  in  one  proposition,  e.g.  in  I.  30:  'If  in  an  ellipse 
or  the  opposites  (i.  e.  the  double  hyperbola)  a  straight  line  be 
drawn  through  the  centre  meeting  the  curve  on  both  sides  of 
the  centre,  it  will  be  bisected  at  the  centre/  The  property  of 
conjugate  diameter 9  in  an  ellipse  is  proved  in  relation  to 
the  original  diameter  of  reference  and  its  conjugate  in  I.  15, 

where  it  is  shown  that,  if  DD'  is  the  diameter  conjugate  to 
PP'  (i.e.  the  diameter  drawn  ordinate-wise  to  PP'),  just  as 
PP'  bisects  all  chords  parallel  to  /)/)',  so  DD'  bisects  all  chords 
parallel  to  PP' ;  also,  if  DL'  be  drawn  at  right  angles  to  DD' 
and  such  that  DJJ '.  DD'  =  PP/2  (or  DL'  is  a  third  proportional 
to  DD',  PP7),  then  the  ellipse  has  the  same  property  in  rela- 

tion to  DD'  as  diameter  and  DL'  as  parameter  that  it  has  in 
relation  to  PP'  as  diameter  and  PL  as  the  corresponding  para- 

meter. Incidentally  it  appears  that  PL .  PP'  =  DD'*,  or  PL  is 
a  third  proportional  to  PP',/)//,  as  indeed, is  obvious  from  the 
property  of  the  curve  Q  V* :  PV.  P7'  =  PL:  PP'  =  DD'* :  PP'*. 
The  next  proposition,  I.  16,  introduces  the  secondai^y  diameter 
of  the  double-branch  hyperbola  (i.e.  the  diameter  conjugate  to 
the  transverse  diameter  of  reference),  which  does  not  meet  the 
curve;  this  diameter  is  defined  as  that  straight  line  drawn 
through  the  centre  parallel  to  the  ordinates  of  the  transverse 
diameter  which  is  bisected  at  the  centre  and  is  of  length  equal 

to  the  mean  proportional  between  the  '  sides  of  the  figure ', 
i.e.  the  transverse  diameter  PP'  and  the  corresponding  para- 

meter PL.  The  centre  is  defined  as  the  middle  point  of  the 
diameter  of  reference,  and  it  is  proved  that  all  other  diameters 
are  bisected  at  it  (1.  30). 

Props.  17-19,  22-9,  31-40  are  propositions  leading  up  to 
and  containing  the  tangent  properties.  On  lines  exactly  like 
those  of  Eucl.  III.  16  for  the  circle,  Apollonius  proves  that,  if 
a  straight  line  is  drawn  through  the  vertex  (i.  e.  the  extremity 
of  the  diameter  of  reference)  parallel  to  the  ordjnates  to  the 
diameter,  it  will  fall  outside  the  conic,  and  no  other  straight 
line  can  fall  between  the  said  straight  line  and  the  conic ; 
therefore  the  said  straight  line  touches  the  conic  (1.17,  32). 
Props.  I.  33,  35  contain  the  property  of  the  tangent  at  any 
point  on  the  parabola,  and  Props.  I.  34,  36  the  property  of 
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the  tangent  at  any  point  of  a  central  conic,  in  relation 
to  the  original  diameter  of  reference ;  if  Q  is  the  point  of 

contact,  QV  the  ordinate  to  the  diameter  'through  P,  and 
if  QT,  the  tangent  at  Q,  meets  the  diameter  produced  in  Ty 
then  (1)  for  the  parabola  PV  —  FT,  and  (2)  for  the  central 

conic  TP:TP'  =  PV:  VP'.  The  method  of  proof  is  to  take  a 
point  T  on  the  diameter  produced  satisfying  the  respective 
relations,  and  to  prove  that,  if  TQ  be  joined  and  produced, 
any  point  on  TQ  on  either  side  of  Q  is  outside  the  curve :  the 
form  of  proof  is  by  reductio  ad  absnrdum,  and  in  each 
case  it  is  again  proved  that  no  other  straight  line  can  fall 
between  TQ  and  the  curve.  The  fundamental  property 

TP:TP'=  PV\VP'  for  the  central  conic  is  then  used  to 

prove  that  UV.  <!T  =  (!P2  and  QV*  :  (<V .  VT  =  p:PP'  (or 
(! I)'2:  (!P2)  and  the  corresponding  properties  with  reference  to 
tho  diameter  l)D'  conjugate  to  PP'  and  r,  t,  the  points  where 
/)/)'  is  met  by  the  ordinate  to  it  from  Q  and  by  the  tangent 
at  Q  respectively  (Props.  T.  37-40). 

Tr<insiti<ni  in  \\c,m  diameter  <i,nd  tanyent  tit  Its  extremity. 

An  important  section  of  the  Book  follows  (1.  41-50),  con- 
sisting of  propositions  leading  up  to  what  amounts  to  a  trans- 

formation of  coordinates  from  the  original  diameter  and  the 
tangent  at  its  extremity  to  any  diameter  and  the  tangent  at 
its  extremity;  what  Apollonius  proves  is  of  course  that,  if 

any  other  diameter  bo  taken,  the  ordinate-property  of  the 
ctmic  with  reference  to  that  diameter  is  of  the  same  form  as  it 

is  with  reference  to  the  original  diameter.  It  is  evident  that 
this  is  vital  to  the  exposition.  The  propositions  leading  up  to 
the  result  in  I.  50  are  not  usually  given  in  our  text-books  of 
geometrical  conies,  but  aro  useful  and  interesting. 

Suppose  that  the  tangent  at  any  point  Q  meets  the  diameter 
of  reference  PV  in  T,  and  that  the  tangent  at  P  meets  the 
diameter  through  Q  in  K.  Let  R  be  any  third  point  on 
the  curve;  lot  the  ordinate  RW  to  PV  moot  the  diameter 
through  Q  in  F,  and  let  liU  parallel  to  the  tangent  at  Q  meet 

PV  in  U.  Then  * 

(1)  in  tho  parabola,  the  triangle  KUW  =  tho  parallelogram 
KW,  and 
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(2)  in  the  hyperbola  or   ellipse?,   A  RUW  =  the  difference 
between  the  triangles  GFW  and  CPE. 

(1)  In  the  parabola     &RUW:  &QTV  =  RW*  :  QV* 
=  PW:PV 

But,  since  TV=2PV,  AQTV  = 

therefore  ARUW  =  C3EW. 

(2)  The  proof  of  the  proposition  with  reference  to  the 
central  conic  depends  on  a  Lemma,  proved  in  I.  41,  to  the  effect 

that,  if  PX9  VY  be  similar  parallelograms  on  Cl\  C'Fas  bases, 
and  if  VX  be  an  equiangular  parallelogram  on  QFas  base  and 
such  that,  if  the  ratio  of  (JP  to  the  other  side  of  PX  is  m,  the 

ratio  of  QV  to  the  other  side  of  VZ  is  m.p/Pl*,  then  VZ  is 
equal  to  the  difference  between  FFand  PX.  The  proof  of  the 
Lernma  by  Apollonius  is  difficult,  but  the  truth  of  it  can  bo 
easily  seen  thus. 

By  the  property  of  the  curve,  QV'2  :  (  !V*  -  (T2  =  y>  :  PP'  ; 

therefore  (!  V*  ̂   (  ?P*  =  PP  .  O  V*. P 

Now  C3PX=  p.  (!!**/  m,  where  p  is  a  constant  depending 
on  the  angle  of  the  parallelogram. 

Similarly 

a  VY  -  n  .  CT'Ym,  and  Q  VZ  =  p  .  -^  QV2/m. 

It  follows  that    D  VY  *  DAY  =  D  VZ. 

Taking  now  the  triangles  OF\\r9  CPE  and  RVW  in  the 
(ellipse  or  hyperbola,  we  see  that  CF]\r,  CPE  are  similar,  and 
RUW  has  one  angle  (at  W)  e([tial  or  supplementary  to  the 
angles  at  P  and  V  in  the  other  two  triangles,  while  we  have 

whence  QV:  VT  =r  (p  :  PP')  .  (CV:  QV), 

and,  by  parallels, 

RW:  WU  =  (p  :  PP')  .  (OP  :  PE). 
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Therefore  RUW,  CPE,  CFWsuce  the  halves  of  parallelograms 
related  as  in  the  lemma  ; 

therefore  A  R  UW  =  A  GFW  -  A  CPE. 

The  same  property  with  reference  to  the  diameter  secondary 
to  <7PFis  proved  in  I.  45. 

It  is  interesting  to  note  the  exact  significance  of  the  property 
thus  proved  for  the  central  conic.  The  proposition,  which  is 

the  foundation  of  Apollonius's  method  of  transformation  of 
coordinates,  amounts  to  this.  If  CI\  CQ  are  fixed  semi- 
diameters  and  Ji  a  variable  point,  the  area  of  the  quadrilateral 
CFRU  is  constant  for  all  positions  of  R  on  the  conic.  Suppose 
now  that  CP,  CQ  are  taken  as  axes  of  x  and  y  respectively. 
If  we  draw  RX  parallel  to  CQ  to  meet  CP  and  RY  parallel  to 
CP  to  meet  CQ,  the  proposition  asserts  that  (subject  to  the 
proper  convention  as  to  sign) 

&RYF+CUCXRY+&RXU  =  (const). 

But  since  RX,  RY,  RF,  RU  are  in  fixed  directions, 

ARYF  varies  as  RY*  or  x\  &CXRY  as  RX  .  RY  or  xij, 
and  &RXU  as  RX*  or  y*. 

Hence,  if  x,  y  arc  the  coordinates  of  R, 

otxt  +  pxy  +  yy*  =  A, 
which  is  the  Cartesian  equation  of  the  conic  referred  to  the 
centre  as  origin  and  any  two  diameters  as  axes. 

The  properties  so  obtained  are  next  used  to  prove  that, 

if  UR  meets  the  curve  again  in  R'  and  the  diameter  through 
Q  in  JI,  then  RR'  is  bisected  at  M.  (I.  46-8). 

Taking  (1)  the  case  of  the  parabola,  we  have, 

and  &li'UW'=C3KW'. 

By  subtraction,       (RWW'R')  =  1=1  1"  W, 

whence  &RFM  =  bR'F'M, 

and,  since  the  triangles  are  similar,  RM  =  R'M. 
The  same  result  is  easily  obtained  for  the  central  conic. 

It  follows  that  EQ  produced  in  the  case  of  the  parabola, 
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or  CQ  in  the  case  of  the  central  coriic,  bisects  all  chords  as 

RR'  parallel  to  the  tangent  at  Q.  Consequently  EQ  and  CQ 
are  diameters  of  the  respective  conies. 

In  order  to  refer  the  conic  to  the  new  diameter  and  the 

corresponding  ordinates,  we  have  only  to  determine  the  para- 
meter of  these  ordinates  and  to  show  that  the  property  of  the 

conic  with  reference  to  the  new  parameter  and  diameter  is  in 
the  same  form  as  that  originally  found. 

The  propositions  I.  49,  50  do  this,  and  show  that  the  new 

parameter  is  in  all  the  cases  p',  where  (if  0  is  the  point  of 
intersection  of  the  tangents  at  I*  and  Q) 

OQ:QE  =  p':2QT. 
(1)  In  the  case  of  the  parabola,  we  have  TP  =  PF=  EQ, 

whence  A  EOQ  =  A  POT. 

Add  to  each  the  figure  POQF'W; 

therefore  QTW'F'  =  a  EW  =  bR'UW, 

whence,  subtracting  AlUW'F'  from  both,  we  have 

Therefore  KM  .  MF'  =  2  QT  .  QM. 

But     KM  :  MF'  =  OQ  :  QE  =  p'  :  2  QT,  by  hypothesis  ; 

theref  cms       KM*  :  li'M  .  MF'  =  p  .  QM  :  2  QT  .  QM. 

And  KM  .  MF'  =  2QT.  QM,  from  above  ; 

therefore  KW^tf.QM, 

which  is  the  desired  property.1 

1  The  proposition  that,  in  the  case  of  the  parabola,  if  p  be  the  para- 
meter of  the  ordinates  to  the  diameter  through  Q,  then  (see  the  first  figure 

on  p.  142) 

has  an  interesting  application  ;  for  it  enables  us  to  prove  the  proposition, 
assumed  without  proof  by  Archimedes  (but  not  easy  to  prove  otherwise), 

that,  if  in  a  parabola  the  diameter  through  P  bisects  the  chord  QQ'  in  K, 
and  QD  is  drawn  perpendicular  to  PF,  then 
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(2)  In  the  case  of  the  central  conic,  we  have 

AR'UW  =  ACF'W  ~  ACPE. 

(Apollonius  here  assumes  what  he  does  not  prove  till  III.  1, 
namely  that  ACPE  =  AGQT.     This  is  proved  thus. 

We  have  CV:  CT  =  GV*  :  CPZ  ;  (I.  37,  39.) 

therefore      ,     ACQV:  ACQT  =  ACQV:  ACPE, 

so  that  ACQT  =  ACPE.) 

Therefore         A  E'UW  =  ACF'W  -  ACQT, 

and  it  is  easy  to  prove  that  in  all  cases 

AR'MF'=QTUM. 

Therefore         R'M  .  MF'  =  QM(QT  +MU). 

Let  QL  be  drawn  at  right  angles  to  tJQ  and  equal  to  p'. 
Join  Q'L  and  draw  MK  parallel  to  QL  to  meet  Q'L  in  K. 
Draw  CH  parallel  to  Q'L  to  meet  QL  in  11  and  MK  in  N. 

Now        R'M:  MF'  =  OQ  :  QE 

=  QL  :  2QT,  by  hypothesis, 

=  Q1I  :  QT. 

But  QT  :  MU  =  CQ  :  CM  =  QII  :  MN, 

so  that     (Q  H  +  MN)  :  (QT  +  MU)  =  QIt:QT 

=  RfM:MF',  from  above. 

where  pa  is  the  parameter  of  the  principal  ordinates  and  p  the  para- 
meter of  the  ordinates  to  the  diameter 

FV.      , 
If  the  tangent  at  the  vertex  A  meets 

VP  produced  in  E,  and  PT,  the  tangent 
at  P,  in  0,  the  proposition  of  Apollonius 
proves  that 

OP:PE=p:2PT. 

But  OP=%PT; 

therefore      PT"  =  p.PE 

Thus 
QV*  :  QD*  =  PT2  :  PN*,  by  similar  triangles, 

=  p.AN:pa.  AN 
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It  follows  that 

QM(QH+  MN)  :  QM(QT+  MU)  =  KM*  :  R'M  .  MF'  ; 

but,  from  above,   QM(QT  +  Mlf)  =  R'M  .  MF'  ; 

therefore  li'M*  =  QM(QH+  MN) 
=  QM.  MK, 

wliicli  is  the  desired  property. 
In  the  case  of  the  hyperbola,  the  same  property  is  true  for 

the  opposite  branch. 
These  important  propositions  show  that  the  ordinate  property 

of  the  three  conies  is  of  the  same  form  whatever  diameter  is 
taken  as  the  diameter  of  reference.  It  is  therefore  a  matter 
of  indifference  to  which  particular  diameter  and  ordinates  the *  . 
conic  is  referred.     Tins  is  stated  by  Apollonius  in  a  summary 
which  follows  I.  50. 

First  apiwinmcc  of  ̂ r^je^wi  <t.res. 

The  axes  appear  for  the  first  time  in  the  propositions  next 

following  (I.  52-8),  where  Apollonius  shows  how  to  construct 
each  of  the  conies,  given  in  each  case  (1)  a  diameter,  (2)  the 
length  of  the  corresponding  parameter,  and  (3)  the  inclination 
of  the  ordinates  to  the  diameter.  In  each  case  Apollonius 
first  assumes  the  angle  between  the  ordinates  and  the  diameter 
to  be  a  right  angle  ;  then  he  reduces  the  case  where  the  angle 
is  oblique  to  the  case  where  it  is  right  by  his  method  of  trans- 

formation of  coordinates;  i.e.  from  the  given  diameter  and 
parameter  hefimts  the  axis  of  the  conic  and  the  length  of  the 
corresponding  parameter,  and  he  then  constructs  the  conic  as 
in  the  first  case  where  the  ordinates  are  at  right  angles  to  the 
diameter.  Here  then  we  have  a  case  of  the  proof  of  existence 

by  means  of  construction.  The  conic  is  in  each  case  con- 
structed by  finding  the  cone  of  which  the  given  conic  is  a 

section.  The  problem  of  finding  the  axis  of  a  parabola  and 
the  centre  and  the  axes  of  a  central  conic  when  the  conic  (and 

not  merely  the  {elements,  as  here)  is  given  comes  later  (in  II. 
44-7),  where  it  is  also  proved  (II.  48)  that  no  central  conic 
can  have  more  than  two  axes. 
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It  has  been  my  object,  by  means  of  the  above  detailed 
account  of  Book  I,  to  show  not  merely  what  results  are 
obtained  by  Apollonius,  but  the  way  in  which  he  went  to 
work ;  and  it  will  have  been  realized  how  entirely  scientific 
and  general  the  method  is.  When  the  foundation  is  thus  laid, 
and  the  fundamental  properties  established,  Apollonius  is  able 
to  develop  the  rest  of  the  subject  on  lines  more  similar  to 

those  followed  in  our  text-books.  My  description  of  the  rest 
of  the  work  can  therefore  for  the  most  part  be  confined  to  a 
summary  of  the  contents. 

Book  II  begins  with  a  section  devoted  to  the  properties  of 
the  asymptotes.  They  are  constructed  in  II.  1  in  this  way. 
Beginning,  as  usual,  with  any  diameter  of  reference  and  the 

corresponding  parameter  and  inclination  of  ordimites,  Apol- 
lonius draws  at  P  the  vertex  (the  extremity  of  the  diameter) 

a  tangent  to  the  hyperbola  and  sets  off  along  it  lengths  PL,  PL' 
on  either  side  of  P  such  that  PL*=PL'*=±t) .  PP'  [  =  M>al> 
where  p  is  the  parameter.  He  then  proves  that  (!L,  (Hf  pro- 

duced will  not  meet  the  curve  in  any  finite  point  and  are  there- 
fore asymptotes.  II.  2  proves  further  that  no  straight  line 

through  G  within  the  angle  between  the  asymptotes  can  itself 
be  an  asymptote.  II.  3  proves  that  the  intercept  made  by  the 
asymptotes  on  the  tangent  at  any  point  P  is  bisected  at  P,  and 

that  the  square  on  each  half  of  the  intercept  is  equal  to  one- 

fourth  of  the  '  figure '  corresponding  to  the  diameter  through 
P  (i.e.  one-fourth  of  the  rectangle  contained  by  the  'erect' 
side,  the  latus  rectum  or  parameter  corresponding  to  the 
diameter,  and  the  diameter  itself) ;  this  property  is  used  as  a 
means  of  drawing  a  hyperbola  when  the  asymptotes  and  one 

point  on  the  curve  are  given  (II.  4).  II.  5-7  are  propositions 
about  a  tangent  at  the  extremity  of  a  diameter  being  parallel 
to  the  chords  bisected  by  it.  Apollonius  returns  to  the 

asymptotes  in  II.  8,  and  II.  8-14  give  the  other  ordinary 
properties  with  reference  to  the  asymptotes  (II.  9  is  a  con- 

verse of  II.  3),  the  equality  of  the  intercepts  between  the 
asymptotes  and  the  curve  of  any  chord  (II.  8),  the  equality  of 
the  rectangle  contained  by  the  distances  between  either  point 
in  which  the  chord  meets  the  curve  and  the  points  of  inter- 

section with  the  asymptotes  to  the  square  on  the  parallel 

semi-diameter  (II.  10),  the  latter  property  with  reference  to 
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the  portions  of  the  asymptotes  which  include  between  them 
a  branch  of  the  conjugate  hyperbola  (II.  11),  the  constancy  of 

the  rectangle  contained  by  the  straight  lines  drawn  from  any ' 
point  of  the  curve  in  fixed  directions  to  meet  the  asymptotes 
(equivalent  to  the  Cartesian  equation  with  reference  to  the 
asymptotes,  xy  =  const.)  (II.  12),  and  the  fact  that  the  curve 
and  the  asymptotes  proceed  to  infinity  and  approach  con- 

tinually nearer  to  one  another,  so  that  the  distance  separating 
them  can  be  made  smaller  than  any  given  length  (II.  14).  II.  15 
proves  that  the  two  opposite  branches  of  a  hyperbola  have  the 
same  asymptotes  and  II.  16  proves  for  the  chord  connecting 
points  on  two  branches  the  property  of  II.  8.  II.  1 7  shows  that 

'  conjugate  opposites '  (two  conjugate  double-branch  hyper- 
bolas) have  the  same  asymptotes.  Propositions  follow  about 

coftjugate  hyperbolas;  any  tangent  to  the  conjugate  hyper- 
bola will  meet  both  branches  of  the  original  hyperbola 

and  will  be  bisected  at  the  point  of  contact  (II.  19);  if  Q  be 
any  point  on  a  hyperbola,  and  (IE  parallel  to  the  tangent 
at  Q  meets  the  conjugate  hyperbola  in  E,  the  tangent  at 
E  will  be  parallel  to  CQ  and  CQ,  CE  will  be  conjugate 
diameters  (II.  20),  while  the  tangents  at  Q,  K  will  meet  on  one 
of  the  asymptotes  (II.  21) ;  if  a  chord  Qq  in  one  branch  of 
a  hyperbola  meet  the  asymptotes  in  R,  r  and  the  conjugate 

hyperbola  in  Q',  <f,  then  Q'Q.Qq'  =  2V  IP  (IT.  23).  Of  the 
rest  of  the  propositions  in  this  part  of  the  Book  the  following 

may  be  mentioned :  if  TQ,  TQ'  are  two  tangents  to  a  conic 
and  V  is  the  middle  point  of  QQ',  TV  is  a  diameter  (II.  29, 
30,  38) ;  if  tQ,  tQ'  be  tangents  to  opposite  branches  of  a  hyper- 

bola, RR'  the  chord  through  t  parallel  to  QQ',  v  the  middle 
point  of  QQ',  then  v;Z?,  vli'  are  tangents  to  the  hyperbola 
(II.  40) ;  in  a  conic,  or  a  circle,  or  in  conjugate  hyperbolas,  if 
two  chords  not  passing  through  the  centre  intersect,  they  do  not 
bisect  each  other  (II.  26,  41,  42).  II.  44-7  show  how  to  find 
a  diameter  of  a  conic  and  the  centre  of  a  central  conic,  the 
axis  of  a  parabola  and  the  axes  of  a  central  conic.  The  Book 
concludes  with  problems  of  drawing  tangents  to  conies  in 
certain  ways,  through  any  point  on  or  outside  the  curve 
(II.  49),  making  with  the  axis  an  angle  equal  to  a  given  acute 
angle  (II.  50),  making  a  given  angle  with  the  diameter  through 
the  point  of  contact  (II.  51,  53) ;  II.  52  contains  a  Siopurpos  for 



150  APOLLONIUS  OF  PERGA 

the  last  problem,  proving  that,  if  the  tangent  to  an  ellipse  at 
any  point  P  meets  the  major  axis  in  T,  the  angle  OPT  is  not 

greater  than  the  angle  ABA',  where  JB  is  one  extremity  of  the minor  axis. 

Book  III  begins  with  a  series  of  propositions  about  the 
equality  of  certain  areas,  propositions  of  the  same  kind  as,  and 
easily  derived  from,  the  propositions  (I.  41-50)  by  means  of 
which,  as  already  shown,  the  transformation  of  coordinates  is 
effected.  We  have  first  the  proposition  that,  if  the  tangents 
at  any  points  P,  Q  of  a  conic  meet  in  0,  and  if  they  meet 
the  diameters  through  Q,  P  respectively  in  E,  T,  then 
A  OPT  =  AOQE  (III.  ]  ,  4)  ;  and,  if  P,  Q  be  points  on  adjacent 

branches  of  conjugate  hyperbolas,  AOP7^T=  &CQT  (III.  13). 
With  the  same  notation,  if  R  be  any  other  point  on  the  conic, 
and  if  we  draw  RU  parallel  to  the  tangent  at  Q  meeting  the 

diameter  through  P  in  'U  and  the  diameter  ^hrough  Q  in  M, and  RW  parallel  to  the  tangent  at  P  meeting  QT  in  II  and 
the  diameters  through  Q,  P  in  F,  W,  then  AHQF  =  quadri- 

lateral HTUR  (III.  2.  6)  ;  this  is  proved  at  once  from  the  fact 
that  &RMF=  quadrilateral  QTUM  (see  I.  49,  50,  or  pp.  145-6 
above)  by  subtracting  or  adding  the  area  HRMQ  on  each 

side.  Next  take  any  other  point  R',  and  draw  R'U',  F'lI'R'W 
in  the  same  way  as  before  ;  it  is  then  proved  that,  if  RU,  R'W 
meet  in  /  and  R'U',  R  W  in  J,  the  quadrilaterals  F'IRF,  I  U  U'lt' 
are  equal,  and  also  the  quadrilaterals  FJR'F',  JU'UH  (III.  3, 
7,  9,  10).  The  proof  varies  according  to  the  actual  positions 
of  the  points  in  the  figures. 

In  Figs.  1,  2       AHFQ    =  quadrilateral  UTUR, 

By  subtraction,  FHH'F'=  WU'R'  +  (IU)\ 

whence,  if  IH  be  added  or  subtracted,  F'IRF=  IVU'R', 

and  again,  if  IJ  be  added  to  both,  FJR'F'  =  JU'UR. 

In  Fig.  3          bR'U'W  =  &CF'W'-&CQT, 

so  that  ACQT  =  CU'R'F'. 
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E  F1  F 

Fia.  1. 

FIG.  2. 

Fm.  3. 
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Adding  the  quadrilateral  CF'H'T,  we  have 

AH'F'Q  =  H'TU'tt, 

and  similarly  AHFQ  =  HTUR. 

By  subtraction,  F'H'HF=  H'TU'R'-IITUR. 

Adding  H'IRH  to  each  side,  we  have 

If  each  of  these  quadrilaterals  is  subtracted  from  /,/", 
FJR'F'  =  ./I 

The  corresponding  results  are  proved  in  III.  5,  11,  12,  14 

for  the  case  where  the  ordinates  through  RR'  are  drawn  to 
a  secondary  diameter,  and  in  III.  15  for  the  case  where  P,  Q 

are  on  the  original  hyperbola  and  R,  R'  on  the  conjugate 
hyperbola. 

The  importance  of  these  propositions  lies  in  the  fact  that 

they  are  immediately  used  to  prove  the  well-known  theorems 
about  the  rectangles  contained  by  the  segments  of  intersecting 
chords  and  the  harmonic  properties  of  the  pole  and  polar. 

The  former  question  is  dealt  with  in  III.  16-23,  which  give 
a  great  variety  of  particular  cases.  We  will  give  the  proof 

of  one  case,  to  the  effect  that,  if  OP,  ()Q  be  two  tangents 

to  any  conic  and  Rr,  R'r'  be  any  two  chords  parallel  to 
them  respectively  and  intersecting  in  Jy  an  internal  or  external 

point, 

then  RJ  .  Jr  :  R'J  .  Jr'  =  OP2  :  ()Q2  =  (const.). 

We  have 

RJ.Jr  =  RW**JW*>  and  RW2  :  JW*  =  &RUW:  AJ^IF; 

therefore 

RJ  .  Jr  :  RW2  =  (RW  2  -  JW*)  :  RW*  =  JU'VR  :  &RUW. 

But  RW2  :  OP2  =  ARUW  :  A'OPT  ; 

therefore,  ex  aequali,  RJ  .  Jr  :  OP2  =  JU'UR  :  A  OPT. 
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Similarly     KM'*  :  JM'2  =  kll'F'M'  :  &JFM', 

whence         R'J  .  Jr'  :  R'M'  2  =  FJR'F'  :  A  R'F'M'. 

But  R'M'*  :  OQ2  =--  A  R'F'M'  :  A  OQE  ; 

therefore,  ex  aeqwili,    R'J  .  Jr'  :  OQ2  =  FJR'F'  :  A  OQfl. 

It  follows,  since  FJR'F'  =  JU'UR,  and  A07T  =  AOQAT, 

that  III  .  Jr  :  OP'2  =  #',/.  ,/r'  :  Of/2, 

or  RJ  .  Jr  :  R'J  .  Jr'  =  OP2  :  OQ*. 

If  we  had  taken  chords  /h'j,  /i'r/  parallel  respectively  to 
OQ,  OP  and  intersecting  in  /,  an  internal  or  external  point, 
we  should  have  in  like  manner 

ft/.  />—  H'T.  Trf  =  OQ^:  OP2. 

As  a  particular  case,  if  PP'  IH»  a  diameter,  and  /i?1,  R'r'  he 
chords  parallel  respectively  to  the  tangent  at  P  and  the 

diameter  PP'  and  intersecting  in  7,  then  (as  is  separately 
proved) 

RI.Ir:R'l.Tr'  =  p:PP'. 

The  corresponding  results  are  proved  in  the  cases  where  certain 

of  the  points  lie  on  the  conjugate  hyperbola. 

The  six  following  propositions  about  the  segments  of  inter- 
secting chords  (III.  24-  9)  refer  to  two  chords  in  conjugate 

hyperbolas  or  in  an  ellipse  drawn  parallel  respectively  to  two 
conjugate  diameters  PP\  /)//,  and  the  results  in  modern  form 

are  perhaps  worth  quoting.  If  lii\  R'r'  be  two  chords  so 
drawn  and  intersecting  in  0,  then 

(<i)  in  the  conjugate  hyperbolas 

RO  .  Or      R 
~ 

and  ,  (RO*  +  Or2)  :  (  R'O*  +  Or'2)  =  CP2  :  (  /7)2  ; 

(/>)  in  the  ellipse 

_ 

CD*        ~
~ 
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The  general  propositions  containing  the  harmonic  properties 
of  the  pole  and  polar  of  a  conic  are  III.  37-40,  which  prove 
that  in  any  conic,  if  TQ,  Tq  be  tangents,  and  if  Qq  the  chord 
of  contact  be  bisected  in  F,  then 

(1)  if  any  straight  line  through  T  meet  the  conic  in  R',  R  and 
Qq  in  /,  then  (Fig.  1)  RT :  TR'  =  RI :  IR' ; 

(2)  if  any  straight  line  through  Fmeet  the  conic  in  R,  R' 
the  parallel  through  T  to  Qq  in  0,  then  (Fig.  2) 

FIG.  2. 

The  above  figures  represent  theorem  (1)  for  the  parabola  and 
theorem  (2)  for  the  ellipse. 
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To  prove  (1)  we  have 

R'L*  :  lR*  =  H'(f  :  QH*=  bll'F'Q :  AHFQ  =  H'TU'R' :  HTUR 
(III.  2,  3,  &c.). 

Also  XfT* :  TR*  =  R'U'* :  UR>  =  kR'U'W  :  ARUW, 

and ,      R'T* :  TR-  =  TW*  :  TW*  =  AT7/'1F :  A THW, 

so  that  R'T-:TR~  =  bTH'W  -  AR'U'W:  A.THW ~  &RUW 

=  U'TU'R'-.HTUR 

=  R'l*  :  IR\  from  above. 

To  prove  (2)  we  have 

RV-.VR'-  =  RU*:  R'U'*  =  &RUW :  AR'U'}\", 

and  also 

=  HQZ :  Qll'*  =  AHFQ :  AJI'F'Q  =  HTUR*:  H'TU'R', 
KO  that 

^ :  VR'2  =  UTllR  +  A  RUW-Jl'TU'li'  +  bR'U'W 

=  HO* :  OH'2. 

Props,  111.  30-6  deal  separately  with  the  particular  cases 
in  which  (a)  the  transversal  is  parallel  to  an  asymptote  of  the 

hyperbola  or  (b)  the  chord  of  contact  is  parallel  to  an  asymp- 
tote, i.e.  where  one  of  the  tangents  is  an  asymptote,  which  is 

the  tangent  at  infinity. 
Next  we  have  propositions  about  intercepts  made  by  two 

tangents  on  a  third:  If  the  tangents  at  three  points  of  a 
parabola  form  a  triangle,  all  three  tangents  will  be  cut  by  the 
points  of  contact  in  the  same  proportion  (III.  41);  if  the  tan- 

gents at  the  extremities  of  a  diameter  PP'  of  a  central  conic 

are  cut  in  r,  r'  by  any  other  tangent,  Pr .  PV  =  CD2  (III.  42) ; 
if  the  tangents  at  P,  Q  to  a  hyperbola  meet  the  asymptotes  in 

*  Where  a  quadrilateral,  as  HTUR  in  the  figure,  is  a  cross-quadri- 
lateral, the  area  is  of  course  the  difference  between  the  two  triangles 

which  it  forms,  as  HTW  ̂   RUW. 
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Ly  IS  and  My  M'  respectively,  then  L'M,  ZJlf'are  both  parallel 
to  PQ  (III.  44). 

The  first  of  these  propositions  asserts  that,  if  the  tangents  at 
three  points  P,  Q,  R  of  a  parabola  form  a  triangle  pqr,  then 

Pr :  rq  =  rQ :  Qp  =  qp :  pR. 

From  this  property  it  is  easy  to  deduce  the  Cartesian 
equation  of  a  parabola  referred  to  two  fixed  tangents  as 
coordinate  axes.  Taking  qR,  qP  as  fixed  coordinate  axes,  we 
find  the  locus  of  Q  thus.  Let  x,  y  be  the  coordinates  of  Q. 

Then,  if  qp  =  xlt  qr  =  yl,  qR  =  h,  qP  =  k,  we  have 

From  these  equations  we  derive 

i        •         #1         2/i             t  .  * 
also,  since  —  =     t/1    3  we  have   h  - -  =  1. 

»     2/1  -y  ^i     2/1 
By  substituting  for  o^,  2/1  the  values  V(ltx),  V(ky)  we 

obtain 

©'+  (!)'=  '• 
The  focal  properties  of  central  conies  are  proved  in 

III.  45-52  without  any  reference  to  the  directrix ;  there  is 
no  mention  of  the  focus  of  a  parabola.  The  foci  aro  called 

'  the  points  arising  out  of  the  application '  (ra  4/c  rr/y  Trapa- 
floXfjs  yivonsva  crrjfjLtTa),  the  meaning  being  that  >V,  ASy/  are  taken 
on  the  axis  AA'  such  that  A8.SA'  =  Atf  .tfA'  =  \l\L.AA' 
or  6r£2,  that  is,  in  the  phraseology  of  application  of  areas, 
a  rectangle  is  applied  to  A  A'  as  base  equal  to  one-fourth 
part  of  the  'figure',  and  in  the  case  of  the  hyperbola  ex- 

ceeding, but  in  the  case  of  the  ellipse  falling  short,  by  a 
square  figure.  The  foci  being  thus  found,  it  is  proved  that, 

if  the  tangents  Ar,  A'r'  at  the  extremities  of  the  axis  are  met 
by  the  tangent  at  any  point  P  in  r,  ?•'  respectively,  rr'  subtends 
a  right  angle  at  $,  &',  and  the  angles  rrOSf,  A'r'S'  are  equal,  as 

also  are  the  angles  r'r&',  ArS  (III.  45,  46)."  It  is  next  shown 
that,  if  0  be  the  intersection  of  r>Sy/,  rx>Sf,  then  OP  is  perpen- 

dicular to  the  tangent  at  P  (III.  47).  These  propositions  are 
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used  to  prove  that  the  focal  distances  of  P  make  equal  angles 

with  the  tangent  at  P  (III.  48).  In  III.  49-52  follow  the 
other  ordinary  properties,  that,  if  SY  be  perpendicular  to 

the  tangent  at  P,  the  locus  of  F  is  the  circle  on  A  A'  as 
diameter,  that  the  lines  from  C  drawn  parallel  to  the  focal 
distances  to  meet  the  tangent  at  P  are  equal  to  CA,  and  that 
the  sum  or  difference  of  the  focal  distances  of  any  point  is 

equal  to  A  A'. 
The  last  propositions  of  Book  III  are  of  use  'with  reference 

to  the  locus  with  respect  to  three  or  four  lines.  They  are  as 
follows. 

1.  If  PP/  be  a  diameter  of  a  central  conic,  and  if  PQ,  P'Q 
drawn  to  any  other  point  Q  of  the  conic  meet  the  tangents  at 

1",  P  in  JK',  li  respectively,  then  PR.P'R'  =  4r'D2  (III.  53). 

2.  If  TQ,  TQ'  be  two  tangents  to  a  conic,  V  the  middle  point 

of  QQ',  P  the  point  of  contact  of  the  tangent  parallel  to  QQ', 
and   li  any  other  point  on  the  conic,  let  Qr  parallel  to  TQ' 

meet  (//£  in  r,  and  Q'/  parallel  to  TQ  meet  QR  in  /  ;  then 

Qr  .  CJV  :  QQ'*  =  (PV*  :  PT*)  .  (TQ  .  TQ':  QV*).      (III.  54,  56.) 

3.  If  the  tangents  are  tangents   to  opposite    branches  of    a 

hyperbola  and  meet  in  /,  and  if  R,  /*,  /  are  taken  as  before, 

while  t([  is  half  the  chord  through  t  parallel  to  QQ',  then 

Qr  .  Q'r'  :  QQ?  =  tQ  .  tQ'  :  tq*.  (III.  55.) 

The  second  of  these  propositions  leads  at  once  to  the  three- 
line  locus,  and  from  this  we  easily  obtain  the  Cartesian 

equation  to  a  conic  with  reference  to  two  fixed  tangents  as 
axes,  where  the  lengths  of  the  tangents  are  h,  £,  viz. 

Book  IV  is  on  the  whole  dull,  and  need  not  be  noticed  at 

length.  Props.  1-23  prove  the  converse  of  the  propositions  in 
Book  III  about  the  harmonic  properties  of  the  pole  and  polar 
for  a  large  number  of  particular  cafees.  One  of  the  proposi- 

tions (IV.  9)  gives  a  method  of  drawing  two  tangents  to 
a  conic  from  an  external  point  T.  Draw  any  two  straight 

lines  through  T  cutting  the  conic  in  Q,  Q'  and  in  R,  R'  respec- 
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tively.  Take  0  on  QQ'  and  0'  on  RR'  so  that  TQ',  TR'  are 
harmonically  divided.  The  intersections  of  00'  produced  with 
the  conic  give  the  two  points  of  contact  required. 

The  remainder  of  the  Book  (IV.  24-57)  deals  with  intersecting 
conies,  and  the  number  of  points  in  which,  in  particular  cases, 
they  can  intersect  or  touch.  IV.  24  proves  that  no  two  conies 
can  meet  in  such  a  way  that  part  of  one  of  them  is  common 
to  both,  while  the  rest  is  not.  The  rest  of  the  propositions 

can  be"  divided  into  five  groups,  three  of  which  can  be  brought 
under  one  general  enunciation.  Group  I  consists  of  particular 

cases  depending  on  the  more  elementary  considerations  affect- 
ing conies:  e.g.  two  conies  having  their  concavities  in  oppo- 
site directions  will  not  meet  in  more  than  two  points  (IV.  35); 

if  a  conic  meet  one  branch  of  a  hyperbola,  it  will  not  meet 
the  other  branch  in  more  points  than  two  (IV.  37);  a  conic 
touching  one  branch  of  a  hyperbola  with  its  concave  side 
will  not  meet  the  opposite  branch  (IV.  39).  IV.  36,  41,  42,  45, 
54  belong  to  this  group.  Group  II  contains  propositions 
(IV.  25,  38,  43,  44,  46,  55)  showing  that  no  two  conies 

(including  in  the  term  the  double-branch  hyperbola)  can 
intersect  iiimore  than  four  points.  Group  III  (IV.  26,  47)t48, 
49,  50,  56)  are  particular  cases  of  the  proposition  that  two 
conies  which  touch  at  one  point  cannot  intersect  at  move  than 
two  other  points.  Group  IV  (IV.  27,  28,  29,  40,  51,  52,  53,  57) 
are  cases  of  the  proposition  that  no  two  conies  which  touch 
each  other  at  two  points  can  intersect  at  any  other  point. 
Group  V  consists  of  propositions  about  double  contact.  A 
parabola  cannot  touch  another  parabola  in  more  points  than 
one  (IV.  30);  this  follows  from  the  property  TP  =  PV.  A 
parabola,  if  it  fall  outside  a  hyperbola,  cannot  have  double 
contact  with  it  (IV.  31);  it  is  shown  that  for  the  hyperbola 

PV>PT,  while  for  the  parabola  P'V  =  PT;  therefore  the 
hyperbola  would  fall  outside  the  parabola,  which  is  impossible. 
A  parabola  cannot  have  internal  double  contact  with  an  ellipse 
or  circle  (IV.  32).  A  hyperbola  cannot  have  double  contact 
with  another  hyperbola  having  the  same  centre  (IV.  33) ; 

proved  by  means  of  GV.  GT  =  GP2.  If  an  ellipse  have  double 
contact  with  an  ellipse  or  a  circle,  the  chord  of  contact  will 
pass  through  the  centre  (IV.  34). 

Book  V  is  of  an  entirely  different  order,  indeed  it  is  the 
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most  remarkable  of  the  extant  Books.  It  deals  with  normals 

to  conies  regarded  as  maximum  and  minimum  straight  lines 
drawn  from  particular  points  to  the  curve.  Included  in  it  are 
a  series  of  propositions  which,  though  worked  out  by  the 
purest  geometrical  methods,  actually  lead  immediately  to  the 
determination  of  the  evolute  of  each  of  the  three  conies ;  that 
is  to  say,  the  Cartesian  equations  to  the  eyolutes  can  be  easily 
deduced  from  the  results  obtained  by  Apollonius.  There  can 
be  no  doubt  that  the  Book  is  almost  wholly  original,  and  it  is 
a  veritable  geometrical  tour  deforce. 

Apollonius  in  this  Book  considers  various  points  and  classes 
of  points  with  reference  to  the  maximum  or  minimum  straight 
lines  which  it  is  possible  to  draw  from  them  to  the  conies, 
i.e.  as  the  feet  of  normals  to  the  curve.  He  begins  naturally 
with  points  on  the  axis,  and  he  takes  first  the  point  E  where 
AE  measured  along  the  axis  from  the  vertex  A  is  ̂ >,  p  being 
the  principal  parameter.  The  first  throe  propositions  prove 
generally  and  for  certain  particular  cases  that,  if  in  an  ellipse 

or  a  hyperbola  AM  be  drawn  at  right  angles  to  A  A'  and  equal 
to  I  y>,  and  if  CM/  moot  the  ordinate  PN  of  any  point  P  of  the 

curve  in  7/,  then  PjV2  =  2  (quadrilateral  MANIl) ;  this  is  a 
lemma  used  in  the  proofs  of  later  propositions,  V.  5,  6,  &c. 
Next,  in  V.  4,  5,  6,  he  proves  that,  if  AE  =  |^,  then  AE  is  the 
minimum  straight  line  from  E  to  the  curve,  and  if  P  be  any 
other  point  on  it,  PE  increases  as  P  moves  farther  away  from 
A  on  either  side  ;  he  proves  in  fact  that,  if  PN  be  the  ordinate 
from  1\ 

(1)  in  the  case  of  the  parabola     PE*  =  AE* 

(2)  in  the  case  of  the  hyperbola  or  ellipse 

PE*  =  AN2  +  AN* 

where  of  course  p  =  BB'2/AA'y  and  therefore  (AA'  ±p)/AA' 
is  equivalent  to  what  we  call  e2,  the  square  of  the  eccentricity. 

It  is  also  proved  that  KA'  is  the  maxivmim  ^straight  line  from 
E  to  the  curve.  It  is  next  proved  that,  if  0  be  any  point  on 
the  axis  between  A  and  E,  OA  is  the  minimum  straight  line 
from  0  to  the  curve  and,  if  P  is  any  other  point  on  the  curve, 
OP  increases  as  P  moves  farther  from  A  (V,  7). 
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Next  Apollonius  takes  points  G  on  the  axis  at  a  distance 
from  A  greater  than  ̂ p,  and  he  proves  that  the  minimum 
straight  line  from  G  to  the  curve  (i.e.  the  normal)  is  Gl\ 
where  P  is  such  a  point  that 

(1)  in  the  case  of  the  parabola  NG  =  \p  ; 

(2)  in  the  case  of  the  central  conic  NG  :  ON  =  y>  :  A  A'  ; 

and,  if  P'  is  any  other  point  on  the  conic,  P'G  increases  as  P' 
moves  away  from  P  on  either  side  ;  this  is  proved  by  show- 

ing that 

(1)  for  the  parabola    P'G2  =  PGP  +  NN'*  ; 

(2)  for  the  central  conic    P'G*  =  PGa  +  JViV/a  .    ~- v  AA 

As  these  propositions  contain  the  fundamental  properties  of 

the  subnormals,  it  is  worth  while  to  reproduce  Apollonius' B 
proofs. 
(1)  In  the  parabola,  if  G  be  any  point  on  the  axis  such  that 

AG  >  %p,  measure  GN  towards  A  equal  to  -Jy  ̂ e^  1*^  ̂ >e 
the  ordinate  through  Nt  P'  any  other  point  on  the  curve. 
Then  shall  PG  be  the  minimum  line  from  G  to  the  curve,  &c. 
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We  have       P'iV'2  =  p  .  AN'  =  2NG.  AN'  ; 

and  N'G*  =  NN'2  +  NG2  ±2NG.  NN', 

according  to  the  position  of  N'. 

Therefore      P'G2  =  2NG.AN+  NG2  +  NN'* 

and  the  proposition  is  proved. 

(2)  In  the  case  of  the  central  conic,  take  G  on  the  axis  such 
that  AG  >  %p,  and  measure  GN  towards  A  such  that 

NG:CN  =  p:AA'. 

Draw  the  ordinate  PN  through  N,  and  also  the  ordinate  P'N' 
from  any  other  point  lv. 

We  have  first  to  prove  the  lemma  (V.  1,  2,  3)  that,  if  AM  be 

drawn  perpendicular  to  A  A'  and  equal  to  %p,  and  if  CM, 
produced  if  necessary,  meet  P^Vin  //,  then 

PiV2  =  2  (quadrilateral  MANll). 

This  is  easy,  for,  if  AL(=  2AM)  be  the  parameter,  and  A'L 
meet  PN  in  R,  then,  by  the  property  of  the  curve, 

=  AN  (Nil  +  AM) 

=  2  (quadrilateral  MANH). 

Let  GU,  produced  if  necessary,  meet  P'N'  in  11'.     From  H 

draw  111  perpendicular  to  P'H'. 

Now,  since,  by  hypothesis,  NG  :  (>N  =  />  :  A  A' 
=  AM:AC 

=  I1N:NC, 

NH  =  NG,  whence  also  H'N'  =  N'G. 

Therefore    NG*  =  2  AUNG,  N'G'  =  2AI1'N'G. 

And  PN*  =  2(MANH); 

therefore          PG*  =  NG2  +  PiVa  =  2  (AMHG). 
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Similarly,  if  CM  meets  P'N'  in  K, 

=  2  AH'N'G  +  2(AMKN') 

Therefore,  by  subtraction, 

P'G*-PG2  = 

=  HI.(H'I±IK) 
=  HI.(HT±1K) 

CA 

which  proves  the  proposition. 
If  0  be  any  point  on  PG,  OP  is  the  minimum  straight  line 

from  0  to  the  curve,  and  OP'  increases  as  P'  moves  away  from 
P  on  either  side;  this  is  proved  in  V.  12.  (Since  P'G  >  'PG, 
L  GPP'  >  L  GP'P  ;  therefore,  a  fortiori,  L  OPP'  >  L  OP'P, 
and  OP'  >  OP.) 

Apolloiiius  next  proves  the  corresponding  propositions  with 

reference  to  points  on  the  minor  axis  of  an  ellipse.  If  p'  be 
the  parameter  of  the  ordinates  to  the  minor  axis,  2>'=AA  '2/BB', 
or  ij/=  CAZ/CB.  If  now  E'  be  so  taken  that  BE'=\p', 
then  BE'  is  the  maximum  straight  line  from  E'  to  the  curve 
and,  if  P  be  any  other  point  on  it,  E'P  diminishes  as  P  moves 
farther  from  B  on  either  side,  and  E'B'  is  the  minimum 

straight  line  from  E'  to  the  curve.  It  is,  in  fact,  proved  that 
where  Bti  is  the  abscissa  of  P 

(V.  16-18).  If  0  be  any  point  on  the  minor  axis  such  that 

BO  >  BE',  then  OB  is  the  maximum  straight  line  from  0  to 
the  curve,  &c.  (V.  19). 

If  g  be  a  point  on  the  minor  axis  such  that  Bg  >  BG,  but 

Bg  <  %  p',  and  if  Gn  be  measured  towards  B  so  that 

then  n  is  the  foot  of  the  ordinates  of  two  points  P  such  that 
PC/  is  the  maximum  straight  line  from  g  to  the  curve.     Also, 
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if  P'  be  any  other  point  on  it,  P'g  diminishes  as  P'  moves 
farther  from  P  on  either  side  to  B  or  B',  and 

P>  «>  '2 -P«  =  nu  2  . or  nn 

If  0  be  any  point  on  Pg  produced  beyond  the  minor  axis,  PO 
is  the  maximum  straight  line  from  0  to  the  same  part  of  the 

ellipse,  for  which  *Pgr  is  a  maximum,  i.e.  the  semi-ellipse  BPB', 
&c.  (V.  20-2). 

In  V.  23  it  is  proved  that,  if  (j  is  on  the  minor  axis,  and  gP 

a  maximum  straight  line  to  the  curve,  and  if  Pg  meets  AA' 
in  Gy  then  GP  is  the  minimum  straight  line  from  G  to  the 
curve  ;  this  is  proved  by  similar  triangles.  Only  one  normal 

can  be  drawn  from  any  one  point  on  a  conic  (V.  24-6).  The 
normal  at  any  point  P  of  a  conic,  whether  regarded  as  a 
minimum  straight  line  from  G  on  the  major  axis  or  (in  the 
case  of  the  ellipse)  as  a  maximum  straight  line  from  g  on  the 

minor  axis,  is  perpendicular  to  the  tangent  at  P  (V.  27-30); 
in  general  (1)  if  ()  be  any  point  within  a  conic,  and  OP  be 
a  maximum  or  a  minimum  straight  line  from  0  to  the  conic, 
the  straight  line  through  P  perpendicular  to  PO  touches  the 
conic,  and  (2)  if  (Y  be  any  point  on  OP  produced  outside  the 

conic,  O'P  is  the  minimum  straight  line  from  0'  to  the  conic, 
&c.  (V.  31-4). 

Number  of  normals  from  a  point. 

We  now  come  to  propositions  about  two  or  more  normals 
meeting  at  a  point.  If  the  normal  at  P  meet  the  axis  of 

a  parabola  or  the  axis  A  A'  of  a  hyperbola  or  ellipse  in  G,  the 
angle  PGA  increases  as  P  or  (i  moves  farther  away  from  A, 
but  in  the  case  of  the  hyperbola  the  angle  will  always  be  less 
than  the  complement  of  half  the  angle  between  the  asymptotes. 

Two  normals  at  points  on  the  same  side  of  A  A'  will  meet  on 
the  opposite  side  of  that  axis  ;  and  two  normals  at  points  on 
the  same  quadrant  of  an  ellipse  as  AB  will  meet  at  a  point 

within  the  angle  ACB'  (V.  35-40).  In  a  parabola  or  an 
ellipse  any  normal  PG  will  meet  the  curve  again;  in  the 

hyperbola,  (1)  if  AA'  be  not  greater  than  p,  no  normal  can 
meet  the  curve  at  a  vsecond  point  on  the  same  branch,  but 
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(2)  if  A  A'  >  p}  some  normals  will  meet  the  same  branch  again 
and  others  not  (V.  41-3). 

If  P1GV  P2£r2  b°  normals  at  points  on  one  side  of  the  axis  of 
a  conic  meeting  in  0,  and  if  0  be  joined  to  any  other  point  P 
on  the  conic  (it  being  further  supposed  in  the  case  of  the 
ellipse  that  all  three  lines  OPlf  OP2,  OP  cut  the  same  half  of 
the  axis),  then 

(1)  OP  cannot  be  a  normal  to  the  curve ; 

(2)  if  OP  meet  the  axis  in  K,  and  PG  be  the  normal  at  P,  AG 
is  less  or  greater  than  AK  according  as  P  does  or  does  not  lie 
between  Pl  and  P2. 

From  this  proposition  it  is  proved  that  (1)  three  normals  at 
points  on  one  quadrant  of  an  ellipse  cannot  meet  at  one  point, 
and  (2)  four  normals  at  points  on  one  semi-ellipse  bounded  by 
the  major  axis  cannot  meet  at  one  point  (V.  44-8). 

In  any  conic,  if  M  be  any  point  on  the  axis  such  that  AM 

is  not  greater  than  \<p,  and  if  0  be  any  point  on  the  double 
ordinate  through  M,  then  no  straight  line  drawn  to  any  point 
on  the  curve  on  the  other  side  of  the  axis  from  0  and  meeting 
the  axis  between  A  and  M  can  be  a  normal  (V.  49,  50). 

Propositions  leadiny  immediately  to  the  determination 

of  tJte  e volute  of  a  conic. 

These  great  propositions  are  V.  51,  52,  to  the  following 
effect : 

If  AM  measured  along  the  axis  be  greater  than  %p  (but  in 
the  case  of  the  ellipse  less  than  AG),  and  if  MO  be  drawn  per- 

pendicular to  the  axis,  then  a  certain  length  (;y,  say)  can  be 
assigned  such  that 

(a)  if  0 M  >  y,  no  normal  can  be  drawn  through  0  which  cuts 
the  axis ;  but,  if  OP  be  any  straight  line  drawn  to  the  curve 
cutting  the  axis  in  K,  NK<NG,  where  PN  is  the  ordinate 
and  PG  the  normal  at  P ; 

(6)  if  OM  =  yy  only  one  normal  can  be  so  drawn  through  0, 
and,  if  OP  be  any  other  straight  line  drawn  to  the  curve  and 
cutting  the  axis  in  K,  NK  <  NG,  as  before  ; 

(c)  if  OM<y,  two  normals  can  be  so  drawn  through  0,  and,  if 
OP  be  any  other  straight  line  drawn  to  the  curve,  NK  is 
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greater  or  less  than  NG  according  as  OP  is  or  is  not  inter- 
mediate between  the  two  normals  (V.  51,  52). 

The  proofs  are  of  course  long  and  complicated.  The  length 
y  is  determined  in  this  way  : 

(1)  In  the  case  of  the  parabola,  measure  MH  towards  the 
vertex  equal  to  £/;,  and  divided//  at-A^  so  that  HNl  =  2N^A. 
The  length  y  is  then  taken  such  that 

where  PlNl  is  the  ordinate  passing  through  N^  ; 
(2)  In  the  case  of  the  hyperbola  and  ellipse,  we  have 

AM>%p,  so  that  OA  \AAI<AA'\p\  therefore,  if  11  be  taken 
on  AM  such  that  ClliHM=  AA':p,  H  will  fall  between  A and  M. 

Take  two  mean  proportionals  G'JV,,  CI  between  CA  and  (JH, 

and  let  PlN'l  be  the  ordinate  through  JV^. 
The  length  y  is  then  taken  such  that 

y  :  P^  =  (CM  :  Mil)  .  (HN,  :  N,C). 

In  the  case  (ft),  where  OM  =  y,  0  is  the  point  of  intersection 
of  consecutive  normals,  i.e.  0  is  the  centre  of  curvature  at  the 
point  P\  and,  by  considering  the  coordinates  of  0  with  reference 
to  two  coordinate  axes,  we  can  derive  the  Cartesian  equations 
of  the  evolutes.  E.g.  (1)  in  the  case  of  the  parabola  let  the 
coordinate  axes  be  the  axis  and  the  tangent  at  the  vertex. 
Then  AM  =  x,  OM  =  y.  Let  p  =  4  a  ;  then 

and  AN=x 

But         7/2  :  P^  =  iV/2  :  H  Jlf2,  by  hypothesis, 
or 

therefore  ay-  = 

or 

(2)  In  the  case  of  the  hyperbola  or  ellipse  we  naturally  take 
CM,  CB  as  axes  of  a?  and  y.  The  work  is  here  rather  more 
complicated,  but  there  is  no  difficulty  in  obtaining,  as  the 
locus  of  0,  the  curve 
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The  propositions  V.  53,  54  are  particular  cases  of*  the  pre- 
ceding propositions. 

Construction  of  normals. 

The  next  section  of  the  Book  (V.  55-63)  relates  to  the  con- 
struction of  normals  through  various  points  according  to  their 

position  within  or  without  the  conic  and  in  relation  to  the 
axes.  It  is  proved  that  one  normal  can  be  drawn  through  any 
internal  point  and  through  any  external  point  which  is  not 
on  the  axis  through  the  vertex  A  .  In  particular,  if  0  is  any 

point  below  the  axis  A  A'  of  an  ellipse,  and  OM  is  perpen- 
dicular to  A  A',  then,  if  AM>ACy  one  normal  can  always  be 

drawn  through  0  cutting  the  axis  between  A  and  (7,  but  never 

more  than  one  such  normal  (V.  55-7).  The  points  on  the 
curve  at  which  the  straight  lines  through  0  are  normals  are 
determined  as  the  intersections  of  the  conic  with  a  certain 

rectangular  hyperbola.  The  procedure 

of  Apollonius  is  equivalent  to  the  fol- 
lowing analytical  method.  Let  AM  be 

the  axis  of  a  conic,  PGO  one  of  the 
normals  which  passes  through  the  given 
point  0,  PN  the  ordinate  at  P  ;  and  let 
OM  be  drawn  perpendicular  to  the  axis. 

Take  as  axes  of  coordinates  the  axes  in  the  central  conic  and, 
in  the  case  of  the  parabola,  the  axis  and  the  tangent  at  the 
vertex. 

If  then  (x,  y)  be  the  coordinates  of  P  and  (xlt  yv)  those  of  0 

we  have  y  NO 

—2/1  ~~  x^x  —  NG  ' 
Therefore  (1)  for  the  parabola 

-J          . 

or  ^-(ai-*#)y--yi.*2>  =  °;  (1) 
(2)  in  the  ellipse  or  hyperbola 

Xy  0  T  a*)  ~®l2/±  51  '  y&  =  °'  *       <2> 
The  intersections  of  these  rectangular  hyperbolas  respec- 
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lively  with  the  conies  give  the  points  at  which  the  normals 
passing  through  0  are  normals. 

Pappus  criticizes  the  use  of  the  rectangular  hyperbola  in 

the  case  of  the  parabola  as  an  unnecessary  resort  to  a  '  solid 
locus';  the  meaning  evidently  is  that  the  same  points  of 
intersection  can  be  got  by  means  of  a  certain  circle  taking 
the  place  of  the  rectangular  hyperbola.  We  can,  in  fact,  from 

the  equation  (1)  above  combined  with  y2  =  px,  obtain  the 
circle =  o. 

The  Book  concludes  with  other  propositions  about  maxima 

and  minima.  In  particular  V.  68-71  compare  the  lengths  of 

tangents  TQ,  TQ',  where  Q  is  nearer  to  the  axis  than  Q'. 
V.  72,  74  compare  the  lengths  of  two  normals  from  a  point 
0  from  which  only  two  can  be  drawn  and  the  lengths  of  other 

straight  lines  from  0  to  the  curve  ;  V.  75-7  compare  the 
lengths  of  throe  normals  to  an  ellipse  drawn  from  a  point 
0  below  the  major  axis,  in  relation  to  the  lengths  of  other 
straight  lines  from  0  to  the  curve. 

Book  "VI  is  of  much  less  interest.  The  first  part  (VI.  1-27) relates  to  equal  (i.e.  congruent)  or  similar  conies  and  segments 

of  conies ;  it  is  naturally  preceded  by  some  definitions  includ- 

ing those  of  '  equal '  and  '  similar '  as  applied  to  conies  and 
segments  of  conies.  Conies  are  said  to  be  similar  if,  the  same 
number  of  ordinates  being  drawn  to  the  axis  at  proportional 
distances  from  the  vertices,  all  the  ordinates  are  respectively 
proportional  to  the  corresponding  abscissae.  The  definition  of 
similar  segments  is  the  same  with  diameter  substituted  for 
axis,  and  with  the  additional  condition  that  the  angles 
between  the  base  and  diameter  in  each  are  equal.  Two 
parabolas  are  equal  if  the  ordinates  to  a  diameter  in  each  are 
inclined  to  the  respective  diameters  at  equal  angles  and  the 

corresponding  parameters  are  equal;  two  ellipses  or  hyper- 
bolas are  equal  if  the  ordinates  to  a  diameter  in  each  are 

equally  inclined  to  the  respective  diameters  and  the  diameters 
as  well  as  the  corresponding  parameters  are  equal  (VI.  1.  2). 

Hyperbolas  or  ellipses  are  similar  when  the  'figure'  on  a 
diameter  of  one  is  similar  (instead  of  equal)  to  the  c  figure '  on 
a  diameter  of  the  other,  and  the  ordinates  to  the  diameters  in 
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each  make  equal  angles  with  them ;  all  parabolas  are  similar 

(VI.  11,  12,  13).  No  conic  of  one  of  the  three  kinds  (para- 
bolas, hyperbolas  or  ellipses)  can  be  equal  or  similar  to  a  conic 

of  either  of  the  other  two  kinds  (VI.  3,  14,  15).  Let  QPQ', 
qpq'  be  two  segments  of  similar  conies  in  which  QQ',  q<f  are 
the  bases  and  PV,pv  are  the  diameters  bisecting  them  ;  then, 
if  PT,  pt  be  the  tangents  at  P,  p  and  meet  the  axes  at  T,  t  at 
equal  singles,  and  if  PV :  PT  =  pv :  pt,  the  segments  are  similar 
and  similarly  situated,  and  conversely  (VI.  17,  18).  If  two 
ordinates  be  drawn  to  the  axes  of  two  parabolas,  or  the  major  or 

conjugate  axes  of  two  similar  central  conies,  as  PN,  P'N'  and 
pn,  p'n'  respectively,  such  that  the  ratios  AN:  an  and  AN':  an' 
are  each  equal  to  the  ratio  of  the  respective  latera  recta,  the 

segments  PP',  pp'  will  be  similar ;  also  PP*  will  not  be  similar 
to  any  segment  in  the  other  conic  cut  off  by  two  ordinates 

other  than  pn,  p'n',  and  conversely  (VI.  21,  22).  If  any  cone 
be  cut  by  two  parallel  planes  making  hyperbolic  or  elliptic 
sections,  the  sections  will  be  similar  but  not  equal  (VI.  26,  27). 

The  remainder  of  the  Book  consists  of  problems  of  con- 
struction; we  are  shown  how  in  a  given  right  cone  to  find 

a  parabolic,  hyperbolic  or  elliptic  section  equal  to  a  given 
parabola,  hyperbola  or  ellipse,  subject  in  the  case  of  the 
hyperbola  to  a  certain  Siopiarfios  or  condition  of  possibility 
(VI.  28-30);  also  how  to  find  a  right  cone  similar  to  a  given 
cone  and  containing  a  given  parabola,  hyperbola  or  ellipse  as 
a  section  of  it,  subject  again  in  the  case  of  the  hyperbola  to 

a  certain  Siopta-pos  (VI.  31-3).  These  problems  recall  the 
somewhat  similar  problems  in  I.  51-9. 

Book  VII  begins  with  three  propositions  giving  expressions 

for  AP2  (  =  AN*  +  PN2)  in  the  same  form  as  those  for  PN2  in 
the  statement  of  the  ordinary  property.  In  the  parabola  All 
is  measured  along  the  axis  produced  (i.  e.  in  the  opposite  direc- 

tion to  AN)  and  of  length  equal  to  the  latus  rectum,  and  it  is 

proved  that,  for  any  point  P,  AP*  =  AN.NH  (VII.  1).  In 
the  case  of  the  central  conies  A  A'  is  divided  at  H,  internally 
for  the  hyperbola  and  externally  for  the  ellipse  (AH  being  the 

segment  adjacent  to  A)  so  that  AH:  A'H  ~ p:AA',  where  p 
is  the  parameter  corresponding  to  A  A',  or  p  =  BB"*  /AA',  and 
it  is  proved  that 

AP*:AN.NH=AA':A'H. 
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The  same  is  true  if  A  A'  is  the  minor  axis  of  an  ellipse  and  p 
the  corresponding  parameter  (VII.  2,  3). 

If  AA'  be  divided  at  •//'  as  well  as  H  (internally  for  the 
hyperbola  and  externally  for  the  ellipse)  so  that  H  is  adjacent 

to  A  and  //'  to  A',  and  if  A' II :  All  =  AH':  A'H'  =  A  A'  :p, 

the  lines  AH,  A' 11'  (corresponding  to  p  in  the  proportion)  are 
called  by  Apollonius  komoloyues,  and  lie  makes  considerable 

use  of  the  auxiliary  points  //,  //'  in  later  propositions  from 
VII.  G  onwards.  Meantime  he  proves  two  more  propositions, 

which,  like  VII.  1  3,  are  by  way  of  lemmas.  First,  if  CD  be 

the  semi-diameter  parallel  to  the  tangent  at  P  to  a  central 

conic,  and  if  the  tangent  meet  the  axis  AA'  in  T,  then 

PT* :  CD*  =  NT :  CX.  (VII.  4.) 

Draw  AE,  TF  at  right  angles  to  CA  to  meet  CP,  and  let  AE 

meet  PT  in  0.  Then,  if  p'  be  the  parameter  of  the  ordinates 
to  GP,  we  have 

$p':PT=OP:PE  (1.49,50.) 

or 

Therefore 
PT* :  CD*  =  |?/.  PF:  $p' .  CP 

=  PF:  CP 
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Secondly,  Apollonius  proves  that,  if  PN  be  a  principal 

ordinate  in  a  parabola,  p  the  principal  parameter,  p'  the 
parameter  of  the  ordinates  to  the  diameter  through  P,  then 

p'=p  +  ±AN  (VII.  5);  this  is  proved  by  means  of  the  same 
property  as  VII.  4,  namely  %p' :  PT  =  OP :  PE. Much  use  is  made  in  the  remainder  of  the  Book  of  two 

points  Q  and  M,  where  AQ  is  drawn  parallel  to  the  conjugate 
diameter  CD  to  meet  the  curve  in  Q,  and  M  is  the  foot  of 
the  principal  ordinate  at  Q;  since  the  diameter  OP  bisects 

both  AA'  and  QA,  it  follows  that  A'Q  is  parallel  to  OP. 
Many  ratios  between  functions  of  PP',  DD'  are  expressed  in 
terms  of  AM,  A'M,  MH,  MH' ,  AH,  A'H,&c.  The  first  pro- 

positions of  the  Book  proper  (VII.  6,  7)  prove,  for  instance, 
that  PP'2 :  DD"*  =  MH':  MH. 

For  PT2:  CD3  =  NT:  ON  =  AM:  A'M,  by  similar  triangles. 

Also  CPi :  PT2=  A'Q* :  A  Q*. 
Therefore,,  ex  aequaU, 

CP2 :  CD*  =  (AM :  A'M)  x  (A'Q2 :  AQ2) 

=  (AM:  A'M)  x  (A'Q2 :  A'M.  MH') 
x  (A'M.  MH':  AM.  MH)  x  (AM.MH :  AQ2) 

=  (AM :  A'M)  x  (AA':  All')  x  (A'M:  AM) 
x  (MH':  MH)  x  (A'H :  A  A'),  by  aid  of  VII.  2,  3. 

Therefore  PP'2 :  DD'2  =  M H ' :  MH. 

Next  (VII.  8,  9,  10,  11)  the  following  relations  are  proved, 
namely 

(1)  AAf2:(PP'  +  DDJ=AfII.MH':  {MH' +  V(MH.MH')}2, 

(2)  AA'2 : PP'JID'  =  A'H :  V(MH. MH')~ 
(3)  A  A'* :  (PP1*  +  DD'2)  =  A'H :  MH+  MH'. 
The  steps  by  which  these  results  are  obtained  are  as  follows. 

First,  A  A'2:  PP'2  =A'H:  MH'  (a) 
=  A'H.MH':MH\ 

(Tliis  is  proved  thus : 

AA'2:PP'*=CA2:CP2 

=  CN.CT:CPZ 

=  A'M.  A' A  :  A'Q2. 
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But  A'Q*:A'M.MH'=AA':AH'          (VII.  2,  3) 

=  AA':A'H 
=  A'M.  AA':  A'M.  A'H, 

so  that,  alternately, 

A'M.  A  A':  A'ip  =  A'M.  A'H  :  A'M  .  ME' 

=  A'  11  -.Mil'.) 

Next,  PP'-  :  DD"  =  MH  '  :  Mil,  as  above,  (/3) 

=  MH'*'.MH.MU'I 

whence  PP':  DD'  =  Mil':  V(MH  .  MH'),  (y) 

and     PI  "*  :  (PP'  +  DD')«  =  Mil'*  :  {  Mil  '  +  V(MH  .  Mil')  }  *  ; 
(1)  above  follows  from  this  relation  and  (ex)  ex  aequali; 

(2)  follows   from  (a)  nnd  (y)  ex  aequali,  and  (3)  from  (a) 
and  (/?). 

We  now  obtain  immediately  the  important  proposition  that 

PP"*  +  DD'2  is  constant,  whatever  be  the  position  of  P  on  an 
ellipse  or  hyperbola  (the  upper  sijfn  referring  to  the  ellipse), 

and  is  equal  to  AAU  +  J3B''Z  (VII.  12,  13,  29,  30). 

For      AA*  :  BB'*  =  AA':>p  =  A'H  :All  =  A'H  :  A'H', 

by  construction  : 

therefore  A  A"2:  A  A'*  +  BB'Z  =  A'H  :  HH'  ; 

also,  from  (a)  above, 

and,  by  means  of  (/3), '  +  Mil 

Ex  aequali,  from  the  last  two  relations,  we  have 

A  A'2  :  (PP'*  +  DD"2)  =  A'H  :  HH' 

=  AA'*:AA'*±BB"\  from  above, 

whence  PP>*  ±  DD'*  =  A  A'2  ±  BB'2. 
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A  number  of  other  ratios  are  expressed  in  terms  of  the 

straight  lines  terminating  at  A,  A',  H,  H',  M,  M'  as  follows 
(VII.  14-20). 

In  the  ellipse     A  A'*  :  PP'*  *  DD'2  =  A'H:2  CM, 
and  in  the  hyperbola  or  ellipse  (if  p  be  the  parameter  of  the 

ordinates  to  PP') 

AA'*:p>  =  A'H.MH':MH*, 

A  A'2  :  (PP'  +  pf  =  A'  11  .  Mir  :  (MH±MH')*> 
A  A'*  :  PP'  .  p  =  A'H  :  MH, 

and        A  A'*  :  (PP'2  +  F2)  =  A'  II  .  MH':  (Mil'*  +  MW). 
Apollonius  is  now  in  a  position,  by  means  of  all  these 

relations,  resting  on  the  use  of  the  auxiliary  points  H,  H',  M, 
to  compare  different  functions  of  any  conjugate  diameters 
with  the  same  functions  of  the  axes,  and  to  show  how  the 

former  vary  (by  way  of  increase  or  diminution)  as  P  moves 

away  from  A.  The  following  is  a  list  of  the  functions  com- 

pared, where  for  brevity  I  shall  use  a,  b  to  represent  AA'y  BE'  \ 
a',  I/  to  represent  PP',  DD'  ;  and  p,  p'  to  represent  the  para- 

meters of  the  ordinates  to  AA',  PP/  respectively. 
In  a  hyperbola,  according  as  a  >  or  <  6,  of  >  or  <  &',  and  the 

ratio  a'://  decreases  or  increases  as  P  moves  from  A  on 

either  side;  also,  if  a  =  b,  a'=b'  (VII.  21-3);  in  an  ellipse 
a:b>af:b',  and  the  latter  ratio  diminishes  as  P  moves  from 
A  to  B  (VII.  24). 

In  a  hyperbola  or  ellipse  a  +  b<a'  +  b',  and  a'  +  Z/in  the 
hyperbola  increases  continually  as  P  moves  farther  from  A, 

but  in  the  ellipse  increases  till  a',  b'  take  the  position  of  the 
equal  conjugate  diameters  when  it  is  a  maximum  (VII. 
25,  26).  . 

In  a  hyperbola  in  which  ay  b  are  unequal,  or  in  an  ellipse, 

a  ̂ 6  >a'^  6',  and  a'^b'  diminishes  as  P  moves  away  from  A, 
in  the  hyperbola  continually,  and  in  the  ellipse  till  a',  //  are 
the  equal  conjugate  diameters  (VII.  27). 

ab  <  a'6',  and  a'6'  increases  as  P  moves  away  from  A,  in  the 
hyperbola  continually,  and  in  the  ellipse  till  a',  b'  coincide  with 
the  equal  conjugate  diameters  (VII.  28). 

.  VII.  31  is  the  important  proposition  that,  if  PP',  DD'  are 
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conjugate  diameters  in  an  ellipse  or  conjugate  hyperbolas,  and 
if  the  tangents  at  thoir  extremities  form  the  parallelogram 
LL'MM',  then 

the  parallelogram  LL'MM'  =  rcct.  A  A'.  BB'. 

The  proof  is  interesting.     Let  the  tangents  at  P,  D  respec- 

tively meet  the  major  or  transverse  axis  in  T,  T', 

Now  (by  VII.  4)      PT* :  VIP  =  NT :  ON ; 

therefore  2  A  CPT  :2&T'DC  =  NT :  CN. 

But     2  A  CPT  :  (GL)  =  PT  :  CD, 

=  CP  :  DT',  by  similar  triangles, 

That  is,  (CL)  is  a  mean  proportional  between  2  &CPT  and '  DC. 

Therefore,  since  '/(NT.  CN)  is  a  mean  proportional  between 
NT  and  CN, 
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2  ACPT:  (GL)  =  V(GN.  NT)  :  GN 

(1.37,39) 

therefore  (GL)  =  CA  . 

The  remaining  propositions  of  the  Book  trace  the  variations 
of  different  functions  of  the  conjugate  diameters,  distinguishing 
the  maximum  values,  &c.  The  functions  treated  are  the 

following  : 

p',  the  parameter  of  the  ordinates  to  PP'  in  the  hyperbola, 
according  as  A  A'  is  (1)  not  less  than  p,  the  parameter  corre- 

sponding to  A  A*  ',  (2)  less  than  p  but  not  less  than  \  p,  (3)  less 
than  |p  (VII.  33-5). 

PP'<+>p'9  as  compared  with  AA'^p  in  the  hyperbola  (VII.  36) 
or  the  ellipse  (VII.  37). 

PP'+p'  „  „      AA'+p    in    the    hyperbola    (VII. 
38-40)  or  the  ellipse  (VII.  41). 

PP'./  „  „      AA'.p     in  the  hyperbola  (VII.  42) 
or  the  ellipse  (VII.  43). 

.,  „      AA"~+p2  in  the  hyperbola,  accord- 

ing as  (1)  A  A'  is  not  less  than 

p,  or  (2)  AA'<  p,  but  A  A'*  not less  than  ̂ (AA^pY9  or  (3) 

PP'2+//2          „  „     AA'^+yP   in  the  ellipse,  according 
as  AA'2  is  not  greater,  or  is 

greater,  than  (AA'  +  p)2  (VII. 47,  48). 

Pl**«»fP         „  „     A  A'*  ~p*  in  the  hyperbola,  accord- 
ing as  AAf>  or  <p  (VII. 

49,  50). 

PP'2  -  2>*        „  „     A  A'*  -  p*  or  BB^+p!*  in  the  ellipse, 
according  as  PP'  >  or  <  p' 
(VII.  51). 
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As  we  have  said,  Book  VIII  is  lost.  The  nature  of  its 

contents  can  only  be  conjectured  from  Apollonius's  own 
remark  that  it  contained  determinate  conic  problems  for 
which  Book  VII  waS  useful,  particularly  in  determining 
limits  of  possibility.  Unfortunately,  the  lemmas  of  Pappus 
do  not  enable  us  to  form  any  clearer  idea.  But  it  is  probable 

enough  that  the  Book  contained  a  number  of  problems  having 
for  their  object  the  finding  of  conjugate  diameters  in  a  given 
conic  such  that  certain  functions  of  their  lengths  have  given 
values.  It  was  on  this  assumption  that  Halley  attempted 
a  restoration  of  the  Book. 

If  it  be  thought  that  the  above  account  of  the  Conies  is 

disproportionately  long  for  a  work  of  this  kind,  it  must  be 
remembered  that  the  treatise  is  a  great  classic  which  deserves 
to  be  more  known  than  it  is.  What  militates  against  its 
being  read  in  its  original  form  is  the  great  extent  of  the 
exposition  (it  contains  387  separate  propositions),  due  partly 
to  the  Greek  habit  of  proving  particular  cases  of  a  general 
proposition  separately  from  the  proposition  itself,  but  more  to 

the  cumbrousness  of  the  enunciations  of  complicated  proposi- 
tions in  general  terms  (without  the  help  of  letters  to  denote 

particular  points)  and  to  the  elaborateness  of  the  Euclidean 

form,  to  which  Apollonius  adheres  throughout. 

Other  works  by  Apollonius. 

Pappus  mentions  and  gives  a  short  indication  of  the  con- 
tents of  six  other  works  of  Apollonius  which  formed  part  of  the 

Treasury  of  A  tialysis.1  Three  of  these  should  be  mentioned 
in  close  connexion  with  the  (Joules. 

(a)   Om  the  Cutting-off  of  <t   Ratio  (\6yov  anoTOfiri), 
two    Books. 

This  work  alone  of  the  six  mentioned  has  survived,  and 

that  only  in  the  Arabic ;  it  was  published  in  a  Latin  trans- 
lation by  Edmund  Halley  in  1706.  It  deals  with  the  general 

problem, '  Given  two  straight  lines,  parallel  to  one  another  or 
intersecting,  and  a  fixed  point  on  each  line,  to  draw  through 

1  Pappus,  vii,  pp.  640-8,  660-72. 
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a  given  point  a  straight  line  which  shall  cut  off  segments  from 
each  line  (measured  from  the  fixed  points)  bearing  a  given 

ratio  to  one  another.9  Thus,  let  A,  B  be  fixed  points  on  the 
two  given  straight  lines  AC,  BK,  arid  let  0  be  the  given 
point.  It  is  required  to  draw  through  0  a  straight  line 
cutting  the  given  straight  lines  in  points  M,  N  respectively 

such  that  AM  is  to  UN  in  a  given  ratio.  The  two  Books  of 

the  treatise  discussed  the  various  possible  cases  of  this  pro- 
blem which  arise  according  to  the  relative  positions  of  the 

given  straight  lines  and  points,  and  also  the  necessary  condi- 
tions and  limits  of  possibility  in  cases  where  a  solution  is  not 

always  possible.  The  first  Book  begins  by  supposing  the 
given  lines  to  be  parallel,  and  discusses  the  different  cases 
which  arise ;  Apollonius  then  passes  to  the  cases  in  which  the 
straight  lines  intersect,  but  one  of  the  given  points,  A  or  B,  is 
at  the  intersection  of  the  two  lines.  Book  II  proceeds  to  the 
general  case  shown  in  the  above  figure,  and  first  proves  that 
the  general  case  can  be  reduced  to  the  case  in  Book  I  where 
one  of  the  given  points,  A  or  J5,  is  at  the  intersection  of  the 
two  lines.  The  reduction  is  easy.  For  join  OB  meeting  A(J 

in  J3',  and  draw  ffN'  parallel  to  BN  to  meet  OM  in  N'.  Then 
the  ratio  ffN' :  BN,  being  equal  to  the  ratio  OB' :  OB,  is  con- 

stant. Since,  therefore,  BN:  A M  is  a  given  ratio,  the  ratio 

11' N' :  AM  is  also  given. 
Apollonius  proceeds  in  all  cases  by  the  orthodox  method  of 

analysis  and  synthesis.  Suppose  the  problem  solved  and 

OMN  drawn  through  0  in  such  a  way  that  B'N'iAM  is  a 
given  ratio  =  A,  say. 
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Draw  0(7  parallel  to  ZLV  or  WN'  to  meet  AM  in  V.    Take 
D  on  AM  such  that  OC  :  AD  =  X  =  B'N'  :  4  J/. 

Then  AM:AD  =  ffN':OU 

therefore  MD  :AD  =  B'C  :  CM, 

or  CM  .  MD  =  AD.  B'C,  a  given  rectangle. 

.Henco  tlie  problem  is  reduced  to  one  of  applying  to  CD  a 

rectcnu/le  (CM  .  MD)  equal  to  <t  given  rectangle  (A  D  .  B'C)  but 
falliiifj  dtort  ly  ti  square  fiywe.  In  the  case  as  drawn,  what- 

ever be  the  value  of  X,  the  solution  is  always  'possible  because 

the  given  rectangle  AD  .CB'  is  always  less  than  CA  .  AD,  and 
therefore  always  loss  than  -Jf'/)2;  one  of  the  positions  of 
M  falls  between  A  and  D  because  CM.MD<(!A  .  AD. 

The  proposition  TIL  41  of  the  Conies  aboift  the  intercepts 
made  on  two  tangents  to  a  parabola  by  a  third  tangent 

(pp.  155-6  above)  suggests  an  obvious  application  of  our  pro- 
blem. We  had,  with  the  notation  of  that  proposition, 

Prirq  =  rQ:Q;>  =  <]/):pR. 

Suppose  that  the  two  tangents  c/I\  qR  are  given  as  iixocl 

tangents  with  their  points  of  contact  P,  R.  frhen  we  can 
draw  another  tangent  if  we  can  draw  a  straight  line 

intersecting  qP,qli  in  such  a  way  that  Pr:rq=z<ip:pR  or 
P<j  :  c/r  =  (fit  :pU,  i.  v.  (jr  :  pR  =  P</  :  qR  (a  constant  ratio)  ; 
i.e.  we  have  to  draw  a  straight  line  such  that  the  intercept  by 

it  on  qP  measured  from  q  has  a  given  ratio  to  the  intercept 

by  it  on  qR  measured  from  A*.  This  is  a  particular  case  of 
our  problem  to  which,  as  a  matter  of  fact,  Apollonius  devotes 
special  attention.  In  the  annexed  figure  the  letters  have  the 

B7  C  M  D  A 

same  meaning  as  before,  and  N'M  has  to  be  drawn  through  0 
such  that  B  N' :  AM  =  A.     In  this  case  there  are  limits  to 
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the  value  of  X  in  order  that  the  solution  may  be  possible. 

Apollonius  begins  by  stating  the  limiting  case,  saying  that  we 
obtain  a  solution  in  a  special  manner  in  the  case  where  M  is 

the  middle  point  of  CD,  so  that  the  rectangle  CM .  MI)  or 
CB' .  AD  has  its  maximum  value. 

The  corresponding  limiting  value  of  \  is  determined  by 
finding  the  corresponding  position  of  D  or  M. 

We  have          B'C :  MD  =  CM:  AD,  as  before, 

=  B'M:  MA', 

whence,  since  MD  =  CM, 

B'C :  B'M  =  CM:  MA 

=  B'M:  B'A, 

so  that  B'M*  =  B'C. B'A. 

Thus  M  is  found  and  therefore  D  also. 

According,  therefore,  as  X  is  less  or  greater  than  the  par- 
ticular value  of  OG-.AD  thus  determined,  Apollonius  finds  no 

solution  or  two  solutions. 

Further,  we  have  > 

AD  =  B'A  +  B'C-  (B'D  +  B'C) 

=  B'A  +  B'C-2B'M 

=  B'A  +  B'C-  2  VB'A  .  B'C. 

If  then  we  refer  the  various  points  to  a  system  of  co 

ordinates  in  which  B'A,  B'N'  are  the  axes  of  x  and  y,  and  ii 
we  denote  0  by  (x,  y)  and  the  length  B'A  by  h, 

X  =  OC/AD  =  y/(h  +  x-2<Shx). 

If  we  suppose  Apollonius  to  have  used  these  results  for  tin 
parabola,  he  cannot  have  failed  to  observe  that  the  limitinj 
case  described  is  that  in  which  0  is  on  the  parabola,  whil 

N'OM  is  the  tangent  at  0  ;  for,  as  above, 

B'M  :  B'A  =  B'C  :  B'M  =  N'O  :  N'M,  by  parallels, 

so  that  B'A,  N'M  are  divided  at  M,  0  respectively  in  the  sam 
proportion. 
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Further,  it'  we  put  for  A  the  ratio  between  the  lengths  of  the 
two  fixed  tangents,  then  if  h,  k  be  those  lengths, 

k-       y 
__ 

which  can  easily  be  reduced  to 

the  equation  of  the  parabola  referred  to  the  two  fixed  tangents 
as  axes. 

(ft)  On  the  cuttiny-off  of  an  area  (\<*>piov  dnoro^), 
two  Books. 

This  work,  also  in  two  Books,  dealt  with  a  similar  problem, 
with  the  difference  that  the  intercepts  on  the  given  straight 
lines  measured  from  the  given  points  are  required,  not  to 
have  a  given  ratio,  but  to  contain  a  given  rectangle.  Halley 
included  an  attempted  restoration  of  this  work  in  his  edition 
of  the  De  sectione  rationis. 

The  general  case  can  here  again  be  reduced  to  the  more 
special  one  in  which  one  of  the  fixed  points  is  at  the  inter- 

section of  the  two  given  straight  lines.  Using  the  same 
figure  as  before,  but  with  D  taking  the  position  shown  by  (D) 
iu  the  figure,  we  take  that  point  such  that 

0(J  .A  I)  =  the  given  rectangle. 

We  have  then  to  draw  ON'M  through  0  such  that 
B'N'  .AM=OC.AD, 

or  &N'\()G=AD:AM. 

But,  by  parallels,   B'N'  :  OG  =  B'M:  CM', 

therefore  AM  :  CM  =  AD:  B'M 

so  that  '  Bf  M  .MD  =  AD.  B'C. 

Hence,  as  before,  the  problem  is  reduced  to  an  application 

of  a  rectangle  in  the  well-known  manner.     The  complete 
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treatment  of  tins  problem  in  all  its  particular  cases  with  their 
8iopt<r/Aoi  could  present  no  difficulty  to  Apollonius. 

If  the  two  straight  lines  are  parallel,  the  solution  of  the 
problem  gives  a  means  of  drawing  any  number  of  tangents 
to  an  ellipse  when  two  parallel  tangents,  their  points  of  con- 

tact, and  the  length  of  the  parallel  semi-diameter  are  given 
(see  Conies,  III.  42).  In  the  case  of  the  hyperbola  (III.  43) 
the  intercepts  made  by  any  tangent  on  the  asymptotes  contain 
a  constant  rectangle.  Accordingly  the  drawing  of  tangents 
(Jepends  upon  the  particular  cane  of  our  problem  in  which  both 
fixed  points  are  the  intersection  of  the  two  fixed  lines. 

(y)  On  determinate  xeetioii,  (8i<opicrfjL€vri  Tofirj),  two  Books. 

The  general  problem  here  is,  Given  four  points  ,4,  B,  (!,  D  on 
a  straight  line,  to  determine  another  point  P  on  the  same 
straight  line  such  that  the  ratio  AP.CP  \BP.DP  has  a 

given  value.  It  is  clear  from  Pappus's  account  1  of  the  contents 
of  this  work,  and  from  his  extensive  collection.  of  lemmas  to 
the  different  propositions  in  it,  that  the  question  was  very 
exhaustively  discussed.  To  determine  P  by  means  of  the 

equation 

where  A,  .B,  (7,  /),  A  are  given,  is  in  itself  an  easy  matter  since 
the  problem  can  at  once  be  put  into  the  form  of  a  quadratic 
equation,  and  the  Greeks  would  have  no  difficulty  in  reducing 
it  to  the  usual  application  of  areas.  If,  however  (as  we  may 
fairly  suppose),  it  was  intended  for  application  in  further 
investigations,  the  complete  discussion  of  it  would  naturally 
include  not  only  the  finding  of  a  solution,  but  also  the  deter- 

mination of  the  limits  of  possibility  and  the  number  of  possible 
solutions  for  different  positions  of  the  point-pairs  A,  (!  and 
B,  D,  for  the  cases  in  which  the  points  in  either  pair  coincide, 
or  in  which  one  of  the  points  is  infinitely  distant,  and  so  on. 
This  agrees  with  what  we  find  in  Pappus,  who  makes  it  clear 
that,  though  we  do  not  meet  with  any  express  mention  of 

series  of  point-pairs  determined  by  the  equation  for  different 
values  of  A,  yet  the  treatise  contained  what  amounts  to  a  coiu- 

1  Pappus,  vii,  pp.  642-4. 
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pletc  Theory  of  Involution.  Pappus  says  that  the  separate 
cases  were  dealt  with  in  which  the  given  ratio  was  that  of 
either  (1)  the  square  of  one  abscissa  measured  from  the 
required  point  or  (2)  the  rectangle  contained  by  two.  such 
abscissae  to  any  one  of  the  following:  (1)  the  square  of  one 
abscissa,  (2)  the  rectangle  contained  by  one  abscissa  and 
another  separate  line  of  given  length  independent  of  the 
position  of  the  required  point,  (3)  the  rectangle  contained  by 
two  abscissae.  We  learn  also  that  maxima  and  minima  were 
investigated.  From  the  lemmas,  too,  we  may  draw  other 
conclusions,  e.  g. 

(1)  that,  in   the   case  where    X  =  1,   or   AP.VP  = 

Apollonius  used  the  relation     III*  :  DP  =  AK  .  Il(  '  :  A  D  .  DC, 

(2)  that  Apollonius  probably  obtained  a  double  point  E  of  the 
involution  determined  by  the  point-pairs  A<(*  and  By  1)  by means  of  the  relation 

AB  .UC:  A  1)  .  DC  =  BE*  :  DW. 

A  possible  application  of  the1  problem  was  the  determination 
of  the  points  of  intersection  of  the  given  straight  line  with  a 
conic  determined  as  a  four-line  locus,  since  A,  B,  C,  D  are  in 
fact  the  points  of  intersection  of  the  given  straight  line  with 
the  four  lines  to  which  the  locus  has  reference. 

(8)  ()iu  Contacts  or  Ta  agencies  (trrafyai),  two  Books. 

Pappus  again  comprehends  in  one  enunciation  the  varieties 
of  problems  dealt  with  in  the  treatise,  which  we  may  repro- 

duce as  follows:  Given  three  things,  each  of  which  may  be 
either  a  ̂ oinl,  a  straight  line  or  a  circle,  to  draw  a  circle 
which  shall  jtass  through  each  of  the  giceu,  points  (so  far  as  it 
is  poiids  that  are  given)  ami  touch  the  straight  lines  or 

circles.1  The  possibilities  as  regards  the  different  data  are 
ten.  We  may  have  any  one  of  the  following:  (1)  three 
points,  (2)  three  straight  lines,  (3)  two  points  and  a  straight 
line,  (4)  two  straight  lines  and  a  point,  (5)  two  points  and 
a  circle,  (6)  two  circles  and  a  point,  (7)  two  straight  lines  and 

1  Pappus,  vii,  p,  644,  25-8. 
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a  circle,  (8)  two  circles  and  a  straight  line,  (9)  a  point,  a  circle 
and  a  straight  line,  (10)  three  circles.  Of  these  varieties  the 

first  two  are  treated  in  Eucl.  IV ;  Book  I  of  Apollonius's 
treatise  treated  of  (3),  (4),  (5),  (6),  (8),  (9),  while  (7),  the  case  of 
two  straight  lines  and  a  circle,  and  (10),  that  of  the  three 
circles,  occupied  the  whole  of  Book  II. 

The  last  problem  (10),  where  the  data  are  three  circles, 
has  exercised  the  ingenuity  of  many  distinguished  geometers, 
including  Vieta  and  Newton.  Vieta  (1540-1603)  set  the  pro- 

blem to  Adrianus  llomanus  (van  Roomeu,  1561-1615)  who 
solved  it  by  means  of  a  hyperbola.  Vieta  was  not  satisfied 
with  this,  and  rejoined  with  his  Apollonius  Galhis  (1600)  in 
which  he  solved  the  problem  by  plane  methods.  A  solution 
of  the  same  kind  is  given  by  Newton  in  his  Arithmetica 
Universalis  (Prob.  xlvii),  while  an  equivalent  problem  is 
solved  by  means  of  two  hyperbolas  in  the  Principia,  Lemma 

xvi.  The  problem  is  quite  capable  of  a  '  plane '  solution,  and, 
as  a  matter  of  fact,  it  is  not  difficult  to  restore  the  actual 

solution  of  Apollonius  (which  of  course  used  the ' plane'  method 
depending  on  the  straight  line  and  circle  only),  by  means  of 
the  lemmas  given  by  Pappus.  Three  things  are  necessary  to 

the  solution.  (1)  A  proposition,  used  by  Pappus  elsewhere1 
and  easily  proved,  that,  if  two  circles  touch  internally  or 
externally,  any  straight  lino  through  the  point  of  contact 
divides  the  circles  into  segments  respectively  similar.  (2)  The 
proposition  that,  given  three  circles,  their  six  centres  of  simili- 

tude (external  and  internal)  lie  three  by  three  on  four  straight 
lines.  This  proposition,  though  not  proved  in  Pappus,  was 
certainly  known  to  the  ancient  geometers ;  it  is  even  possible 
that  Pappus  omitted  to  prove  it  because  it  was  actually  proved 
by  Apollonius  in  his  treatise.  (3)  An  auxiliary  problem  solved 
by  Pappus  and  enunciated  by  him  as  follows.2  Given  a  circle 
ABC,  and  given  three  points  D,  E,  F  in  a  straight  line,  to 
inflect  (the  broken  line)  DAE  (to  the  circle)  so  as  to  make  BG 
in  a  straight  line  with  CF\  in  other  words,  to  inscribe  in  the 
circle  a  triangle  the  sides  of  which,  when  produced,  pass 
respectively  through  three  given  points  lying  in  a  straight 
line.  This  problem  is  interesting  as  a  typical  example  of  the 
ancient  analysis  followed  by  synthesis.  Suppose  the  problem 

1  Pappus,  iv,  pp.  194-6.  2  lb.  vii,  p.  848. 
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solved,  i.e.  suppose  DA,  EA  drawn  to  the  circle  cutting  it  in 
points  B,  C  such  that  BC  produced  passes  through  F. 

Draw  BG  parallel  to  DF;  join  GC 
and  produce  it  to  meet  DE  in  H. 

Then 

LBAQ=LRGC 

=  supplement  of  Z  CH D ; 

therefore  A,  Dy  //,  C  lie  on  a  circle,  and 

DE.EH=AE.EC.  o    H     K     e        F 

Now  AE.E(J  is  given,  being  equal  to  the  square  on  the 
tangent  from  E  to  the  circle  ;  and  DE  is  given  ;  therefore  HE 
is  given,  and  therefore  the  point  //. 

But  F  is  also  given  ;  therefore  the  problem  is  reduced  to 

drawing  HC,  FC  to  meet  the  circle  in  such  a  way  that,  if 
HC,  FC  produced  meet  the  circle  again  in  G,  B,  the  straight 
line  BG  is  parallel  to  II  F:  a  problem  which  Pappus  has 

previously  solved.1 
Suppose  this  done,  and  draw  BK  the  tangent  at  B  meeting 

HF'mK.  Then 

Z  K  BC  =  Z  BGC,  in  the  alternate  segment, 

Also  the  angle  (JFK  is  common  to  the  two  triangles  KBF> 
CHF\  therefore  the  triangles  are  similar,  and 

or 

Now  BF  .FC  is  given,  and  so  is  HF\ 

therefore  FK  is  given,  and  therefore  K  is  given. 
The  synthesis  is  as  follows.  Take  a  point  H  on  DE  such 

that  DE  .  EH  is  equal  to  the  square  on  the  tangent  from  E  to 
the  circle. 

Next  take  K  on  II  F  such  that  HF.FK  =  the  square  on  the 

tangent  from  F  to  the  circle. 
Draw  the  tangent  to  the  Circle  from  K,  and  let  B  be  the 

point  of  contact.  Join  BF  meeting  the  circle  in  (7,  and  join 

1  Pappus,  vii,  pp.  830-2. 
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HO  meeting  the  circle  again  in  (?.  It  is  then  easy  to  prove 
that  BG  is  parallel  to  DF. 

Now  join  EC,  and  produce  it  to  meet  the  circle  again  at  A  ; 

join  AB. 
We  have  only  to  prove  that  A  B,  BD  are  in  one  straight  line. 

Since  DE.EH  =  AE.EC,  the  points  A,  D,  II,  0  are  con- 

cyclic. 
Now  the  angle  CHF,  which  is  the  supplement  of  the  angle 

CHD,  is  equal  to  the  angle  JiGC,  and  therefore  to  tlie 

angle  BAG. 
Therefore  the  angle  BAC  is  equal  to  the  supplement  of 

angle  DEC,  so  that  the  angle  BAG  is  equal  to  the  angle  DAG, 
and  AB,  BD  are  in  a  straight  line. 

The  problem  of  Apollonius  is  now  easy.  We  will  take  the 
case  in  which  the  required  circle  touches  all  the  three  given 

circles  externally  as  shown  in  the  figure.  Let  the  radii  of  the 
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given  circles  be  a,  ft,  c  and  their  centres  A,  B,  C.  Let  D,  #,  F 

be  the  external  centres  of  similitude  so  that  BD:  7)C'=&:c,  &c. 
Suppose  the  problem  solved,  and  let  P,  Q,  R  be  the  points 

of  contact.  Let  PQ  produced  meet  the  circles  with  centres 
Ay  B  again  in  K,  L.  Then,  by  the  proposition  (1)  above,  the 
segments  KGP,  QHL  are  both  similar  to  the  segment  PYQ ; 
therefore  they  are  similar  to  one  another.  It  follows  that  PQ 

produced  beyond  L  passes  through  F.  Similarly  QR,  PR 

produced  pass  respectively  through  />,  E. 
Let  PE,  QD  meet  the  circle  with  centre  (!  again  in  My  N. 

Then,  the  segments  PQR,  RXM  being  similar,  the  angles 

PQR,  RNM  are  equal,  and  therefore  MN  is  parallel  to  PQ. 
Produce  XM  to  meet  EF  in  V. 

Then        E  V :  EF  =  EM:  EP  =  EC :  EA  =  c :  a  ; 

therefore  the  point  V  is  given. 

Accordingly  the  problem  reduces  itself  to  this:  Given  three 

points  Jr,  E,  D  in  a  straight  line,  it  is  required  to  draw  DR,  ER 
to  a  point  R  on  the  circle  with  centre  (!  so  that,  if  DR,  ER  meet 
the  circle  again  in  iV,  M,  XM  produced  shall  pass  through  V. 
This  is  the  problem  of  Pappus  just  solved. 

Thus  R  is  found,  and  DR,  ER  produced  meet  the  circles 
with  centres  B  and  A  in  the  other  required  points  Q,  P 

respectively. 

(e)    Plane  loci,  two  Books. 

Pappus  gives  a  pretty  full  account  of  the  contents  of  this 
work,  which  has  sufficed  to  enable  restorations  of  it  to 

be  made  by  three  distinguished  geometers,  Fermat,  van 

Schooten,  and  (most  completely)  by  Robert  Simson.  Pappus 
prefaces  his  account  by  a  classification  of  loci  on  two 
different  plans.  Under  the  first  classification  loci  are  of  three 

kinds:  (1)  tfaKTiKOL,  lioldin<j-i  u  or  Jived ;  in  this  case  the 
locus  of  a  point  is  a  point,  of  a  line  a  line,  and  of  a  solid 

a  solid,  where  presumably  the  line  or  solid  can  only  move  on 

itself  so  that  it  does  not  change  its  position :  (2)  Sitgo- 

SLKOL,  pasxiny-aloiuj :  this  is  the  ordinary  sense  of  a  locus, 
where  the  locus  of  a  point  is  a  line,  and  of  a  liile  a  solid : 

(3)  dva(TTpo<f>iKot,  woviiuj  backwards  and  forwards,  as  it  were, 
in  which  sense  a  plane  may  be  the  locus  of  a  point  and  a  solid 
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of  a  line.1  The  second  classification  is  the  familiar  division  into 
plane,  solid,  and  linear  loci,  plane  loci  being  straight  lines 
and  circles  only,  solid  loci  conic  sections  only,  and  linear  loci 
those  which  are  not  straight  lines  nor  circles  nor  any  of  the 
conic  sections.  The  loci  dealt  with  in  our  treatise  are  accord- 

ingly all  straight  lines  or  circles.  The  proof  of  the  pro- 
positions is  of  course  enormously  facilitated  by  the  use  of 

Cartesian  coordinates,  and  many  of  the  loci  are  really  the 
geometrical  equivalent  of  fundamental  theorems  in  analytical 
or  algebraical  geometry.  Pappus  begins  with  a  composite 
enunciation,  including  a  number  of  propositions,  in  these 
terms,  which,  though  apparently  confused,  are  not  difficult 
to  follow  out: 

'  If  two  straight  lines  be  drawn,  from  one  given  point  or  from two,  which  are  (a)  in  a  straight  line  or  (/>)  parallel  or 
(c)  include  a  given  angle,  and  either  (a)  bear  a  given  ratio  to 
one  another  or  (]8)  contain  a  given  rectangle,  then,  if  the  locus 
of  the  extremity  of  one  of  the  lines  is  a  plane  locus  given  in 
position,  the  locus  of  the  extremity  of  the  other  will  also  be  a 
plane  locus  given  in  position,  which  will  sometimes  be  of  the 
same  kind  as  the  former,  sometimes  of  the  other  kind,  and 
will  sometimes  be  similarly  situated  with  reference  to  the 
straight  line,  and  sometimes  contrarily,  according  to  the 
particular  differences  in  the  suppositions/2 

(The  words  '  with  reference  to  the  straight  line '  are  obscure,  but 
the  straight  line  is  presumably  some  obvious  straight  line  in 
each  figure,  e.g.,  when  there  are  two  given  points,  the  straight 

line  joining  them.)  After  quoting  thrue  obvious  loci '  added 

by  Charmaridrus ',  Pappus  gives  three  loci  which,  though  con- 
taining an  unnecessary  restriction  in  the  third  case,  amount 

to  the  statement  that  any  equation  of  the  first  degree  between 
coordinates  inclined  at  fixed  angles  to  (a)  two  axes  perpen- 

dicular or  oblique,  (/>)  to  any  number  of  axes,  represents  a 

straight  line.  The  enunciations  (5-7)  are  as  follows/' 

5.  '  If,  when  a  straight  line  is  given  in  magnitude  and  is 
Inoved  so  as  always  to  be  parallel  to  a  certain  straight  line 
given  in  position,  one  of  the  extremities  (of  the  moving 
straight  line),  lies  on  a  straight  line  given  in  position,  the 

1  Pappus,  vii,  pp.  660.  18-662.  5.  2  Ib.  vii,  pp.  662.  25-664.  7. 
3  Ib.,  pp.  664.  20-666.  6. 
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other  extremity  will  also  lie  on  a  straight  line  given  in 
position/ 

(That  is,  x  =  a  or  y  =  6  in  Cartesian  coordinates  represents  a 
straight  line.) 

6.  'If  from  any  point  straight  lines  be  drawn  to  meet  at  given 
angles  two  straight  lines  either  parallel  or  intersecting,  and  if 
the  straight  lines  so  drawn  have  a  given  ratio  to  one  another 
or  if  the  sum  of  one  of  them  and  a  line  to  which  the  other  has 
a  given  ratio  be  given  (in  length),  then  the  point  will  lie  on  a 
straight  line  given  in  position/ 

(This  includes  the  equivalent  of  saying  that,  if  x,  y  be  the 
coordinates  of  the  point,  each  of  the  equations  x  =  my, 

=  c  represents  a  straight  line.) 

7.  'If  any  number  of  straight  lines  be  given  in  position,  and 
straight  lines  be  drawn  from  a  point  to  meet  them  at  given 
angles,  and  if  the  straight  lines  so  drawn  be  such  that  the 
rectangle  contained  by  one  of  them  and  a  given  straight  line 
added  to  the  rectangle  contained  by  another  of  them  and 
(another)  given  straight  line  is  equal  to  the  rectangle  con- 

tained by  a  third  and  a  (third)  giveil  straight  line,  and  simi- 
larly with  the  others,  the  point  will  lie  on  a  straight  line  given 

in  position/ 

(Here  we  have  trilinear  or  multilinear  coordinates  propor- 
tional to  the  distances  of  the  variable  point  from  each  of  the 

three  or  more  fixed  lines.  When  there  are  three  fixed  lines, 
the  statement  is  that  ax  +  by  =  cz  represents  a  straight  line. 

The  precise  meaning  of  the  words  'and  similarly  with  the 

the  others'  or  'of  the  others1  —  KOI  r£>v  \onrSw  6/io/coy  —  is 
uncertain;  the  words  seem  to  imply  that,  when  there  were 
more  than  three  rectangles  a,i\  lnj.cz  ...,  two  of  them  were 
taken  to  be  equal  to  the  sum  of  all  the  others  ;  but  it  is  quite 
possible  that  Pappus  meant  that  any  linear  equation  between 
these  rectangles  represented  a  straight  line.  Precisely  how 
far  Apollonius  went  in  generality  we  are  not  in  a  position  to 
judge.) 

The  last  enunciation  (8)  of   Pappus   referring  to  Book  I 
states  that, 

'  If  from  any  point  (two)  straight  lines  be  drawn  to  meet  (two) 
parallel  straight  lines  given  in  position  at  given  angles,  and 
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cut  off  from  the  parallels  straight  lines  measured  from  given 
points  on  them  such  that  (a)  they  have  a  given  ratio  or 
(6)  they  contain  a  given  rectangle  or  (c)  the  sum  or  difference 
of  figures  of  given  species  described  on  them  respectively  is 
equal  to  a  given  "area,  the  point  will  lie  on  a  straight  line 
given  in  position/1 

The  contents  of  Book  II  are  equally  interesting.  Some  of 
the  enunciations  shall  for  brevity  be  given  by  means  of  letters 
instead  of  in  general  terms.  If  from  two  given  points  A,  B 

two  straight  lines  be  '  inflected '  (K\aorQSxnv)  to  a  point  P,  then 
(1),  if  AP*  *  BP*  is  given,  the  locus  of  P  is  a  straight  line ; 
(2)  if  AP,  BP  are  in  a  given  ratio,  the  locus  is  a  straight  line 
or  a  circle  [this  is  the  proposition  quoted  by  Eutocius  in  his 
commentary  on  the  Conies,  but  already  known  to  Aristotle]  ; 

(4)  if  AP2  is  'greater  by  a  given  area  than  in  a  given  ratio ' 
to  J9P2,  i.e.  if  AP*  =  dz  +  m .  BP'1,  the  locus  is  a  circle  given  in 
position.  An  interesting  proposition  is  (5)  that,  'If  from  any 
number  of  given  points  whatever  straight  lines  be  inflected  to 
one  point,  and  the  figures  (given  in  species)  described  on  all  of 
them  be  together  equal  to  a  given  area,  the  point  will  lie  on 

a  circumference  (circle)  given  in  position ' ;  that  is  to  say,  if 
a.AP*  +  p.  BP*  +  y.G'P2+...  =  a  given  area  (where  a,/3,  y  ... 
are  constants),  the  locus  of  P  is  a  circle.  (3)  states  that,  if 

AN  be  a  fixed  straight  line  and  A  a  fixed  point  on  it,  and  it' 
AP  be  any  straight  line  drawn  to  a  point  P  such  that,  if  PN 

is  perpendicular  to  AN,  AP2  =  a  .  AN  or  a .  BN,  where  a  is  a 
given  length  and  B  is  another  fixed  point  on  AN,  then  the 
locus  of  P  is  a  circle  given  in  position  ;  this  is  equivalent 
to  the  fact  that,  if  A  be  the  origin,  AN  the  axis  of  x,  and 

x  =  A N,  y  =  PN  bo  the  coordinates  of  P,  the  locus  ,/:2  +  y'1  =  ax 
or  <B2-f-2/2  =  a  (x  —  b)  is  a  circle.  (6)  is  somewhat  obscurely 
enunciated :  '  If  from  two  given  points  straight  lines  be  in- 

flected (to  a  point),  and  from  the  point  (of  concourse)  a  straight 
line  be  drawn  parallel  to  a  straight  line  given  in  position  and 
cutting  off  from  another  straight  line  given  in  position  an 
intercept  measured  from  a  given  point  on  it,  and  if  the  sum  of 
figures  (given  in  species)  described  on  the  two  inflected  lines 
be  equal  to  the  rectangle  contained  by  a  given  straight  line 
and  the  intercept,  the  point  at  which  the  straight  lines  are 

1  Pappus,  vii,  p.  666.  7-13. 
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inflected  lies  on  a  .circle  given  in  position/  The  meaning 
seems  to  be  this  :  Given  two  fixed  points  A,  J3,  a  length  a, 

a  straight  line  OX  with  a  point  0  fixed  upon  it,  and  a  direc- 
tion represented,  say,  l>y  any  straight  line  OZ  through  0,  then, 

if  AP,  BP  be  drawn  to  P,  and  PM  parallel  to  OZ  meets  OX 

in  M,  the  locus  of  P  will  b(3  a  circle  given  in  position  if 

whore  a,  f$  are  constants.  The  last  two  loci  are  again 
obscurely  expressed,  but  the  sense  is  this  :  (7)  If  PQ  be  any 
chord  of  a  circle  passing  through  a  fixed  internal  point  0,  and 
If  be  an  external  point  on  PQ  produced  such  that  either 

(a)  OE2  =  PR  .  JtQ  or  (/>)  Ofi*  +  PO  .  OQ=  PR  .  RQy  the  locus 
of  Ji  is  a  straight  line  given  in  position.  (8)  is  the  reciprocal 
of  this:  Given  tho  fixed  point  (),  the  straight  line  which  is 

the  locus  of  R,  and  also  the;  relation  (a)  or  (6),  the  locus  of 
P,  Q  is  a  circle. 

(£)    Neva-eis  (Verylnys  or   Inclinations),  two  Books. 
As  we  have  seen,  the  problem  in  a  i/cvcrt?  is  to  place 

between  two  straight  lines,  a  straight  line  and  a  curve,  or 

two  curves,  a  straight  line  of  given  length  in  such  a  way 

that  it  rertfe*  towards  a  fixed  point,  i.e.  it  will,  if  pro- 
duced, pass  through  a  fixed  point.  Pappus  observes  that, 

when  we  conic*  to  particular  cases,  the  problem  will  be 

'plane',  *  solid'  or  'linear',  according  to  the  nature  of  the 
particular  hypotheses;  but  a  selection  had  been  made  from 
the  class  which  could  be  solved  by  plane  methods,  i.e.  by 

means  of  the  straight  line*,  and  circle,  the  object  being  to  give 
those  which  wore  more  generally  useful  in  geometry.  The 

following  were  the  cases  thus  selected  and  proved.1 

I.  Given  (a)  a  semicircle  and  u  straight  line  at  right  angles 
to  the  base,  or  (/;)  two  semicircles  with  their  bases  in  a  straight 
line,  to  insert  a  straight  line  of  given  length  verging  to  an 

angle  of  the  semicircle  [or  of  one  of  the  semicircles]. 

II.  Given   a  rhombus  with   one   side   produced,  to   insert 

a  straight  line  of  given  length  in  the  external  angle  so  that  it 
verges  to  the  opposite  angle. 

1  Pappus,  vii,  pp.  670-2. 
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III.  Given  a  circle,  to  insert  a  chord  of  given  length  verging 
to  a  given  point. 

In  Book  I  of  Apollonius's  work  there  were  four  cases  of 
I  (a),  two  cases  of  III,  and  two  of  II ;  the  second  Book  con- 

tained ten  cases  of  I  (b). 
Restorations  were  attempted  by  Marino  Ghetaldi  (Apollonius 

redivivus,  Venice,  1607,  and  Apollonius  redivivus  .  .  .  Liber 

secundus,  Venice,  1613),  Alexander  Anderson  (in  a  tiupple- 
meutum  Apollo  mi  redivivi,  1612),  and  Samuel  Horsley 
(Oxford,  1770);  the  last  is  much  the  most  complete. 

In  the  case  of  the  rhombus  (II)  the  construction  of  Apollonius 
can  be  restored  with  certainty.  It  depends  on  a  lemma  given 
by  Pappus,  which  is  as  follows:  Given  a  rhombus  AD  with 
diagonal  BC  produced  to  E,  if  F  be  taken  on  EC  such  that  EF 
is  a  mean  proportional  between  BE  and  EC,  and  if  a  circle  be 

described  with  E  as  centre  and  EF  as  radius  cutting  CD 
in  K  and  AC  produced  in  //,  then  shall  J8,  Ky  H  be  in  one 

straight  line.1 
Let  the  circle  cut  AC  in  L,  join  LK  meeting  BC  in  M,  and 

join  HE,  LE,  KE. 
Since  now  CL,  CK  are  equally  inclined  to  the  diameter  of 

the  circle,  CL  =  CK.  Also  EL  =  EKy  and  it  follows  that  the 
triangles  ECK,  ECL  are  equal  in  all  respects,  so  that 

LCKE  =  LCLE  =  LCIIE. 

By  hypothesis,         EB:EF=EF:  EC, 

or  EB:EK  =  EK:EC. 

1  Pappus,  vii,  pp.  778-80. 



NETSEIS  (VERGING^  OR   INCLINATIONS)    191 

Therefore  the  triangles  BEK,  KEC,  which  have  the  angle 
BEK  common,  are  similar,  and 

Z  CBK  =  Z  GK  K  =  Z  G¥##  (from  above). 

But  Z  7/C'#  =  Z  AGE  =  Z 

Therefore   in   the   triangles   G'-fi/f,   C7/JF  two    angles    are 
respectively  equal,  so  that  Z  (JElf  =  Z  (7/i  7i  also. 

But  since  LGKK  =  LCHK  (from  above),  K,  Gf,  E,  II  are 
concyclic. 

Hence       Z  <7AY/  +  Z  (/#//  =  (two  right  angles)  ; 

therefore,  since  Z  C  KH  =  Z  GVi.fi, 

LVKB  +  LVKH  =  (two  riglit  angles), 

and  BKJI  is  a  straight  line. 

It  is  certain,  from  the  nature  of  this  lemma,  that  Apollonius 
made  his  construction  by  drawing  the  circle  shown  in  the 
figure. 

He  would  no  doubt  arrive  at  it  by  analysis  somewhat  as 
follows. 

Suppose  the  problem  solved,  and  HK  inserted  as  re- 
quired (  =  &). 

Bisect  HK  in  JV,  and  draw  NE  at  right  angles  to  KH 
meeting  S(-  produced  in  E.  Draw  KM  perpendicular  to  BC\ 
and  produce  it  to  meet  AC  in  L.  Then,  by  the  property  of 
the  rhombus,  LM  =  MI\,  and,  since  KX  =  Nil  also,  MX  is 
parallel  to  LH. 

Now,  since  the  angles  at  M,  N  are  right,  M,  K,  N,  E  are 
concyclic. 

Therefore  £VEK  =  LMNK  =  LG11K,  so  that  (7,  7v,  H,  E 
are  concyclic. 

Therefore  Z  J3CD  =  supplement  of  KOE  =  Z  A^Ar  = 
and  the  triangles  EKH,  DOB  are  similar. 

Lastly, 

therefore  the  triangles  EBK,  EKC  are  similar,  and 

or 
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But,  by  similar  triangles  EKH,  DOB, 

EK:KH=J)G:GB, 

and,  since  the  ratio  DG:GB,  as  well  as  KH,  is  given,  EK 

is  given. 
The  construction  then  is  as  follows. 

If  k  be  the  given  length,  take  a  straight  line  /;  such  that 

apply  to  BG  a  rectangle  BE  .  EG  equal  to  p2  and  exceeding  by 
a  square  ;  then  with  E  as  centre  and  radius  equal  to  />  describe  a 
circle  cutting  A(!  produced  in  II  and  (H)  in  K.  UK  is  then 

equal  to  k  and,  by  Pappus's  lemma,  verges  towards  B. 
Pappus  adds  an  interesting  solution  of  the  same  problem 

with  reference  to  a  square  instead  of  a  rhombus  ;  the  solution 

is  by  one  Heraclitus  and  depends  on  a  lemma  which  Pappus 

also  gives.1 

We  hear  of  yet  other  lost  works  by  Apollonius. 

(77)  A  Comparison  of  the  dodecahedron  with  the  icosahedron. 

This  is  mentioned  by  Hypsicles  in  the  preface  to  the  so-called 
Book  XIV  of  Euclid.  Like  the  Conies,  it  appeared  in  two 
editions,  the  second  of  which  contained  the  proposition  that, 
if  there  be  a  dodecahedron  and  an  icosahedron  inscribed  in 

one  and  the  same  sphere,  the  surfaces  of  the  solids  are  in  the 
same  ratio  as  their  volumes  ;  this  was  established  by  showing 

'that  the  perpendiculars  from  the  centre  of  the  sphere  to 
a  pentagonal  face  of  the  dodecahedron  and  to  a  triangular 
face  of  the  icosahedron  are  equal. 

(&}  Marinus  on  Euclid's  Data  speaks  of  a  General  Treatise 
(KaOoXov  TTpay/jiaTeia)  in  which  Apollonius  used  the  word 
assigned  (rtrayfjitvov)  as  a  comprehensive  term  to  describe  the 
datum  in  general.  It  would  appear  that  this  work  must 
have  dealt  with  the  fundamental  principles  of  mathematics, 
definitions,  axioms,  &c.,  and  that  to  it  must  be  referred  the 

various  remarks  on  such  subjects  attributed  to  Apollonius  by 
Proclus,  the  elucidation  of  the  notion  of  a  line,  the  definition 

1  Pappus,  vii,  pp.  780-4. 
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of  plane  and  solid  angles,  and  his  attempts  to  prove  the  axioms ; 
it  must  also  have  included  the  three  definitions  (13-15)  in 

Euclid's  Data  which,  according  to  a  scholium,  were  due  to 
Apollonius  and  must  therefore  have  been  interpolated  (they 

are  definitions  of  Karrj-yfievr],  avr\y /jL^vq ,  and  the  elliptical 
phrase  wapa  0€cre*,  which  means  '  parallel  to  a  straight  line 
given  in  position ').  Probably  the  same  work  also  contained 
Apollonius' s  alternative  constructions  for  the  problems  of 
Eucl.  I.  10,  11  and  23  given  by  Proclus.  Pappus  speaks 

of  a  mention  by  Apollonius  'before  his  own  elements'  of  the 
class  of  locus  called  e^/crj/coy,  and  it  may  be  that  the  treatise 
now  in  question  is  referred  to  rather  than  the  Plane  Loci 
itself. 

(i)  The  work  On  the  Cochliau  was  on  the  cylindrical  helix. 
It  included  the  theoretical  generation  of  the  curve  on  the 
surface  of  the  cylinder,  and  the  proof  that  the  curve  is 
homoeomeric  or  uniform,  i.e.  such  that  any  part  will  fit  upon 
or  coincide  with  any  other. 

(K)  A  work  on  Unordered  Irrationals  is  mentioned  by 

Proclus,  and  a  scholium  on  Eucl.  X.  1  extracted  from  Pappus's 
commentary  remarks  that  c  Euclid  did  not  deal  with  all 
rationals  and  irrationals,  but  only  with  the  simplest  kinds  by 
the  combination  of  which  an  infinite-  number  of  irrationals 

are  formed,  of  which  latter  Apollonius  also  gave  some'. 
To  a  like  effect  is  a  passage  of  the  fragment  of  Pappus's 
commentary  on  Eucl.  X  discovered  in  an  Arabic  translation 

by  Woepcke:  'it  was  Apollonius  who,  besides  the  ordered 
irrational  magnitudes,  showed  the  existence  of  the  unordered, 

and  by  accurate  methods  set  forth  a  great  number  of  them'. 
The  hints  given  by  the  author  of  the  commentary  seem  to  imply 

that  Apollonius's  extensions  of  the  theory  of  irrationals  took 
two  directions,  (1)  generalizing  the  medial  straight  line  of 
Euclid,  011  the  basis  that,  between  two  lines  commensurable  in 
square  (only),  we  may  take  not  only  one  sole  medial  line  but 
three  or  four,  and  so  on  ad  infinitwin,  since  we  can  take, 
between  any  two  given  straight  lines,  as  many  lines  as 
we  please  in  continued  proportion,  (2)  forming  compound 
irrationals  by  the  addition  and  subtraction  of  more  than  two 
terms  of  the  sort  composing  the  binomials,  (tpotomes,  &c. 

1523.2 
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(A)  On  the  burning-miwor  (rr€pi  rov  irvptov)  is  the  title  of 
another  work  of  Apollonius  mentioned  by  the  author  of  the 
Fragmentum  mathematicum  Boliense,  which  is  attributed  by 

Heiberg  to  Anthemius  but  is  more  likely  (judging  by  its  sur- 
vivals of  antiquated  terminology)  to  belong  to  a  much  earlier 

date.  The  fragment  shows  that  Apollonius  discussed  the 
spherical  form  of  mirror  among  others.  Moreover,  the  extant 
fragment  by  Anthemius  himself  (on  burning  mirrors)  proves  the 
property  of  mirrors  of  parabolic  section,  using  the  properties  of 
the  parabola  (a)  that  the  tangent  at  any  point  makes  equal 
angles  with  the  axis  and  with  the  focal  distance  of  the  point, 
and  (&)  that  the  distance  of  any  point  on  the  curve  from  the 
focus  is  equal  to  its  distance  from  a  certain  straight  line 

(our  '  directrix ') ;  and  we  can  well  believe  that  the  parabolic 
form  of  mirror  was  also  considered  in  Apollonius's  work,  and 
that  he  was  fully  aware  of  the  focal  properties  of  the  parabola, 
notwithstanding  the  omission  from  the  Conies  of  all  mention 
of  the  focus  of  a  parabola. 

(/*)  In  a  work  called  &KVTOKLOV  (  quick-delivery ')  ApolloniuH 
is  said  to  have  found  an  approximation  to  the  value  of  TT  '  by 
a  different  calculation  (from  that  of  Archimedes),  bringing  it 

within  closer  limits  '}  Whatever  these  closer  limits  may  have 
been,  they  were  considered  to  be  less  suitable  for  practical  use 
than  those  of  Archimedes. 

It  is  a  moot  question  whether  Apollonius's  system  of  arith- 
metical notation  (by  tetrads)  for  expressing  large  numbers 

and  performing  the  usual  arithmetical  operations  with  them, 
as  described  by  Pappus,  was  included  in  this  same  work. 
Heiberg  thinks  it  probable,  but  there  does  not  seem  to  be  any 
necessary  reason  why  the  notation  for  large  numbers,  classify- 

ing them  into  myriads,  double  myriads,  triple  myriads,  &c., 
i.e.  according  to  powers  of  10,000,  need  have  been  connected 
with  the  calculation  of  the  value  of  TT,  unless  indeed  the  num- 

bers used  in  the  calculation  were  so  large  as  to  require  the 
tetradic  system  for  the  handling  of  them. 
We  have  seen  that  Apollonius  is  credited  with  a  solu- 

tion of  the  problem  of  the  two  mean  proportionals  (vol.  i, 

pp.  262-3). 

1  y.  Eutocius  on  Archimedes,  Measurement  of  a  Circle, 
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Astronomy. 

We  are  told  by  Ptolemaeus  Chennus l  that  Apollouiua  was 
famed  for  his  astronomy,  and  was  called  €  (Epsilon)  because 
the  form  of  that  letter  is  associated  with  that  of  the  moon,  to 

which  his  accurate  researches  principally  related.  Hippolytus 

says  he  made  the  distance  of  the  moon's  circle  from  the  sur- 
face of  the,  earth  to  be  500  myriads  of  stades.2  This  figure' 

can  hardly  be  right,  for,  the  diameter  of  the  earth  being, 

according  to  Eratosthenes's  evaluation,  about  eight  myriads  of 
stades,  this  would  make  the  distance  of  the  moon  from  the 

earth  about  125  times  the  earth's  radius.  This  is  an  unlikely 
figure,  seeing  that  Aristarchus  had  given  limits  for  the  ratios 
between  the  distance  of  the  moon  and  its  diameter,  and 
between  the  diameters  of  the  moon  and  the  earth,  which  lead 

to  about  19  as  the  ratio  of  the  moon's  distance  to  the  earth's 
radius.  Tannery  suggests  that  perhaps  Hippolytus  made  a 
mistake  in  copying  from  his  source  and  took  the  figure  of 
5,000,000  stades  to  be  the  length  of  the  radius  instead  of  the 
diameter  of  the  moon's  orbit. 

But  we  have  better  evidence  of  the  achievements  of  Apol- 

lonius  in  astronomy.  In  Ptolemy's  tiynt(u:is:}  he  appears  as 
an  authority  upon  the  hypotheses  of  epicycles  and  eccentrics 
designed  to  account  for  the  apparent  motions  of  the  planets. 
The  propositions  of  Apollonius  quoted  by  Ptolemy  contain 
exact  statements  of  the  alternative  hypotheses,  and  from  this 
fact  it  was  at  one  time  concluded  that  Apollonius  invented 
the  two  hypotheses.  This,  however,  is  not  the  case.  The 
hypothesis  of  epicycles  was  already  involved,  though  with 
restricted  application,  in  the  theory  of  Heraclides  of  Pontus 
that  the  two  inferior  planets,  Mercury  and  Venus,  revolve  in 
circles  like  satellites  round  the  sun,  while  the  sun  itself 
revolves  in  a  circle  round  the  earth ;  that  is,  the  two  planets 
describe  epicycles  about  the  material  suji  as  moving  centre. 
In  order  to  explain  the  motions  of  the  superior  planets  by 
means  of  epicycles  it  was  necessary  to  conceive  of  an  epicycle 
about  a  point  as  moving  centre  which  is  not  a  material  but 
a  mathematical  point.  It  was  some  time  before  this  extension 
of  the  theory  of  epicycles  took  place,  and  in  the  meantime 

1  apud  Phottunt,  Cod.  cxc,  p.  151  b  18,  ed.  Bekker. 
2  Hippol.  Be fitt.  iv.  8,  p.  66.  ed,  Duncker.         3  Ptolemv.  Suntaxis.  xii.  1. 
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another  hypothesis,  that  of  eccentrics,  was  invented  to  account 
for  the  movements  of  the  superior  planets  only.  We  are  at  this 

stage  when  we  come  to  Apollonius.  His  enunciations  show 
that  he  understood  the  tlieory  of  epicycles  in  all  its  generality, 
but  he  states  specifically  that  the  theory  of  eccentrics  can  only 

be  applied  to  the  three  planets  which  can  be  at  any  distance 
from  the  sun.  The  reason  why  he  says  that  the  eccentric 
hypothesis  will  not  serve  for  the  inferior  planets  is  that,  in 
order  to  make  it  serve,  we  should  have  to  suppose  the  circle 
described  by  the  centre  of  the  eccentric  circle  to  be  greater 
than  the  eccentric  circle  itself.  (Even  this  generalization  was 
made  later,  at  or  before  the  time  of  Hipparchus.)  Apollonius 

further  says  in  his  enunciation  about  the  eccentric  that  'the 
centre  of  the  eccentric  circle  moves  about  the  centre  of  the 

zodiac  in  the  direct  order  of  the  signs  and  at  a  speed  equal  to 
that  of  the  sun,  while  the  star  moves  on  the  eccentric  about 
its  centre  in  the  inverse  order  of  the  signs  and  at  a  speed 

equal  to  the  anomaly '.  It  is  clear  from  this  that  the  theory 
of  eccentrics  was  invented  for  the  specific  purpose  of  explain- 

ing the  movements  of  Mars,  Jupiter,  and  Saturn  about  the 
sun  and  for  that  purpose  alone.  This  explanation,  combined 
with  the  use  of  epicycles  about  the  sun  as  centre  to  account 
for  the  motions  of  Venus  and  Mercury,  amounted  to  the 
system  of  Tycho  Brahe  ;  that  system  was  therefore  anticipated 
by  some  one  intermediate  in  date  between  Heraclides  and 
Apollonius  and  probably  nearer  to  the  latter,  or  it  may 
have  been  Apollonius  himself  who  took  this  important  step. 
If  it  was,  then  Apollonius,  coining  after  Aristarchus  of 
Samos,  would  be  exactly  the  Tycho  lirahe  of  the  Copernicus 
of  antiquity.  The  actual  propositions  quoted  by  Ptolemy  as 
proved  by  Apollonius  among  others  show  mathematically  at 

what  points,  under  each  of  the  two -hypotheses,  the  apparent 
forward  motion  changes  into  apparent  retrogradation  and 
vice  versa,  or  the  planet  appears  to  be  stationfiw/. 
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WITH  Archimedes  and  Apollonius  Greek  geometry  reached 
its  culminating  point.     There  remained  details    to  be  filled 
in,  and  no  doubt  in  a  work  such  as,  for  instance,  the  Cuiiics 

geometers  of  the  requisite  calibre  could  have  found  proposi- 
tions containing  the  germ  of  theories  which  were  capable  of 

independent  development.     But,  speaking  generally,  the  fur- 
ther progress  of  geometry  on  general  lines  was  practically 

barred   by  the  restrictions  of  method   and  form  which  were 
inseparable  from  the  classical  Greek  geometry.     True,  it  was 
opeit  to  geometers   to   discover  and   investigate  curves  of  a 
higher  order  than  conies,  such  as  spirals,  conchoids,  and  the 
like.     Bat  the  Greeks  could  not  get  very  far  even  on  these 
lines  in  the  absence  of  some  system  of  coordinates  and  without 
freer  means  of  manipulation  such  as  are  afforded  by  modern 
algebra,  in  contrast  to  the  geometrical  algebra,  which  could 
only  deal  with  equations  connecting  lines,  areas,  and  volumes, 
but  involving  no  higher  dimensions  than  three,  except  in  so 

far  as  the  use  of  proportions  allowed  a  very  partial  exemp- 
tion from  this  limitation.     The  theoretical  methods  available 

enabled  quadratic,  cubic  and  bi-quadratic  equations  or  their 
equivalents  to  be  solved.     But  all  the  solutions  were  (jeometri- 
eal ;   in  other  words,  quantities  could  only  be  represented  by 
lines,  areas  and  volumes,  or  ratios  between  them.     There  was 
nothing  corresponding  to  operations  with  general  algebraical 
quantities  irrespective  of  what  they  represented.     There  were 
no  symbols  for  such  quantities.     In  particular,  the  irrational 
was  discovered  in  the  form  of  incommensurable  lines ;  hence 
irrationals  came  to  be  represented  by  straight  lines  as  they 
are  in  Euclid,  Book  X,  and  the  Greeks  had  no  other  way  of 

representing  them.     It  followed  that  a  product  of  two  irra- 
tionals could  only  be  represented  by  a  rectangle,  and  so  on. 

Even  when  Diophantus  came  to  use  a  symbol  for  an  unkngwii 
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quantity,  it  was  only  an  abbreviation  for  the  word 

with  the  meaning  of  '  an  undetermined  multitude  of  units  ', 
not  a  general  quantity.  The  restriction  then  of  the  algebra 
employed  by  geometers  to  the  geometrical  form  of  algebra 
operated  as  an  insuperable  obstacle  to  any  really  new  depar- 

ture in  theoretical  geometry. 

It  might  be  thought  that  there  was  room  for  further  exten- 
sions in  the  region  of  solid  geometry.  But  the  fundamental 

principles  of  solid  geometry  had  also  been  laid  down  in  Euclid, 

Books  XI—  XIII  ;  the  theoretical  geometry  of  the  sphere  had 
been  fully  treated  in  the  ancient  sphaeric  ;  and  any  further 
application  of  solid  geometry,  or  of  loci  in  three  dimensions, 
was  hampered  by  the  same  restrictions  of  method  which 
hindered  the  further  progress  of  plane  geometry. 

Theoretical  geometry  being  thus  practically  at  the  end  of 
its  resources,  it  was  natural  that  mathematicians,  seeking  for 
an  opening,  should  turn  to  the  applications  of  geometry.  One 
obvious  branch  remaining  to  be  worked  out  wavS  the  geometry 
of  measurement,  or  mensuration,  in  its  widest  sense,  which  of 
course  had  to  wait  on  pure  theory  and  to  be  based  on  its 
results.  One  species  of  mensuration  was  immediately  required 
for  astronomy,  namely  the  measurement  of  triangles,  especially 
spherical  triangles;  in  other  words,  trigonometry  plane  and 
spherical.  Another  species  of  mensuration  was  that  in  which 
an  example  had  already  been  set  by  Archimedes,  namely  the 
measurement  of  areas  and  volumes  of  different  shapes,  and 
arithmetical  approximations  to  their  true  values  in  cases 
where  they  involved  surds  or  the  ratio  (IT)  between  the 
circumference  of  a  circle  and  its  diameter  ;  the  object  of  such 
mensuration  was  largely  practical.  «0f  these  two  kinds  of 
mensuration,  the  first  (trigonometry)  is  represented  by  Hip- 
parchus,  Menelaus  and  Ptolemy  ;  the  second  by  Heron  of 
Alexandria.  These  mathematicians  will  be  dealt  with  in  later 

chapters  ;  this  chapter  will  be  devoted  to  the  successors  of  the 
great  geometers  who  worked  on  the  same  lines  as  the  latter. 

Unfortunately  we  have  only  very  meagre  information  as  to 
what  these  geometers  actually  accomplished  in  keeping  up  the 
tradition.  No  geometrical  works  by  them  have  come  down 
to  us  in  their  entirety,  and  we  are  dependent  on  isolated 

extracts  or  scraps  of  information  furnished  by  commen- 
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tators,  and  especially  by  Pappus  and  Eutocius.  Some  of 
these  are  very  interesting,  and  it  is  evident  from  the 
extracts  from  the  works  of  such  writers  as  Diocles  and 

Dionysodorus  that,  for  some  time  after  Archimedes  and 
Apollonius,  mathematicians  had  a  thorough  grasp  of  the 
contents  of  the  works  of  the  great  geometers,  and  were  able 
to  use  the  principles  and  methods  laid  down  therein  with 
ease  and  skill. 

Two  geometers  properly  belonging  to  this  chapter  have 
already  been  dealt  with.  The  first  is  NICOMEDES,  the  inventor 
of  the  conchoid,  who  was  about  intermediate  in  date  between 

Eratosthenes  and  Apollonius.  The  conchoid  lias  already  been 
described  above  (vol.  i,  pp.  238-40).  It  gave  a  general  method 

of  solving  any  vtv<Ti$  where  ono  of  the  lines  which  cut  off'  an 
intercept  of  given  length  on  the  line  verging  to  a  given  point 
is  a  straight  line ;  and  it  was  used  both  for  the  finding  of  two 
mean  proportionals  and  for  the  trisection  of  any  angle,  these 
problems  being  alike  reducible  to  a  reCcny  of  this  kind.  How 
far  Nicomedcs  discussed  the  properties  of  the  curve  in  itself 
is  uncertain  ;  we  only  know  from  Pappus  that  ho  proved  two 

properties,  (1)  that  the  so-called  '  ruler'  in  the  instrument  for 
constructing  the  curve  is  an  asymptote,  (2)  that  any  straight 

lino  drawn  in  the,  space  between  the  '  ruler '  or  asymptote  and 
the  conchoid  must,  if  produced,  bo  cut  by  the  conchoid.1  The 
equation  of  the  curve  referred  to  polar  coordinates  is,  as  wo 
have  soon,  r  =  a  +  b  sec  0.  According  to  Eutocius,  Nicomedos 
prided  himself  inordinately  on  his  discovery  of  this  curve, 

contrasting  it  with  Eratosthenes's  mechanism  for  finding  any 
number  of  mean  proportionals,  to  which  ho  objected  formally 
and  at  length  on  the  ground  that  it  was  impracticable  and 

entirely  outside  the  spirit  of  geometry.2 

^Ni  comedos  is  associated  by  Pappus  with  Dinostratus,  the brother  of  Menaechmus,  and  others  as  having  applied  to  the 
squaring  of  the  circle  the  curve  invented  by  Hippias  and 

known  as  the  qwtdratrir*  which  was  originally  intended  for 
the  purpose  of  trisecting  any  angle.  These  facts  are  all  that 
we  know  of  Nicornedes's  achievements. 

1  Pappus,  iv,  p.  244.  21-8. 
2  Kutoc.   on  Archimedes,  On  the  Spliere  and   Cylinder,  Archimedes, 

vol.  iii,  p.  98. 

8  Pappus,  iv,  pp.  250.  33-252.  4.    Cf,  vol.  i,  p.  225  sq. 
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The  second  name  is  that  of  DIOCLES.  We  have  already 

(vol.  i,  pp.  264-6)  seen  him  as  the  discoverer  of  the  curve 
known  as  the  cissoid,  which  he  used  to  solve  the  problem 

of  the  two  mean  proportionals,  and  also  (pp.  47-9  above) 
as  the  author  of  a  method  of  solving  the  equivalent  of 
a  certain  cubic  equation  by  means  of  the  intersection 
of  an  ellipse  and  a  hyperbola.  We  are  indebted  for  our 

information  on  both  these  subjects  to  Eutocius,1  who  tells 

us  that  the  fragments  which  he  quotes  came  From  Diocles's 
work  ?T€/oi  wvpefcw,  On  burning-mirrors.  The  connexion  of 
the  two  things  with  the  subject  of  this  treatise  is  not  obvious, 
and  we  may  perhaps  infer  that  it  was  a  work  of  considerable 

scope.  What  exactly  were  the  forms  of  the  burning-mirrors 

discussed  in  the  treatise  it  is  not  possible*  to  say,  but  it  is 
probably  safe  to  assume  that  among  them  were  concave 
mirrors  in  the  forms  (1)  of  a  sphere,  (2)  of  a  paraboloid,  and 
(3)  of  the  surface  described  by  the  revolution  of  an  ellipse 

about  its  major  axis.  The  author  of  the  Frayment'iim  nuithe- 
maticum  Boliense  says  that  Apollonius  in  his  book  On  lite 

burniny-mirror  disclosed  the  case  of  the  concave  spherical 
mirror,  showing  about  what  point  ignition  would  take  place  ; 
and  it  is  certain  that  Apollonius  was  aware  that  an  ellipse  has 

the  property  of  reflecting  all  rays  through  one  focus  to  the 
other  focus.  Nor  is  it  likely  that  the  corresponding  property 
of  a  parabola  with  reference  to  rays  parallel  to  the  axis  was 
unknown  to  Apollonius.  Diodes  therefore,  writing  a  century 
or  more  later  than  Apollonius,  could  hardly  have  failed  to 
deal  with  all  three  cases.  True,  Anthemius  (died  about 

A.D.  534)  in  his  fragment  on  burning-mirrors  says  that  the 
ancients,  while  mentioning  the  usual  burning-mirrors  and 
saying  that  such  figures  are  conic  sections,  omitted  to  specify 

which  conic  sections,  and  how  produced,  and  gave  no  geo- 
metrical proofs  of  their  properties.  But  if  the  properties 

were  commonly  known  and  quoted,  it  is  obvious  that  they 

must  have  been  proved  by  the  ancients,  and  the  explanation 

of  Anthemius's  remark  is  presumably  that  the  original  works 
in  which  they  were  proved  (e.g.  those  of  Apollonius  and 
Diodes)  were  already  lost  when  he  wrote.  There  appears  to 

be  no  trace  of  Diocles's  work  left  either  in  Greek  or  Arabic, 
1  Eutocius.  loc.  cit..  n.  6G.  8  so.,  n.  160.  3  so. 



DIOCLES  201 

unless   we   have  a  fragment  from   it  in   the 

•iMithematicum  Jiobiense.    But  Moslem  writers  regarded  Diocles 

as  the  discoverer  of  the  parabolic  burning-mirror;  'the  ancients', 
says  al  Singrirl   (Sachawl,  Ansari),  *  made  mirrors  of   plane 
surfaces.      Some   made    them    concave    (i.e.   spherical)   until 
Diocles  (Diuklis)  showed  and  proved   that,  if  the  surface  of 
these  mirrors  has  its  curvature  in  the  form  of  a  parabola,  they 
then  have  the  greatest  power  and  burn  most  strongly.     There 
is  a  work  on  this  subject  composed  by  Ibn  al-Haitham/     This 
work  survives  in  Arabic  and   in  Latin  translations,  and  is 

reproduced  by  Heiberg  and  Wiedemann1  :  it  does  not,  how- 
ever, mention  the  name  of  Diocles,  but  only  those  of  Archi- 

medes and  Aiithemius.      Urn   al-Haitham  says  that   famous 
men  like  Archimedes  and  Anthemius  had  used  mirrors  made 

up  of  a  number  of  spherical  rings;  afterwards,  he  adds,  they 
considered  the  form  of  curves  which  would  reflect  rays  to  one 
point,  and  found  that  the  concave  surface  of  a  paraboloid  of 
revolution  has  this  property.     It   is  curious  to  find  Ibn  al- 
Haitham  saying  that  the  ancients  had  not  set  out  the  proofs 
sufficiently,  nor  the  method  by  which  they  discovered  them, 
words  which  almost  exactly  recall  those  of  Antheniius  himself. 

Nevertheless  the  whole  course  of  Ibn  al-Haitham's  proofs  is 
on  the  CJreek  model,  Apollonius  being  actually  quoted  by  name 

in  tin*  proof  of  the  main  property  of  the  parabola  required, 
namely  that   the   tangent  at  any  point  of  the  curve  makes 
equal    angles   with   the   focal   distance  of    the,  point  and  the 
straight  line,  drawn  through  it   parallel  to  the  axis.     A  proof 
of  the  property  actually  survives  in  the  (ireek  Fratjinentiifii 
mtithmnitwimi    Hohicn^e,  which   evidently   came  from  some 
treatise  on  the  parabolic  burning-mirror;  but  Ibn  al-Haitham 
does  not  seem  to  have  had  even  this  fragment  at  his  disposal, 
since  his  proof  takes  a  different  course,  distinguishing  three 
different    cases,   reducing   the    property    by   analysis   to   the 

known  property  A  X  =  A  2\  and  then  working  out  the  syn- 
thesis.   Tim  proof  in  the  Fnuj'nwntutH  is  worth  giving.     It  is 

substantially  as  follows,  beginning  with  the  preliminary  lemma 

that,  if  PT}  the  tangent  at  any  point  P,  meets  the  axis  at  rl\ 
and  if  AM  be  measured  along  the   axis  from  the  vertex  A 
equal  to  %AL,  where  A  L  is  the  parameter,  then  &P  =  ST. 

1  Bibliotheca  mathematics,  x3,  1910,  pp.  201-37, 
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Let  PN  be  the  ordinate  from  P;  draw  AY  at  right  angles 
to  the  axis  meeting  PT  in  Y,  and  join  HY. 

Now  PN* 

=  4  AH.  AN 

=  4  AH.  AT  (since  AN  = 

But  PN  =  ZAY  (since  4JV  =  AT)  ; 

therefore  4  F2  =  TA  .  AH, 

and  the  angle  TYH  is  right. 
The  triangles  8YT,  HYP  being  right-angled,  and  2T  being 

equal  to  YP,  it  follows  that  SP  =  AT. 

With  the  same  figure,  let  #7'  be  a  ray  parallel  to  AX 
impinging  on  the  curve  at  P.  It  is  required  to  prove  that 
the  angles  of  incidence  and  reflection  (to  H)  are  equal. 

We  have  HP  =  &1\  so  that  <  the  angles  at  the  points  7f,  P 

are  equal.  So',  says  the  author,  'arc  the  angles  TPA,  KPli 
[the  angles  between  the  tangent  and  the  curve,  on  each  side,  of 
the  point  of  contact].  Let  the  difference  between  the  angles 
be  taken;  therefore  the  angles  HP  A,  RPIt  which  remain 

[again  *  mixed*  angles]  are  equal.  Similarly  we  shall  show 
that  all  the  lines  drawn  parallel  to  AH  will  be  reflected  at 

equal  angles  to  the  point  H.' 
The  author  then  proceeds:  'Thus  burning-mirrors  con- 

structed with  the  surface  of  impact  (in  the  form)  of  the 

section  of  a  right-angled  cone  may  easily,  in  the  manner 
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above  shown,  be  proved  to  bring  about  ignition  at  the  point 
indicated/ 

Heiberg  held  that  the  style  of  this  fragment  is  By/antine 
and  that  it  is  probably  by  Anthemius.  Cantor  conjectured 

that  here  we  might,  after  all,  have  an  extract  from  Diocles's 
work.  Heiberg's  supposition  seems  to  me  untenable  because 
of  the  author's  use  (1)  of  the  ancient  terms  'section  of 
a  right-angled  cone'  for  parabola  and  'diameter'  for  axis 
(to  say  nothing  of  tin*  use  of  the  parameter,  of  which  there  is 
no  word  in  the  genuine  fragment  of  Anthemius),  and  (2)  of 

the  mixed  'angles  of  contact*.  Nor  does  it  seem  likely  that 
even  Diodes,  living  a  century  after  Apollonius,  would  have 

spoken  of  the  'section  of  a  right-angled  cone'  instead  of  a 
parabola,  or  used  the  4  mixed  '  angle  of  which  there  is  only  the 
merest  survival  in  Euclid.  The  assumption  of  the  equality 
of  the  two  angles  made  by  the  curve  with  the  tangent  on 

both  sides  of  the  point  of  contact  reminds  us  of  Aristotle's 
assumption  of  the  equality  of  the  angles  *  nf  a  segment1  of 
a  eirde  as  prior  to  the  truth  proved  in  Eucl.  I.  5.  I  am 
inclined,  therefore,  to  date  the  fragment  much  earlier  oven 
than  Diodes.  Zeuthen  suggested  that  the  property  of  the 
paraholoidal  mirror  may  him?  been  discovered  by  Archimedes, 
who,  according  to  a  Greek  tradition,  wrote  (\ito^tncn.  This, 
however,  does  not  receive  any  confirmation  in  Ibn  al-Haitham 
or  in  Anthemius,  and  we  can  only  say  that  the  fragment  at 
least  goes  back  to  an  original  which  was  probably  not  later 
than 'Apollonius. 

PKUSKI'S  is  only  known,  from  allusions  to  him  in  Proclus,1 
as  the.  discoverer  mid  investigator  of  the  >/>/?'/<•  wet  in  tit*.  They 
are  classed  by  Prod  us  among  curves  obtained  by  cutting 
solids,  and  in  this  respect  they  are  associated  with  the  conic 
sections.  We  may  safely  infer  that  they  were  discovered 
after  the  conic  sections,  and  only  after  the  theory  of  conies 
had  been  considerably  developed.  This  was  already  the  case 

in  Euclid's  time,  and  it  is  probable,  therefore,  that  Perseus  was 
not  earlier  than  Euclid.  On  the  other  hand,  by  that  time 
the  investigation  of  conies  had  brought  the  exponents  of  the 
subject  such  fame  that  it  would  be  natural  for  mathematicians 
to  see  whether  there  was  not  an  opportunity  for  winning  a 

1  Proclus  on  Eucl.  I,  pp.  111.  23-112.  8,  356.  12.    Cf.  vol.  i,  p.  226. 
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like  renown  as  discoverers  of  other  curves  to  be  obtained  by 

cutting  well-known  solid  figures  other  than  the  cone  and 
cylinder.  A  particular  case  of  one  such  solid  figure,  the 
orrerpa,  had  already  been  employed  by  Archytas,  and  the  more 
general  form  of  it  would  not  unnaturally  be  thought  of  as 
likely  to  give  sections  worthy  of  investigation.  Since  Geininus 

is  Proclus's  authority,  Perseus  may  have  lived  at  any  date  from 
Euclid's  time  to  (say)  75  B.C.,  but  the  most  probable  supposi- 

tion seems  to  be  that  he  came  before  Apollonius  and  near  to 
Euclid  in  date. 

The  spire  in  one  of  its  forms  is  what  we  call  a  tore,  or  an 

anchor-ring.  It  is  generated  by  the  revolution  of  a  circle 
about  a  straight  line  in  its  plane  in  such  a  w$ty  that  the  plane 
of  the  circle  always  passes  through  the  axis  of  revolution.  It 
takes  three  forms  according  as  the  axis  of  revolution  is 

(a)  altogether  outside  the  circle,  when  the  .spire  is  open 
(8i€\r)s),  (b)  a  tangent  to  the  circle,  when  the  .surface,  is  con- 

tinuous ((rvv*\ri$),  or  (c)  a  chord  of  the  circle,  when  it  is  inter- 

laced (c/ZTreTrAcy/zli/Ty),  or  crossing- itself  (cTraAAarrovo-a) ;  an 

alternative  name  for  the  surface  was  *pt'/coy,  a  riiuj.  Perseus 
celebrated  his  discovery  in  an  epigram  to  the  effect  that 

c  Perseus  on  his  discovery  of  three  lines  (curves)  upon  five 
sections  gave  thanks  to  the  gods  therefor'.1  There  is  «omo 
doubt  about  the  meaning  of  *  three  JinevS  u/xm  five  sections' 
(rpcf?  ypa/jipas  €TTI  rrli/re  Topa^s).  We  gather  from  Proclus's 
account  of  three  sections  distinguished  by  Perseus  that  the 
plane  of  section  was  always  parallel  to  the  axis  of  revolution 
or  perpendicular  to  the  plane  which  cuts  the  tore  symmetri- 

cally like  the  division  in  a  split-ring.  It  is  difficult  to  inter- 
pret the  phrase  if  it  means  three  curves  made  by  five  different 

sections.  Proclus  indeed  implies  that  the  three  curves  were 
sections  of  the  three  kinds  of  tore  respectively  (the  open,  the 
closed,  and  the  interlaced),  but  this  is  evidently  a  slip. 

Tannery  interprets  the  phrase  as  meaning  'three  curves  in, 

addition  to  five  sections  '.a  Of  these  the  five  sections  belong 
to  the  open  tore,  in  which  the  distance  (c)  of  the  centre  of  the 
generating  circle  from  the  axis  of  revolution  is  greater  than 
the  radius  (a)  of  the  generating  circle.  If  d  be  the  perpen- 

1  Proclus  on  Eucl.  I,  p.  112. 2. 
2  See  Tannery,  Mtmoirett  scientijiques,  II,  pp.  24-8. 
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dicular  distance  of  the  plane  of  section  from  the  axi*s  of  rota- 
tion, we  can  distinguish  the  following  cases  : 

(1)  c  +  a>d>c.     Here  the  curve  is  an  oval. 

(2)  d  =  c:  transition  from  case  (1)  to  the  next  case. 

(3)  c>J>c  —  a.   The  curve  is  now  a  closed  curve  narrowest 
in  the  middle. 

(4)  eZ  =  r  —  ft.      In   this   case   the   curve   is   the   hipi>opede 
(horse-fetter),  a  curve  in  the  shape  of  the  figure,  of  8.     The 
lemniscate  of  Bernoulli  is  a  particular  case  of  this  curve,  that 
namely  in  which  c  =  2a. 

(5)  r  — a>iZ>0.     In  this  case  the  section  consists  of  two 
ovals  symmetrical  with  one  another. 

The  three  curves  specified  l>y  Prcx-lus  are  those  correspond- 
ing to  (1),  (3)  and  (4). 

When  the  ton*  is  'continuous7  or  closed, c  =  «,  and  we  have 
sections  corresponding  to  (1),  (2)  and  (3)  only;  (4)  reduces  to 
two  cireles  touching  one  another. 

But  Tannery  finds  in  the  third,  the  interlaced,  form  of  tore 
three  new  sections  corresponding  to(l)  (2)  (3),  each  with  an 
oval  in  the  middle.  This  would  make  three  curves  in  addi- 

tion to  the  five  sections,  or  eight  curves  in  all.  We  cannot  he 
certain  that  this  is  the  true  explanation  of  the  phrase  in  the 
epigram:  but  it  seems  to  l>e  the  l>est  suggestion  that  has 
been  made. 

According  to  Proelus,  Perseus  worked  out  the  property  of 
his  curves,  as  Nicomedes  did  that  of  the  conchoid,  Hippias 

that  of  the  ij-mulrutrix,  and  Apollonius  those  of  the  three 
conic  sections.  That  is,  Perseus  must  have  given,  in  some 
form,  the  equivalent  of  the  Cartesian  equation  by  which  we 
can  represent  the  different  curves  in  question.  If  we  refer  the 
tore  to  three  axes  of  coordinates  at  right  angles  to  one  another 
with  the,  centre  of  the  tore  as  origin,  the  axis  of  y  being  taken 

I/O  be  the  axis  of  revolution,  and  those  of  z,  sc  being  perpen- 
dicular to  it  in  the  plane  bisecting  the  tore  (making  it  a  split- 

ring),  the  equation  of  the  tore  is 
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where  c,  a  have  the  same  meaning  as  above..  The  different 
sections  parallel  to  the  axis  of  revolution  are  obtained  by 

giving  (say)  z  any  value  between  0  and  c  +  a.  For  the  value 
z  =  a  the  curve  is  the  oval  of  Cassini  which  has  the  property 

that,  if  r,  r'  be  the  distances  of  any  point  on  the  curve  from 
two  fixed  points  as  poles,  rr'=  const.  For,  if  z'  =  a,  the  equa- tion becomes 

(#*  +  y*  +  c2)-  =  4  caa2  +  4  c2  a2, 

or  Jc— a" 

and  this  is  equivalent  to  rr'=  +  2ra  if  ./•,?/  are  the  coordinates 
of  any  point  on  the  curve  referred  to  Ox,  Oy  as  axes,  whew  0 
is  the  middle  point  of  the  line  (2v  in  length)  joining  the  two 
poles,  and  Ox  lies  along  that  line  in  either  direction,  while  Oy 
is  perpendicular  to  it.  Whether  Perseus  discussed  this  case 

and  arrived  at  the  property  in  relation  to  the  two  poles  is  of 
course  quite  uncertain. 

Isoperirnetric  figures. 

The  subject  of  isoperimetric  figures,  that  is  to  say,  the  com- 
parison of  the  areas  of  figures  having  different  shapes  but  the 

same  perimeter,  was  one  which  would  naturally  appeal  to  the 

early  Greek  mathematicians.  We  gather  from  Proclus's  notes 
on  Eucl.  I.  36,  37  that  those  theorems,  proving  that  parallelo- 

grams or  triangles  on  the  same  or  equal  bases  and  between 
the  same  parallels  are  equal  in  area,  appeared  to  the  ordinary 

person  paradoxical  because  they  meant  that,  by  moving  the 
side  opposite  to  the  base  in  the  parallelogram,  or  the  vertex 
of  the  triangle,  to  the  right  or  left  as  far  as  we  please,  we  may 
increase  the  perimeter  of  the  figure  to  any  extent  while  keep- 

ing the  same  area.  Thus  the  perimeter  in  parallelograms  or 
triangles  is  in  itself  no  criterion  as  to  their  area.  Misconcep- 

tion on  this  subject  was  rife  among  non-mathematicians. 
Proclus  tells  us  of  describers  of  countries  who  inferred 
the  size  of  cities  from  their  perimeters;  he  mentions  also 
certain  members  of  communistic  societies  in  his  own  time  who 

cheated  their  fellow-members  by  giving  them  land  of  greater 
perimeter  but  less  area  than  the  plots  which  they  took 
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themselves,  so  that,  while  they  got  a  reputation  for  greater 
honesty,  they  in  fact  took  more  than  their  share  of  the 

produce.1  Several  remarks  by  ancient  authors  show  the 
prevalence  of  the  same  misconception,  Thucydides  estimates 

the  size  of  Sicily  according  to  the  time  required  for  circum- 

navigating it.2  About  130  B.C.  Poly  bias  observed  that  there 
were  people  who  could  not  understand  that  camps  of  the  same 

periphery  might  have  different  capacities.3  Quintilian  has  a 
similar  remark,  and  Cantor  thinks  he  may  have  had  in  his 

mind  the  calculations  of  Pliny,  who  compares  the  size  of 
different  parts  of  the  earth  by  adding  their  lengths  to  their 
breadths.4 

/ENonours  wrote,  at  some  date  lx*tween  (Ray)  200  B.C.  and 

A.I).  90,  a  treatise  ncpi  iero/*€rpan>  o-x^ara)!/,  On  isometric 
jiyure*.  A  number  of  propositions  from  it  are  preserved  in 
the  commentary  of  Theon  of  Alexandria  on  Book  I  of 

Ptolemy's  tfyutaxix;  and  they  are  reproduced  in  Latin  in  the 
third  volume  of  Hultsch's  edition  of  Pappus,  for  the  purpose 
of  comparison  with  Pappus's  own  exposition  of  the  same 
propositions  at  the  beginning  of  his  B(x>k  V,  where  he  appears 
to  have  followed  Zenodorus  pretty  elosely  while  making  some 

changes  in  detail.5  From  the  closeness  with  which  the  style 
of  Zenodorus  follows  that  of  Euclid  and  Archimedes  we  may 
judge  that  his  date  was  not  much  later  than  that  of  Archi- 

medes, whom  he  mentions  as  the  author  of  the  proposition 
(Afeamrenient  <tf«  (Urcle,  Prop.  1)  that  the  area  of  a  circle  i* 
half  that  of  the  rectangle  contained  by  the  perimeter  of  the 
circle  and  its  radius.  The  important  propositions  proved  by 
Zenodorus  and  Pappus  include  the  following:  (1)  Of  all 
reyiUar  jMilytjon*  of  equal  jierimcter,  that  is  the  greatest  in 
area  wlwh  /m,x  the  tno^t  unifies.  (2)  A  circle  is  greater  tlian 

any  regular  'polyyini  of  equal  contour.  (3)  Of  all  polygons  of 
the  same  number  of  sides  and  equal  perimeter  tlw  equilateral 

and  eqummjular  jxtfygon  is  the  greatest  hi  area.  Pappus 
added  the  further  proposition  that  Of  all  seynwttis  of  a  circle 
having  the  same  circumference  the  semicircle  is  the  greatest  in 

1  Proclus  on  Eucl.  I,  p.  403.  Tisq.  2  Thuc.  vi.  1. 
3  Polybius,  ix.  21.  4  Pliny,  Hist.  vat.  vi.  208. 

5  Pappus,  v,  p.  308  sq. 
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area.  Zenodorus's  treatise  was  not  confined  to  propositions 
about  plane  figures,  but  gave  also  the  theorem  that  Of  all 
solid  figures  the  surfaces  of  which  are  equal,  the  sphere  is  the 
greatest  in  solid  content. 

We  will  briefly  indicate  Zenodorus's  method  of  proof.  To 
begin  with  (1) ;  let  ABC,  DBF  be  equilateral  and  equiangular 
polygons  of  the  same  perimeter,  DEF  having  more  angles 
than  ABC.  Let  G,  H  be  the  centres  of  the  circumscribing 
circles,  OK,  HL  the  perpendiculars  from  <zf  //  to  the  sides 

AB,  DEy  so  that  A',  L  bisect  those  sides. 

AM K 

Since  the  perimeters  are  equal,  AB  >  l)Et  and  AK  >  DL. 
Make  KM  equal  to  J)L  and  join  GM. 

Since  AB  is  the  same  fraction  of  the  perimeter  that  the 
angle  AGB  is  of  four  right  angles,  and  1)E  is  the  same  fraction 
of  the  same  perimeter  that  the  angle  DUE  is  of  four  right 
Angles,  it  follows  that 

that  is,  AK  :  MK=  LAGK-.L  DHL. 
But  AK:MK  >  LAGK\LMGK 

(this  is  easily  proved  in  a  lemma  following  by  the  usual 
method  of  drawing  an  arc  of  a  circle  with  G  as  centre  and  GM 
as  radius  cutting  GA  and  GK  produced.  The  proposition  is  of 
course  equivalent  to  tail  a/  tan  |9  >  <x/j8,  where  \TT  >  a  >  ft). 

Therefore  Z  MGK  >  Z  DHL, 

and  -consequently         Z  GM  K  <  Z  HDL. 
Make  the  angle  NMK  equal  to  the  angle  HDL,  so  that  MN 

meets  KG  produced  in  N. 
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The  triangles  NMK,  HDL  are  now  equal  in  all  respects,  and 
NK  is  equal  to  IIL,  so  that  OK  <  HL. 

But  the  area  of  the  polygon  ABC  is  half  the  rectangle 
contained  by  GK  and  the  perimeter,  while  the  area  of  the 
polygon  DEF  is  half  the  rectangle  contained  by  HL  and 
the  same  perimeter.  Therefore  the  area  of  the  polygon  DEF 
is  the  greater. 

(2)  The  proof  that  a  circle   is  greater  than   any   regular 
polygon  with  the  same  perimeter  is  deduced  immediately  from 

Archimedes'**  proposition  that  the  area  of  a  circle  is  equal 
to  the  right-angled  triangle  with  perpendicular  side  equal  to 
the   radius   and    base   equal  to  the  perimeter  of   the  circle; 

Zenodorus   inserts  a  proof   in  exteiiso   of    Archimedes's  pro- 
position, with   preliminary  lemma.     The  perpendicular  from 

the  centre  of  the  circle  circumscribing  the  polygon  is  easily 
proved   to  IK;  less  than   the  radius  of  the  given  circle  with 
perimeter  equal  to  that  of  the  polygon  :  whence  the  proposition 
follows. 

(3)  The   proof  of   this   proposition    depends   on    some    pre- 
liminary   lemmas.     The    first    proves    that,  if    there  be    two 

triangles  on  the  same  base  and  with  the 
puinc  perimeter,  one  being  isosceles  and 
the  other  scalene,  the  isosceles  triangle 
has  the  greater  area.  (Given  the  scalene 
triangle  BDC  on  the  base  B(\  it  is  easy  to 
draw  on  BC  as  base  the  isosceles  triangle 
having  the  same  perimeter.  We  have 

only  to  take  BU  equal  to  £(/M)+/>ff). 
bisect  li(!  at  fa\  and  erect  at  K  the  per- 

pendicular AK  such  that  AK*  =  Bll*-BK\) 
Produce  BA  to  Fso  that  BA  =  AF,  and  join  AD,  DF. 

Then  Jil)  +  DF>  BF<  i.e.  BA  +A(1,  i.e.  BD  +  DC,  by  hypo- 
thesis; therefore  DF  >  DC,  whence  in  the  triangles  FAD, 

CAD  the  angle  FA  I)  >  the  angle  CAD. 

Therefore  L  FA  1)  >  \  L  FA  ( ' 
>  LBV  A. 

Make  the  angle  FAG  equal  to  the  angle  BCA  or  ABC,  so 
that  AG  is  parallel  tojBC;  let  BD  produced  meet  AG  in  G, 
and  join  GC. 
1BSS.S  P 
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Then 

>  &DBC. 

The  second  lemrna  is  to  the  effect  that,  given  two  isosceles 
triangles  not  similar  to  one  another,  if  we  construct  on  the 
same  bases  two  triangles  similar  to  one  another  such  that  the 
sum  of  their  perimeters  is  equal  to  the  sum  of  the  perimeters 
of  the  first  two  triangles,  then  the  sum  of  the  areas  of  the 
similar  triangles  is  greater  than  the  sum  of  the  areas  of 

the  non-similar  triangles.  (The  easy  construction  of  the 
similar  triangles  is  given  in  a  separate  lemma.) 

Let  the  bases  of  the  isosceles  triangles,  KB,  BC,  bo  placet  I  in 
one  straight  line,  BC  being  greater  than  KB. 

Let  ABC,  DKB  be  the  similar  isosceles  triangles,  and  FttC, 
GKB  the  non-similar,  the  triangles  being  such  that 

BA+AC  +  ED  +  DB  =  BF+  FC+EG  +  GB. 

Produce  AF,  GD  to  meet  the  bases  in  K,  L.  Then  clearly 
AK,  GL  bisect  BC,  EB  at  right  angles  at  K,  L. 

Produce  GL  to  //,  making  LH  equal  to  GL. 
Join  HB  and  produce  it  to  N\  join  I  IF. 
Now,  since  the  triangles  ABC,  DEB  are  similar,  the  angle 

ABC  is  equal  to  the  angle  DEB  or  DBE. 

Therefore  Z  NBC  ( =  L  HBE  =  Z  GBE)  >  Z  DBE  or  Z  A  BC ; 

therefore  the  angle  ABH,  and  a  fortiori  the  angle  FBH,  is 
less  than  two  right  angles,  and  HF  meets  B K  in  some  point  M. 



ZENODORUS  211 

Now,  by  hypothesis,  DB  +  BA  =  GB  +  BF: 
therefore  DB  +  BA  =  H  B  +  BF>  HF. 

By  an  easy  lemma,  since  the  triangles  DEB,  A  BC  are  similar, 

(DB  +  BA)2  =  (DL  +  AK)*  +  (BL  +  BK)* 

Therefore     (DL  +  AK)*  +  LK*  :>  HF* 

whence  DL  +  A  K  >  GL  +  FK, 

and  it  follows  that  AF  >  GD. 

But  BK  >  BL]  therefore  AF.BK  >  GD.BL. 

Hence  the  *  hollow-angled  (figure)'  (KoiXoywvtov)  ABFC  is 
greater  than  the  hollow-angled  (figure)  (fEDB. 

Adding  A  DEB  +  &  fi/*V  to  each,  we  have 

A  DKH  +  &  A  B(1  >  A  HEB+A  FBC. 

The  above  is  the  only  case  taken  by  Zenodorus.  The  proof 
still  holds  if  Kit  =  B(\  so  that  BK  =  BL.  But  it  fails  in  the 

case  in  which  EB  >  IK1  and  the  vertex  G  of  the  triangle  EB 
belonging  to  the  non-similar  pair  is  still  above  /)  and  not 
below  it  (as  F  is  below  A  in  the  preceding  case).  This  was 
no  doubt  the  reason  why  Pappus  gave  a  pnx)f  intended  to 
apply  to  all  the  cases  without  distinction.  This  proof  is  the 
same  as  the  above  proof  by  Zenodorus  up  to  the  point  where 
it  is  proved  that 

I>L  +  AK  >  GL  +  FK, 

but  then*  diverges.  Unfortunately  the  text  is  bad,  and  gives 
no  sufKcient  indication  of  the  course  of  the  proof;  but  it  would 
seem  that  Pappus  used  the  relations 

DL  :  GL  =  A  DEB  :  A  GEB, 

AK  :  FK  =  AABC:AFB(\ 

and  Al\*:DLt2=AAB(':&DEB, 
combined  of  course  with  the  fact  that  GB+  BF  =  DB  +  BA, 

in  order  to  prove  the  proposition  that, 

according  as  DL  +  AK  >  or  <  GL  +  FK, 

A  DEB  +  &  ABC  >  or  <  A  GEB+&  FBC. 
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The  proof  of  his  proposition,  whatever  it  was,  Pappus 

indicates  that  he  will  give  later ;  but  in  the  text  as  we  have  it 

the  promise  is  not  fulfilled. 

Then  follows  the  proof  that  the  maximum  polygon  of  given 
perimeter    is    both    equilateral    and 
equiangular. 

(1)  It  is  equilateral. 
For,  if  not,  let  two  sides  of  the 

maximum  polygon,  as  AB,  lid,  be 
unequal.  Join  A(\  and  on  AC  as 
base  draw  the  isosceles  triangle  AFC 
such  that  AF+  FC=  AB  +  BC.  The 
area  of  the  triangle  AFC  is  then 

greater  than  the  area  of  the  triangle  ARC,  and  the  area  of 

the  whole  polygon  has  been  increased  by  the  construc- 
tion: which  is  impossible,  as  by  hypothesis  the  area  is  a 

maximum. 

Similarly  it  can  be  proved  that  no  other  side  is  unequal 
to  any  other. 

(2)  It  is  also  equiangular. 

For,  if  possible,  let  the  maximum  polygon  ABCJ)E  (which 
we  have  proved  to  be  equilateral) 
have  the  angle  at  B  greater  than 
the  angle  at  I).  Then  BAC,  DECmv 
non-similar  isosceles  triangles.  On 
AC,  CE  as  bases  describe  the  two 
isosceles  triangles  FAG,  GKC  similar 
to  one  another  which  have  the  sum 

of  their  perimeters  equal  to  the 
sum  of  the  perimeters  of  BA(\ 

DEC.  Then  the  sum  of  the  areas  of  the  two  similar  isosceles 

triangles  is  greater  than  the  sum  of  the  areas  of  the  triangles 
BACy  DEC]  the  area  of  the  polygon  is  therefore  increased, 
which  is  contrary  to  the  hypothesis. 

Hence  no  two  angles  of  the  polygon  can  be  unequal. 
The  maximum  polygon  of  given  perimeter  is  therefore  both 

equilateral  and  equiangular. 

Dealing  with  the  sphere  in  relation  to  other  solids  having 
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their  surfaces  equal  to  that  of  the  sphere,  Zenodorus  confined 
himself  to  proving  (1)  that  the  sphere  is  greater  if  the  other 
solid  with  surface  equal  to  that  of  the  sphere  is  a  solid  formed 
by  the .  revolution  of  a  regular  polygon  about  a  diameter 
bisecting  it  as  in  Archimedes,  On  the  Sphere  and  (lylinder, 
Book  I,  and  (2)  that  the  sphere  is  greater  than  any  of 
the  regular  solids  having  its  surface  equal  to  that  of  the 
sphere. 

Pappus's  treatment  of  the  subject  is  more  complete  in  that 
he  proves  that  the  sphere  is  greater  than  the  cone  or  cylinder 
the  surface  of  which  is  equal  to  that  of  the  sphere,  and  further 
that  of  the  five  regular  solids  which  have  the  same  surface 

that  which  has  more  faces  is  the  greater.1 

HYPSICLKS  (second  half  of  second  century  B.C.)  has  already 

been  mentioned  (vol.  i,  pp.  419  20)  as  the  author  of  the  con- 
tinuation of  the  JJlententa  known  as  15ook  XIV.  Me  is  quoted 

by  Diophantus  as  having  given  a  definition  of  a  polygonal 
number  as  follows: 

^ 

4  If  there  are  as  many  numbers  as  we  please  beginning  from 
1  and  increasing  by  the  same  common  difference,  then,  when 
the  common  difference  is  1,  the  sum  of  all  the  numbers  in 
a  triangular  number  ;  when  2,  a  square  :  when  3,  a  pentagonal 
number  [and  so  on].  And  the  number  of  angles  is  called 
after  the  number  which  exceeds  the  common  difference  by  2, 

and  the  side  after  the  number  of  terms  including  1.' 

This  definition  amounts  to  saying  that  the  /<th  a-gonal  num- 
ber (1  counting  as  the  first)  is  -|/i  ;  2  +  (u--  1 )  (a  —  2)  \.  If,  as  is 

probable,  Hypsicles  wrote  a  treatise  on  polygonal  numbers,  it 

has  not  survived.  On  the  other  hand,  the  'AvafyopiKos  (Ascen- 
xiones)  known  by  his  name  has  survived  in  Greek  as  well  as  in 

Arabic,  and  has  been  edited  with  translation.2  True,  the 
treatise  (if  it  really  be  by  Hypsicles,  and  not  a  clumsy  effort 
by  a  beginner  working  from  an  original  by  Hypsicles) 
does  no  credit  to  its  author;  but  it  is  in  some  respects 
interesting,  and  in  particular  because  it  is  the  first  Greek 

1  Pappus,  v,  Props.  19,  38-56. 
2  Manitius,  /Ms  Ht/psikli's  tfchrift  Anaphorikos,  Dresden,  Lehmannsche 

Buchdruekerei,  1888. 
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work  in  which  we  find  the  division  of  the  ecliptic  circle  into 

360  '  parts  '  or  degrees.  The  author  says,  after  the  preliminary 
propositions, 

*  The  circle  of  the  zodiac  having  been  divided  into  360  equal 
circumferences  (arcs),  let  each  of  the  latter  be  called  a  degree 

in  space  (polpa  TOTTIKTJ,  '  local  '  or  '  spatial  part  ').  And  simi- larly, supposing  that  the  time  in  which  the  zodiac  circle 
returns  to  any  position  it  has  left  is  divided  into  360  equal 
times,  let  each  of  these  be  called  a  degree  in  time  (fioipa 

From  the  word  KaXeiada)  ('  let  it  be  called  ')  we  may  perhaps 
infer  that  the  terms  were  new  in  Greece.  This  brings  us  to 
the  question  of  the  origin  of  the  division  (1)  of  the  circle  of 
the  zodiac,  (2)  of  the  circle  in  general,  into  360  parts.  On  this 
question  innumerable  suggestions  have  been  made.  With 

reference  to  (1)  it  was  suggested  as  long  ago  as  1788  (by  For- 
maleoiii)  that  the  division  was  meant  to  correspond  to  the 
number  of  days  in  the  year.  Another  suggestion  is  that  it 
would  early  be  discovered  that,  in  the  case  of  any  circle  the 
inscribed  hexagon  dividing  the  circumference  into  six  parts 
has  each  of  its  sides  equal  to  the  radius,  and  that  this  would 
naturally  lead  to  the  circle  being  regularly  divided  into  six 
parts  ;  after  this,  the  very  ancient  sexagesimal  system  would 
naturally  come  into  operation  and  each  of  the  parts  would  be 
divided  into  60  subdivisions,  giving  360  of  these  for  the  whole 
circle.  Again,  there  is  an  explanation  which  is  not  even 
geometrical,  namely  that  in  the  Babylonian  numeral  system, 
which  combined  the  use  of  6  and  10  as  base**,  the  numbers  6, 
60,  360,  3600  were  fundamental  round  numbers,  and  these 
numbers  were  transferred  from  arithmetic  to  the  heavens. 

The  obvious  objection  to  the  first  of  these  explanations 
(referring  the  360  to  the  number  of  days  in  the  solar  year)  is 
that  the  Babylonians  were  well  acquainted,  as  far  back  as  the 

monuments  go,  with  365-2  as  the  number  of  days  in  the  year. 
A  variant  of  the  hexagon-theory  is  the  suggestion  .that  a 
natural  angle  to  be  discovered,  and  to  serve  as  a  measure  of 

others,  is  the  angle  of  an  equilateral  triangle,  found  by  draw- 
ing a  star  *  like  a  six-spoked  wheel  without  any  circle.  If 

the  base  of  a  sundial  was  so  divided  into  six  angles,  it  would  be 
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natural  to  divide  each  of  the  sixth  parts  into  either  10  or  60 
parts;  the  former  division  would  account  for  the  attested 
division  of  the  day  into  60  hours,  while  the  latter  division  on 

the  sexagesimal  system  would  give  the  360  time-degrees  (each 
of  4  minutes)  making  up  the  day  of  24  hours.  The  purely 
arithmetical  explanation  is  defective  in  that  the  series  of 
numbers  for  which  the  Babylonians  had  special  names  is  not 

60,  360,  3600  but  60  (Soss),  COO  (Ner),  and  3600  or  602  (Sar). 
On  the  whole,  after  all  that  has  been  said,  I  know  of  no 

better  suggestion  than  that  of  Tannery.1  It  is  certain  that 
both  the  division  of  the  ecliptic  into  360  degrees  and  that  of 
the  vv\Qrinepov  into  360  time-degrees  were  adopted  by  the 
Greeks  from  Babylon.  Now  the  earliest  division  of  the 
ecliptic  was  into  12  parts,  the  signs,  and  the  question  is,  how 
were  the  signs  subdivided?  Tannery  observes  that,  accord- 

ing to  tho  cuneiform  inscriptions,  as  well  as  the  testimony  of 
Greek  authors,  the  sign  was  divided  into  parts  one  of  which 
(tlarfjatu)  was  double  of  the  other  (wwnm),  the  former  being 
l/30th,  the  other  (called  stadium  by  Manilius)  l/60th,  of  the 
sign  ;  the  former  division  would  give  360  parts,  the  latter  720 
parts  for  the  whole  circle.  The  latter  division  was  more 

natural,  in  view  of  the  long-established  system  of  sexagesimal 
fractions;  it  also  had  the  advantage  of  corresponding  toler- 

ably closely  to  the  apparent  diameter  of  the  sun  in  comparison 

with  the  circumference  of  the  sun's  apparent  circle.  But,  on 
the  other  hand,  the  double  fraction,  the  l/30th,  was  contained 
in  the  circle  of  the  zodiac  approximately  the  same  number  of 
times  as  there  are  days  in  the  year,  and  consequently  corre- 

sponded nearly  to  the  distance  described  by  the  sun  along  the 
xodiac  in  one  day.  It  would  seem  that  this  advantage  was 
sufficient  to  turn  the  scale  in  favour  of  dividing  each  sign  of 
the  zodiac  into  30  parts,  giving  360  parts  for  the  whole 
circle.  While  the  Chaldaeans  thus  divided  the  ecliptic  into 
360  parts,  it  does  not  appear  that  they  applied  the  same  divi- 

sion to  the  equator  or  any  other  circle.  They  measured  angles 

in  general  by  dlsy  an  ell  representing  2°,  so  that  the  complete 
circle  contained  180,  not  360,  parts,  which  they  called  ells. 
The  explanation  may  perhaps  be  that  the  Chald&eans  divided 

1  Tannery.  '  La  coudee  aatronomique  et  les  anciennes  divisions  du 
cercle '  (IKmoircs  scieHtifiquea,  ii,  pp.  256-68). 
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the  diameter  of  the  circle  into  60  ells  in  accordance  with  their 
usual  sexagesimal  division,  and  then  came  to  divide  the  cir- 

cumference into  180  such  ells  on  the  ground  that  the  circum- 
ference is  roughly  three  times  the  diameter.  The  measure- 

ment in  ells  and  dactyli  (of  which  there  were  24  to  the  ell) 
survives  in  Hipparchus  (On  the  Phaeiiometia  ofEudoxus  and 
Aratus),  and  some  measurements  in  terms  of  the  same  units 
are  given  by  Ptolemy.  It  was  Hipparchus  who  first  divided 
the  circle  in  general  into  360  parts  or  degrees,  and  the 
introduction  of  this  division  coincides  with  his  invention  of 
trigonometry. 

The  contents  of  Hypsicles's  tract  need  not  detain  us  long. 
The  problem  is :  If  we  know  the  ratio  which  the  length  of  the 
longest  day  bears  to  the  length  of  the  shortest  day  at  any 
given  place,  to  find  how  many  time-degrees  it  takes  any  given 
sign  to  rise ;  and,  after  this  has  been  found,  the  author  tinds 
what  length  of  time  it  takes  any  given  degree  in  any  sign  to 
rise,  i.e.  the  interval  between  the  rising  of  one  degree-point  on 
the  ecliptic  and  that  of  the  next  following.  It  is  explained 
that  the  longest  clay  is  the  time  during  which  one  half  of  the 
zodiac  (Cancer,  Leo,  Virgo,  Libra,  Scorpio,  Sagittarius)  rises, 
and  the  shortest  day  the  time  during  which  the  other  half 
(Capricornus,  Aquarius,  Pisces,  Aries,  Taurus,  Gemini)  rises. 
Now  at  Alexandria  the  longest  day  is  to  the  shortest  as  7 
to  6;  the  longest  therefore  contains  210  '  time-degrees',  the 
shortest  150.  The  two  quadrants  Cancer- Virgo  and  Libra- 
Sagittarius  take  the  same  time  to  rise,  namely  105  time- 
degrees,  and  the  two  quadrants  Capricornus -Pisees  and  Aries- 
Gemini  each  take  the  same  time,  namely  75  time-degrees. 
It  is  further  assumed  that  the  times  taken  by  Virgo,  Leo, 
Cancer,  Gemini,  Taurus,  Aries  are  in  descending  arithmetical 
progression,  while  the  times  taken  by  Libra,  Scorpio,  Sagit- 

tarius, Capricornus,  Aquarius,  Pisces  continue  the  same  de- 
scending arithmetical  series.  The  following  lemmas  are  used 

and  proved : 

I.  If  als  a2...an,  aw  +  1,  an+2 ...  a2n  is  a  descending  arithmeti- 
cal progression  of  2n  terms  with  8  (=  a^a^  =  a2-a3  =  ...) as  common  difference, 
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II.  If  MJ,  rt2'--an-*-a2n-i  *s  a  Descending  arithmetical  pro- 
gression of  2  /i--  1  terms  with  5  as  common  difference  and  an 

is  the  middle  term,  then 

«i  +  «2+  ...  +  «2n-i  =  (2u  —  l)an. 

III.  If  aT,  tta...an,  ̂ n+1...a2n  is  a  descending  arithmetical 
progression  of  2  jt,  terms,  then 

Now  let  ;1,  5,  (/  ho  the  descending  series  the  sum  of  which 
is  105,  and  /),  K,  Fthe  next  three  terms  in  the  same  series 
the  sum  of  which  is  75,  the  common  difference  being  <S;  we 
then  have,  by  (1), 

-iD  +  K+F)  =  9(5,  or  30  =  95, 

and  5  =  3$  . 

Next,  by  (II),  ̂ l  +  5+ff=35.  or  35  =  105,  and  5  =  35: 

therefore  A,  B,  (',  I),  K,  /'are  equal  to  38$,  35,  31|,  28$,  25, 
21-f  time-degrees  respectively,  which  tlie  author  of  the  tract 

expresses  in  time-degrees  and  minutes  as  38'  20',  35',  31'  40', 
28'  20',  25',  21'  -10'.  We  have  now  to  carry  through  the  same 
procedure  for  each  degree  in  each  sign.  If  the  difference 
between  the  times  taken  to  rise  by  one  sign  and  the  next 

is  3'  20',  what  is  the  difference  for  each  of  the  30  degrees  in 
the  sign?  We  have  here  30  terms  followed  by  30  other  terms 
of  the  same  descending  arithmetical  progression,  and  the 

formula  (I)  gives  3'  .  20'  =  (30)a</,  where  d  is  the  common 
difference  ;  therefore  d  =  0  J  0  x  3'  .  20'=  0'  0'  1  3"  20'".  Lastly, 
take  the  sign  corresponding  to  21'  40'.  This  is  the  sum  of 
a  descending  arithmetical  progression  of  30  terms  alt  «2  ...  a.w 

with  common  difference  0'  0'  13"  20'".  Therefore,  by  (III), 
21'  40'=  IS^  +  ajJ,  whence  a^a^^  l'  26'  40".  Now, 
since  there  are  30  terms  ap  a,2  ...  a30,  we  have 

04-0^=  29(2  =  0'  6'  26"  40'". 

It  follows  that  rtgo  =  0'  40'  6"  40'"  and  at  =  0'  46'  33"  20"', 



218    SUCCESSORS  OF  THE  GREAT  GEOMETERS 

and'  from  these  and  the  common  difference  0<  0'13"20'"  all 
the  times  corresponding  to  all  the  degrees  in  the  circle  can  be 
found, 

The  procedure  was  probably,  as  Tannery  thinks,  taken 
direct  from  the  Babylonians,  who  would  no  doubt  use  it  for 

the  purpose  of  enabling  the  time  to  be  determined  at  any 
hour  of  the  night.  Another  view  is  that  the  object  was 
astrological  rather  than  astronomical  (Manitius).  In  either 
case  the  method  was  exceedingly  rough,  and  the  assumed 
increases  and  decreases  in  the  times  of  the  risings  of  the  signs 

in  arithmetical  progression  are  not  in  accordance  with  the 

facts.  The  book  could  only  have  been  written  before  the  in- 
vention of  trigonometry  by  Hipparchus,  for  the  problem  of 

finding  the  times  of  rising  of  the  signs  is  really  one  of 

spherical  trigonometry,  and  these  times  were  actually  cal- 
culated by  Hipparchus  and  Ptolemy  by  means  of  tables  of 

chords. 

DIONYSODORUS  is  known  in  the  first  place  as  the  author  of 
a  solution  of  the  cubic  equation  subsidiary  to  the  problem  of 
Archimedes,  On  the  Spliere  and  Cylinder,  II.  4,  To  cut  a  given 
sphere  by  a  plane  so  that  the  volumes  of  the  segments  have  to 
one  another  a  given  ratio  (see  above,  p.  46).  Up  to  recently 
this  Dionysodorus  was  supposed  to  be  Dionysodorus  of  Amisene 
in  Pontus,  whom  Suidas  describes  as  '  a  mathematician  worthy 
of  mention  in  the  field  of  education'.  But  we  now  learn  from 

a  fragment  of  the  Herculaneum  Roll,  No.  1044,  that '  Philonides 
was  a  pupil,  first  of  Eudeinus,  and  afterwards  of  Dionysodorus, 
the  son  of  Dionysodorus  the  Caunian  \  Now  Eudeiuus  is 

evidently  Eudemus  of  Pergamum  to  whom  Apolloriiu.s  dedi- 
cated the  first  two  Books  of  his  Co  ivies,  and  Apollonius  actually 

asks  him  to  show  Book  II  to  Philonides.  In  another  frag- 
ment Philonides  is  said  to  have  published  some  lectures  by 

Dionysodorus.  Hence  our  Dionysodonis  may  be  Dionysodorus 
of  Caunus  and  a  contemporary  of  Apollonius,  or  very  little 

later.1  A  Dionysodorus  is  also  mentioned  by  Heron 2  as  the 
author  of  a  tract  On  the  Spire  (or  tore)  in  which  he  proved 
that,  if  d  be  the  diameter  of  the  revolving  circle 

1  W.  Schmidt  in  BiUiotheca  mathematics  ivs,  pp.  321-5. 
8  Heron,  Metrica,  ii.  13,  p.  128.  3. 
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generates  the  tore,  and  c  the  distance  of  its  centre  from  the 
axis  of  revolution, 

(volume  of  tore) :  nc2 .  d  =  %ird* :  ̂ccZ, 

that  is,  (volume  of  tore)  =  %n2 .  cd*, 

which  is  of  course  the  product  of  the  area  of  the  generating 
circle  and  the  length  o£  the  path  of  its  centre  of  gravity.  The 
form  in  which  the  result  is  stated,  namely  that  the  tore  is  to 
the  cylinder  with  height  (/  and  radius  c  as  the  generating 
circle  of  the  tore  is  to  half  the  parallelogram  cdt  indicates 
quite  clearly  that  Dionysodorus  proved  his  result  by  the  same 
procedure  as  that  employed  by  Archimedes  in  the  Method  and 
in  the  book  On  Conoids  and  Spheroids  \  and  indeed  the  proof 
on  Archimedean  lines  is  not  difficult. 

Before  passing  to  the  mathematicians  who  are  identified 
with  the  discovery  and  development  of  trigonometry,  it  will 
be  convenient,  I  think,  to  dispose  of  two  more  mathematicians 
belonging  to  the  last  century  B.C.,  although  this  involves 
a  slight  departure. from  chronological  order ;  I  mean  Posidonius 
and  Geminus. 

POSIDONIUS,  a  Stoic,  the  teacher  of  Cicero,  is  known  as 
Posidonius  of  Apamea  (where,  he  was  born)  or  of  Rhodes 
(where  he  taught) ;  his  date  may  be  taken  as  approximately 

135-51  iu_'.  In  pure  mathematics  he  is  mainly  quoted  as  the 
author  of  certain  definitions,  or  for  views  on  technical  terms, 

e.g.  'theorem'  and  'problem',  and  subjects  belonging  to  ele- 
mentary geometry.  More  important  were  his  contributions 

to  mathematical  geography  and  astronomy.  He  gave  his 
great  work  on  geography  the  title  On  the  Ocean,  using  the 
word  which  had  always  had  such  a  fascination  for  the  Greeks ; 
its  contents  are,  known  to  us  through  the  copious  quotations 
from  it  in  Strabo;  it  dealt  with  physical  as  well  as  mathe- 

matical geography,  the  zones,  the  tides  and  their  connexion 
with  the  moon,  ethnography  and  all  sorts  of  observations  made 
during  extensive  travels.  His  astronomical  book  bore  the 

title  Meteoroloyica  or  irepl  /Lierea>pa>i>,  -and,  while  Geminus 
wrote  a  commentary  on  or  exposition  of  this  work,  we  may 
assign  to  it  a  number  of  views  quoted  from  Posidonius  in 
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Cleomedes's  work  De  motu  circulars  corporum  caelestium. 
Posidonius  also  wrote  a  separate  tract  on  the  size  of  the  sun. 

The  two  things  which  are  sufficiently  important  to  deserve 

mention  here  are  (1)  Posidonius's  measurement  of  the  circum- 
ference of  the  earth,  (2)  his  hypothesis  as  to  the  distance  and 

size  of  the  sun. 

(1)  He  estimated  the  circumference  of  the  earth  in   this 

way.     He  assumed  (according  to  Cleomedes  ])  that,  whereas 
the  star  Canopus,  invisible  in  Greece,  was  just  seen  to  graze  the 
horizon  at  Rhodes,  rising  and  setting  again  immediately,  the 
meridian  altitude  of  the  same  star  at  Alexandria  was  *  a  fourth 

part  of  a  sign,  that  is,  one  forty-eighth  part  of  the  zodiac 

circle'  (  =  7^°);    and  he  observed  that  the  distance  between 
the  two  places  (supposed  to  lie  on  the  same  meridian)  *  was 
considered   to   be    5,000   stades'.     The  circumference  of  the 
earth  was  thus  made  out  to  be  240,000  stades.     Unfortunately 

the  estimate  of  the  difference  of  latitude,  7^°,  was  very  far 
from  correct,  the  true  difference   being  5^°  only ;   moreover 
the  estimate  of  5,000  stades  for  the  distance  was  incorrect, 
being  only  the  maximum  estimate  put  upon  it  by  mariners, 
while  some  put  it  at  4.000  and  Eratosthenes,  by  observations 
of  the  shadows  of  gnomons,  found  it  to  be  3,750  studes  only. 

Strabo,  on  the  other  hand,  says  that  Posidonius  favoured  '  the 
latest  of  the  measurements  which  gave  the  smallest  dimen- 

sions to  the  earth,  namely  about  180,000  stades1.2     This  is 
evidently  48  times  3,750,  so  that  Posidonius  combined  Erato- 

sthenes's  figure   of  3,750  stades  with  the  incorrect  estimate 
of  7|°  for  the  difference  of  latitude,  although  Eratosthenes 
presumably  obtained  the  figure  of  3,750  stades  from  his  own 
estimate  (250,000  or  252,000)  of  the  circumference  of  the  earth 
combined  with  an  estimate  of  the  difference  of  latitude  which 

was  about  5f°  and  therefore  near  the  truth. 

(2)  Cleomedesrj  tells  us  that  Posidonius  supposed  the  circle 
in  which  the  sun  apparently  moves  round  the  earth  to  be 
10,000  times  the  size  of  a  circular  section  of  the  earth  through 
its  centre,  and  that  with  this  assumption  he  combined  the 

1  Cleomedes,  De  motu  circular},  i.  10,  pp.  92-4. 
2  Strabo,  ii.  c.  95. 
8  Cleomedes,  op.  cit.  ii.  1,  pp.  144-6,  p.  98.  1-5. 
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statement  of  Eratosthenes  (based  apparently  upon  hearsay) 
that  at  Syene,  which  is  under  the  summer  tropic,  and 
throughout  a  circle  round  it  of  300  stades  in  diameter,  the 
upright  gnomon  throws  no  shadow  at  noon.  It  follows  from 
this  that  the  diameter  of  the  sun  occupies  a  portion  of  the 

sun's  circle  3,000,000  stades  in  length ;  in  other  words,  the 
diameter  of  the  sun  is  3,000,000  stades.  The  assumption  that 

the  sun's  circle  is  10,000  times  as  large  as  a  great  circle  of  the 
earth  was  presumably  taken  from  Archimedes,  who  had  proved 

in  the  tfaitd-reckoiwr  that  the  diameter  of  the  sun's  orbit  is 
le#8  than  10,000  times  that  of  the  earth;  Posidonius  in  fact 
took  the  maximum  value  to  be  the  true  value ;  but  his  esti- 

mate of  the  sun's  size  is  far  nearer  the  truth  than  the  estimates 
of  Aristarchus,  Hipparchus,  and  Ptolemy.  Expressed  in  terms 
of  the  mean  diameter  of  the  earth,  the  estimates  of  these 
astronomers  give  for  the  diameter  of  the  sun  the  figures  6|, 

12^,  and  5J  respectively;  Posidonius's  estimate  gives  39J,  the 
true  figure  being  108-9. 

In  elementary  geometry  Posidonius  is  credited  by  Proclus 

with  certain  definitions.  He  defined  'figure'  as  'confining 
limit'  (ntpas  <rvyK\€ioi>)}  mid  'parallels'  as  'those  lines  which, 
being  in  one  plane,  neither  converge  nor  diverge,  but  have  all 
the  perpendiculars  equal  which  are  drawn  from  the  points  of 

one  line  to  the  other'.-  (Both  these  definitions  are  included 
in  the  Dejinitio'HN  of  Heron.)  He  also  distinguished  seven 
species  of  quadrilaterals,  and  had  views  on  the  distinction 
between  theorem  and  problem.  Another  indication  of  his 
interest  in  the  fundamentals  of  elementary  geometry  is  the 

fact3  that  he  wrote  a  separate  work  in  refutation  of  the 
Epicurean  Zeno  of  Sidon,  who  had  objected  to  the  very  begin- 

nings of  the  Elements  on  the  ground  that  they  contained  un- 
proved assumptions.  Thus,  said  Zeno,  even  Eucl.1. 1  requires  it 

to  be  admitted  that  f  two  straight  lines  cannot  have  a  common 

segment ' ;  and,  as  regards  the  '  proof '  of  this  fact  deduced 
from  the  bisection  of  a  circle  by  its  diameter,  he  would  object 
that  it  has  to  be  assumed  that  two  arcs  of  circles  cannot  have 

a  common  part.  Zeno  argued  generally  that,  even  if  we 
admit  the  fundamental  principles  of  geometry,  the  deductions 

1  Proclus  on  Eucl.  I,  p.  143.  8.  2  /&.,  p.  176.  6-10. 
3  76.,  pp.  199.  14-200.  3. 
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from  them  cannot  be  proved  without  the  admission  of  some- 
thing else  as  well  which  has  not  been  included  in  the  said 

principles,  and  he  intended  by  means  of  these  criticisms  to 

destroy  the  whole  of  geometry.1  We  can  understand,  there- 
fore, that  the  tract  of  Posidonius  was  a  serious  work. 

A  definition  of  the  centre  of  gravity  by  one  '  Posidonius  a 

Stoic '  is  quoted  in  Heron's  Mechanics,  but,  as  the  writer  goes 
on  to  say  that  Archimedes  introduced  a  further  distinction,  we 
may  fairly  assume  that  the  Posidonius  in  question  is  not 
Posidonius  of  Rhodes,  but  another,  perhaps  Posidonius  of 
Alexandria,  a  pupil  of  Zeno  of  Cittium  in  the  third  cen- 

tury B.C. 

We  now  come  to  GEMINUS,  a  very  important  authority  on 
many  questions  belonging  to  the  history  of  mathematics,  as  is 

shown  by  the  numerous  quotations  from  him  in  Proclus's 
Commentai-y  on  Euclid,  Book  I.  His  date  and  birthplace  are 
uncertain,  and  the  discussions  on  the  subject  now  form  a  whole 
literature  for  which  reference  must  be  made  to  Manitius's 
edition  of  the  so-called  Gemini  elementa  astronomiae  (Teubner, 

1898)  and  the  article  'Geminus'  in  Pauly-Wissowa's  Real- 
Encyclopddie.  The  doubts  begin  with  his  name.  Petau,  who 
included  the  treatise  mentioned  in  his  Umnologion  (Paris, 
1630),  took  it  to  be  the  Latin  Gemlnus.  Manitius,  the  latest 
editor,  satisfied  himself  that  it  was  Gernlnus,  a  Greek  name, 
judging  from  the  fa^t  that  it  consistently  appears  with  the 
properispomenon  accent  in  Greek  (Ptfjiivos),  while  it  is  also 
found  in  inscriptions  with  the  spelling  re/*€«/oy;  Manitius 

suggests  the  derivation  from  yc//,  as  '£/jy^oy  from  spy,  and 
MXe^o/oy  from  d\€$;  he  compares  also  the  unmistakably 
Greek  names  'Ifcro/oy,  KpaTivos.  Now,  however,  we  are  told 
(by  Tittel)  that  the  name  is,  after  all,  the  Latin  GAnlnus, 
that  T*IJUVO$  came  to  be  so  written  through  false  analogy 
with  i4A6|u/oy,  &c.,  and  that  re[/i]ea/oy,  if  the  reading  is 
correct,  is  also  wrongly  formed  on  the  model  of  'Avrwcivos, 
'Aypnrirttva.  The  occurrence  of  a  Latin  name  in  a  centre 
of  Greek  culture  need  not  surprise  us,  since  Romans  settled  in 
such  centres  in  large  numbers  during  the  last  century  B.C. 
Geminus,  however,  in  spite  of  his  name,  was  thoroughly  Greek. 

1  Proclus  on  Eucl.  I,  pp.  214.  18-215.  13,  p.  216. 10-19,  p.  217.  10-23. 
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An  upper  limit  for  his  date  is  furnished  by  the  fact  that  he 

wrote  a  corhmentary  on  or  exposition  of  Posidonius's  work 
TTtpl  /zerccopcoi/ ;  on  the  other  hand,  Alexander  Aphrodisiensis 

(about  A.D.  210)  quotes  an  important  passage  from  an  'epitome* 
of  this  6^177170-19  by  Ocminus.  The  view  most  generally 
accepted  is  that  he  was  a  Stoic  philosopher,  born  probably 
in  the  island  of  Rhodes,  and  a  pupil  of  Posidonius,  and  that 
he  wrote  about  73-67  B.C. 

Of  Geminus's  works  that  which  has  most  interest  for  us 
is  a  comprehensive  work  on  mathematics.  Proclus,  though 
he  makes  great  use  of  it,  does  not  mention  its  title,  unless 
indeed,  in  the  passage  where,  after  quoting  from  Geminus 

a  classification  of  lines  which  never  meet,  he  says  '  these 

remarks  I  have  selected  from  the  <f>i\oKa\ta  of  Geminus',1 
the  word  <f>iXoKa\ia  is  a  title  or  an  alternative  title.  Tappus, 

however,  quotes  a  work  of  Geminus  '  on  the  classification  of 
the  mathematics'  (tv  rS>  irepl  TTJS  rS>v  fjia()r)fjLaTa>i'  ra^6o>y), 
while  Eutocius  quotes  from  '  the  sixth  book  of  the  doctrine  of 
the  mathematics '  (iv  r£  ZKTW  rfjs  rS>v  /jLaOrjfJidTwv  0€ci>pias). 
The  former  title?  corresponds  well  enough  to  the  long  extract 
on  the  division  of  the  mathematical  sciences  into  arithmetic, 

geometry,  mechanics,  astronomy,  optics,  geodesy,  canonic 
(musical  harmony)  and  logistic  which  Proclus  gives  in  his 

first  prologue,  and  also  to  the  fragments  contained  in  the 

Anonym i  variae  coUectioues  published  by  Hultsch  in  his 
edition  of  Heron;  but  it  does  not  suit  most  of  the  other 

passages  borrowed  by  Proclus.  The  correct  title  was  most 

probably  that  given  by  Eutocius,  The  Doctrhw,  or  Tlieory, 

of  the  Mathematics',  and  Pappus  probably  refers  to  one 
particular  section  of  the  work,  say  the  first  Book.  If  the 
sixth  Book  treated  of  conies,  as  we  may  conclude  from 

Eutocius's  reference,  there  must  have  been  more  Books  to 
follow;  for  Proclus  has  preserved  us  details  about  higher 
curves,  which  must  have  come  later.  If  again  Geminus 
finished  his  work  and  wrote  with  the  same  fullness  about  the 

other  branches  of  mathematics  as  he  did  about  geometry, 
there  must  have  been  a  considerable  number  of  Books 

altogether.  It  seems  to  have  been  designed  to  give  a  com- 
plete view  of  the  whole  science  of  mathematics,  and  in  fact 

1  Proclus  on  Eucl.  I,  p.  177.  24. 
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to  have  been  a  sort  of  encyclopaedia  of  the  subject.  The 

quotations  of  Proclus  from  Geminus's  work  do  not  stand 
alone;  we  have  other  collections  of  extracts,  some  more  and 

some  less  extensive,  and  showing  varieties  of  tradition  accord- 
ing to  the  channel  through  which  they  came  down.  The 

scholia  to  Euclid's  Elements,  Book  I,  contain  a  considerable 
part  of  the  commentary  on  the  Definitions  of  Book  I,  and  are 
valuable  in  that  they  give  Geminus  pure  and  simple,  whereas 
Proclus  includes  extracts  from  other  authors.  Extracts  from 

Geminus  of  considerable  length  are  included  in  the  Arabic 

commentary  by  an-Nairizi  (about  A.D.  900)  who  got  them 
through  the  medium  of  Greek  commentaries  on  Euclid, 
especially  that  of  Simplicius.  It  does  not  appear  to  be 

doubted  any  longer  that  'Aganis'  in  an-NahizI  is  really 
Geminus ;  this  is  inferred  from  the  close  agreement  between 

an-NairizI's  quotations  from  c Aganis'  and  the  correspond- 
ing passages  in  Proclus;  the  difficulty  caused  by  the  fact 

that  Simplicius  calls  Aganis  'socius  nostcr'  is  met  by  the 
suggestion  that  the  particular  word  socius  is  either  the 
result  of  the  double  translation  from  the  Greek  or  means 

nothing  more,  in  the  mouth  of  Simplicius,  than  '  colleague ' 
in  the  sense  of  a  worker  in  the  same  field,  or  '  authority '. 
A  few  extracts  again  are  included  in  the  Aitonymi  variae 

collectiones  in  Hultsch's  Heron.  Nos.  5-14  give  definitions  of 
geometry,  logistic,  geodesy  and  their  subject-matter,  remarks 
on  bodies  as  continuous  magnitudes,  the  three  dimensions  as 

*  principles '  of  geometry,  the  purpose  of  geometry,  and  lastly 
on  optics,  with  its  subdivisions,  optics  proper,  Catoptriea  and 

<r/t?7i>oypa0i/c?j,  scene-painting  (a  sort  of  perspective),  with  some 
fundamental  principles  of  optics,  e.g.  that  all  light  travels 
along  straight  lines  (which  are  broken  in  the  cases  of  reflection 
and  refraction),  and  the  division  between  optics  and  natural 
philosophy  (the  theory  of  light),  it  being  the  province  of  the 
latter  to  investigate  (what  is  a  matter  of  indifference  to  optics) 
whether  (1)  visual  rays  issue  from  the  eye,  (2)  images  proceed 
from  the  object  and  impinge  on  the  eye,  or  (3)  the  intervening 

air  is  aligned  or  compacted  with  the  beam-like  breath  or 
emanation  from  the  eye. 

Nos.  80-6  again  in  the  same  collection  give  the  Peripatetic 
explanation  of  the  name  mathematics,  adding  that  the  term 
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was  applied  by  the  early  Pythagoreans  more  particularly 
to  geometry  and  arithmetic,  sciences  which  deal  with  the  pure, 
the  eternal  and  the  unchangeable,  but  was  extended  by  later 

writers  to  cover  what  we  call  '  mixed '  or  applied  mathematics, 
which,  though  theoretical,  has  to  do  with  sensible  objects,  e.g. 
astronomy  and  optics.  Other  extracts  from  Geminus  are  found 

in  extant  manuscripts  in  connexion  with  Damianus's  treatise 
on  optics  (published  by  R.  Schone,  Berlin,  1897).  The  defini- 

tions of  logistic  and  geometry  also  appear,  but  with  decided 

differences,  in  the  scholia  to  Plato's  (-harmtdes  165  K.  Lastly, 
isolated  extracts  appear  in  Eutocius,  (1)  a  remark  reproduced 

in  the  commentary  on  Archimedes's  Plane  Equilibriums  to 
the  effect  that  Archimedes  in  that  work  gave  the  name  of 
postulates  to  what  are  really  axioms,  (2)  the  statement  that 

before  Apollonius's  time  the  conies  were  produced  by  cutting 
different  cones  (right-angled,  acute-angled,  and  obtuse-angled) 
by  sections  perpendicular  in  each  case  to  a  generator.1 

The  object  of  Geminus's  work  was  evidently  the  examina- 
tion of  the  first  principles,  the  logical  building  up  of  mathe- 

matics on  the  basis  of  those  admitted  principles,  and  the 
defence  of  the  whole  structure  against  the  criticisms  of 
the  enemies  of  the  science?,  the  Epicureans  and  Sceptics,  some 
of  whom  questioned  the  unproved  principles,  and  others  the 
logical  validity  of  the  deductions  from  them.  Thus  in 
geometry  Geminus  jlealt  first  with  the  principles  or  hypotheses 
(dpxai,  viro0t(r€i$)  and  then  with  the  logical  deductions,  the 
theorems  and  problems  (ra  fiera  ray  dp\d$).  The  distinction 
is  between  the  things  which  must  be  taken  for  granted  but 
arc  incapable  of  proof  and  the  things  which  must  not  be 
assumed  but  are  matter  for  demonstration.  The  principles 
consisting  of  definitions,  postulates,  and  axioms,  Geminus 
subjected  them  severally  to  a  critical  examination  from  this 
point  of  view,  distinguishing  carefully  between  postulates  and 
axioms,  and  discussing  the  legitimacy  or  otherwise  of  those 

formulated  by  Euclid  in  each  class.  In  his  notes  on  the  defini- 
tions Geminus  treated  them  historically,  giving  .the  various 

alternative  definitions  which  had  been  suggested  for  each 

fundamental  concept  such  as  '  line ',  '  surface  ', '  figure  '/body', 
*  angle ',  &c.,  and  frequently  adding  instructive  classifications 

1  Eutocius,  COMM.  on  ApoUoniuis  Conies,  ad  itnf. 
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of  the  different  species  of  the  thing  defined.  Thus  in  the 

case  of  'lines'  (which  include  curves)  he  distinguishes,  first, 
the  composite  (e.g.  a  broken  line  forming  an  angle)  and  the 

incomposite.  The  incomposite  are  subdivided  into  those 

*  forming  a  figure '  (crx^^^oTrotova-ai)  or  determinate  (e.g. 
circle,  ellipse,  cissoid)  and  those  not  forming  a  figure,  inde- 

terminate and  extending  without  limit  (e.g.  straight  lino, 
parabola,  hyperbola,  conchoid).  In  a  second  classification 

incomposite  lines  are  divided  into  (1) '  simple ',  namely  the  circle 
and  straight  line,  the  one  '  making  a  figure ',  the  other  extend- 

ing without  limit,  and  (2) ' mixed '.  '  Mixed '  lines  again  are 
divided  into  (a)  '  lines  in  planes ',  one  kind  being  a  line  meet- 

ing itself  (e.g.  the  cissoid)  and  another  a  line  extending 

without  limit,  and  (6)  'lines  on  solids',  subdivided  into  lines 
formed  by  sections  (e.g.  conic  sections,  spiric  curves)  and 

'lines  round  solids'  (e.g.  a  helix  round  a  cylinder,  sphere,  or 
cone,  the  first  of  which  is  uniform,  homoeomeric,  alike  in  all 

its  parts,  while  the  others  are  non-uniform).  Geminus  gave 
a  corresponding  division  of  surfaces  into  simple  and  mixed, 
the  former  being  plane  surfaces  and  spheres,  while  examples 

of  the  latter  are  the  tore  or  anchor-ring  (though  formed  by 
the  revolution  of  a  circle  about  an  axis)  and  the  conicoids  of 

revolution  (the  right-angled  conoid,  the  obtuse-angled  conoid, 
and  the  two  spheroids,  formed  by  the  revolution  of  a  para- 

bola, a  hyperbola,  and  an  ellipse  respectively  about  their 
axes).  He  observes  that,  while  there  are  three  homoeomeric 

or  uniform  'lines'  (the  straight  line,  the  circle,  and  the 
cylindrical  helix),  there  are  only  two  homoeomeric  surfaces, 
the  plane  and  the  sphere.  Other  classifications  are  those  of 

'  angles '  (according  to  the  nature  of  the  two  lines  or  curves 
which  form  them)  and  of  figures  and  plane  figures. 
When  Proclus  gives  definitions,  &c.,  by  Posidonius,  it  is 

evident  that  he  obtained  them  from  Gerninus's  work.  Such 

are  Posidonius's  definitions  of  '  figure '  and  '  parallels  ',  and  his 
division  of  quadrilaterals  into  seven  kinds.  We  may  assume 
further  that,  even  where  Geminus  did  not  mention  the  name 

of  Posidonius,  he  was,  at  all  events  so  far  as  the  philosophy  of 
mathematics  was  concerned,  expressing  views  which  were 
mainly  those  of  his  master. 
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Attempt  to  prove  the  Parallel-Postulate. 

Geminus  devoted  much  attention  to  the  distinction  between 

postulates  and  axioms,  giving  the  views  of  earlier  philoso- 
phers and  mathematicians  (Aristotle,  Archimedes,  Euclid, 

Apollonius,  the  Stoics)  on  the  subject  as  well  as  his  own.  It 
was  important  in  view  of  the  attacks  of  the  Epicureans  and 
Sceptics  on  mathematics,  for  (as  Geminus  says)  it  is  as  futile 
to  attempt  to  prove  the  indemonstrable  (as  Apollonius  did 
when  he  tried  to  prove  the  axioms)  as  it  is  incorrect  to  assume 

what  really  requires  proof,  '  as  Euclid  did  in  the  fourth  postu- 
late [that  all  right  angles  are  equal]  and  in  the  fifth  postulate 

[the  parallel-postulate]  V 
The  fifth  postulate  was  the  special  stumbling-block. 

Geminus  observed  that  the  converse  is  actually  proved  by 
Euclid  in  I.  17;  also  that  it  is  conclusively  proved  that  an 
angle  equal  to  a  right  angle  is  not  necessarily  itself  a  right 

angle  (e.g.  the  '  angle  '  between  the,  circumferences  of  two  semi- 
circles on  two  equal  straight  lines  with  a  common  extremity 

and  at  right  angles  to  one  another) ;  we  cannot  therefore  admit 

that  the  converses  are  incapable  of  demonstration.2  And 

'  we  have  learned  from  the  very  pioneers  of  this  science  not  to 
have,  regard  to  mere  plausible  imaginings  when  it  is  a  ques- 

tion of  the  reasonings  to  be  included  in»our  geometrical 
doctrine.  As  Aristotle  says,  it  is  as  justifiable  to^isk  scien- 

tific proofs  from  a  rhetorician  as  to  accept  mere  plausibilities 
from  a  geometer.  .  .  So  in  this  case  (that  of  the  parallel- 
postulate)  the  fact  that,  when  the  right  angles  are  lessened,  the 
straight  lines  converge  is  true  and  necessary  ;  but  the  state- 

ment that,  since  they  converge  more  and  more  as  they  are 
produced,  they  will  sometime  meet  is  plausible  but  not  neces- 

sary, in  the  absence  of  some  argument  showing  that  this  is 
true  in  the  case  of  straight  lines.  For  the  fact  that  some  lines 
exist  which  approach  indefinitely  but  yet  remain  non-secant 
(acrtf/zTTTooro*),  although  it  seems  improbable  and  paradoxical, 
is  nevertheless  true  and  fully  ascertained  with  reference  to 
other  species  of  lines  [the  hyperbola  and  its  asymptote  and 
the  conchoid  and  its  asymptote,  as  Geminus  says  elsewhere]. 
May  not  then  the  same  thing  be  possible  in  the  case  of 

1  Proclus  on  Eucl.  I,  pp.  178-82.  4>  183.  14-184.  10. 
2  /&.,  pp.  183.  26-184.  5. 

Q  2 
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straight  lines  which  happens  in  the  case  of  the  lines  referred 
to  ?  Indeed,  until  the  statement  in  the  postulate  is  clinched 
by  proof,  the  facts  shown  in  the  case  of  the  other  lines  may 
direct  our  imagination  the  opposite  way.  And,  though  the 
controversial  arguments  against  the  meeting  of  the  straight 
lines  should  contain  much  that  is  surprising,  is  there  not  all 
the  more  reason  why  we  should  expel  from  our  body  of 
doctrine  this  merely  plausible  and  unreasoned  (hypothesis)  ? 

It  is  clear  from  this' that  we  must  seek  a  proof  of  the  present theorem,  and  that  it  is  alien  to  the  special  character  of 

postulates/ l 

Much  of  this  might  have  been  written  by  a  modern 

geometer.  Geminus's  attempted  remedy  was  to  substitute 
a  definition  of  parallels  like  that  of  Posidonius,  based  on  the 
notion  of  equidistanee.  An-Naiiizi  gives  the  definition  as 

follows:  'Parallel  straight  lines  are  straight  lines  situated  in 
the  same  plane  and  such  that  the  distance  between  them,  if 
they  are  produced  without  limit  in  both  directions  at  the  same 

time,  is  everywhere  the  same',  to  which  Geminus  adds  the 
statement  that  the  said  distance  is  the  shortest  straight  line 
that  can  be  drawn  between  them.  Starting  from  this, 
Geminus  proved  to  his  own  satisfaction  the  propositions  of 

Euclid  regarding  parallels  and  finally  the  parallel-postulate. 

He  first  gave  the  propositions  (1)  that  the  'distance  '  between 
the  two  lines  as  Defined  is  perpendicular  to  both,  and  (2)  that, 
if  a  straight  line  is  perpendicular  to  each  of  two  straight  lines 
and  meets  both,  the  two  straight  lines  are  parallel,  and  the 

'distance'  is  the  intercept  on  the  perpendicular  (proved  by 
reductio  ad  absurdum).  Next  comp  (3)  Euclid's  propositions 
I.  27,  28  that,  if  two  lines  are  parallel,  the  alternate  angles 
made  by  any  transversal  are  equal,  &c.  (easily  proved  by 

drawing  the  two  equal  'distances'  through  the  points  of 
intersection  with  the  transversal),  and  (4)  Eucl.  I.  29,  the  con- 
verse  of  I.  28,  which  is  proved  by  reductio  (id  absurdum,  by 
means  of  (2)  and  (3).  Geminus  still  needs  Eucl.  I.  30,  31 
(about  parallels)  and  I.  33,  34  (the  first  two  propositions 
relating  to  parallelograms)  for  his  final  proof  of  the  postulate, 
which  is  to  the  following  effect. 

Let  AS,  CD  be  two  straight  lines  met  by  the  straight  line 

1  Proclus  on  Eucl.  I,  pp.  192.  5-193.  3. 
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EF,  and  let  the  interior  angles  BEF,  EFD  be  together  less 
than  two  right  angles. 

Take  any  point  11  on  FD  and  draw  HK  parallel  to  AB 
meeting  EF  in  K.  Then,  if  we  bisect  EF  at  L,  LFnt,  M,  MF 
at  X,  and  so  on,  we  shall  at  last  have  a  length,  as  FX,  less 

U 

than  FK.  Draw  FG,  XOP  parallel  to  AB.  Produce  FO  to  Q, 

and  let  /<Ty  be  thr,  same  multiple,  of  jFO  that  FE  is  of  #Ar; 
then  shall  AB,  (7)  meet  in  (<>. 

Lrt  >Sf  be  the  middle  point  of  FQ  and  Ji  the  middle  point  of 
Fti.  Draw  through  /f,  #,  Q  respectively  the*  straight  lines 

7UW,  jSTZ7,  QK  parallel  to  EF.  Join  J/7?,  Z6f  and  produce 
them  to  7T,  K.  Produce  FG  to  T. 

Then,  in  the  triangles  JWiY,  jffOP,  two  angles  are  equal 
respectively,  the  vertically  opposite  angles  FOX,  HOP  and 

tlu>  alternate  angles  XFO,  PRO  ;  and  ̂ T0  =  OR  ;  therefore 7wj  =  #y. 
And  AW,  7^G  in  the  parallelogram  FXPG  are  equal  ;  there- 

fore KG  =  2  AT.Y  =  /TJ/  (whence  J//i  is  parallel  to  FG  or  AB) 
Similarly  we  prove  that  SU=>2FM  =  FL,  and  L8  is 

parallel  to  FG  or  4U. 
Lastly,  by  the  triangles  FL8,  QVti,  in  which  the  sides  FM, 

ti(J  are  equal  and  two  angles  are  respectively  equal,  Q  V  = 

Since  then  EL,  QV  are  equal  and  parallel,  so  are  EQt  LV, 
and  (says  Gominus)  it  follows  that  AB  passes  through  Q. 
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What  follows  is  actually  that  both  EQ  and  AB  (or  EB) 
are  parallel  to  LV,  and  Geminus  assumes  that  EQ,  AB 
are  coincident  (in  other  words,  that  through  a  given  point 
only  one  parallel  can  be  drawn  to  a  given  straight  line,  an 

assumption  known  as  Playfair's  Axiom,  though  it  is  actually 
stated  in  Proclus  on  Eucl.  I.  31). 

The  proof  therefore,  apparently  ingenious  as  it  is,  breaks 
down.  Indeed  the  method  is  unsound  from  the  beginning, 
since  (as  Saccheri  pointed  out),  before  even  the  definition  of 
parallels  by  Geminus  can  be  used,  it  has  to  be  proved  that 

'  the  geometrical  locus  of  points  equidistant  from  a  straight 
line  is  a  straight  line ',  and  this  cannot  be  proved  without  a 
postulate.  But  the  attempt  is  interesting  as  the  first  which 
has  come  down  to  us,  although  there  must  have  been  many 
others  by  geometers  earlier  than  Geminus. 

Coming  now  to  the  things  which  follow  from  the  principles 
(ra  perk  ray  «/>X^y)>  we  gather  from  Proclus  that  Geminus 
carefully  discussed  such  generalities  as  the  nature  of  elements, 

the  different  views  which  had  been' held  of  the  distinction 
between  theorems  and  problems,  the  nature  and  significance 
of  StopiarfjioL  (conditions  and  limits  of  possibility),  the  meaning 

of  *  porism '  in  the  sense  in  which  Euclid  used  the  word  in  his 
Porisms  as  distinct  from  its  other  meaning  of  c  corollary ',  the 
different  sorts  of  problems  and  theorems,  the  two  varieties  of 

converses  (complete  and  partial),  topical  or  focus-theorems, 
with  the  classification  of  loci.  He  discussed  also  philosophical 
questions,  e.g.  the  question  whether  a  line  is  made  up  of 
indivisible  parts  (e£  a/ze/D<£j/),  which  came  up  in  connexion 
with  Eucl.  I.  10  (the  bisection  of  a  straight  line). 

The  book  was  evidently  not  less  exhaustive  as  regards 
higher  geometry.  Not  only  did  Gerninus  mention  the  &piric 
curves,  conchoids  and  cissoids  in  his  classification  of  curves ; 

he  showed  how  they  were  obtained,  and  gave  proofs,  presum- 
ably of  their  principal  properties.  Similarly  he  gave  the 

proof  that  there  are  three  homoeomeric  or  uniform  lines  or 
curves,  the  straight  line,  the  circle  and  the  cylindrical  helix. 

The  proof  of  f  uniformity '  (the  property  that  any  portion  of 
the  line  or.  curve  will  coincide  with  any  other  portion  of  the 
same  length)  was  preceded  by  a  proof  that,  if  two  straight 
lines  be  drawn  from  any  point  to  meet  a  uniform  line  or  curve 
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and  make  equal  angles  with  it,  the  straight  lines  are  equal.1 
As  Apollonius  wrote  on  the  cylindrical  helix  and  proved  the 
fact  of  its  uniformity,  we  may  fairly  assume  that  Geminus 
was  here  drawing  upon  Apollonius. 

Enough  has  been  said  to  show  how  invaluable  a  source  of 

information  Geminus's  work  furnished  to  Proclus  and  all 
writers  on  the  history  of  mathematics  who  had  access  to  it. 

In  astronomy  we  know  that  Geminus  wrote  an  €£7777/0-*  9  of 

Posidonius's  work,  the  Meteorologica  or  ?rep2  /i€reo>pa>j>.     This 
is  the  source  of  the  famous  extract  made  from  Geminus  by 
Alexander  Aphrodisiensis,  and  reproduced  by  Simplicius  in 
his  commentary  on  the  Physics  of  Aristotle,2  on  which  Schia- 
parelli  relied  in  his  attempt  to  show  that  it  was  Heraclides  of 
Pontus,  not  Aristarchus  of  Sanaos,  who  first  put  forward  the 
heliocentric   hypothesis.     The  extract  is  on   the  distinction 
between  physical  and  astronomical  inquiry  as  applied  to  the 
heavens.     It  is  the  business  of  the  physicist  to  consider  the 
substance  of  the  heaven  and  stars,  their  force  and  quality, 
their  coming  into  being  and  decay,  and  lie  is  in  a  position  to 
prove  the  facts   about  their  size,  shape,  and   arrangement; 
astronomy,  on    the  other   hand,   ignores   the   physical   side, 
proving  the  arrangement  of  the  heavenly  bodies  by  considera- 

tions based  on  the  view  that  the  heaven  is  a  real  £007*09,  and, 
when  it  tells  us  of  the  shapes,  sizes  and  distances  of  the  earth, 
sun  and  moon,  of  eclipses  and  conjunctions,  and  of  the  quality 
and  extent  of  the  movements  of  the  heavenly  bodies,  it  is 
connected  with  the  mathematical  investigation  of  quantity, 
size,  form,  or  shape,  and  uses  arithmetic  and   geometry  to 
prove  its  conclusions.     Astronomy  deals,  jiot  with  causes,  but 
with  facts;    hence  it  often  proceeds  by  hypotheses,  stating 
certain  expedients  by  which  the  phenomena  may  be  saved. 
For  example,  why  do  the  sun,  the  moon  and  the  planets 
appear  to  move  irregularly  ?     To  explain  the  observed  facts 
we  may  assume,  for  instance,  that  the  orbits  are  eccentric 
circles  or  that    the   stars  describe   epicycles  on  a  carrying 
circle;   and  then  we  have  to  go  farther  and  examine  other 
ways  in  which  it  is  possible  for  the  phenomena  to  be  brought 

about.     '  Hence  we  actually  find  a  certain  person  [Heraclides 

1  Proclus  on  Eucl.  I,  pp.  112.  22-113.  3,  p.  251.  3-11. 
2  Simpl.  in  Phy*.,  pp.  291-2,  ed.  Diels. 
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of  Pontus]  coming  forward  and  saying  that,  even  on  the 
assumption  that  the  earth  moves  in  a  certain  way,  while 
the  sun  is  in  a  certain  way  at  red,  the  apparent  irregularity 

with  reference  to  the  sun  may  be  saved!  Philological  con- 
siderations as  well  as  the  other  notices  which  we  possess 

about  Heraclides  make  it  practically  certain  that  '  Heraclides 
of  Pontus'  is  an  interpolation  and  that  Geminus  said  m 
simply,  'a  certain  person',  without  any  name,  though  he 
doubtless  meant  Aristarchus  of  Samos.1 

Simplicius  says  that  Alexander  quoted  this  extract  from 
the  epitome  of  the  €grjyrj<ri$  by  Geminus.  As  the  original 
work  was  apparently  made  the  subject  of  an  abridgement,  we 
gather  that  it  must  have  been  of  considerable  scope.  It  is 

a  question  whether  egrjyrjoris  means  'commentary'  or  Ex- 

position '  ;  I  am  inclined  to  think  that  the  latter  interpretation 
is  the  correct  one,  and  that  Geminus  reproduced  Posidonius's 
work  in  its  entirety  with  elucidations  and  comments;  this 
seems  to  me  to  be  suggested  by  the  words  added  by  Simplicius 

immediately  after  the  extract  cthis  is  the  account  given  by 
Geminus,  or  Posidouius  in  Geminus,  of  the  difference  between 

physics  and  astronomy  ',  which  seems  to  imply  that  Geminus 
in  our  passage  reproduced  Posidonius  textually. 

'Introduction  to  the  PJiaenomena*  attributed  to  Geminus. 
There  remains  the  treatise,  purporting  to  be  l>y  Geminus, 

which  has  come  down  to  us  under  the  title  Tepivov  e/crayooyr; 
e/s  ra  $aiv6p.tva?  What,  if  any,  is  the  relation  of  this  work 

to  the  exposition  of  Posidonius's  Meteorologies  or  the  epitome 
of  it  just  mentioned  ?  One  view  is  that  the  original  Isayoye 
of  Geminus  and  the  €£17777079  of  Posidonius  were  one  and  the 
same  work,  though  the  Isagoye  as  we  have  it  is  not  by 
Geminus,  but  by  an  unknown  compiler.  The  objections  to 
this  are,  first,  that  it  does  not  contain  the  extract  given  by 
Simplicius,  which  would  have  come  in  usefully  at  the  begin- 

ning of  an  Introduction  to  Astronomy,  nor  the  other  extract 
given  by  Alexander  from  Geminus  and  relating  to  the  rainbow 
which  seems  likewise  to  have  come  from  the 

1  Of.  Aristarchus  of  Samos,  pp.  275-83. 
2  Edited  by  Manitius  (Teubner,  1898). 
3  Alex.  Aphr.  on  Aristotle's  Meteorologica,  iii.  4,  9  (Ideler,  ii,  p.  128; p.  152.  10,  Hayduck). 
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secondly,  that  it  docs  not  anywhere  mention  the  name  of 
Posidonius  (not,  perhaps,  an  insuperable  objection) ;  and, 

thirdly,  that  there  are  views  expressed  in  it  which  are  not 
those  held  by  Posidonius  but  contrary  to  them.  Again,  the 
writer  knows  how  to  give  a  sound  judgement  as  between 
divergent  views,  writes  in  good  style  on  the  whole,  and  can 
hardly  have  been  the  mere  compiler  of  extracts  from  Posi- 

donius which  the  view  in  question  assumes  him  to  be.  It 
seems  in  any  case  safer  to  assume  that  the  Isagoge  and  the 
€grjyrj(ri$  were  separate  works.  At  the  same  time,  the  Isagoge, 
as  we  have  it,  contains  errors  which  we  cannot  attribute  to 
Gemirms.  The  choice,  therefore,  seems  to  lie  between  two 
alternatives :  either  the  book  is  by  Geminus  in  the  main,  but 
has  in  the  course  of  centuries  suffered  deterioration  by  inter- 

polations, mistakes  of  copyists,  and  so  on,  or  it  is  a  compilation 
of  extracts  from  an  original  Isagoge  by  Geminus  with  foreign 

and  inferior  elements  introduced  either  by  the  compiler  him- 
self or  by  other  prentice  hands.  The  result  is  a  tolerable  ele- 

mentary treatise  ilhitable  for  teaching  purposes  and  containing 
the  most  important  doctrines  of  Greek  astronomy  represented 
from  the  standpoint  of  Hipparchus.  Chapter  1  treats  of  the 

zodiac,  the  solar  year,  the  irregularity  of  the  sun's  motion, 
which  is  explained  by  the  eccentric  position*  of  the  sun's  orbit 
relatively  to  tho  zodiac,  the  order  and  the  periods  of  revolution 
of  the  planets  and  the  moon.  In  §  23  we  are  told  that  all 
the  fixed  stars  do  not  lie  on  one  spherical  surface,  but  some 

are  farther  away  than  others— a  doctrine  due  to  the  Stoics. 
Chapter  2,  again,  treats  of  the  twelve  signs  of  the  zodiac, 
chapter  3  of  the  constellations,  chapter  4  of  the  axis  of 
the  universe  and  the  poles,  chapter  5  of  the  circles  on  the 

sphere  (the  equator  and  the  parallel  circles,  arctic,  summer- 
tropical,  winter-tropical,  antarctic,  the  colure-circles,  the  zodiac 
or  ecliptic,  the  horizon,  the  meridian,  and  the  Milky  Way), 
chapter  6  of  Day  and  Night,  their  relative  lengths  in  different 
latitudes,  their  lengthening  and  shortening,  chapter  7  of 
the  times  which  the  twelve  signs  take  to  rise.  Chapter  8 
is  a  clear,  interesting  and  valuable  chapter  on  the  calendar, 
the  length  of  months  and  years  and  the  various  cycles,  the 
octaeteris,  the  16-years  and  160-years  cycles,  the  19-years 
cycle  of  Euctemon  (and  Meton),  and  the  cycle  of  Callippus 
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(76  years).  Chapter  9  deals  with  the  moon's  phases,  chapters 
10,  11  with  eclipses  of  the  sun  and  moon,  chapter  12  with  the 
problem  of  accounting  for  the  motions  of  the  sun,  moon  and 
planets,  chapter  13  with  Risings  and  Settings  and  the  various 
technical  terms  connected  therewith,  chapter  14  with  the 
circles  described  by  the  fixed  stars,  chapters  15  and  16  with 
mathematical  and  physical  geography,  the  zones,  &c.  (Geminus 
follows  Eratosthenes's  evaluation  of  the  circumference  of  the 
earth,  not  that  of  Posidonius).  Chapter  17,  on  weather  indica- 

tions, denies  the  popular  theory  that  changes  of  atmospheric 
conditions  depend  on  the  rising  and  setting  of  certain  stars, 
and  states  that  the  predictions  of  weather  (eTncrrj/jaoYa/.)  in 
calendars  (rrapaTrTyy/zara)  are  only  derived  from  experience 
and  observation,  and  have  no  scientific  value.  Chapter  18  is 
on  the  e£€Aiy//6y,  the  shortest  period  which  contains  an  integral 

number  of  synodic  months,  of  days,  and  of  anomalistic  revolu- 
tions of  the  moon ;  this  period  is  three  times  the  Chaldaean 

period  of  223  lunations  used  for  predicting  eclipses.  The  end 
of  the  chapter  deals  with  the  maximum,  mean,  and  minimum 
daily  motion  of  the  moon.  The  chapter  as  a  whole  does  not 
correspond  to  the  rest  of  the  book ;  it  deals  with  more  difficult 
matters,  and  is  thought  by  Manitius  to  be  a  fragment  only  of 
a  discussion  to  which  the  compiler  did  not  feel  himself  equal. 
At  the  end  of  the  work  is  a  calendar  (Parupeyma)  giving  the 
number  of  days  taken  by  the  sun  to  traverse  each  sign  of 
the  zodiac,  the  risings  and  settings  of  various  stars  and  the 
weather  indications  noted  by  various  astronomers,  Democritus, 
Eudoxus,  Dositheus,  Euctemoii,  Meton,  Callippus ;  this  calendar 
is  unconnected  with  the  rest  of  the  book  and  the  contents 

are  in  several  respects  inconsistent  with  it,  especially  the 
division  of  the  year  into  quarters  which  follows  Callippus 

rather  than  Hipparchus.  Hence  it  has  been,  since  Boeckh's 
time,  generally  considered  not  to  be  the  work  of  Geminus. 
Tittel,  however,  suggests  that  it  is  not  impossible  that  Geminus 
may  have  reproduced  an  older  Parapegma  of  Callippus. 
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THE  description-  of  the  handbook  on  the  elements  of 
astronomy  entitled  the  Introduction  to  the  Phaenomenct  and 
attributed  to  Geminus  might  properly  have  been  reserved 
for  this  chapter.  It  was,  however,  convenient  to  deal  with 
Geminus  in  close  connexion  with  Posidonius;  for  Geminus 

wrote  an  exposition  of  Posidonius's  Meteorologica  related  to  the 
original  work  in  such  a  way  that  Simplicius,  in  quoting  a  long 
passage  from  an  epitome  of  this  work,  could  attribute  the 

passage  to  either  Geminus  or  '  Posidonius  in  Geminus ' ;  and  it 
is  evident  that,  in  other  subjects  too,  Geminus  drew  from,  and 
was  influenced  by,  Posidonius. 

The  small  work  De  motu  circular i  corpomm  caelestium  by 
CLEOMEDES  (KXco/u^oyy  KVK\iKtj  Ot&pia)  in  two  Books  is  the 
production  of  a  much  less  competent  person,  but  is  much  more 
largely  based  on  Posidonius.  This  is  proved  by  several  refer- 

ences to  Posidonius  by  name,  but  it  is  specially  true  of  the 
very  long  first  chapter  of  Book  II  (nearly  half  of  the  Book) 
which  seems  for  the  most  part  to  be  copied  bodily  from 

Posidonius,  in  accordance  with  the  author's  remark  at  the 
end  of  Book  I  that,  in  giving  the  refutation  of  the  Epicurean 
assertion  that  the  sun  is  just  as  large  as  it  looks,  namely  one 
foot  in  diameter,  he  will  give  so  much  as  suffices  for  such  an 

introduction  of  the  particular  arguments  used  by  'certain 
authors  who  have  written  whole  treatises  on  this  one  topic 

(i.e.  the  size  of  the  sun),  among  whom  is  Posidonius'.  The interest  of  the  book  then  lies  mainly  in  what  is  quoted  from 
Posidonius ;  its  mathematical  interest  is  almost  nil. 

The  date  of  Cleomedes  is  not  certainly  ascertained,  but,  as 
he  mentions  no  author  later  than  Posidonius,  it  is  permissible 

to  suppose,  with  Hultsch,  that  he  wrote  about  the  middle  of 
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the  first  century  B.  c.  As  he  seems  to  know  nothing  of  the 
works  of  Ptolemy,  he  can  hardly,  in  any  case,  have  lived 
later  than  the  beginning  of  the  second  century  A.  D. 

Book  I  begins  with  a  chapter  the  object  of  which  is  to 

prove  that'  the  universe,  which  has  the  shape  of  a  sphere, 
is  limited  and  surrounded  by  void  extending  without  limit  in 
all  directions,  and  to  refute  objections  to  this  view.  Then 
follow  chapters  on  the  five  parallel  circles  in  the  heaven  and 
the  zones,  habitable  and  uninhabitable  (chap.  2) ;  on  the 
motion  of  the  fixed  stars  and  the  independent  (rrpoaiptTiKaL) 
movements  of  the  planets  including  the  sun  and  moon 

(chap.  3);  on  the  zodiac  and  the  effect  of  the  sun's  motion  in 
it  (chap.  4) ;  on  the  inclination  of  the  axis  of  the  universe  and 
its  effects  on  the  lengths  of  days  and  nights  at  different  places 
(chap.  5);  on  the  inequality  in  the  rate  of  increase  in  the 
lengths  of  the  days  and  nights  according  to  the  time  of  year, 
the  different  lengths  of  the  seasons  due  to  the  motion  of  the 
sun  in  an  eccentric  circle,  the  difference  between  a  day-and- 
night  and  an  exact  revolution  of  the  universe  owing  to  the 
separate  motion  of  the  sun  (chap.  6) ;  on  the  habitable  regions 

of  the  globe  including  Britain  and  the  '  island  of  Thulo  ',  said 
to  have  been  visited  by  Pytheas,  where,  when  the  sun  is  in 
Cancer  and  visible,  the  day  is  a  month  long ;  and  so  on  (chap.  7). 
Chap.  8  purports  to  prove  that  the  universe  is  a  sphere  by 
proving  first  that  the  earth  is  a  sphere,  and  then  that  the  air 
about  it,  and  the  ether  about  that,  must  necessarily  make  up 
larger  spheres.  The  earth  is  proved  to  be  a  vsphere  by  the 
method  of  exclusion ;  it  is  assumed  that  the  only  possibilities 
are  that  it  is  (a)  flat  and  plane,  or  (6)  hollow  and  deep,  or 
(c)  square,  or  (d)  pyramidal,  or  (e)  spherical,  and,  the  first  four 
hypotheses  being  successively  disposed  of,  only  the  fifth 
remains.  Chap.  9  maintains  that  the  earth  is  in  the  centre  of 
the  universe ;  chap.  10,  on  the  size  of  the  earth,  contains  the 
interesting  reproduction  of  the  details  of  the  measurements  of 
the  earth  by  Posidonius  and  Eratosthenes  respectively  which 

have  been  given  above  in  their  proper  places  (p.  220,  pp.  1 06-7) ; 
chap.  1 1  argues  that  the  earth  is  in  the  relation  of  a  point  to, 
i.  e.  is  negligible  in  size  in  comparison  with,  the  universe  or 

even  the  sun's  circle,  but  not  the  moon's  circle  (cf.  p.  3  above). 
Book  II,  chap.  1,  is  evidently  the  piece  de  resistance,  con- 
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sisting  of  an  elaborate  refutation  of  Epicurus  and  his  followers, 
who  held  that  the  sun  is  just  as  large  as  it  looks,  and  further 
asserted  (according  to  Cleomedes)  that  the  stars  are  lit  up  as 
they  rise  and  extinguished  as  they  set.  The  chapter  seems  to 

bo  almost  wholly  taken  from  Posidonius;  it  ends* with  some 
pages  of  merely  vulgar  abuse,  comparing  Epicurus  with  Ther- 
sites,  with  more  of  the  same  sort.  The  value  of  the  chapter 
lies  in  certain  historical  traditions  mentioned  in  it,  and  in  the 

account  of  Posidonius's  speculation  as  to  the  size  and  distance 
of  the  sun,  which  does,  as  a  matter  of  fact,  give  results  much 
nearer  the  truth  than  those  obtained  by  Aristarchus,  Hippar- 
chus,  and  Ptolemy.  Cleomedes  observes  (1)  that  by  means  of 
water-clocks  it  is  found  that  the  apparent  diameter  of  the  sun 

is  l/750tli  of  the  sun's  circle,  and  that  this  method  of 
measuring  it  is  said  to  have  been  first  invented  by  the 
Egyptians;  (2)  that  Hipparchus  is  said  to  have  found  that 
the  sun  is  1,050  times  the  size  of  the  earth,  though,  as  regards 
this,  we  have  the  better  authority  of  Adrastus  (in  Theon  of 
Smyrna)  and  of  Chalcidius,  according  to  whom  Hipparchus 
made  the  sun  nearly  1,880  times  the  size  of  the  earth  (both 
figures  refer  of  course  to  the  solid  content).  We  have  already 

described  Posidonius's  method  of  arriving  at  the  size  and 
distance  of  the  sun  (pp.  220-1).  After  he  has  given  this,  Cleo- 

medes, apparently  deserting  his  guide,  adds  a  calculation  of 
his  own  relating  to  the  sizes  and  distances  of  the  moon  and 

the  sun  which  shows  how  little  he  was  capable  of  any  scien- 

tific inquiry.1  Chap.  2  purports  to  prove  that  the  sun  is 

1  He  says  (pp.  146.  17-148.  27)  that  in  an  eclipse  the  breadth  of  the 
earth's  shadow  is  stated  to  be  two  moon-breadths  ;  hence,  he  says,  it 
seems  credible  (mQavov)  that  the  earth  is  twice  the  size  of  the  moon  (this 

practically  assumes  that  the  breadth  of  the  earth's  shadow  is  equal  to 
the  diameter  of  the  earth,  or  that  the  cone  of  the  earth's  shadow  is 
a  cylinder!).  Since  then  the  circumference  of  the  earth,  according  to 
Kratostherios,  is  250,000  stades,  and  its  diameter  therefore  '  more  than 
80,000 '  (he  evidently  takes  TT  =  8),  the  diameter  of  the  moon  will  be 
40,000  stades.  Now,  the  moon's  circle  being  750  times  the  moon's 
diameter,  the  radius  of  the  moon's  circle,  i.e.  the  distance  of  the  moon 
from  the  earth,  will  be  Jtli  of  this  (i.e.  TT  =  3)  or  125  moon-diameters; 
therefore  the  moon's  distance  is  5,000,000  stades  (which  is  much  too 
great).  Again,  since  the  moon  traverses  its  orbit  13  times  to  the  sun's 
once,  he  assumes  that  the  sun's  orbit  is  13  times  as  large  as  the  moon's, 
and  consequently  that  the  diameter  of  the  sun  is  13  times  that  of  the 
moon,  or  520,000  stades  and  its  distance  13  times  5,000,000  or  65,000,000 
stades ! 
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larger  than  the  earth ;  and  the  remaining  chapters  deal  with 
the  size  of  the  moon  and  the  stars  (chap.  3),  the  illuminatipn 
of  the  moon  by  the  sun  (chap.  4),  the  phases  of  the  moon  and 
its  conjunctions  with  the  sun  (chap.  5),  the  eclipses  of  the 
moon  (chap.  6),  the  maximum  deviation  in  latitude  of  the  five 

planets  (given  as  5°  for  Venus,  4°  for  Mercury,  2|°  for  Mars 
and  Jupiter,  1°  for  Saturn),  the  maximum  elongations  of 
Mercury  and  Venus  from  the  sun  (20°  and  50°  respectively), 
and  the  synodic  periods  of  the  planets  (Mercury  116  days, 
Venus  584  days,  Mars  780  days,  Jupiter  398  days,  Saturn 
378  days)  (chap.  7). 

There  is  only  one  other  item  of  sufficient  interest  to  be 
mentioned  here.  In  Book  II,  chap.  6,  Cleomedes  mentions 

that  there  were  stories  of  extraordinary  eclipses  which  '  the 
more  ancient  of  the  mathematicians  had  vainly  tried  to  ex- 

plain'; the  supposed  c paradoxical'  case  was  that  in  which, 
while  the  sun  seems  to  be  still  above  the  horizon,  the  eclipsed 
moon  rises  in  the  east.  The  passage  has  been  cited  above 

(vol.  i,  pp.  6-7),  where  I  have  also  shown  that  Cleomedes  him- 
self gives  the  true  explanation  of  .the  phenomenon,  namely 

that  it  is  due  to  atmospheric  refraction. 

The  first  and  second  centurfes  of  the  Christian  era  saw 

a  continuation  of  the  work  of  writing  manuals  or  introduc- 
tions to  the  different  mathematical  subjects.  About  A.  D.  100 

came  NICOMACHUS,  who  wrote  an  Introduction  to  Arithmetic 

and  an  Introduction  to  Harmony]  if  we  may  judge  by  a 

remark  of  his  own,1  he  would  appear  to  have  written  an  intro- 
duction to  geometry  also.  The  Arithmetical  Introduction  has 

been  sufficiently  described  above  (vol.  i,  pp.  97-112). 

There  is  yet  another  handbook  which  needs  to  be  mentioned 
separately,  although  we  have  had  occasion  to  quote  from  it 
several  times  already*  This  is  the  book  by  THEON  OF  SMYRNA 
which  goes  by  the  title  Expositio  rerum  mathematicarum  ad 
legendum  Platonem  utilium.  There  are  two  main  divisions 

of  this  work,  contained  in  two  Venice  manuscripts  respec- 
tively. The  first  was  edited  by  Bullialdus  (Paris,  1644),  the 

second  by  .T.  H.  Martin  (Paris,  1849);  the  whole  has  been 

1  Nicom.  Arith.  ii.  6.  1. 
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edited  by  E.  Killer  (Teubner,  1878)  and  finally,  with  a  French 
translation,  by  J.  Dupuis  (Paris,  1892). 

Theon's  date  is  approximately  fixed  by  two  considerations. 
He  is  clearly  the  person  whom  Theon  of  Alexandria  called 

'the  old  Theoii',  rov  -rraXaiov  ©Ion/a,1  and  there  is  no  reason 
to  doubt  that  he  is  the  '  Theoii  the  mathematician '  (6  fiaOrj- 
fiaTtKos)  who  is  credited  by  Ptolemy  witfi  four  observations 
of  the  planets  Mercury  and  Venus  made  in  A.D.  127,  129,  130 
and  132.2  The  latest  writers  whom  Theoii  himself  mentions 
are  Thrasyllus,  who  lived  in  the  reign  of  Tiberius,  and 
Adrastus  the  Peripatetic,  who  belongs  to  the  middle  of  the 

second  century  A.D.  Thecm's  work  itself  is  a  curious  medley, 
valuable,  not  intrinsically,  but  for  the  numerous  historical 
notices  which  it  contains.  The  title,  which  claims  that  the 
book  contains  things  useful  for  the  study  of  Plato,  must  not 
be  taken  too  seriously.  It  was  no  doubt  an  elementary 

introduction  or  vade-mecum  for  students  of  philosophy,  but 
there  is  little  in  it  which  has  special  reference  to  the  mathe- 

matical questions  raised  in  Plato.  The  connexion  consists 
mostly  in  the  long  proem  quoting  the  views  of  Plato  on  the 
paramount  importance  of  mathematics  in  the  training  of 
the  philosopher,  and  the  mutual  relation  of  the  five  different 
branches,  arithmetic,  geometry,  stereometry,  astronomy  and 
music.  The  want  of  care  shown  by  Theon  in  the  quotations 

from  particular  dialogues  of  Plato  prepares  us  for  the  patch- 
work character  of  the  whole  book. 

In  the  first  chapter  he  promises  to  give  the  mathematical 
theorems  most  necessary  for  the  student  of  Plato  to  know, 
in  arithmetic,  music,  and  geometry,  with  its  application  to 

stereometry  and  astronomy/*  But  the  promise  is  by  no  means 
kept  as  regards  geometry  and  stereometry :  indeed,  in  a 
later  passage  Theoii  seems  to  excuse  himself  from  including 
theoretical  geometry  in  his  plan,  on  the  ground  that  all  those 
who  are  likely  to  read  his  work  or  the  writings  of  Plato  may 
be  assumed  to  have  gone  through  an  elementary  course  of 

theoretical  geometry.4  But  he  writes  at  length  on  figured 

1  Theon  of  Alexandria,  Comm.  on  Ptolemy's  Syntaxis,  Basel  edition, 
pp.  390,  395,  396. 

2  Ptolemy,  Syntaxis,  ix.  9,  x.  1,  2. 
8  Theon  of  Smyrna,  ed.  Hiller,  p.  1.  10-17. 
<  #.,  p.  16.  17-20- 
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numbers,  plane  and  solid,  which  are  of  course  analogous  to 

the  corresponding  geometrical  figures,  and  he  may  have  con- 
sidered that  he  was  in  this  way  sufficiently  fulfilling  his 

promise  with  regard  to  geometry  and  stereometry.  Certain 
geometrical  definitions,  of  point,  line,  straight  line,  the  three 
dimensions,  rectilinear  plane  and  solid  figures,  especially 
parallelograms  and  parallelepipedal  figures  including  cubes, 
pi  intitules  (square  bricks)  and  SoKities  (beams),  and  scalene 
figures  with  sides  unequal  every  way  (  =  P&pfoKoi  in  the 
classification  of  solid  numbers),  are  dragged  in  later  (chaps. 
53-5  of  the  section  on  music)1  in  the  middle  of  the  discussion 
of  proportions  and  means;  if  this  passage  is  not  an  inter- 

polation, it  confirms  the  supposition  that  Theon  included  in 
his  work  only  this  limited  amount  of  geometry  and  stereo- 
metry. 

Section  I  is  on  Arithmetic  in  the  same  sense  as  Nicomachus's 
Introduction.  At  the  beginning  Theon  observes  that  arith- 

metic will  be  followed  by  music.  Of  music  in  its  three 
aspects,  music  in  instruments  (*v  opydvois),  music  in  numbers, 
i.e.  musical  intervals  expressed  in  numbers  or  pure  theoretical 
music,  and  the  music  or  harmony  in  the  universe,  the  first 
kind  (instrumental  music)  is  not  exactly  essential,  but  the  other 

two  must  be  discussed  immediately  after  arithmetic.2  The  con- 
tents of  the  arithmetical  section  have  been  sufficiently  indicated 

in  the  chapter  on  Pythagorean  arithmetic  (vol.  i,  pp.  112-13) ; 
it  deals  with  the  classification  of  numbers,  odd,  even,  and 
their  subdivisions,  prime  numbers,  composite  numbers  with 
equal  or  unequal  factors,  plane  numbers  subdivided  into 
square,  oblong,  triangular  and  polygonal  numbers,  with  their 

respective  '.gnomons'  and  their  properties  as  the  sum  of 
successive  terms  of  arithmetical  progressions  beginning  with 

1  as  the  first  term,  circular  and  spherical  numbers,  solid  num- 
bers with  three  factors,  pyramidal  numbers  and  truncated 

pyramidal  numbers,  perfect  numbers  with  their  correlatives, 
the  over-perfect  and  the  deficient;  this  is  practically  what 

we  find  in  Nicomachus.  But  the  special  value  of  Theoii's 
exposition  lies  in  the  fact  that  it  contains  an  account  of  the 

famous  '  side- '  and  c  diameter- '  numbers  of  the  Pythagoreans.3 

1  Theon  of  Smyrna,  ed.  Hiller,  pp.  111-13.       2  /&.,  pp.  16.  24-17.  11. 
3  /&.,  pp.  42.  10-45.  9.    Of.  vol.  i,  pp.  91-3. 
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In  the  Section  on  Music  Theon  says  he  will  first  speak  of 
the  two  kinds  of  music,  the  audible  or  instrumental,  and  the 
intelligible  or  theoretical  subsisting  in  numbers,  after  which 
he  promises  to  deal  lastly  with  ratio  as  predicable  of  mathe- 

matical entities  in  general  and  the  ratio  constituting  the 

harmony  in  the  universe,  '  not  scrupling  to  set  out  once  again 
the  things  discovered  by  our  predecessors,  just  as  we  have 
given  the  things  handed  down  in  former  times  by  the  Pytha- 

goreans, with  a  view  to  making  them  better  known,  without 

ourselves  claiming  to  have  discovered  any  of  them'.1  Then 
follows  a  discussion  of  audible  music,  the  intervals  which 
give  harmonies,  &c.,  including  substantial  quotations  from 
Thrasyllus  and  Adrastus,  and  references  to  views  of  Aris- 
toxenus,  Hippasus,  Archytas,  Eudoxus  and  Plato.  With 

chap.  17  (p.  72)  begins  the  account  of  the  'harmony  in 
numbers',  which  turns  into  a  general  discussion  of  ratios, 
proportions  and  means,  with  more  quotations  from  Plato, 

Eratosthenes  and  Thrasyllus,  followed  by  Thrasyllus's  divisio 
canonis,  chaps.  35,  36  (pp.  87-93).  After  a  promise  to  apply 
the  latter  division  to  the  sphere  of  the  universe,  Theon 
purports  to  return  to  the  subject  of  proportion  and  means. 
This,  however,  does  not  occur  till  chap.  50  (p.  106),  the 
intervening  chapters  being  taken  up  with  a  discussion  of 
the  5e*ay  and  rerpaKri/y  (with  eleven  applications  of  the 
latter)  and  the  mystic  or  curious  properties  of  the  numbers 
from  2  to  1 0 ;  here  we  have  a  part  of  the  theoloyumeiia  of 
arithmetic.  The  discussion  of  proportions  and  the  different 
kinds  of  means  after  Eratosthenes  and  Adrastus  is  again 
interrupted  by  the  insertion  of  the  geometrical  definitions 

already  referred  to  (chaps.  53-5,  pp.  111-13),  after  which 

Theon  resumes  the  question  of  means  for  *  more  precise ' treatment. 

The  Section  on  Astronomy  begins  on  p.  120  of  Killer's 
edition.  Here  again  Theon  is  mainly  dependent  u£on 
Adrastus,  from  whom  he  makes  long  quotations.  Thus,  on 

the  sphericity  of  the  earth,  he  says  that  for  the  neces- 
sary conspectus  of  the  arguments  it  will  be  sufficient  to 

refer  to  the  grounds  stated  summarily  by  Adrastus.  In 
explaining  (p.  124)  that  the  unevennesses  in  the  surface  of 

1  Theon  of  Smyrna,  ed.  Hillcr,  pp.  46.  20-47.  14. 
1621.2  R 
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the  earth,  represented  e.g.  by  mou'ntains,  are  negligible  in 
comparison  with  the  size  of  the  whole,  he  quotes  Eratosthenes 
and  Dicaearchus  as  claiming  to  have  discovered  that  the 
perpendicular  height  of  the  highest  mountain  above  the  normal 
level  of  the  land  is  no  more  than  10  stades ;  and  to  obtain  the 

diameter  of  the  earth  he  uses  Eratosthenes's  figure  of  approxi- 
mately 252,000  stades  for  the  circumference  of  the  earth, 

which,  with  the  Archimedean  value  of  ̂ -  for  TT,  gives  a 
diameter  of  about  80,182  stades.  The  principal  astronomical 

circles  in  the  heaven  are  next  described  (chaps.  5-12,  pp. 
129-35) ;  then  (chap.  12)  the  assumed  maximum  deviations  in 

latitude  are  given,  that  of  the  sun  being  put  at  1°,  that  of  the 
moon  and  Venus  at  12°,  and  those  of  the  planets  Mercury, 
Mars, Jupiter  and  Saturn  at  8°,  5°,  5°  and  3°  respectively;  the 
obliquity  of  the  ecliptic  is  given  as  the  side  of  a  regular  polygon 

of  15  sides  described  in  a  circle,  i.e.  as  24°  (chap.  23,  p.  151). 
Next  the  order  of  the  orbits  of  the  sun,  moon  and  planets  is  ex- 

plained (the  system  is  of  course  geocentric) ;  we  are  told  (p.  13  8) 

that  '  some  of  the  Pythagoreans '  made  the  order  (reckoning 
outwards  from  the  earth)  to  be  moon,  Mercury,  Venus,  sun, 
Mars,  Jupiter,  Saturn,  whereas  (p.  142)  Eratosthenes  put  the 
sun  next  to  the  moon,  and  the  mathematicians,  agreeing  with 
Eratosthenes  in  this,  differed  only  in  the  order  in  which  they 
placed  Venus  and  Mercury  after  the  sun,  some  putting  Mercury 

next  and  some  Venus  (p.  143).  The  order  adopted  by  4some 

of  the  Pythagoreans '  is  the  Chaldacan  order,  which  was  not 
followed  by  any  Greek  before  Diogenes  of  Babylon  (second 

century  B.C.);  'some  of  the  Pythagoreans'  are  therefore  the 
later  Pythagoreans  (of  whom  Nicomachus  was  one) ;  the  other 
order,  moon,  sun,  Venus,  Mercury,  Mars,  Jupiter,  Saturn,  was 
that  of  Plato  and  the  early  Pythagoreans.  In  chap.  15 

(p.  138sq.)  Theon  quotes  verses  of  Alexander  'the  Aetoliun' 
(not  really  the  '  Aetoliaii ',  but  Alexander  of  Ephesus,  a  con- 

temporary of  Cicero,  or  possibly  Alexander  of  Miletus,  as 
Chalcidius  calls  him)  assigning  to  each  of  the  planets  (includ- 

ing the  earth,  though  stationary)  with  the  sun  and  moon  and 
the  sphere  of  the  fixed  stars  one  note,  the  intervals  between 
the  notes  being  so  arranged  as  to  bring  the  nine  into  an 
octave,  whereas  with  Eratosthenes  and  Plato  the  earth  was 

excluded,  and  the  eight  notes  of  the  octachord  were  assigned 
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to  the  seven  heavenly  bodies  and  the  sphere  of  the  fixed  stars. 

The  whole  of  this  passage  (chaps.  15  to  16,  pp.  138-47)  is  no 
doubt  intended  as  the  promised  account  of  the  '  harmony  in 
the  universe ',  although  at  the  very  end  of  the  work  Theon 
implies  that  this  has  still  to  be  explained  on  the  basis  of 

Thrasyllus's  exposition  combined  with  what  he  has  already 
given  himself. 

The  next  chapters  deal  with  the  forward  movements,  the 
stationary  points,  and  the  retrogradations,  as  they  respectively 

appear  to  us,  of  the  five  planets,  and  the  '  saving  of  the  pheno- 
mena '  by  the  alternative  hypotheses  of  eccentric  circles  and 

epicycles  (chaps.  17-30,  pp.  147-78).     These  hypotheses  are 
explained,  and  the  identity  of  the  motion  produced  by  the 
two  is  shown  by  Adrastus  in  the  case  of  the  sun  (chaps.  26,  27, 

pp.  166-72).      The  proof  is  introduced  with  the  interesting 
remark  that  *  Hipparchus  says  it  is  worthy  of  investigation 
by  mathematicians  why,  on  two  hypotheses  so  different  from 
one  another,  that  of  eccentric  circles  and  that  of  concentric 

circles  with  epicycles,  the  same  results  appear  to  follow '.     It 
is  not  to  be  supposed  that  the  proof  of  the  identity  could  be 
other  than  easy  to  a  mathematician  like  Hipparchus;    the 
remark  perhaps  merely  suggests  that  the  two  hypotheses  were 
discovered  quite  independently,  and  it  was  not  till  later  that 
the  effect  was  discovered  to  be  the  same,  when  of  course  the 
fact  would  seem  to  be  curious  and  a  mathematical  proof  would 
immediately  be  sought.     Another  passage  (p.  188)  says  that 
Hipparchus  preferred  the  hypothesis  of  the  epicycle,  as  being 
his  own.     If  this  means  that  Hipparchus  claimed  to  have 

discovered  the  epicycle-hypothesis,  it  must  be  a  misapprehen- 
sion;   for  Apollonius  already  understood  the  theory  of  epi- 
cycles in  all  its  generality.    According  to  Theon,  the  epicycle- 

hypothesis  is  more  '  according  to  nature  ' ;  but  it  was  presum- 
ably preferred  because  it  was  applicable  to  all  the  planets, 

whereas  the  eccentric-hypothesis,  when  originally  suggested, 
applied  only  to  the  three  superior  planets ;  in  order  to  make 
it  apply  to  the  inferior  planets  it  is  necessary  to  suppose  the 
circle  described  by  the  centre  of  the  eccentric  to  be  greater 
than  the  eccentric  circle  itself,  which  extension  of  the  hypo- 

thesis, though  known  to  Hipparchus,  does  not  seem  to  have 
occurred  to  Apollonius. 

R  2 
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We  next  have  (chap.  31,  p.  178)  an  allusion  to  the  systems 
of  Eudoxus,  Callippus  and  Aristotle,  and  a  description 

(p.  180  sq.)  of  a  system  in  which  the  'carrying'  spheres 
(called  '  hollow ')  have  between  them  '  solid  spheres  which  by 
their  own  motion  will  roll  (dve\igov<n)  the  carrying  spheres  in 

the  opposite  direction,  being  in  contact  with  them '.  These 
'solid'  spheres  (which  carry  the  planet  fixed  at  a  point  on 
their  surface)  act  in  practically  the  same  way  as  epicycles. 
In  connexion  with  this  description  Theon  (i.e.  Adrastus) 

speaks  (chap.  33,  pp.  186-7)  of  two  alternative  hypotheses  in 
which,  by  comparison  with  Chalcidius,1  we  recognize  (after 
eliminating  epicycles  erroneously  imported  into  both  systems) 
the  hypotheses  of  Plato  and  Heraclides  respectively.  It  is 
this  passage  which  enables  us  to  conclude  for  certain  that 
Heraclides  made  Venus  and  Mercury  revolve  in  circles  about 
the  sun,  like  satellites,  while  the  sun  in  its  turn  revolves  in 
a  circle  about  the  earth  as  centre.  Theon  (p.  187)  gives  the 
maximum  arcs  separating  Mercury  and  Venus  respectively 

from  the  sun  as  20°  and  50°,  these  figures  being  the  same  as 
those  given  by  Cleomedes. 

The  last  chapters  (chaps.  37-40),  quoted  from  Adrastus,  deal 
with  conjunctions,  transits,  occultations  and  eclipses.  The 
book  concludes  with  a  considerable  extract  from  Dercyllides, 
a  Platonist  with  Pythagorean  leanings,  who  wrote  (before  the 
time  of  Tiberius  and  perhaps  even  before  Varro)  a  book  on 

Plato's  philosophy.  It  is  here  (p.  198.  14)  that  we  have  the 
passage  so  often  quoted  from  Eudernus : 

'  Eudemus  relates  in  his  Astronomy  that  it  was  Oenopides 
who  first  discovered  the  girdling  of  the  zodiac  and  the  revolu- 

tion (or  cycle)  of  the  Great  Year,  that  Thales  was  the  first  to 

discover  the  eclipse  of  the  sun  and  the  fact  that  the  sun's 
period  with  respect  to  the  solstices  is  not  always  the  same, 
that  Anaximander  discovered  that  the  earth  is  (suspended)  on 
high  and  lies  (substituting  KeTrat  for  the  reading  of  the  manu- 

scripts, KivtiTai>  moves)  about  the  centre  of  the  universe,  and 
that  Anaximenes  said  that  the  moon  has  its  light  from  the 

sun  and  (explained)  how  its  eclipses  come  about'  (Anaxi- 
menes is  here  apparently  a  mistake  for  Anaxagoras). 

1  Chalcidius,  Comm.  on  Timaeus,  c.  110.  Cf.  Aristarcltus  of  Samos, 
pp.  256-8. 
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TRIGONOMETRY:    HIPPARCHUS,    MENELAUS, 
PTOLEMY 

WE  have  seen  that  S^haeric,  the  geometry  of  the  sphere, 
was  very  early  studied,  because  it  was  required  so  soon  as 
astronomy  became  mathematical ;  with  the  Pythagoreans  the 
word  fyrfiaeric,  applied  to  one  of  the  subjects  of  the  quadrivium, 
actually  meant  astronomy.  The  subject  was  so  far  advanced 

before  Euclid's  time  that  there  was  in  existence  a  regular 
textbook  containing  the  principal  propositions  about  great 
and  small  circles  on  the  sphere,  from  which  both  Autolycus 
and  Euclid  quoted  the  propositions  as  generally  known. 
These  propositions,  with  others  of  purely  astronomical  in- 

terest, were  collected  afterwards  in  a  work  entitled  tiirtiaerica, 
in  three  Books,  by  THEODOSIUS. 

Suidas  has  a  notice,  8.  v.  0eo86<no$,  which  evidently  con- 
fuses the  author  of  the  tiphaerica,  with  another  Theodosius, 

a  Sceptic  philosopher,  since  it  calls  him  '  Theodosius,  a  philoso- 
pher', and  attributes  to  him,  besides  the  mathematical  works, 

*  Sceptic  chapters '  and  a  commentary  011  the  chapters  of Theudas.  Now  the  commentator  on  Theudas  must  have 

belonged,  at  the  earliest,  to  the  second  half  of  the  second 

century  A.D.,  whereas  our  Theodosius  was  earlier  than  Meiie- 
laus  (fl.  about  A.D.  100),  who  quotes  him  by  name.  The  next 
notice  by  Suidas  is  of  yet  another  Theodosius,  a  poet,  who 
came  from  Tripolis.  Hence  it  was  at  one  time  supposed  that 

our  Theodosius  was  of  Tripolis.  But  Vitruvius x  mentions  a 
Theodosius  who  invented  a  sundial  'for  any  climate';  and 
Strabo,  in  speaking  of  certain  Bithynians  distinguished  in 

their  particular  sciences,  refers  to  '  Hipparchus,  Theodosius 
and  his  sons,  mathematicians ' 2.  We  conclude  that  our  Theo- 

1  De  architecture  ix.  9.  2  Strabo,  xii.  4,  9,  p.  566. 
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dosius  was  of  Bithynia  and  not  later  in  date  than  Vitruvius 
(say  20  B.C.);  but  the  order  in  which  Strabo  gives  the 
names  makes  it  not  unlikely  that  he  was  contemporary  with 
Hipparchus,  while  the  character  of  his  Sphaerica  suggests  a 
date  even  earlier  rather  than  later. 

Works  by  Theodosius. 

Two  other  works  of  Theodosius  besides  the  Sphaerica, 
namely  On  habitations  and  On  Days  and  Nights,  seem  to 

have  been  included  in  the  '  Little  Astronomy  '  (fiiKpos  dcrrpo- 
vopovfjisvoS)  sc.  TOKOS).  These  two  treatises  need  not  detain  us 
long.  They  are  extant  in  Greek  (in  the  great  MS.  Vaticanus 
Graecus  204  and  others),  but  the  Greek  text  has  not  appar- 

ently yet  been  published.  In  the  first,  Oti  habitations,  in  12 
propositions,  Theodosius  explains  the  different  phenomena  due 
to  the  daily  rotation  of  the  earth,  and  the  particular  portions 
of  the  whole  system  which  are  visible  to  inhabitants  of  the 
different  zones.  In  the  second,  On  Days  and  Nights,  contain- 

ing 13  and  19  propositions  in  the  two  Books  respectively, 
Theodosius  considers  the  arc  of  the  ecliptic  described  by  the 
sun  each  day,  with  a  view  to  determining  the  conditions  to  be 
satisfied  in  order  that  the  solstice  may  occur  in  the  meridian 
at  a  given  place,  and  in  order  that  the  day  and  the  night  may 
really  be  equal  at  the  equinoxes;  he  shows  also  that  the 
variations  in  the  day  and  night  must  recur  exactly  after 
a  certain  time,  if  the  length  of  the  solar  year  is  commen- 

surable with  that  of  the  day,  while  on  the  contrary  assump- 
tion they  will  not  recur  so  exactly. 

In  addition  to  the  works  bearing  on  astronomy,  Theodosius 

is  said  l  to  have  written  a  commentary,  now  lost,  on  the  tyoSiov 
or  Method  of  Archimedes  (see  above,  pp.  27-34). 

Contents  of  the  Sphaerica. 

We  come  now  to  the  Sphaerica,  which  deserves  a  short 
description  from  the  point  of  view  of  this  chapter.  A  text- 

book on  the  geometry  o£  the  sphere  was  wanted  as  a  supple- 
ment to  the  Elements  of  Euclid.  In  the  Elements  themselves 

1  Suidas,  loc.  cit. 
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(Books  XII  and  XIII)  Euclid  included  no  general  properties 

of  the  sphere  except  the  theorem  proved  in  XII.  16-18,  that 
the  volumes  of  two  spheres  are  in  the  triplicate  ratio  of  their 
diameters ;  apart  from  this,  the  sphere  is  only  introduced  in 
the  propositions  about  the  regular  solids,  where  it  is  proved 

that  they  are  severally  inscribable  in  a  sphere,  and  it  was  doubt- 
less with  a  view  to  his  proofs  of  this  property  in  each  case  that 

he  gave  a  new  definition  of  a  sphere  as  the  figure  described  by 
the  revolution  of  a  semicircle  about  its  diameter,  instead  of 
the  more  usual  definition  (after  the  manner  of  the  definition 
of  a  circle)  as  the  locus  of  all  points  (in  space  instead  of  in 
a  plane)  which  are  equidistant  from  a  fixed  point  (the  centre). 
No  doubt  the  exclusion  of  the  geometry  of  the  sphere  from 
the  Elements  was  due  to  the  fact  that  it  was  regarded  as 
belonging  to  astronomy  rather  than  pure  geometry. 

Theodosius  defines  the  sphere  as  '  a  solid  figure  contained 
by  one  surface  such  that  all  the  straight  lines  falling  upon  it 
from  one  point  among  those  lying  within  the  figure  are  equal 

to  one  another ',  which  is  exactly  Euclid's  definition  of  a  circle 
with  *  solid '  inserted  before  *  figure  '  and  '  surface  '  substituted 
for  c  line '.  The  early  part  of  the  work  is  then  generally 
developed  on  the  lines  of  Euclid's  Book  III  on  the  circle. 
Any  plane  section  of  a  sphere  is  a  circle  (Prop.  1).  The 
straight  line  from  the  centre  of  the  sphere  to  the  centre  of 
a  circular  section  is  perpendicular  to  the  plane  of  that  section 
(1,  For.  2  ;  cf.  7,  23);  thus  a  plane  section  serves  for  finding 
the  centre  of  the  sphere  just  as  a  chord  does  for  finding  that 
of  a  circle  (Prop.  2).  The  propositions  about  tangent  planes 

(3-5)  and  the  relation  between  the  sizes  of  circular  sections 
and  their  distances  from  the  centre  (5,  6)  correspond  to 

Euclid  III.  16-19  and  15;  as  the  small  circle  corresponds  to 

any  chord,  the  great  Circle  ('  greatest  circle  '  in  Greek)  corre- 
sponds to  the  diameter.  The  poles  of  a  circular  section 

correspond  to  the  extremities  of  the  diameter  bisecting 

a  chord  of  a  circle  at  right  angles  (Props.  8-10).  Great 
circles  bisecting  one  another  (Props.  11-12)  correspond  to 
chords  which  bisect  one  another  (diameters),  and  great  circles 
bisecting  small  circles  at  right  angles  and  passing  through 

their  poles  (Props.  13-15)  correspond  to  diameters  bisecting 
chords  at  right  angles.  The  distance  of  any  point  of  a  great 
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circle  from  its  pole  is  equal  to  the  side  of  a  square  inscribed 
in  the  great  circle  and  conversely  (Props.  16, 17).  Next  come 
certain  problems  :  To  find  a  straight  line  equal  to  the  diameter 
of  any  circular  section  or  of  the  sphere  itself  (Props.  18, 19) ; 
to  draw  the  great  circle  through  any  two  given  points  on 
the  surface  (Prop.  20);  to  find  the  pole  of  any  given  circu- 

lar section  (Prop.  21).  Prop.  22  applies  Eucl.  III.  3  to  the 
sphere. 

Book  II  begins  with  a  definition  of  circles  on  a  sphere 

which  touch  one  another ;  this  happens  *  when  the  common 
section  of  the  planes  (of  the  circles)  touches  both  circles '. 
Another  series  of  propositions  follows,  corresponding  again 
to  propositions  in  Eucl.,  Book  III,  for  the  circle.  Parallel 
circular  sections  have  the  same  poles,  and  conversely  (Props. 

1,  2).  Props.  3-5  relate  to  circles  on  the  sphere  touching 
one  another  and  therefore  having  their  poles  on  a  great 
circle  which  also  passes  through  the  point  of  contact  (cf. 
Eucl.  III.  11,  [12]  about  circles  touching  one  another).  If 
a  great  circle  touches  a  small  circle,  it  also  touches  another 
small  circle  equal  and  parallel  to  it  (Props.  6,  7),  and  if  a 
great  circle  be  obliquely  inclined  to  another  circular  section, 
it  touches  each  of  two  equal  circles  parallel  to  that  section 
(Prop.  8).  If  two  circles  on  a  sphere  cut  one  another,  the 
great  circle  drawn  through  their  poles  bisects  the  intercepted 
segments  of  the  circles  (Prop.  9).  If  there  are  any  number  of 
parallel  circles  on  a  sphere,  and  any  number  of  great  circles 
drawn  through  their  poles,  the  arcs  of  the  parallel  circles 
intercepted  between  any  two  of  the  great  circles  are  similar, 
and  the  arcs  of  the  great  circles  intercepted  between  any  two 
of  the  parallel  circles  are -equal  (Prop.  10). 

The  last  proposition  forms  a  sort  of  transition  to  the  portion 

of  the  treatise  (II.  11-23  and  Book  III)  which  contains  pro- 
positions of  purely  astronomical  interest,  though  expressed  as 

propositions  in  pure  geometry  without  any  specific  reference 

to  the  various  circles  in  the  heavenly  sphere.  The  proposi- 
tions are  long  and  complicated,  and  it  would  neither  be  easj 

nor  worth  while  to  attempt  an  enumeration.  They  deal  with 
circles  or  parts  of  circles  (arcs  intercepted  on  one  circle  by 
series  of  other  circles  and  the  like).  We  have  no  difficulty  ir 
recognizing  particular  circles  which  come  into  many  proposi 
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tions.  A  particular  small  circle  is  the  circle  which  is  the 
limit  of  the  stars  which  do  not  set,  as  seen  by  an  observer  at 

a  particular  place  on  the  earth's  surface ;  the  pole  of  this 
circle  is  the  pole  in  the  heaven.  A  great  circle  which  touches 

this  circle  and  is  obliquely  inclined  to  the '  parallel  circles '  is  the 
circle  of  the  horizon ;  the  parallel  circles  of  course  represent 
-the  apparent  motion  of  the  fixed  stars  in  the  diurnal  rotation, 
and  have  the  pole  of  the  heaven  as  pole.  A  second  great 
circle  obliquely  inclined  to  the  parallel  circles  is  of  course  the 

circle  of  the  zodiac  or  ecliptic.  The  greatest  of  the  '  parallel 

circles '  is  naturally  the  equator.  All  that  need  be  said  of  the 
various  propositions  (except  two  which  will  be  mentioned 
separately)  is  that  the  sort  of  result  proved  is  like  that  of 

Props.  12  and  13  of  Euclid's  Phaenomena  to  the  effect  that  in 
the  half  of  the  zodiac  circle  beginning  with  Cancer  (or  Capri- 
cornus)  equal  arcs  set  (or  rise)  in  unequal  times ;  those  which 
are  nearer  the  tropic  circle  take  a  longer  time,  those  further 
from  it  a  shorter;  those  which  take  the  shortest  time  are 

those  adjacent  to  the  equinoctial  points ;  those  which  are  equi- 
distant from  the  equator  rise  and  set  in  equal  times.  In  like 

manner  Theodosius  (III.  8)  in  effect  takes  equal  and  con- 
tiguous arcs  of  the  ecliptic  all  on  one  side  of  the  equator, 

draws  through  their  extremities  great  circles  touching  the 

circumpolar  c  parallel '  circle,  and  proves  that  the  correspond- 
ing arcs  of  the  equator  intercepted  between  the  latter  great 

circles  are  unequal  and  that,  of  the  said  arcs,  that  correspond- 
ing to  the  arc  of  the  ecliptic  which  is  nearer  the  tropic  circle 

is  the  greater.  The  successive  great  circles  touching  the 
cireumpolar  circle  are  of  course  successive  positions  of  the 
horizon  as  the  earth  revolves  about  its  axis,  that  is  to  say, 
the  same  length  of  arc  on  the  ecliptic  takes  a  longer  or  shorter 
time  to  rise  according  as  it  is  nearer  to  or  farther  from  the 
tropic,  in  other  words,  farther  from  or  nearer  to  the  equinoctial 

points. 

'It  is,  however,  obvious  that  investigations  of  this  kind, 

which  only  prove  that  certain  arcs  'are  greater  than  others, 
and  do  not  give  the  actual  numerical  ratios  between  them,  are 
useless  for  any  practical  purpose  such  as  that  of  telling  the 

hour  of  the  night  by  the  stars,  which  was  one  of  the  funda- 
mental uroblems  in  Greek  astronomv;  and  in  order  to  find 



250 TRIGONOMETRY 

the  required  numerical  ratios  a  new  method  had  to  be  invented, 
namely  trigonometry. 

No  actual  trigonometry  in  Theodosius. 

It  is  perhaps  hardly  correct  to  say  that  spherical  triangles 
are  nowhere  referred  to  in  Theodosius,  for  in  III.  3  the  con- 

gruence-theorem for  spherical  triangles  corresponding  to  Eucl. 
I.  4  is  practically  proved;  but  there  is  nothing  in  the  book 
that  can  be  called  trigonometrical.  The  nearest  approach  is 
in  III.  11,  12,  where  ratios  between  certain  straight  lines  are 
compared  with  ratios  between  arcs.  ACc  (Prop.  11)  is  a  great 

circle  through  the  poles  A,  A'  \  CDc,  C'D  are  two  other  great 
circles,  both  of  which  are  at  right  angles  to  the  plane  of  ACfc, 

but  CDc  is  perpendicular  to  AA',  while  C' D  is  inclined  to  it  at 
an  acute  angle.  Let  any  other  great  circle  AB'BA'  through 

AA'  cut  CD  in  any  point  B  between  C  and  /),  and  C'D  in  B'. 
Let  the  '  parallel '  circle  EB'e  be  drawn  through  B',  and  let 
C'c'  be  the  diameter  of  the  '  parallel '  circle  touching  the  great 
circle  C'D.  Let  L,  K  be  the  centres  of  the  '  parallel '  circles, 
and  let  R,  p  be  the  radii  of  the  '  parallel '  circles  CDc,  Cfcf 
respectively.  It  is  required  to  prove  that 

2R :  2p  >  (arc  CB) :  (arc  C'B'). 

Let  (7'0,  Ee  meet  in  JV,  and  join  NB'. 
Then  B'N,  being  the  intersection  of  two  planes  perpendicu- 

lar to  the  plane  of  AC'CA ',  is  perpendicular  to  that  plane  and 
therefore  to  both  Ee  and  C'U. 
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Now,  the  triangle  NLO  being  right-angled*  at  L,  NO  >  NL. 
Measure  NT  along  NO  equal  to  NL,  and  join  TB'. 
Then  in  the  triangles  B'NT,  BfNL  two  sides  B'N,  NT  are 

equal  to  two  sides  B'N,  NLy  and  the  included  angles  (both 
being  right)  are  equal  ;  therefore  the  triangles  are  equal  in  all 

respects,  and  LNLB'=  LNTB'. 

Now  2R:2    =  OC':C'K 

=  ON:NT 

[=  tan  jmj':  tan  .V 

>  LCOB-./.NOB' 

>  (arc  £6'):  (are  fi'C'  '). 

If  a',  //,  c'  are  the  sides  of  the  spherical  triangle  AB'C',  this 
result  is  equivalent  (since  the  angle  COB  subtended  by  the  arc 
GB  is  equal  to  A)  to 

1  :  sin  b'  =  tan  A  :  tan  of 

>  a :  a', where  a  =  BG,  the  side  opposite  A  in  the  triangle  ABC. 

The  proof  is  based  on  the  fact  (proved  in  Euclid's 
and  assumed  as  known  by  Aristarchus  of  Samoa  and  Archi- 

medes) that,  if  a,  )8  are  angles  such  that  £  n  >  Oi  >  /?, 
tan  OL/ tan  ft  >  a//3. 

While,  therefore,  Theodosius  proves  the  equivalent  of  the 
formula,  applicable  in  the  solution  of  a  spherical  triangle 

right-angled  at  (7,  that  tana  =  nin  6  tan  A,  he  is  unable,  for 

want  of  trigonometry,  to  find  the  actual  value  of  a/a7,  and 
can  only  find  a  limit  for  it.  He  is  exactly  in  the  same  position 
as  Aristarchus,  who  can  only  approximate  to  the  values  of  the 

trigonometrical  ratios  which  he  needs,  e.g.  sin  1°,  cos  1°,  sin  3°, 
by  bringing  them  within  upper  and  lower  limits  with  the  aid 
of  the  inequalities 

tana       <x      sin  a 

tan£      J8      sin^S' where  4  TT  >  a  >  fl. 
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We  may  contrast  with  this  proposition  of  Theodosius  the 

corresponding  proposition  in  Menelaus's  Sphaerica  (III.  15) 
dealing  with  the  more  general  case  in  which  (?',  instead  of 
being  the  tropical  point  on  the  ecliptic,  is,  like  B',  any  point 
between  the  tropical  point  and  D.  If  R,  p  have  the  same 
meaning  as  above  and  rlt  r.z  are  the  radii  of  the  parallel  circles 

through  J3'  and  the  new  C",  Menelaus  proves  that 
sin  a 

sin  a7 which,  of  course,  with  the  aid  of  Tables,  gives  the  means 

of  finding  the  actual  values  of  a  or  a'  when  the  other  elements 
are  given. 

The  proposition  III.  12  of  Theodosius  proves  a  result  similar 

to  that  of  III.  11  for  the  case  where  the  great  circles  AB'B, 
AC'C,  instead  of  being  great  circles  through  the  poles,  arc 
great  circles  touching  '  the  circle  of  the  always-  visible  stars  ', 
i.  e.  different  positions  of  the  horizon,  and  the  points  C',  B'  are 
any  points  on  the  arc  of  the  oblique  circle  between  the  tropical 
and  the  equinoctial  points  ;  in  this  case,  with  the  same  notation, 

4  R  :  2  p  >  (arc  BG)  :  (arc  5'C")- 
It  is  evident  that  Theodosius  was  simply  a  laborious  com- 

piler, and  that  there  was  practically  nothing  original  in  his 
work.  It  has  been  proved,  by  .means  of  propositions  quoted 
verbatim  or  assumed  as  known  by  Autolycus  in  his  Moving 
Sphere  and  by  Euclid  in  his  Phaenomendt,  that  the  following 
propositions  in  Theodosius  are  pre-Euclidean,  I.  1,  6  a,  7,  8,  11, 
12,  13,  15,  20  ;  II.  1,  2,  3,  5,  8,  9,  10  a,  13,  15,  17,  18,  19,  20,  22  ; 
III.  Ib,  2,  3,  7,  8,  those  shown  in  thick  type  being  quoted 
word  for  word. 

The  beginnings  of  trigonometry. 

But  this  is  not  all.  In  Menelaus's  Spliaerica,,  III.  15,  there 
is  a  reference  to  the  proposition  (III.  11)  of  Theodosius  proved 

above,  and  in  Gherard  of  Cremona's  translation  from  the 

Arabic,  as  well  as  in  Halley's  translation  from  the  Hebrew 
of  Jacob  b.  Machir,  there  is  an  addition  to  the  effect  that  this 
proposition  was  used  by  Apollonius  in  a  book  the  title  of 
which  is  given  in  the  two  translations  in  the  alternative 
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forms  '  liber  aygregativus '  and  '  liber  de  principiis  univorsa- 
libus'.  Each  of  these  expressions  may  well  mean  the  work 
of  Apollonius  which  Marinus  refers  to  as  the  'General 

Treatise*  (fi  KaOoXov  Tr/oay/iarem).  There  is  no  apparent 
reason  to  doubt  that  the  remark  in  question  was  really 

contained  in  Menelaus's  original  work ;  and,  even  if  it  is  an 
Arabian  interpolation,  it  is  not  likely  to  have  been  made 
without  some  definite  authority.  If  then  Apollonius  was  the 
discoverer  of  the  proposition,  the  fact  affords  some  ground  for 
thinking  that  the  beginnings  of  trigonometry  go  as  far  back, 

at  least,  as  Apollonius.  Tannery1  indeed  suggested  that  not 
only  Apollonius  but  Archimedes  before  him  may  have  com- 

piled a  '  table  of  chords ',  or  at  least  shown  the  way  to  such 
a  compilation,  Archimedes  in  the  work  of  which  we  possess 
only  a  fragment  in  the  Measurement  of  a  Circle,  and  Apollonius 
in  the  VKVTOKIOV,  where  he  gave  an  approximation  to  the  value 
of  TT  closer  than  that  obtained  by  Archimedes;  Tannery 

compares  the  Indian  Table  of  Sines  in  the  Su**ya-Siddhanta, 

where  the  angles  go  by  24ths  of  a  right  angle  (l/24th=3°  45', 
2/24ths=7°  30',  &c.),  as  possibly  showing  Greek  influence. 
This  is,  however,  in  the  region  of  conjecture ;  the  first  person 
to  make  systematic  use  of  trigonometry  is,  so  far  as  we  know, 

Hipparchus. 

HIPPAKCHUS,  the  greatest  astronomer  of  antiquity,  was 
born  at  Nicaea  in  Bithynia.  The  period  of  his  activity  is 
indicated  by  references  in  Ptolemy  to  observations  made  by 
him  the  limits  of  which  are  from  161  B.C.  to  126  B.C.  Ptolemy 

further  says  that  from  Hipparchus's  time  to  the  beginning  of 
the  reign  of  Antoninus  Pius  (A.D.  138)  was  265  years.2  The 
best  and  most  important  observations  made  by  Hipparchus 
were  made  at  Rhodes,  though  an  observation  of  the  vernal 
equinox  at  Alexandria  on  March  24, 146  B.C.,  recorded  by  him 
may  have  been  his  own.  His  main  contributions  to  theoretical 
and  practical  astronomy  can  here  only  be  indicated  in  the 
briefest  manner. 

1  Tannery,  Recherches  sur  Fhist.  de  Vastronomie  ancienne,  p.  64. 
*2  Ptolemy,  Syntaxis^  vii.  2  (vol.  ii,  p.  15). 
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The  work  of  Hipparchus. 

Discovery  of  precession. 

1.  The  greatest  is  perhaps  his  discovery  of  the   precession 
of  the  equinoxes.     Hipparchus  found  that  the   bright  star 

Spica  was,  at  the  time  of  his  observation  of  it,  6°  distant 
from  the  autumnal  equinoctial  point,  whereas  he  deduced  from 
observations   recorded   by  Timocharis   that   Timocharis   had 

made  the  distance  8°.     Consequently  the  motion  had  amounted 
to  2°  in  the  period  between  Timocharis's  observations,  made  in 
283  or  295  B.C.,  and  129/8  B.C.,  a  period,  that  is,  of  154  or 

166  years;  this  gives  about  46-8"  or  43-4"  a  year,  as  compared 
with  the  true  value  of  50  -3  75  7". 

Calculation  of  mean  lunar  month. 

2.  The  same  discovery  is  presupposed  in  his  work  On  the 
length  of  the  Year,  in  which,  by  comparing  an  observation 
of  the  summer  solstice  by  Aristarchus  in  281/0  B.C.  with  his 
own  in  136/5  B.C.,  he  found  that  after  145  years  (the  interval 
between  the  two  dates)  the  summer  solstice  occurred   half 

a  day-and-night  earlier  than  it  should  on  the  assumption  of 
exactly  365£  days  to  the  year ;  hence  he  concluded  that  the 
tropical  year  contained  about  ̂ th  of  a  day-and-night  less 
than  365  J  days.     This  agrees  very  nearly  with  Censorinus's 
statement  that  Hipparchus's  cycle  was  304  years,  four  times 
the   76   years   of    Callippus,   but   with    111,035   days    in    it 
instead  of  111,036  (  =  27,759  x  4).     Counting  in  the  304  years 
12x304  +  112  (intercalary)  months,  or  3,760  months  in  all, 

Hipparchus  made  the  mean  lunar  month  29  days  12"  hrs. 
44  min.  2^  sec.,  which  is  less  than  a  second  out  in  comparison 
with  the  present  accepted  .figure  of  29-53059  days! 
3.  Hipparchus  attempted  a  new  determination  of  the  sun's 
motion  by  means  of  exact  equinoctial  and  solstitial  obser- 

vations;   he   reckoned  the   eccentricity  of  the   sun's  course 
and  fixed  the  apogee  at  the  point  5°  30' of  Gemini.    More 
remarkable    still    was    his    investigation    of    the    moon's 
course.    He  determined  the  eccentricity  and  the  inclination 
of   the  orbit  to  the   ecliptic,   and   by  means  of  records  of 
observations  of  eclipses  determined  the  moon's  period  with 
extraordinary  accuracy  (as  remarked  above).     We  now  learn 
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that  the  lengths  of  the  mean  synodic,  the  sidereal,  the 
anomalistic  and  the  draconitic  month  obtained  by  Hipparchus 
agree  exactly  with  Babylonian  cuneiform  tables  of  date  not 
later  than  Hipparchus,  and  it  is  clear  that  Hipparchus  was 
in  full  possession  of  all  the  results  established  by  Babylonian 
astronomy. 

Im]yroved  estimates  of  sizes  awl  distances  of  sun 
and  moo/6. 

4.  Hipparchus  improved  on  Aristarchus's  calculations  of  the 
sizes  and  distances  of  the  sun  and  moon,  determining  the 

apparent  diameters  more  exactly  and  noting  the  changes  in 
them  ;  he  made  the  mean  distance  of  the  sun  1,245D,  the  mean 
distance  of  the  moon  33§  7),  the  diameters  of  the  sun  and 
moon    12$  D   and   J  D   respectively,   where   D  is   the  mean 
diameter  of  the  earth. 

Epicycles  and  eccentrics. 

5.  Hipparchus,  in  investigating  the  motions  of  the  sun,  moon 

and  planets,  proceeded  on  the  alternative  hypotheses  of  epi- 
cycles and  eccentrics ;   he  did  not  invent  these  hypotheses, 

which    were    already    fully    understood    and    discussed    by 
Apollonius.    While  the  motions  of  the  sun  and  moon  could 
with  difficulty  be  accounted  for  by  the  simple  epicycle  and 
eccentric  hypotheses,  Hipparchus  found  that  for  the  planets  it 
was  necessary  to  combine  the  two,  i.e.  to  superadd  epicycles  to 
motion  in  eccentric  circles. 

dat<tlogue  of  nturs. 

6.  He  compiled  c*i  catalogue  of  fixed  stars  including  850  or 
more  such  stars;  apparently  he  was  the  first  to  state  their 
positions  in  terms  of  coordinates  in  relation  to  the  ecliptic 

(latitude    and    longitude),  and   his    table   distinguished    the 
apparent   sizes  of   the   stars.     His  work  was  continued   by 

Ptolemy,  who   produced  a  catalogue  of   1,022    stars   which, 

owing  to  an  error  in  his  solar  tables  affecting  all  his  longi- 
tudes, has  by  many  erroneously  been  supposed  to  be  a  mere 

reproduction  of  Hipparchus's  catalogue.     That  Ptolemy  took 
many  observations  himself  seems  certain.1 

1  See  two  papers  by  Dr.  J.  L.  E.  Dreyer  in^the  Monthly  Notices  of  the 
Royal  Astronomical  Society,  1917,  pp.  528-39,  and  1918,  pp.  343-9. 
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Improved  Instruments. 

7.  He  made  great  improvements  in  the  instruments  used  for 
observations.  Among  those  which  he  used  were  an  improved 

dioptra,  a  '  meridian-instrument '  designed  for  observations  in 
the  meridian  only,  and  a  universal  instrument  (aorpoAajSoi/ 
opyavov)  for  more  general  use.  He  also  made  a  globe  on 
which  he  showed  the  positions  of  the  fixed  stars  as  determined 
by  him ;  it  appears  that  he  showed  a  larger  number  of  stars 
on  his  globe  than  in  his  catalogue. 

Geography. 

In  geography  Hipparchus  wrote  a  criticism  of  Eratosthenes, 

in  great  part  unfair.  He  checked  Eratosthenes's  data  by 
means  of  a  sort  of  triangulation ;  he  insisted  on  the  necessity 
of  applying  astronomy  to  geography,  of  fixing  the  position  of 
places  by  latitude  and  longitude,  and  of  determining  longitudes 
by  observations  of  lunar  eclipses. 

Outside  the  domain  of  astronomy  and  geography,  Hipparchus 
wrote  a  book  On,  things  borne  down  ly  their  weight  from 

which  Siinplicius  (on  Aristotle's  De  caelo,  p.  264  sq.)  quotes 
two  propositions.  It  is  possible,  however,  that  even  in  this 
work  Hipparchus  may  have  applied  his  doctrine  to  the  case  of 
the  heavenly  bodies. 

In  pure  mathematics  he  is  said  to  have  considered  a  problem 
in  permutations  and  combinations,  the  problem  of  finding  the 
number  of  different  possible  combinations  of  10  axioms  or 
assumptions,  which  he  made  to  be  103,049  (v.  I.  101,049) 

or  310,952  according  as  the  axioms  were  affirmed  or  denied 1 : 
it  seems  impossible  to  make  anything  of  these  figures.  When 

the  Fihrist  attributes  to  him  works  c  On  the  art  of  algebra, 
known  by  the  title  of  the  Rules '  and  '  On  the  division  of  num- 

bers ',  we  have  no  confirmation :  Suter  suspects  some  confusion, 
in  view  of  the  fact  that  the  article  immediately  following  in 

the  Fihrist  is  on  Diophantus,  who  also  '  wrote  on  the  art  of 

algebra1. 

1  Plutarch,  Quaest.  Conviv.  viii.  9.  3,  732  r,  De  Stoicorum  repugn.  29. 1047  D. 
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First  systematic  use  of  Trigonometry. 

We  come  now  to  what  is  the  most  important  from  the 

point  of  view  of  this  work,  Hipparchus's  share  in  the  develop- 
ment of  trigonometry.  Even  if  he  did  not  invent  it, 

Hipparchus  is  the  first  person  of  whose  systematic  use  of 
trigonometry  we  have  documentary  evidence.  (1)  Theon 

of  'Alexandria  says  on  the  Syntaxis  of  Ptolemy,  &  propos  of 
Ptolemy's  Table  of  Chords  in  a  circle  (equivalent  to  sines), 
that  Hipparchus,  too,  wrote  a  treatise  in  twelve  books  on 
straight  lines  (i.e.  chords)  in  a  circle,  while  another  in  six 

books  was  written  by  Menelaus.1  In  the  tiyntaxis  I.  10 
Ptolemy  gives  the  necessary  explanations  as  to  the  notation 
used  in  his  Table.  The  circumference  of  the  circle  is  divided 

into  360  parts  or  degrees;  the  diameter  is  also  divided  into 
120  parts,  and  one  of  such  parts  is  the  unit  of  length  in  terms 
of  which  the  length  of  each  chord  is  expressed;  each  part, 
whether  of  the  circumference  or  diameter,  is  divided  into  60 

parts,  each  of  these  again  into  60,  and  so  on,  according  to  the 
system  of  sexagesimal  fractions.  Ptolemy  then  sets  out  the 
minimum  number  of  propositions  in  plane  geometry  upon 
which  the  calculation  of  the  chords  in  the  Table  is  based  (Sia 

rrjy  €K  rail/  ypa/i/io>i>  /ieflo&Kfjs1  OLVT&V  (ruorao'eooy).  The  pro- 
positions are  famous,  and  it  cannot  be  doubted  that  Hippar- 

chus used  a  set  of  propositions  of  the  same  kind,  though  his 
exposition  probably  ran  to  much  greater  length.  As  Ptolemy 
definitely  set  himself  to  give  the  necessary  propositions  in  the 
shortest  form  possible,  it  will  be  better  to  give  them  under 

Ptolemy  rather  than  here.  (2)  Pappus,  in  speaking  of  Euclid's 
propositions  about  the  inequality  of  the  times  which  equal  arcs 

of  the  zodiac  take  to  rise,  observes  that '  Hipparchus  in  his  book 
On  the  rising  of  the  twelve  signs  of  the  zodiac  shows  by  means 
of  numerical  calculations  (Si  api6p.S>v}  that  equal  arcs  of  the 
semicircle  beginning  with  Cancer  which  set  in  times  having 
a  certain  relation  to  one  another  do  not  everywhere  show  the 

same  relation  between  the  times  in  which  they  rise  ',2  and  so 
on.  We  have  seen  that  Euclid,  Autolycus,  and  even  Theo- 
dosius  could  only  prove  that  the  said  times  are  greater  or  less 

1  Theon,  Comm.  on  Syntax?  s,  p.  110,  ed.  Halma. 
2  Pappus,  vi,  p.  600.  9-13. 
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in  relation  to  one  another ;  they  could  not  calculate  the  actual 
times.  As  Hipparchus  proved  corresponding  propositions  by 
means  of  numbers,  we  can  only  conclude  that  he  used  proposi- 

tions in  spherical  trigonometry,  calculating  arcs  from  others 
which  are  given,  by  means  of  tables.  (3)  In  the  only  work 
of  his  which  survives,  the  Commentary  on  the  Phaenomena 
of  Eudoxus  and  Aratus  (an  early  work  anterior  to  the 
discovery  of  the  precession  of  the  equinoxes),  Hipparchus 
states  that  (presumably  in  the  latitude  of  Rhodes)  a  star  which 

lies  27^°  north  of  the  equator  describes  above  the  horizon  an 
arc  containing  3  minutes  less  than  15/24ths  of  the  whole 

circle1;  then,  after  some  more  inferences,  he  says,  'For  each 
of  the  aforesaid  facts  is  proved  by  means  of  lines  (Sia  rS>v 
ypafifji&y)  in  the  general  treatises  on  these  matters  compiled 

by  me '.  In  other  places 2  of  the  Commentary  he  alludes  to 
a  work  On  simultaneous  risings  (ra  IT* pi  T£>V  (rvvava,To\S>v), 
and  in  II.  4.  2  he  says  he  will  state  summarily,  about  each  of 
the  fixed  stars,  along  with  what  sign  of  the  zodiac  it  rises  and 
sets  and  from  which  degree  to  which  degree  of  each  sign  it 
rises  or  sets  in  the  regions  about  Greece  or  wherever  the 
longest  day  is  1 4|  equinoctial  hours,  adding  that  lie  has  given 
special  proofs  in  another  work  designed  so  that  it  is  possible 
in  practically  every  place  in  the  inhabited  earth  to  follow 

the  differences  between  the  concurrent  risings  and  settings/5 

Where  Hipparchus  speaks  of  proofs  '  by  means  of  lines ',  he 
does  not  mean  a  merely  graphical  method,  by  construction 
only,  but  theoretical  determination  by  geometry,  followed  by 
calculation,  just  as  Ptolemy  uses  the  expression  €/c  rS>v  ypap- 
p.S>v  of  his  calculation  of  chords  and  the  expressions  <r(f>aipiKal 
fleets  and  ypa/ifJiiKal  Se^eiy  of  the  fundamental  proposition 

in  spherical  trigonometry  (Menelaus's  theorem  applied  to  the 
sphere)  and  its  various  applications  to  particular  cases.  It 
is  significant  that  in  the  Syntaxis  VIII.  5,  where  Ptolemy 
applies  the  proposition  to  the  very  problem  of  finding  the 
times  of  concurrent  rising,  culmination  and  setting  of  the 

fixed  stars,  he  says  that  the  times  can  be  obtained  '  by  lines 

only '  (8ia  p.6va>v  r&v  ypa/jLfjLOH/)*  Hence  we  may  be  certain 
that,  in  the  other  books  of  his  own  to  which  Hipparchus  refers 

1  Ed.  Manitius,  pp.  148-50.  2  16.,  pp.  128.  5, 148.  20. 
3  lb.,  pp.  182.  19-184.  5.  4  Syntaxis,  vol.  ii,  p.  193. 
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in  his  Comment<M*y,  he  used  the  formulae  of  spherical  trigono- 
metry to  get  his  results.  In  the  particular  case  where  it  is 

required  to  find  the  time  in  which  a  star  of  27^°  northern 
declination  describes,  in  the  latitude  of  Rhodes,  the  portion  of 
its  arc  above  the  horizon,  Hipparchus  must  have  used  the 

equivalent  of  the  formula  in  the  solution  of  a  right-angled 
spherical  triangle,  tan  b  =  cos  A  tan  c,  where  (J  is  the  right 
angle.  Whether,  like  Ptolemy,  Hipparchus  obtained  the 
formulae,  such  as  this  one,  which  he  used  from  different 

applications  of  the  one  general  theorem  (Menelaus's  theorem) 
it  is  not  possible  to  say.  There  was  of  course  no  difficulty 
in  calculating  the  tangent  or  other  trigonometrical  function 

of  an  angle  if  only  a  table  of  sines  was  given  ;  for  Hippar- 
chus and  Ptolemy  were  both  aware  of  the  fact  expressed  by 

sin2  (X  +  cos2  a  =  1  or,  as  they  would  have  written  it, 

(crd.  2<x)2  +  {crd.  (180°-2a)}2  =  4r2, 
where  (crd.  2  a)  means  the  chord  subtending  an  arc  2  a,  and  r 
is  the  radius,  of  the  circle  of  reference. 

Table  of  Chords. 

We  have  no  details  of  Hipparchus's  Table  of  Chords  suffi- 
cient to  enable  us  to  compare  it  with  Ptolemy's,  which  goes 

by  half-degrees,  beginning  with  angles  of  ̂ °,  1°,  1^°,  and  so 
on.  But  Heron1  in  his  Metrica  says  that  'it  is  proved  in  the 

books  about  chords  in  a  circle  '  that,  if  ci9  and  au  are  the  sides 
of  a  regular  enneagon  (9-sided  figure)  and  hendecagon  (l  1  -sided 
figure)  inscribed  in  a  circle  of  diameter  d,  then  (1)  ag  =  £d9 

(2)  an  =  y-yd  very  nearly,  which  means  that  sin  20°  was 
taken  as  equal  to  0.3333  ...  (Ptolemy's  table  makes  it 

™  (20  +  -  +  |  ),  so  that  the  first  approximation  is  -|),  and bO\  60  60  / 

sin  TXT  .  180°  or  sin  16°  21'  49"  was  made  equal  to  0-28  (this  cor- 
responds to  the  chord  subtending  an  angle  of  32°  43'  38",nearly 

half-way  between  32^°  and  33°,  and  the  mean  between  the  two 

chords  subtending  the  latter  angles  gives  --Y  +  -+  .  -)  as 

the  required  sine,  while  ̂ o  (*<>&)  ̂   vf§>  which  only  differs 

1  Heron,  Metrica,  I  22,  24,  pp.  58.  19  and  62.  17. 
S2 
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by  ̂ ^  from  $$$  or  57T,  Heron's  figure).  There  is  little  doubt 
that  it  is  to  Hipparchus's  work  that  Heron  refers,  though  the author  is  not  mentioned. 

While  for  our  knowledge  of  Hipparchus's  trigonometry  we 
have  to  rely  for  the  most  part  upon  what  we  can  infer  from 
Ptolemy,  we  fortunately  possess  an  original  source  of  infor- 

mation about  Greek  trigonometry  in  its  highest  development 
in  the  Hphaerica  of  Menelaus. 

The.  date  of  MENELAUS  of  Alexandria  is  roughly  indi- 
cated by  the  fact  that  Ptolemy  quotes  an  observation  of 

his  made  in  the  first  year  of  Trajan's  reign  (A.D.  98).  He 
was  therefore  a  contemporary  of  Plutarch,  who  in  fact 
represents  him  as  being  present  at  the  dialogue  De  facie  in 

orbe  lunae,  where  (chap.  17)  Lucius  apologizes  to  Menelaus  'the 

mathematician'  for  questioning  the  fundamental  proposition 
in  optics  that  the  angles  of  incidence  and  reflection  are  equal. 

He  wrote  a  variety  of  treatises  other  than  the  Sphaerica. 
We  have  seen  that  Theon  mentions  his  work  on  Chords  in  a 

Circle  in  six  Books.  Pappus  says  that  he  wrote  a  treatise 
(IT pay  pare  fa)  on  the  setting  (or  perhaps  only  rising)  of 
different  arcs  of  the  zodiac.1  Proclus  quotes  an  alternative 
proof  by  him  of  Eucl.  I.  25,  which  is  direct  instead  of  by 
reductio  ad  absurdum?  and  he  would  seem  to  have  avoided 

the  latter  kind  of  proof  throughout.  Again,  Pappus,  speaking 

of  the  many  complicated  curves  '  discovered  by  Demetrius  of 
Alexandria  (in  his  "Linear  considerations")  and  by  Philon 
of  Tyana  as  the  result  of  interweaving  plectoids  and  other 

surfaces  of  all  kinds ',  says  that  one  curve  in  particular  was 
investigated  by  Menelaus  and  called  by  him  c  paradoxical ' 
(7ra/>a5o£oy)3;  the  nature  of  this  curve  can  only  be  conjectured 
(see  below). 

But  Arabian  tradition  refers  to  other  works  by  Menelaus, 
(1)  Elements  of  Geometry,  edited  by  Thabit  b.  Qurra,  in  three 
Books,  (2)  a  Book  on  triangles,  and  (3)  a  work  the  title  of 
which  is  translated  by  Wenrich  de  cognitione  quantitatis 
discretae  corporum  perrnixtorum.  Light  is  thrown  on  this 
last  title  by  one  al-Chazim  who  (about  A,D.  1121)  wrote  a 

1  Pappus,  vi,  pp.  600-2. 
2  Proclus  ori  Eucl.  I,  pp. 
8  Pappus,  iv,  p.  270.  25. 
2  Proclus  ori  Eucl.  I,  pp.  345.  14-346.  11. 
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treatise  about  the  hydrostatic  balance,  i.e.  about  the  deter- 
mination of  the  specific  gravity  of  homogeneous  or  mixed 

bodies,  in  the  course  of  which  he  mentions  Archimedes  and 
Menelaus  (among  others)  as  authorities  on  the  subject ;  hence 

the  treatise  (3)  must  have  been  a  book  on  hydrostatics  dis- 
cussing such  problems  as  that  of  the  crown  solved  by  Archi- 
medes. The  alternative  proof  of  Eucl.  I.  25  quoted  by 

Proclus  might  have  come  either  from  the  Elements  of  Geometry 
or  the  Book  on  triangles.  With  regard  to  the  geometry,  the 

*  liber  trium  f ratrum  '  (written  by  three  sons  of  Musa  b.  Shakir 
in  the  ninth  century)  says  that  it  contained  a  solution  of  the 
duplication  of  the  cube,  which  is  none  other  than  that  of 
Archytas.  The  solution  of  Archytas  having  employed  the 
intersection  of  a  tore  and  a  cylinder  (with  a  cone  as  well), 
there  would,  on  the  assumption  that  Menelaus  reproduced  the 
solution,  be  a  certain  appropriateness  in  the  suggestion  of 

Tannery1  that  the  curve  which  Menelaus  called  the  napdSogos 
ypa/*/z?7  was  in  reality  the  curve  of  double  curvature,  known 
by  the  name  of  Viviani,  which  is  the  intersection  of  a  sphere 
with  a  cylinder  touching  it  internally  and  having  for  its 
diameter  the  radius  of  the  sphere.  This  curve  is  a  particular 

case  of  Eudoxus's  hippopede,  and  it  has  the  property  that  the 
portion  left  outside  the  curve  of  the  surface  of  the  hemisphere 
on  which  it  lies  is  equal  to  the  square  on  the  diameter  of  the 
sphere;  the  fact  of  the  said  area  being  squareable  would 
justify  the  application  of  the  word  napdSogos  to  the  curve, 
and  the  quadrature  itself  would  not  probably  be  beyond  the 

powers  of  the  Greek  mathematicians,  as  witness  Pappus's 
determination  of  the  area  cut  off  between  a  complete  turn  of 
a  certain  spiral  on  a  sphere  and  the  great  circle  touching  it  at 

the  origin.2 

The  Sphaerica  of  Menelaus. 

This  treatise  in  three  Books  is  fortunately  preserved  in 

the  Arabic,  and  although  the  extant  versions  differ  con- 
siderably in  form,  the  substance  is  beyond  doubt  genuine; 

the  original  translator  was  apparently  Ishaq  b.  Hunain 
(died  A.D.  910).  There  have  been  two  editions,  (1)  a  Latin 

1  Tannery,  MJmoires  scientifiqueS)  ii,  p.  17.        2  Pappus,  iv,  pp.  264-8. 
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translation  by  Maurolycus  (Messina,  1558)  and  (2)  Halley's 
edition  (Oxford,  1758).  The  former  is  unserviceable  because 

Maurolycus's  manuscript  was  very  imperfect,  and,  besides 
trying  to  correct  and  restore  the  propositions,  he  added 
several  of  his  own.  Halley  seems  to  have  made  a  free 
translation  of  the  Hebrew  version  of  the  work  by  Jacob  b. 
Machir  (about  1273),  although  he  consulted  Arabic  manuscripts 
to  some  extent,  following  them,  e.g.,  in  dividing  the  work  into 
three  Books  instead  of  two.  But  an  earlier  version  direct 

from  the  Arabic  is  available  in  manuscripts  of  the  thirteenth 
to  fifteenth  centuries  at  Paris  and  elsewhere ;  this  version  is 
without  doubt  that  made  by  the  famous  translator  Gherard 

of  Cremona  (1114-87).  With  the  help  of  Halley's  edition, 
Gherard's  translation,  and  a  Ley  den  manuscript  (930)  of 
the  redaction  of  the  work  by  Abu-Nasr-Mansur  made  in 
A.D.  1007-8,  Bjornbo  has  succeeded  in  presenting  an  adequate 
reproduction  of  the  contents  of  the  Sphaerica^ 

Book  I. 

In  this  Book  for  the  first  time  we  have  the  conception  and 
definition  of  a  spherical  triangle.  Menelaus  does  not  trouble 
to  give  the  usual  definitions  of  points  and  circles  related  to 
the  sphere,  e.g.  pole,  great  circle,  small  circle,  but  begins  with 

that  of  a  spherical  triangle  as  '  the  area  included  by  arcs  of 
great  circles  on  the  surface  of  a  sphere ',  subject  to  the  restric- 

tion (Def .  2)  that  each  of  the  sides  or  legs  of  the  triangle  is  an 
arc  less  than  a  semicircle.  The  angles  of  the  triangle  are  the 
angles  contained  by  the  arcs  of  great  circles  on  the  sphere 
(Def.  3),  and  one  such  angle  is  equal  to  or  greater  than  another 
according  as  the  planes  containing  the  arcs  forming  the  first 
angle  are  inclined  at  the  same  angle  as,  or  a  greater  angle 
than,  the  planes  of  the  arcs  forming  the  other  (Dcfs.  4,  5). 

The  angle  is  a  right  angle  if  the  planes  of  the  arcs  are  at  i^ight 
angles  (Def.  6).  Pappus  tells  us  that  Menelaus  in  his  Sphaerica 

calls  the  figure  in  question  (the  spherical  triangle)  a '  three- 

side  '  (rp/TrAeirpoj/)2;  the  word  triangle  (rpiytovov)  was  of  course 

1  BjOrnbo,  Studien  fiber  Menelaos*  Sphttrik  (Abhandlungen  zur  Gesch.  d. 
math.  Wissenschaften,  Heft  xiv.  1902). 

2  Pappus,  vi,  p.  476. 16. 
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already  appropriated  for  the  plane  triangle.  We  should  gather 
from  this,  as  well  as  from  the  restriction  of  the  definitions  to 

the  spherical  triangle  and  its  parts,  that  the  discussion  of  the 
spherical  triangle  as  such  was  probably  new ;  and  if  the  pre- 

face in  the  Arabic  version  addressed  to  a  prince  and  beginning 

with  the  words,  '  O  prince !  I  have  discovered  an  excellent 

method  of  proof . . . '  is  genuine,  we  have  confirmatory  evidence 
in  the  writer's  own  claim. 

Mcnelaus's  object,  so  far  as  Book  I  is  concerned,  seems  to 
have  been  to  give  the  main  propositions  about  spherical 

triangles  corresponding  to  Euclid's  propositions  about  plane 
triangles.  At  the  same  time  he  does  not  restrict  himself  to 

Euclid's  methods  of  proof  even  where  they  could  be  adapted 
to  the  case  of  the  sphere;  he  avoids  the  form  of  proof  by 
reductio  ad  absurdum,  but,  subject  to  this,  he  prefers  the 

easiest  proofs.  In  some  respects  his  treatment  is  more  com- 

plete than  Euclid's  treatment  of  the  analogous  plane  cases. 
In  the  congruence-theorems,  for  example,  we  have  I.  4  a 
corresponding  to  Eucl.  I.  4,  I.  4b  to  Eucl.  I.  8,  I.  14,  16  to 
Eucl.  I.  26  a,  b;  but  Menelaus  includes  (I.  13)  what  we  know 

as  the  '  ambiguous  case ',  which  is  enunciated  on  the  lines  of 
Eucl.  VI.  7.  I.  12  is  a  particular  case  of  I.  16.  Menelaus 
includes  also  the  further  case  which  has  no  analogue  in  plane 
triangles,  that  in  which  the  three  angles  of  one  triangle  are 
severally  equal  to  the  three  angles  of  the  other  (1.17).  He 
makes,  moreover,  no  distinction  between  the  congruent  and 
the  symmetrical,  regarding  both  as  covered  by  congruent.  1. 1 
is  a,  problem,  to  construct  a  spherical  angle  equal  to  a  given 
spherical  angle,  introduced  only  as  a  lemma  because  required 
in  later  propositions.  I.  2,  3  are  the  propositions  about 
isosceles  triangles  corresponding  to  Eucl.  I.  5,  6  ;  Eucl.  1. 18, 19 
(greater  side  opposite  greater  angle  and  vice  versa)  have  their 
analogues  in  I.  7,  9,  and  Eucl.  I.  24,  25  (two  sides  respectively 
equal  and  included  angle,  or  third  side,  in  one  triangle  greater 
than  included  angle,  or  third  side,  in  the  other)  in  I.  8.  I.  5 
(two  sides  of  a  triangle  together  greater  than  the  third)  corre- 

sponds to  Eucl.  I.  20.  There  is  yet  a  further  group  of  proposi- 
tions comparing  parts  of  spherical  triangles,  I.  6,  18,  19,  where 

I.  6  (corresponding  to  Eucl.  I.  21)  is  deduced  from  I.  5,  just  as 
the  first  part  of  Eucl.  I.  21  is  deduced  from  Eucl.  I.  20. 
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Eucl.  I.  16,  32  are  not  true  of  spherical  triangles,  and 

Menelaus  has  therefore  the  corresponding  but  different  pro- 
positions. L  10  proves  that,  with  the  usual  notation  a,  6,  c, 

A,  B9  (7,  for  the  sides  and  opposite  angles  of  a  spherical 

triangle,  the  exterior  angle  at  C,  or  180°  —  (7,  <  =  or  >A 
according  as  c  +  a  >  =  or  <  180°,  and  vice  versa.  The  proof 
of  this  and  the  next  proposition  shall  be  given  as  specimens. 

In  the  triangle  ABC  suppose  that  c  +  a  >  =  or  <  180°  ;  let 
D  be  the  pole  opposite  to  A. 

Then,  according  as  c  +  a  >  =  or  <  180°,  BC>  =  or  <  BD 
(since  AD  =  180°), 

and  therefore     LD  >  =  or  <  /.BCD (=  180°-G'),  [I.  9] 

i.e.  (since  LD  =  /.A)  180°-(7<  =  or  >A. 

Menelaus  takes  the  converse  for  granted. 

As  a  consequence  of  this,  I.  11  proves  that  A  +  B  +  G>  180°. 
Take  the  same  triangle  ABC,  with  the  pole  D  opposite 

to  A,  and   from   B  draw   the   great   circle    BE  such   that 
LDBE  =±  LBDE. 

Then  CE+EB  =  CD  <  180°,  so  that,  by  the  preceding 
proposition,  the  exterior  angle  ACB  to  the  triangle  BCE  is 
greater  than  LCBE, 

i.e.  C  >  LCBE. 

Add  A  or  D  (=  LEBD)  to  the  unequals ; 

therefore  C  +  A  >  Z.CBD, 

whence  A  +  B  +  C  >  LCBD  +  B  or  180°. 

After  two  lemmas  I.  21, 22  we  have  some  propositions  intro- 
ducing M,  N,  P  the  middle  points  of  a,  6,  c  respectively.  I.  23 

proves,  e.g.,  that  the  arc  MJf  of  a  great  circle  >£c,  and  I.  20 
that  AM  <  =  or  >|a  according  as  A  >  =  or  <  (B  +  C).  .The 
last  group  of  propositions,  26-35,  relate  to  the  figure  formed 
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by  the  triangle  ABC  witt  great  circles  drawn  through  B  to 
meet  AC  (between  A  and  0)  in  D,  E  respectively,  and  the 
case  where  D  and  E  coincide,  and  they  prove  different  results 
arising  from  different  relations  between  a  and  c  (a>c),  com- 

bined with  the  equality  of  AD  and  EC  (or  DC),  of  the  angles 
ABD  and  EEC  (or  DBG),  or  of  a  +  c  and  BD  +  BE  (or  2BD) 

respectively,  according  as  a  +  c<  =  or  >  180°. 

Book  II  has  practically  no  interest  for  us.  The  object  of  it 
is  to  establish  certain  propositions,  of  astronomical  interest 
only,  which  are  nothing  more  than  generalizations  or  exten- 

sions of  propositions  in  Theodosius's  Mphaerica,  Book  III. 
Thus  Theodosius  III.  5,  6,  9  are  included  in  Menelaus  II.  10, 
Theodosius  III.  7-8  in  Menelaus  II.  12,  while  Menelaus  II.  11 
is  an  extension  of  Theodosius  III.  13.  The  proofs  are  quite 
different  from  those  of  Theodosius,  which  are  generally  very 
long-winded. 

Book  III.     Trigonometry. 

It  will  have  been  noticed  that,  while  Book  I  of  Menelaus 

gives  the  geometry  of  the  spherical  triangle,  neither  Book  I 
nor  Book  II  contains  any  trigonometry.  This  is  reserved  for 
Book  III.  As  I  shall  throughout  express  the  various  results 
obtained  in  terms  of  the  trigonometrical  ratios,  sine,  cosine, 
tangent,  it  is  necessary  to  explain  once  for  all  that  the  Greeks 
did  not  use  this  terminology,  but,  instead  of  sines,  they  used 
the  chords  subtended  by  arcs  of  a 
circle.  In  the  accompanying  figure 
let  the  arc  AD  of  a  circle  subtend  an 

angle  a  at  the  centre  0.  Draw  AM 
perpendicular  to  ODy  and  produce  it 

to  meet  the  circle  again  in  A'.  Then 
sin  a  =  AM/AO,  and  AM  is  \AA' 
or  half  the  chord  subtended  by  an 
angle  2  a  at  the  centre,  which  may 
shortly  be  denoted  by  |(crd.  2 a). 
Since  Ptolemy  expresses  the  chords  as  so  many  120th  parts  of 

the  diameter  of  the  circle,  while  AM /  AO  =  AA'/2AO,  it 
follows  that  sin  a  and  £(crd.  2 a)  are  equivalent.  Cos  a  is 

of  course  sin  (90°— a)  and  is  therefore  equivalent  to  £  crd. 
(180°-2a). 
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(a)  '  Menelaus'  s  theorem'  for  the  sphere. 

The  first  proposition  of  Book  III  is  the  famous  '  Menelaus's 
theorem  '  with  reference  to  a  spherical  triangle  and  any  trans- 

versal (great  circle)  cutting  the  sides  of  a  triangle,  produced 
if  necessary.  Menelaus  does  not,  however,  use  a  spherical 
triangle  in  his  enunciation,  but  enunciates  the  proposition  in 

terms  of  intersecting  great  circles.  '  Between  two  arcs  ADB, 
AEG  of  great  circles  are  two  other  arcs  of  great  circles  DFC 
and  BFE  which  intersect  them  and  also  intersect  each  other 

in  F.  All  the  arcs  are  less  than  a  semicircle.  It  is  required 
to  prove  that 

sin  EA  ~"  sin  FD  sin  BA 

It  appears  that  Menelaus  gave  three  or  four  cases,  sufficient 
to  prove  the  theorem  completely.  The  proof  depends  on  two 
simple  propositions  which  Menelaus  assumes  without  proof; 
the  proof  of  them  is  given  by  Ptolemy. 

(1)  In  the  figure  on  the  last  page,  if  OD  be  a  radius  cutting 
a  chord  AB  in  0,  then 

For  draw  AM,  BN  perpendicular  to  OD.    Then 

=  £(crd.  2  AD):  l(<srd.  2DB) 

=  sin  AD:  sin  DB. 

(2)  If  AB  meet  the  radius  OC  produced  in  T,  then 
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For,  if  AM,  jBJVare  perpendicular  to  0(7,  we  have,  as  before, 

.  2BC) 

Now  let  the  arcs  of  great  circles  ADB,  A  EC  be  cut  by  the 
arcs  of  great  circles  DFC,  BFK  which  themselves  meet  in  F. 

Let  G  be  the  centre  of  the  sphere  and  join  GB,  GF,  GE,  AD. 
Then  the  straight  lines  AD,  GB,  being  in  one  plane,  are 

either  parallel  or  not  parallel.  If  they  are  not  parallel,  they 
will  meet  either  in  the  direction  of  D,  B  or  of  A,  G. 

Let  AD,  GB  meet  in  T. 
Draw  the  straight  lines  ARC,  DLC  meeting  GE,  GFin  K,  L 

respectively. 
Then  K,  L,  T  must  lie  on  a  straight  line,  namely  the  straight 

line  which  is  the  section  of  the  planes  determined  by  the  arc 

EFB  and  by  the  triangle  ACD.1 

Thus  we  have  two  straight  lines  AC,  AT  cut  by  the  two 
straight  lines  (77),  TK  which  themselves  intersect  in  L. 

Therefore,  by  Menelaus's  proposition  in  plane  geometry, 

CK  _  CL   DT 

KA~  LD'TA 
1  So  Ptolemy.  In  other  words,  since  the  straight  lines  GB,  GE,  GF, 

which  are  in  one  plane,  respectively  intersect  the  straight  lines  AD,  AC, 
CD  which  are  also  in  one  plane,  the  points  of  intersection  T,  K,  L  are  in 
both  planes,  and  therefore  lie  on  the  straight  line  in  which  the  planes 
intersect. 
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But,  by  the  propositions  proved  above, 
CK      sin  GE     CL       sin  OF  1)T      sin  PR 

therefore,  by  substitution,  we  have 

sin  GE  _  sinCF   sin  DB  ̂ 

sin  EA  ~~  sin  jPD  *  sin  BA  * 
Menelaus  apparently  also  gave  the  proof  for  the  cases  in 

which  AD,  GB  meet  towards  A,  G,  and  in  which  AD,  GB  are 
parallel  respectively,  and  also  proved  that  in  like  manner,  in 
the  above  figure, 

sin  O  A  _  sin  CD    sin  FB 

sin  AE~~  s5TS^*siirgAT 
(the  triangle  cut  by  the  transversal  being  here  CFE  instead  of 

ADC).  Ptolemy1  gives  the  proof  of  the  above  case  only,  and 
dismisses  the  last-mentioned  result  with  a  '  similarly  '. 

()8)   Deductions  from  Menelaus'  s  Theorem. 
III.  2  proves,  by  means  of  I.  14,  10  and  III.  1,  that,  if  ABC, 

A'B'C'  be  two  spherical  triangles  in  which  A  =  A',  and  C,  C/ 
are  either  equal  or  supplementary,  sin  c/sin  a  =  siii-c'/sin  a' 
and  conversely.  The  particular  case  in  which  C,  C'  are  right 
angles  gives  what  was  afterwards  known  as  the  '  regula 
quattuor  quantitatum'  and  was  fundamental  in  Arabian 
trigonometry.2  A  similar  association  attaches  to  the  result  of 
III.  3,  which  is  the  so-called  c  tangent  '  or  c  shadow-rule  '  of  the 
Arabs.  If  ABC,  A'B'C'  be  triangles  right-angled  at  A,  A',  and 
(7,  C'  are  equal  and  both  either  >  or  <  90°,  and  if  P,  P'  be 
the  poles  of  AC,  A'C',  then 

sinAB  _  sinJ/jy    sin  BP 

sin  AC  ~  sin  A'C'  '  sin  B'P'  " 

Apply  the  triangles  so  that  (7  falls  on  C9  C'B'  on  GB  as  GE, 
and  G  A'  on  GA  as  CD  ;  then  the  result  follows  directly  from 
III.  1.  Since  sin  BP  =  cos  AB,  and  sin  B'P'  =  cos  A'B',  the 
result  becomes 

sin  CM        tan.A.B 

which  is  the  c  tangent-rule  '  of  the  Arabs.3 
1  Ptolemy,  Syntaxis,  i.  13,  vol.  i,  p.  76. 
2  See  Braunmiihl,  Gesch.  der  Trig,  i,  pp.  17,  47,  58-60,  127-9, 
8  Cf.  Braunmtihl.  00.  cit.  i,  DD.  17-18.  58.  67-9.  &c. 
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It  follows  at  once  (Prop.  4)  that,  if  AM,  A'M'  are  great 
circles  drawn  perpendicular  to  the  bases  BO,  B'C'  of  two 
spherical  triangles  ABC,  A'B'W  in  which  B  =  K,C=C', 

sin  BM        sin  MC  /  .       .    . .  .  ,     tan  AM  \ 
~~    •     * ir^f  ( since  both  are  equal  to  -  — J/T/"/  r sin  M  'C'  \  ^  tan  AM  / 

sin  K'M' 
III.  5  proves  that,  if  there  are  two  spherical  triangles  ABC, 

p'
 

/
 

D(A') 

'C1 

A'KC'  right-angled  at  A,  A'  and  such  that  (7=C",  while  6 
and  b'  are  less  than  90°, 

sin  (a  +  b)       sin  (a'  -f  //) 

sin  (a  —  //)       sin  (a'  —  b') 

from  which  we  may  deduce1  the  formula 

sin  (a  -f  b)  _  1  -f  cos  C 

sin  (a  —  />)  ~~  1  —  cos  C ' 
which  is  equivalent  to  tan  b  =  tan  a  cos  C. 

(y)  Anharmonic  property  of  four  great  circles  through 
otie  point. 

But  more  important  than  the  above  result  is  the  fact  that 
the  proof  assumes  as  known  the  anhar- 
monic  property  of  four  great  circles 
drawn  from  a  point  on  a  sphere  in  rela- 

tion to  any  great  circle  intersecting  them 

all,  viz.  that,  if  ABCD,  A'R'Wl)'  be  two 
transversals, 

sin  AD    sin  BC  __  sin  A'D' •"  "    i "\/^  •  A    Tl   """""       "•  f\t/^t          *  A  /  li/ sin  DO    sin  A  B      sin  D  C    sin  A  B 

1  Braunmiihl,  op.  cit.  i,  p.  18;  BjOrnbo,  p.  96. 
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It  follows  that  this  proposition  was  known  before  Mene- 

laus's time.  It  is  most  easily  proved  by  means  of  '  Menelaus's 
Theorem',  III.  1,  or  alternatively  it  may  be  deduced  for  the 
sphere  from  the  corresponding  proposition  in  plane  geometry, 

just  as  Menelaus's  theorem  is  transferred  by  him  from  the 
plane  to  the  sphere  in  III.  1.  We  may  therefore  fairly  con- 

clude that  both  the*  anharmonic  property  and  Menelaus's 
theorem  with  reference  to  the  sphere  were  already  included 
in  some  earlier  text-book  ;  and,  as  Ptolemy,  who  built  so  much 
upon  Hipparchus,  deduces  many  of  the  trigonometrical 
formulae  which  he  uses  from  the  one  theorem  (III.  1)  of 
Menelaus,  it  seems  probable  enough  that  both  theorems  were 
known  to  Hipparchus.  The  corresponding  plane  theorems 

appear  in  Pappus  among  his  lemmas  to  Euclid's  Porisms?  and 
there  is  therefore  every  probability  that  they  were  assumed 
by  Euclid  as  known. 

(S)  Propositions  analogous  to  End.  VI.  3. 

Two  theorems  following,  III.  6,  8,  have  their  analogy  in 
Eucl.  VI.  3.  In  III.  6  the  vertical  angle  A  of  a  spherical 
triangle  is  bisected  by  an  arc  of  a  great  circle  meeting  BG  in 
D,  and  it  is  proved  that  sin  BD/sin  DC  =  sin  JiA/sin  AC\ 
in  III.  8  we  have  the  vertical  angle  bisected  both  internally 
and  externally  by  arcs  of  great  circles  meeting  BC  in  D  and 
E9  and  the  proposition  proves  the  harmonic  property 

sin  BE  _  sin  £7) 

smEC  ~~  sin  DC  ' 
III.  7  is  to  the  effect  that,  if  arcs  of  great  circles  be  drawn 

through  B  to  meet  the  opposite  side  AC  of  a  spherical  triangle 
in  D,  E  so  that  ZABD  =  /  EBC,  then 

sin  EA  .  sin  AD      sin2  AB 

As  this  is  analogous  to  plane  propositions  given  by  Pappus  as 
lemmas  to  different  works  included  in  the  Treasury  of 
Analysis,  it  is  clear  that  these  works  were  familiar  to 
Menelaus. 

1  Pappus,  vii,  pp.  870-2,  874. 
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III.  9  and  III.  10  show,  for  a  spherical  triangle,  that  (1)  the 
great  circles  bisecting  the  three  angles,  (2)  the  great  circles 
through  the  angular  points  meeting  the  opposite  sides  at 
right  angles  meet  in  a  point. 

The  remaining  propositions,  III.  11-15,  return  to  the  same 

sort  of  astronomical  problem  as  those  dealt  with  in  Euclid's 
Phaeiiomena,  Theodosius's  tiphaeriea  and  Book  II  of  Mene- 
laus's  own  work.  Props.  11-14  amount  to  theorems  in 
spherical  trigonometry  such  as  the  following. 

Given  arcs  alf  «2,  or..,  «4,  ftl9  £2,  £3,  /?4,  such  that 

90° 
and  also          ax  >  @19  a2  >  £a,  «3  >  £3I  «4  >  /34, 

(1)  If  sin  at  :  sin  a2  :  sin  «3  :  sin  a4  =  sin  )3j  :  sin/J2  :  sin  /33  :  sin£4  , 

then  «.=^>i=,. 

If   sin(«I+/g1)  _  sin  («2  +  /32)  _  sMa:)  L+  j83 
sin(al-/31)      sin  (a2-/?2)      sin(a3-^a 

,1 

then 

(S\  If  sin  fai-ot,)      sn(-/2) sin(a3—  «4)      sin  (/3.,  -  /34) 

Again,  given  three  series  of  three  arcs  such  that 

«!  >  «2  >  a3,     £t  >  £2  >  |83I     90°  >  yl  >  y2  >  y3, 

nd     sin  (o^  —  ya) :  sin  (a2— y2) :  sin  (a3— y:j) 

=  sin  (j81  -  yt) :  sin  (02  -  y2) :  sin  (/33  -  y3) 

=  siny^sinyg-.sinyg 
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>  o      o  5  an(i 
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(1)  K  «,>/», 

then 

(2)  If  ftl  <  «! 

then 

III.  15,  the  last  proposition,  is  in  four  parts.  The  first  part 
is  the  proposition  corresponding  to  Theodosius  III.  11  above 
alluded  to.  Let  BA,  BC  be  two  quadrants  of  great  circles 
(in  which  we  easily  recognize  the  equator  and  the  ecliptic), 
P  the  pole  of  the  former,  PA19  PA%  quadrants  of  great  circles 
meeting  the  other  quadrants  in  A19  A%  and  Ol9  0%  respectively. 
Let  R  be  the  radius  of  the  sphere,  r,  r, ,  r:j  the  radii  of  the 

'parallel  circles'  (with  pole  P)  through  0,  C19  C:J  respectively. 

Then  shall 
sn Rr 
sn 

In  the  triangles  PCG^  BA^C.A  the  angles  at  C, 
and  the  angles  at  (73  equal  ;  therefore  (III.  2) 

sin  PG 

are  right, 

sn 

sin  PC* 



MENELAUS'S  SPHAERICA  273 

But,  by  III.  1  applied  to  the  triangle  BC^  cut  by  the 
transversal 

sn  sn  C        sin 

sin  BA%  sin  #C3     sin  PC\ 

sin  A^AS  _  sin  PJ.1  sin  BA.}  __  sin  P^T  sin  PC 

sin  (7, 6Y.,  ""  sin  PC.  sin  J5(7o  " "  sin  PC*  sin  PC, I         t>                                                    I  O                                                    1  .) 

from  above, 

Part  2  of  the  proposition  proves  that,  if  PCZA2  be  drawn 

such  that  sin2  P6f2  =  sin  PA2 .  sin  PC,  or  ?'22  =  jRr  (where  r2  is 
the  radius  of  the  parallel  circle  through  (72),  BC2—BA2  is  a 
maximum,  while  Parts  3,  4  discuss  the  limits  to  the  value  of 
the  ratio  between  the  arcs  A^A^  and  C\C^ 

Nothing  is  known  of  the  life  of  CLAUDIUS  PTOLEMY  except 
that  he  was  of  Alexandria,  made  observations  between  the 

years  A.D.  125  and  141  or  perhaps  151,  and  therefore  presum- 
ably wrote  his  great  work  about  the  middle  of  the  reign  of 

Antoninus  Pius  (A.I).  138-61).  A  tradition  handed  down  by 
the  Byzantine  scholar  Theodoras  Meliteniota  (about  1361) 
states  that  he  was  born,  not  at  Alexandria,  but  at  Ptolemais 

fl  'EpfjLtiov.  Arabian  traditions,  going  back  probably  to 
Hunain  b.  Ishaq,  say  that  he  lived  to  the  age  of  78,  and  give 
a  number  of  personal  details  to  which  too  much  weight  must 
not  be  attached. 

The  MadrjfjLartKr)  crvvragi*  (Arab.  AlmcKjesf). 

Ptolemy's  great  work,  the  definitive  achievement  of  Greek 
astronomy,  bore  the  title  MadijfjiaTiKfjs  Swrdgecos  fttftXfa  iy, 
the  Mathematical  Collection  in  thirteen  Books.  By  the  time 
of  the  commentators  who  distinguished  the  lesser  treatises  on 

astronomy  forming  an  introduction  to  Ptolemy's  work  as 
fUKpb?  acrrpoi>o//oi$/<t€J'oy  (TOTTO?),  the  'Little  Astronomy',  the 
book  came  to  be  called  the  '  Great  Collection ',  fitydXr)  <TI;J>- 
ra£ty.  Later  still  the  Arabs,  combining  the  article  Al  with 
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the  superlative  pfyurros,  made  up  a  word  Al-majisti,  which 
became  Almagest ;  and  it  has  been  known  by  this  name  ever 
since.  The  complicated  character  of  the  system  expounded 
by  Ptolemy  is  no  doubt  responsible  for  the  fact  that  it 
speedily  became  the  subject  of  elaborate  commentaries. 

Commentaries  on  the  Syntaxis. 

Pappus1  cites  a  passage  from  his  own  commentary  on* 
Book  I  of  the  Mathematics,  which  evidently  means  Ptolemy's 
work.  Part  of  Pappus's  commentary  on  Book  V,  as  well  as 
his  commentary  on  Book  VI,  are  actually  extant  in  the 
original.  Theon  of  Alexandria,  who  wrote  a  commentary  on 
the  Syntaxis  in  eleven  Books,  incorporated  as  much  as  was 
available  of  Pappus's  commentary  on  Book  V  with  full 
acknowledgement,  though  not  in  Pappus's  exact  words.  In 
his  commentary  on  Book  VI  Theon  made  much  more  partial 
quotations  from  Pappus ;  indeed  the  greater  part  of  the  com- 

mentary on  this  Book  is  Theon's  own  or  taken  from  other 
sources.  Pappus's  commentaries  are  called  scholia,  Theon's 
vTTOfjLvriijiaTa.  Passages  in  Pappus's  commentary  on  Book  V 
allude  to  '  the  scholia  preceding  this  one '  (in  the  plural),  and in  particular  to  the  scholium  on  Book  IV.  It  is  therefore  all 
but  certain  that  lie  wrote  on  all  the  Books  from  I  to  VI  at 

least.  The  text  of  the  eleven  Books  of  Theon's  commentary 
was  published  at  Basel  by  Joachim  Camerarius  in  1538,  but 
it  is  rare  and,  owing  to  the  way  in  which  it  is  printed,  with 
insufficient  punctuation  marks,  gaps  in  places,  and  any  number 
of  misprints,  almost  unusable ;  accordingly  little  attention  has 
so  far  been  paid  to  it  except  as  regards  the  first  two  Books, 
which  were  included,  in  a  more  readable  form  and  with  a  Latin 
translation,  by  Halma  in  his  edition  of  Ptolemy. 

Translations  and  editions. 

The  ttyniaxis  was  translated  into  Arabic,  first  (we  are  told) 
by  translators  unnamed  at  the  instance  of  Yahya  b.  Khalid  b. 
Barmak,  then  by.al-Hajjaj,  the  translator  of  Euclid  (about 
786-835),  and  again  by  the  famous  translator  Lshaq  b.  Hunain 
(d.  910),  whose  translation,  as  improved  by  Thabit  b.  Qurra 

1  Pappus,  viii,  p.  1106. 13. 
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(died  901),  is  extant  in  part,  as  well  as  the  version  by  Nasirad- 
din  at-Tusi  (1201-74). 

The  first  edition  to  be  published  was  the  Latin  translation 
made  by  Gherard  of  Cremona  from  the  Arabic,  which  was 
finished  in  1175  but  was  not  published  till  1515,  when  it  was 

brought  out,  without  the  author's  name,  by  Peter  Liechten- 
stein at  Venice.  A  translation  from  the  Greek  had  been  made 

about  1160  by  an  unknown  writer  for  a  certain  Henricus 
Aristippus,  Archdeacon  of  Catania,  who,  having  been  sent  by 
William  I,  King  of  Sicily,  on  a  mission  to  the  Byzantine 
Emperor  Manuel  I.  Comnenus  in  1158,  brought  back  with 
him  a  Greek  manuscript  of  the  Syntaxis  as  a  present;  this 
translation,  however,  exists  only  in  manuscripts  in  the  Vatican 
and  at  Florence.  The  first  Latin  translation  from  the  Greek 

to  be  published  was  that  made  by  Georgius  '  of  Trebizond '  for 
Pope  Nicolas  V  in  1451 ;  this  was  revised  and  published  by 
Lucas  Gauricus  at  Venice  in  1528.  The  editio  princeps  of  the 
Greek  text  was  brought  out  by  Grynaeus  at  Basel  in  1538. 
The  next  complete  edition  was  that  of  Halma  published 
1813-16,  which  is  now  rare.  All  the  more  welcome,  there- 

fore, is  the  definitive  Greek  text  of  the  astronomical  works 

of  Ptolemy  edited  by  Heiberg  (1899-1907),  to  which  is  now 
added,  so  far  as  the  Syntaxis  is  concerned,  a  most  valuable 
supplement  in  the  German  translation  (with  notes)  by  Manitius 
(Teubner,  1912-13). 

Summary  of  Contents. 

The  Syntaxis  is  most  valuable  for  the  reason  that  it  con- 
tains very  full  particulars  of  observations  and  investigations 

by  Hipparchus,  as  well  as  of  the  earlier  observations  recorded 
by  him,  e.g.  that  of  a  lunar  eclipse  in  721  B.C.  Ptolemy 
based  himself  very  largely  upon  Hipparchus,  e.g.  in  the 
preparation  of  a  Table  of  Chords  (equivalent  to  sines),  the 
theory  of  eccentrics  and  epicycles,  &c. ;  and  it  is  questionable 
whether  he  himself  contributed  anything  of  great  value  except 
a  definite  theory  of  the  motion  of  the  five  planets,  for  which 

Hipparchus  had  only  collected  material  in  the  shape  of  obser- 
vations made  by  his  predecessors  and  himself.  A  very  short 

indication  of  the  subjects  of  the  different  Books  is  all  that  can 



276  TRIGONOMETRY 

bo  given  here.  Book  I:  Indispensable  preliminaries  to  the 
study  of  the  Ptolemaic  system,  general  explanations  of 
the  different  motions  of  the  heavenly  bodies  in  relation  to 
the  earth  as  centre,  propositions  required  for  the  preparation 
of  Tables  of  Chords,  the  Table  itself,  some  propositions  in 
spherical  geometry  leading  to  trigonometrical  calculations  of 
the  relations  of  arcs  of  the  equator,  ecliptic,  horizon  and 

meridian,  a  *  Table  of  Obliquity ',  for  calculating  declinations 
for  each  degree-point  on  the  ecliptic,  and  finally  a  method  of 
finding  the  right  ascensions  for  arcs  of  the  ecliptic  equal  to 

one-third  of  a  sign  or  10°.  Book  II:  The  same  subject  con- 
tinued, i.e.  problems  on  the  sphere,  with  special  reference  to 

the  differences  between  various  latitudes,  the  length  of  the 
longest  day  at  any  degree  of  latitude,  and  the  like.  Book  III : 
On  the  length  of  the  year  and  the  motion  of  the  sun  on  the 
eccentric  and  epicycle  hypotheses.  Book  IV :  The  length  of  the 
months  and  the  theory  of  the  moon.  Book  V  :  The  construc- 

tion of  the  astrolabe,  and  the  theory  of  the  moon  continued, 

the  diameters  of  the  sun,  the  moon  and  the  earth's  shadow, 
the  distance  of  the  sun  and  the  dimensions  of  the  sun,  moon 
and  earth.  Book  VI :  Conjunctions  and  oppositions  of  sun 
and  moon,  solar  and  lunar  eclipses  and  their  periods.  Books 
VII  and  VIII  are  about  the  fixed  stars  and  the  precession  of 

the  equinoxes,  and  Books  IX-XIII  are  devoted  to  the  move- 
ments of  the  planets. 

Trigonometry  in  Ptolemy. 

What  interests  the  historian  of  mathematics  is  the  trigono- 
metry in  Ptolemy.  It  is  evident  that  no  part  of  the  trigono- 
metry, or  of  the  matter  preliminary  to  it,  in  Ptolemy  was  new. 

What  he  did  was  to  abstract  from  earlier  treatises,  and  to 
condense  into  the  smallest  possible  space,  the  minimum  of 
propositions  necessary  to  establish  the  methods  and  formulae 
used.  Thus  at  the  beginning  of  the  preliminaries  to  the 
Table  of  Chords  in  Book  I  he  says : 

'  We  will  first  show  how  we  can  establish  a  systematic  and 
speedy  method  of  obtaining  the  lengths  of  the  chords  based  on 
the  uniform  use  of  the^  smallest  possible  number  of  proposi- 

tions, so  that  we  may  not  only  have  the  lengths  of  the  chords 
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set  out  correctly,  but  may  be  in  possession  of  a  ready  proof  of 
our  method  of  obtaining  them  based  on  geometrical  con- 

siderations/ l 

He  explains  that  he  will  use  the  division  (1)  of  the  circle  into 
360  equal  parts  or  degrees  and  (2)  of  the  diameter  into  120 
equal  parts,  and  will  express  fractions  of  these  parts  on  the 
sexagesimal  system.  Then  come  the  geometrical  propositions, 
as  follows. 

(a)   Lemma  for  finding  sin  18°  and  sin  36°. 
To  find  the  side  of  a  pentagon  and  decagon  inscribed  in 

a  circle  or,  in  other  words,  the  chords  subtending  arcs  of  72° 
and  36°  respectively. 

Let  AH  be  the  diameter  of  a  circle,  O  the  centre,  OC  the 
radius  perpendicular  to  A  B. 

Bisect  OB  at  JJ,  join  DC,  and  measure 
I)E  along  DA  equal  to  DC.  Join  EC. 

Then  shall  OK  be  the  side  of  the  in- 
scribed regular  decagon,  and  EC  the  side 

of  the  inscribed  regular  pentagon. 
For,  since  OB  is  bisected  at  />, 

)*=  DE* 

Therefore  BE.  EO  =  0(72  =  OS2, 
and  BE  is  divided  in  extreme  und  mean  ratio. 

But  (Eucl.  XIII.  9)  the  sides  of  the  regular  hexagon  and  the 
regular  decagon  inscribed  in  a  circle  when  placed  in  a  straight 
line  with  one  another  form  a  straight  line  divided  in  extreme 
and  mean  ratio  at  the  point  of  division. 

Therefore,  BO  being  the  side  of  the  hexagon,  EO  i^the  side 
of  the  decagon. 

Also  (by  Eucl.  XIII.  10) 

(side  of  pentagon)2  =  (side  of  hexagon)2  +  (side  of  decagon)2 

therefore  EC  is  the  side  of  the  regular  pentagon  inscribed 
in  the  circle. 

1  Ptolemy,  Syutaxi*)  i.  10,  pp.  31  2. 



278  TRIGONOMETRY 
• 

The  construction  in  fact  easily  leads  to  the  results 

where  a  is  the  radius  of  the  circle. 

Ptolemy  does  not  however  use  these  radicals,  but  calculates 

the  lengths  in  terms  of  '  parts  '  of  the  diameter  thus. 

DO  =  30,  and  DO2  =  900  ;    00  =  60  and  00*  =  3600  ; 

therefore    DE*  =  DO2  =  4500,  and  DE  =  67*  4'  55"  nearly  ; 

therefore  side  of  decagon  or  (cixl.36°)  =  /J#-jDO  =  37''4'55" 

Again  0#2  =  (37/'4'  55")*  =  1375  .4'  15",  and  0(72=3600; 

therefore    CE*  =  4975  .  4'  15",  and  CE  =  70''  32'  3"  nearly, 

i.e.  side  of  pentagon  or  (crd.  72°)  =  70''  32'  3". 
The  method  of  extracting  the  square  root  is  explained  by 

Theon  in  connexion  with  the  first  of  these  cases,  \/4500  (see 

above,  vol.  i,  pp.  61-3). 
The  chords  which  are  the  sides  of  other  regular  inscribed 

figures,  the  hexagon,  the  square  and  the  equilateral  triangle, 
are  next  given,  namely, 

crd.  60°  =  60'', 

crd.  90°  =  \/(2  .  60-)  =  >/(7200)  =  84''  51'  10", 

crd.  120°  =  V(3  .  602)  =  \/(  10800)  =  103''  55'  23". 

(/3)    Equivalent  of  sin2  0  -f  cos-  0  =  1. 

It  is  next  observed  that,  if  x  be  any  arc, 

(crd.  a)2  +  {crd.  (180°  -a;)}2  =  (diam.)2  =  1202, 

a  formula  which  is  of  course  equivalent  to  sin2  Q  +  cos2  6  =  1. 
We  c&i  therefore,  from  crd.  72°,  derive  crd.  108°,  from 

crd.  36°,  crd.  144°,  and  so  on. 

(y)   'Ptolemy's  theorem',  giving  the  equivalent  of 

sin  (6  —  (f>)  =  sin  0  cos  0  —  cos  6  sin  0.    , 

The  next  step  is  to  find  a  formula  which  will  give  us 

crd.  (a—  j8)  when  crd.  a  and  crd.  ft  are  given.  (This  for 

instance  enables  us  to  find  crd.  12°  from  crd.  72°  and  crd.  60°.) 
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The  proposition  giving  the  required  formula  depends  upon 

a  lemma,  which  is  the  famous  '  Ptolemy's  theorem '. 

Given  a  quadrilateral   A  BCD  inscribed  in   a   circle,  the 
diagonals  being  AC,  BD,  to  prove  that 

.  DC+  AD .  EC. AC.BD  = 

The  proof  is  well  known.     Draw  BE  so  that  the  angle  ABE 
is  equal  to  the  angle  DBC,  and  let  BE 
meet  AC  in  E. 

Then   the   triangles  ABE,   DBC  are 
equiangular,  and  therefore 

AB:AE=BD:DC,  I     I   \     X      ̂ *> 

or  AB.DC=AE.BD.  (1) 

Again,  to  each   of   the   equal   angles 
ABE,  DBC  add  the  angle  EBD ; 

then   the   angle   ABD  is  equal   to  the  angle  EBC,  and  the 
triangles  ABD,  EBC  are  equiangular ; 

therefore  BC :  CE  =  BD :  DA, 

or  AD.BC=CE.BD. 

By  adding  (1)  and  (2),  we  obtain 

AB .  DC+AD .  BC  =  AC.  BD. 

(2) 

Now  let  AB,  AC  be  two  arcs  terminating  at  A,  the  extremity 
of  the  diameter  A  I)  of  a  circle,  and  let 

AC  (=  a)  be  greater  than  AB  (  =  /3,. 
Suppose  that  (crd.  AC)  and  (crd.  AB) 
are  given:  it  is  required  to  find 
(crd.  BC). 

Join  BD,  CD. 

Then,  by  the  above  theorem, 

Now  AB,  AC  are  given;  therefore  BD  =  crd.  (180°  -AB) 
and  CD  =  crd.  (180°  —  ̂ 4(7)  are  known.  And  AD  is  known. 
Hence  the  remaining  chord  BG  (crd.  BC)  is  known. 
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The  equation  in  fact  gives  the  formula, 

{crd.  (a-  £)}  .  (crd.  180°)  =  (crd.  a)  .  {crd.  (180°-/3)} 
-(crd.  /3).{crd.(180°-a)}, 

which  is,  of  course,  equivalent  to 

sin  (0  —  0)  =  sin  6  cos  0  —  cos  6  sin  0,  where  a  =  20,  ft  =  20. 

By  means  of  this  formula  Ptolemy  obtained 

crd.  12°  =  crd.  (72°-  60°)  =  12''  32'  36". 

(5)  Equivalent  of  siii^d  =  £  (1  —cos  0). 

But,  in  order  to  get  the  chords  of  smaller  angles  still,  we 
want  a  formula  for  finding  the  chord  of  half  an  arc  when  the 

chord  of  the  arc  is  given.  This  is  the  subject  of  Ptolemy's 
next  proposition. 

Let  BG  be  an  arc  of  a  circle  with  diameter  AC,  and  let  the 

arc  BC  be  bisected  at  D.  Given  (crd.  EG),  it  is  required  to 
find  (crd.  DC). 
Draw  DF  perpendicular  to  AC, 

and  join  AB,  AD,  BD,  DC.  Measure 
AE  along  AC  equal  to  A  Li,  and  join 
DK. 

Then  shall  FC  be  equal  to  EF,  or 
FO  shall  be  half  the  difference  be- 

tween AC  and  AB. 

For  the  triangles  ABD,  AED  are 
equal  in  all  respects,  since  two  sides 
of  the  one  are  equal  to  two  sides  of  the  other  and  the  included 
angles  BAD,  BAD,  standing  on  equal  arcs,  are  equal. 

Therefore  ED  =  BD  =  DC, 

and  the  right-angled  triangles  DEF,  DCF  are  equal  in  all 
respects,  whence  EF  =  FC,  or  CF  =  %(AC-AB). 

Now  AC.  CF  =  CD*, 

whence  (crd.  CD)*  =  \AG  (AC-AB) 

=  4  (crd.  180°).{(crd.l800)-~(crd.l800~^a)j. 
This  is,  of  course,  equivalent  to  the  formula 

£0  =  £(l-cos  0). 
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By  successively  applying  this  formula,  Ptolemy  obtained 

(crd.  6°),  (crd.  3°)  and  finally  (crd.  1|°)  =  12'  34'  15"  and 
(crd.  |°)  =  OP  47'  8".  But  we  want  a  table  going  by  half- 
degrees,  and  hence  two  more  things  are  necessary  ;  we  have  to 

get  a  value  for  (crd.  1°)  lying  between  (crd.  l£°)  and  (crd.  |°), 
and  we  have  to  obtain  an  addition  formula  enabling  us  when 

(crd.  a)  is  given  to  find  {crd.  (a  +  ̂°)},  and  so  on. 

(e)  Equivalent  of  cos  (6  +  0)  =  cos  6  cos  0—  sin  0  sin  <f>. 

To  find  the  addition  formula.  Suppose  AD  is  the  diameter 
of  a  circle,  and  AB,  BC  two  arcs.  Given  (crd.  AB)  and 
(crd.  BC),  to  find  (crd.  AC),  Draw  the  diameter  BOE,  and 
join  CE,  CD,  DE,  BD. 

Now,  (crd,  AB)  being  known, 
(crd.  BD)  is  known,  and  therefore 
also  (crd.  DE),  which  is  equal  to 
(crd.  AB)]  and,  (crd.  BC)  being 
known,  (crd.  CE)  is  known. 

And,  by  Ptolemy's  theorem, 
BD  .  CE  =  BC  .  DE  +  BE  .  CD. 

The  diameter  BE  and  all  the  chords  in  this  equation  except 

CD  being  given,  we  can  find  CD  or  crd.  (180°  —  AC).  We  have in  fact 

(crd.  180°)  .  [crd. 

=  !crd.(180°-4#)].{c^ 

thus  crd.  (180°  —  AC)  and  therefore  (crd.  AC)  is  known. 
If  AB  =  20,  BC  =20,  the  result  is  equivalent  to 

cos  (6  +  0)  =  cos  0  cos  0  -sin  Q  sin  0. 

(0  Method  of  interpolation  based  on  formula 

sin  a  /sin  ft  <  a//3  (where  %  TT  >  a  >  /9). 

Lastly  we  have  to  find  (crd.  1°),  having  given  (crd.  1|°)  and 
(crd.  |°). 

Ptolemy  uses  an  ingenious  method  of  interpolation  based  on 
a  proposition  already  assumed  as  known  by  Aristarchus. 

If  AB,  BC  be  unequal  chords  in  a  circle,  BC  being  the 
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greater,  then  shall  the  ratio  of  CB  to  BA  be  less  than  the 
ratio  of  the  arc  CB  to  the  arc  BA. 

Let  BD  bisect  the  angle  ABC,  meeting  AC  in  E  and 
the  circumference  in  D.  The  arcs 

AD,  DC  are  then  equal,  and  so  are 
the  chords  AD,  DC.  Also  CE>EA 
(since  CB:BA  =  CE:EA). 
Draw  DF  perpendicular  to  AC; 

then  AD>DE>DF,  so  that  the 
circle  with  centre  D  and  radius  DE 

will  meet  D  A  in  G  and  DF  produced 
in//. 

Now          FE:  EA  =  A  FED  :  &AED 

<  (sector  IIED)  :  (sector  QED) 

<  LFDE-.LEDA. 

Componeiido,    FA  :  AE  <  L  FDA  :  L  ADE. 

Doubling  the  antecedents,  we  have 

CA  :  A  E  <  L  CD  A  :  L  A  DE, 

and,  separando,  CE  :  EA  <  L  CDE:  L  EDA  ; 

therefore  (since  CB-.BA  =  CE-.EA) 

CB-.BA  <  LODE:  LEVA 

<  (arc  CB)  :  (arc  BA), 

i.  e.  (crd.  CB)  :  (crd.  BA)  <  (arc  CB)  :  (arc  BA  ). 

[This   is  of  course   equivalent  to  sin  a  :  sin  /8  <  a  :  ft,   where 

It  follows  (1)  that     (crd.  1  °)  :  (crd.  |°)  <  1  :  |  , 

and  (2)  that    (crd.  l£°)  :  (crd.  1°)  <!$:!. 

That  is,         |  .  (crd.  |°)  >  (crd.  1  °)  >  f  .  (crd.  l£°). 

But  (crd.  |°)  =  OP  47'  8",  so  that  |(crd.  |°)  =  \v  2'  50" 
nearly  (actually  V  2'  50%"); 

and  (crd.  l£°)  =  V  34'  15",  so  that  |(crd.  l£°)  =  1?'  2'  60". 
Since,  then,  (crd.  1°)  is  both  less  and  greater  than  a  length 

which  only  differs  inappreciably  from  IP  2'  50",  we  may  say 
that  (crd.  1°)  =  1?'  2'  50"  as  nearly  as  possible. 
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(rj)  Table  of  Chord*. 

From  this  Ptolemy  deduces  that  (crd.f0)  is  very  nearly 
O/'  3V  25",  and  by  the  aid  of  the  above  propositions  he  is  in 
a  position  to  complete  his  Table  of  Chords  for  arcs  subtending 

angles  increasing  from  £°  to  180°  by  steps  of  £°;  in  other 
words,  a  Table  of  Sines  for  angles  from  J°  to  90°  by  steps 
of  i°. 

(0)  Further  use  of  prorportioiial  increase. 

Ptolemy  carries  further  the  principle  of  proportional  in- 
crease as  a  method  of  finding  approximately  the  chords  of 

arcs  containing  an  odd  number  of  minutes  between  0'  and  20'. 
Opposite  each  chord  in  the  Table  he  enters  in  a  third  column 
-3^o  th  of  the  excess  of  that  chord  over  the  one  before,  i.e.  the 
chord  of  the  arc  containing  30'  less  than  the  chord  in  question. 
For  example  (crd.  2£°)  is  stated  in  the  second  column  of  the 
Table  as  W  37'  4".  The  excess  of  (crd.  2£°)  over  (crd.2°)  in  the 
Table  is  0''  31'  24":  ̂ th  of  this  is  0*'  l'  2"  48'",  which  is 
therefore  the  amount  entered  in  the  third  column  opposite 

(crd.  2J°).  Accordingly,  if  we  want  (crd.  2°  25'),  we  take 
(crd.  2°)  or  2P  5'  40"  and  add  25  times  OP  l'2"48'";  or  we 
take  (crd.  2£°)  or  2/'  37'  4"  and  subtract  5  times  0''  l'  2"  48"'. 
Ptolemy  adds  that  if,  by  using  the  approximation  for  1°  and 
^°,  we  gradually  accumulate  an  error,  we  can  check  the  calcu- 

lation by  comparing  the  chord  with  that  of  other  related  arcs, 
e.g.  this  double,  or  the  supplement  (the  difference  between  the 
arc  and  the  semicircle). 

Some  particular  results  obtained  from  the  Table  may  be 

mentioned.  Since  (crd.  1°)  =  1  P  2'  50",  the  whole  circumference 
=  360  (1^2'  50"),  nearly,  and,  the  length  of  the  diameter 
being  1201',  the  value  of  TT  is  3  (1  +  A  +  *Sro)  =  3  +  *Tr  +  rahy> 
which  is  the  value  used  later  by  Ptolemy  and  is  equivalent  to 

3-14166...  Again,  </3  =  2  sin  60°  and,  2  (crd.  120°)  being 
equal  to  2  (103>>  55'  23"),  we  have  ̂ 3  =  ̂   (103  +  ff  +  ?ffs) 

43     55        23 

which  is  correct  to  6  places  of  decimals.     Speaking  generally, 
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the  sines  obtained  from  Ptolemy's  Table  are  correct  to  5 
places. 

(i)  Plane  trigonometry  iu  effect  used. 

There  are  other  cases  in  Ptolemy  in  which  plane  trigono- 
metry  is    in   effect   used,  e.g.   in   the  determination  of   the 

eccentricity  of   the   sun's   orbit.1      Suppose   that   ACBD    is 
the  eccentric  circle  with  centre  0, 
and  AB,  CD   are   chords  at    right 
angles  through  E,  the  centre  of  the 
earth.     To  find   OE.     The   arc    BU 

is  known  (  =  a,  say)  as  also  the  arc 
GA  (=0).     If  BF  be    the  chord 
parallel   to   CD,  and  CG  the  chord 
parallel  to  AB,  and  if  JV,  P  be  the 
middle  points  of  the  arcs  BF,  GC, 
Ptolemy    finds     (1)    the     arc     BF 

(  =  a  +  0-1800),  then  the  chord  BF, 
crd.  (a  +0-180°),  then  the  half  of  it,  (2)  the  arc  GO 
=  arc  (a  +  0—2/8)  or  arc  (a  —  0),  then  the  .chord  £76',  and 
lastly  half  of  it.  He  then  adds  the  squares  on  the  half- 
chords,  i.e.  he  obtains 

that  is,          OJP/v*  =  cos2  J  (a  +  j8)  +  sin2  i  (a  -  0). 

He  proceeds  to  obtain  the  angle  OEC  from  its  sine  OR/UE, 
which  he  expresses  as  a  chord  of  double  the  angle  in  the 
circle  on  OE  as  diameter  in  relation  to  that  diameter. 

Spherical  trigonometry:  formulae  in  solution  of 
spherical  triangles. 

In  spherical  trigonometry,  as  already  stated,  Ptolemy 

obtains  everything  that  he  wants  by  using  the  one  funda- 

mental proposition  known  as  'Meiielaus's  theorem'  applied 
to  the  sphere  (Menelaus  III.  1),  of  which  he  gives  a  proof 
following  that  given  by  Menelaus  of  the  first  case  taken  in 
his  proposition.  Where  Ptolemy  has  occasion  for  other  pro- 

positions of  Menelaus's  Sphaerica,  e.g.  III.  2  and  3,  he  does 
1  Ptolemy,  Syntaxia,  iii.  4,  vol.  i,  pp.  234-7. 
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not  quote  those  propositions,  as  he  might  have  done,  but  proves 

them  afresh  by  means  of  Menelaus's  theorem.1  The  appli- 
cation of  the  theorem  in  other  cases  gives  in  effect  the 

following  different  formulae  belonging  to  the  solution  of 

a  spherical  triangle  ABC  right-angled  at  G',  viz. 
sin  a  =  sine  sin  -4, 

tan  a  =  sin  b  tan  A, 

cos  c  =  cos  a  cos  6, 

tan  b  '=  tan  r  cos  A. 

One  illustration  of  Ptolemy's  procedure  will  be  sufficient.2 
Let  1  1  Air  be  the  horizon,  PEZH  the  meridian  circle,  EE' 

the  equator,  '////  the  ecliptic,  F  an 
equinoctial  point.  Let  EKf  ,  %// 
cut  the  horizon  in  A,  B.  Let  P  be 
the  pole,  and  let  the  great  circle 
through  P,  B  cut  the  equator  at  (!. 
Now  let  it  be  required  to  find  the 
time  which  the  arc  FB  of  the  ecliptic 
takes  to  rise;  this  time  will  be 

measured  by  the  arc  FA  of  the 
equator.  (Ptolemy  has  previously  found  the  length  of  the 
arcs  EC,  the  declination,  and  FC.  the  right  ascension,  of  B, 
I.  14,  16.) 

By  Menelaus's  theorem  applied  to  the  arcs  AE',  E'P  cut  by 
the  arcs  All'  ,  PC  which  also  intersect  one  another  in  7?. 

crd.27J7/'  __  crd.  2P#     crd.26M 
crd.  2  U'K'  ~  crd.TTTC'  '  crd.  2  AE'* 

sinP//'       sinP7i    sin  GA 
t»nat>  is.  -.     yTf  r^.  —    .  ~  r»7-<  *   •""  *  i  T/  * 

sm/TA'      am  /ft'   sin  -4  A 

Now  sinP7/'  =  cos//'AT',  sinP«=cos  »Cf,  and  si 

therefore  cot  H'  E'  =  cot  £6'  .  sin  6!A  , 

in  other  words,  in  the  triangle  ABC  right-angled  at  (7, 
cot  A  =  cot  a  sin  6, 

or  tan  a  =  sin  ft  tan  -4.  * 

1  Syntoxis,  vol.  i,  p.  169  and  pp.  126-7  respectively. 
9  J6.f  vol.  i,  pp.  121-2. 
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Thus  AC  is  found,  and  therefore  FC-AC  or  FA. 
The  lengths  of  BO,  FC  are  found  in  I.  14,  16  by  the  same 

method,  the  four  intersecting  great  circles  used  in  the  figure 

being  in  that  case  the  equator  EE',  the  ecliptic  ZZ'9  the  great 
circle  PBCP'  through  the  poles,  and  the  great  circle  PKLP' 
passing  through  the  poles  of  both  the  ecliptic  and  the  equator. 

In  this  case  the  two  arcs  PL,  AE'  are  cut  by  the  intersecting 
great  circles  PC,  FK,  and  Menelaus's  theorem  gives  (1) 

sin  PL  _  sin  CP     sinUP 

sin  KL  ""  siiTBO  '  sin  FK " 
But  sinPZ=l,  sinKL  =  smBFC,  sin  OP  =1,  *inFK  =  l, 

and  it  follows  that 

sin  BO  =  sin  #Psin  BFC, 

corresponding  to  the  formula  for  a  triangle  right-angled  at  C, 

sin  a  =  sin  c  sin  A. 

(2)  We  have 
sin  PK  _  sinPjS     sin  OP 

sin  KL  ~~  sin  £0    sin  PA ' 

and   sin  PK  =  cos  A'7,  =  cos  JMY7,  sin  P#  =  cos  BG,  sin  FL=l, 

so  that  tan  jBC  =  sin  C'Ptan  BFT!, 

corresponding  to  the  formula 

tan  a  =  sin  b  tan  A. 

While,  therefore,  Ptolemy's  method  implicitly  gives  the 
formulae  for  the  solution  of  right-angled  triangles  above 
quoted,  he  does  not  speak  of  right-angled  triangles  at  all,  but 
only  of  arcs  of  intersecting  great  circles.  The  advantage 
from  his  point  of  view  is  that  he  works  in  sines  and  cosines 
only,  avoiding  tangents  as  such,  and  therefore  he  requires 
tables  of  only  one  trigonometrical  ratio,  namely  the  sine  (or, 
as  he  has  it,  the  chord  of  the  double  arc). 

The  Ana/cmma. 

Two  other  works  of  Ptolemy  should  be  mentioned  here. 
The  first  is  the  Analemma.  The  object  of  this  is  to  explain 
a  method  of  representing  on  one  plane  the  different  points 
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and   arcs  of  the   heavenly  sphere  by  means  of  orthogonal 
projection  upon  three  planes  mutually  at  right  angles,  the 

meridian,  the  horizon,  and  the  '  prime  vertical '.     The  definite 
problem  attacked  is  that  of  showing  the  position  of  the  sun  at 
any  given  time  of  the  day,  and  the  use  of  the  method  and 
of  the  instruments  described  in  the  book  by  Ptolemy  was 
connected  with  the  construction  of  sundials,  as  we  learn  from 

Vitruvius.1      There  was   another  dvaXr^ifjia  besides  that  of 
Ptolemy ;  the  author  of  it  was  Diodorus  of  Alexandria,  a  con- 

temporary of  Caesar  and  Cicero  ('  Diodorus,  famed  among  the 
makers  of  gnomons,  tell  me  the  time ! '  says  the  Anthology  2), 
and  Pappus  wrote  a  commentary  upon  it  in  which,  as  h3  tells 

us,3  he  used  the  conchoid  in  order  to  trisect  an  angle,  a  problem 
evidently  required  in  the  Aiialemma  in  order  to  divide  any 
arc   of   a   circle   into   six   equal    parts    (hours).      The    word 

ar/aXiy/z/za  evidently  means  '  taking  up '  ('  Aufiiahme ')  in  the 
sense  of  '  making  a  graphic  representation '  of  something,  in 
this  case  the  representation  on  a  plane  of  parts  of  the  heavenly 
sphere.     Only  a  few  fragments  remain  of  the  Greek  text  of 
the  A  nalemma  of  Ptolemy;  these  are  contained  in  a  palimpsest 
(Ambros.  Gr.  L.  99  sup.,  now  491)  attributed  to  the  seventh 
century  but  probably  earlier.     Besides  this,  we  have  a  trans- 

lation  by   William   of    Moerbeke   from    an   Arabic  version. 
This  Latin  translation  was  edited  with  a  valuable  commentary 
by  the  indefatigable  Commandinus  (Rome,  1562);   but  it  is 

now  available  in  William  of  Moerbeke's  own  words,  Heiberg 
having  edited  it  from  Cod.  Vaticanus  Ottobon.  lat.  1 850  of  the 

thirteenth  century  (written  in  William's  own  hand),  and  in- 
cluded it  with  the  Greek  fragments  (so  tar  as  they  exist)  in 

parallel  columns  in  vol.  ii  of  Ptolemy's  works  (Teubner,  1907). 
The  figure  is  referred  to  three  fixed  planes  (1)  the  meridian, 

(2)  the  horizon,  (3)  the  prime  vertical;  these  planes  are  the 
planes  of  the  three  circles  APZBy  ACB,  ZQO  respectively 
shown  in  the  diagram  below.     Three  other  great  circles  are 
used,  one  of  which,  the  equator  with  pole  P,  is  fixed;  the 
other  two  are  movable  and  were  called  by  special  names; 
the  first  is  the  circle  represented  by  any  position  of  the  circle 

of  the  horizon  as  it  revolves  round  COG'  as  diameter  (GSM  in 

1  Vitruvius,  De  architect,  ix.  4.  2  Anil.  Palat.  xiv.  139. 
8  Pappus,  iv,  p.  246.  1. 
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the  diagram  is  one  position  of  it,  coinciding  with  the  equator), 

and  it  was  called  tKrrjpopos  KVK\O$  ('  the  circle  in  six  parts ') 
because  the  highest  point  of  it  above  the  horizon  corresponds 

to  the  lapse  of  six  hours ;  the  second,  called  the  hour-circle,  is 
the  circle  represented  by  any  position,  as  BtiQA,  of  the  circle 
of  the  horizon  as  it  revolves  round  BA  as  axis. 

The  problem  is,  as  above  stated,  to  find  the  position  of  the 
sun  at  a  given  hour  of  the  day.  In  order  to  illustrate 

the  method,  it  is  sufficient,  with  A.  v.  Braunmuhl,1  to  take  the 
simplest  case  where  the  sun  is  on  the  equator,  i.e.  at  one  of 
the  equinoctial  points,  so  that  the  hectemoron  circle  coincides 
with  the  equator. 

Let  S  be  the  position  of  the  sun,  lying  on  the  equator  M8C, 
P  the  pole,  MZA  the  meridian,  BOA  the  horizon,  JitiQA  the 
hour-circle,  and  let  the  vertical  great  circle  ZtiV  be  drawn 
through  S,  and  the  vertical  great  circle  ZQC  through  Z  the 
zenith  and  C  the  east-point. 

We  are  given  the  arc  S6/=90°  — f,  where  /  is  the  hofcr- 
angle,  and  the  arc  MB  =  90°  —  0,  where  0  is  the  elevation  of 

the  pole ;  and  we  have  to  find  the  arcs  >S'F  (the  sun's  altitude). 

VC,  the  'ascensional  difference',  SQ  and  QO.  Ptolemy,  in 
fact,  practically  determines  the  position  of  S  in  terms  of 
certain  spherical  coordinates. 

Draw  the  perpendiculars,  SF  to  the  plane  of  the  meridian, 
8H  to  that  of  the  horizon,  and  SE  to  the  plane  of  the  prime 

1  Braunmuhl,  Gescli.  der  Trigonomrtrie,  i,  pp.  12,  13, 
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vertical ;  and  draw  FG  perpendicular  to  BA,  and  ET  to  OZ. 

Join  7/G,  and  we  have  FG  =  8U,  GH  =  J%'  =  #21 

We  now  represent  tiF  in  a  separate  figure  (for  clearness' 
sake,  as  Ptolemy  uses  only  one  figure),  where  B'Z'A'  corre- 

sponds to  BZA,  P'  to  P  and  Q'M'  to  OM.  Set  off  the  arc 

P'S'  equal  to  OS  (=  90° -i),  and  draw  S'F'  perpendicular 
to  O'M'.  Then  tf'J/'=  8M,  and  B'F'=  8F;  it  is  as  if  in  the 
original  figure  we  had  turned  the  quadrant  MSC  round  MO 
till  it  coincided  with  the  meridian  circle. 

In  the  two  figures  draw  IFK,  1'F'K'  parallel  to  BA,  B'A\ 
and  LFG,  L'F'G'  parallel  to  OZ.  O'//. 

Then  (1)  arc  XI  =  areas'  =  arc  (90° -NF),  because  if  we 
turn  the  quadrant  %8V  about  %0  till  it  coincides  with  the 

meridian,  S  falls   on    /,  and    V  on   It.     It  follows  that  the 

required  arc  #Jr  =  arc  /?'/'  in  the  second  figure. 

(2)  To  find  the  arc  VC,  set  off  G'X  (in  the  second  figure) 
along  W  equal  to  Fti  or  JW,  and  draw  O'X  through  to 
meet  the  circle  in  X'.     Then  arc  #',Y'  =  arc  IT/;  for  it  is  as  if 
we  had  turned  the  quadrant  HVC  about  BO  till  it  coincided 

with  the  meridian,  when  (since  G'X  =  Ftf  =  (r7/)  //  would 
coincide  with  A"  and  K  with  X'.     Therefore  BFis  also  equal 
to  J¥X'. 

(3)  To  find  QC  or  ̂ ,  set  off  along  T'F*  in  the  second  figure 
T'Y  equal  to  F'N',  and  draw  O'F  through  to  F'  on  the  circle. 

Then  arc  -B'F'ss  arc  Qf/;  for  it  is  as  if  we  turned  the  prime 
vertical  ZQC  about  ZO  till  it  coincided  with  the  meridian, 
when  (since  !TF=  W=  TE)  E  would  fall  on  F,  the  radius 

OEQ  on  0'FFX  and  Q  on  F'. 

(4)  Lastly,  arc  BS  =  arc  BL  =  arc  B'L',  because  S,  L  are 
IS93.9  U 
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both  in  the  plane  L8HG  at  right  angles  to  the  meridian; 

therefore  arc  8Q  =  arc  L'Z'. 
Hence  all  four  arcs  8V9  VC,  QC,  QS  are  represented  in  the 

auxiliary  figure  in  one  plane. 
So  far  the  procedure  amounts  to  a  method  of  graphically 

constructing  the  arcs  required  as  parts  of  an  auxiliary  circle 
in  one  plane.  But  Ptolemy  makes  it  clear  that  practical 

calculation  followed  on  the  basis  of  the  figure.1  The  lines 
used  in  the  construction  are  SF=  sin  t  (where  the  radius  =1), 

FT=OFsiu(f>,  FG  =  OF8in(9Q°-<l)),  and  this  was  fully 
realized  by  Ptolemy.  Thus  he  shows  how  to  calculate  the 
arc  M,  the  zenith  distance  (=  d,  say)  or  its  complement  8V, 
the  height  of  the  sun  (~  Ji,  say),  in  the  following  way.  He 

says  in  effect:  Since  G  is  .known,  and  LF'Q'tf  =  90°  —  0,  the 
ratios  (YF'  :  F'T'  and  <YF'  :  Q'T'  are  known. 

O'F'  D 

[In  fact  jpp  =  _-i-8o0_-a_,  where  D  is  the  diameter 

of  the  sphere.] 

Next,  since  the  arc  MS  or  M'ti'  is  known  [  =  t\,  and  there- 
fore the  arc  1*8'  [=  90°-*],  the  ratio  of  O'F'  to  />  is  known 

[in  fact  O'F'  /D-  {crd.  (I80-2<)}/2/>. It  follows  from  these  two  results  that 

Lastly,  the  arc  #V(  =  h)  being  equal  to  /f  /',  the  angle  h  is 
equal  to  the  angle  O'T'T'  in  the  triangle  I'  O'T'.  And  in  this 
triangle  O'l',  the  radius,  is  known,  while  O'T'  has  been  found  ; 
and  we  have  therefore 

O'T'      crd.(2/t)      crd.  (180°-  2t)   crd.  (180°-  2  A) 
m,  =  —  p—  =  ,y         --  0  -  *  ,  fromabove. 

[In  other  words,  sin  h  =  cos  t  cos  <f>  ;  or,  if  u  =  8C  =  90°  —  /, 
sin  h  =  sin  u  cos  0,  the  formula  for  finding  sin  h  in  the  right- 
angled  spherical  triangle  8V  CJ] 

For  the  azimuth  o>  (arc  BV  =  arc  B'X'),  the  figure  gives 

_          _  fl^'  _  S  _  i 
tan  o>  -  Qr(y  -  jfj,  -  Q,fj;  •  ff/^  -  tan  «  .  ̂   ̂   , 

1  See  Zeuthen  in  BiNiotheoa  mathemaiica,  i:5,  1900,  pp.  23-7. 
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or   tan  VG  —  tanSCcoaSCV  in   the  right-angled   spherical 
triangle  SVG. 

Thirdly, 

ci/  ET/          ci/  rv       /v  tv  i 
J^   ./^  \J  J?  A 

?>  =  7TTo>  •  TT/T/T/  =  tan  t .   ; 0\r       02  cos<A r 

that  is,   ̂ -^rrrr =  ̂ "rrTr  7    which    is    Menelaus,    Sphcterica, 
9  tan&lf      am/Mf  ^ 

III.  3,  applied  to  the  right-angled  spherical  triangles  ZBQ, 
MBS  with  the  angle  B  common. 

Zeuthen  points  out  that  later  in  the  same  treatise  Ptolemy 
finds  the  arc  2oc  described  above  the  horizon  by  a  star  of 

given  declination  8',  by  a  procedure  equivalent  to  the  formula 

cos  a  =  tan  5'  tan  0, 

and  this  is  the  same  formula  which,  as  we  have  seen, 

Hipparchus  must  in  effect  have  used  in  his  Commentary  on 
the  Phaenomena  of  Eudoxus  ami  Aratus. 

Lastly,  with  regard  to  the  calculations  of  the  height  h  and 

the  azimuth  CD  in  the  general  case  where  the  sun's  declination 
is  8',  Zeuthen  has  shown  that  they  may  be  expressed  by  the formulae 

sin  h  =  (cos  5'  cos  t  —  sin  #'  tan  <f>)  cos  0, 

,          ,                                     cos  8'  sin  t 
and         tan  co=    .  -~,~~   > 

'    +  (cos  8'  cos  t  —  sin  8*  tan  <b)  sin  0 
COS0        V  r/          ̂  

cos  8'  sin  t 
Q|»  _       . 

sin  ̂   cos  0  +  cos  8*  cos  t  sin  <f> 

The  statement  therefore  of  A.  v.  Braunmuhl1  that  the 
Indians  were  the  first  to  utilize  the  method  of  projection 

contained  in  the  A  nalemma  for  actual  trigonometrical  calcu- 
lations with  the  help  of  the  Table  of  Chords  or  Sines  requires 

modification  in  so  far  as  the  Greeks  at  all  events  showed  the 

way  to  such  use  of  the  figure.  Whether  the  practical  applica- 
tion of  the  method  of  the  Analemma  for  what  is  equivalent 

to  the  solution  of  spherical  triangles  goes  back  as  far  as 
Hipparchus  is  not  certain ;  but  it  is  quite  likely  that  it  does. 

1  Braunmtthl,  i,  pp.  13,  14,  38-41, 
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seeing  that  Diodorus  wrote  his  Analemmtt  in  the  next  cen- 

tury. The  other  alternative  source  for  Hipparchus's  spherical 
trigonometry  is  the  Menelaus-theorem  applied  to  the  sphere, 
on  which  alone  Ptolemy,  as  we  have  seen,  relies  in  his 
Syntaxis.  In  any  case  the  Table  of  Chords  or  Sines  was  in 

full  use  in  Hipparchus's  works,  for  it  is  presupposed  by  either method. 

The  Planisphaerium. 

With  the  Analemma  of  Ptolemy  is  associated  another 
work  of  somewhat  similar  content,  the  Planisphaerium. 
This  again  has  only  survived  in  a  Latin  translation  from  an 
Arabic  version  made  by  one  Maslama  b.  Ahmad  al-Majiiti,  of 
Cordova  (born  probably  at  Madrid,  died  1007/8) ;  the  transla- 

tion is  now  found  to  be,  not  by  Rudolph  of  Bruges,  but  by 

'Hermannus  Secundus',  whose  pupil  Rudolph  was;  it  was 
first  published  at  Basel  in  1536,  and  again  edited,  with  com- 

mentary, by  Commandinus  (Venice,  1558).  It  has  'been 
re-edited  from  the  manuscripts  by  Heiberg  in  vol.  ii.  of  his 
text  of  Ptolemy.  The  book  is  an  explanation  of  the  system 
of  projection  known  as  stereoyraphic,  by  which  points  on  the 
heavenly  sphere  are  represented  on  the  plane  of  the  equator 
by  projection  from  one  point,  a  pole ;  Ptolemy  naturally  takes 
the  south  pole  as  centre  of  projection,  as  it  is  the  northern 
hemisphere  which  he  is  concerned  to  represent  on  a  plane. 
Ptolemy  is  aware  that  the  projections  of  all  circles  on  the 
sphere  (great  circles — other  than  those  through  the  poles 
which  project  into  straight  lines — and  small  circles  either 
parallel  or  not  parallel  to  the  equator)  are  likewise  circles. 
It  is  curious,  however,  that  he  does  not  give  any  general 
proof  of  the  fact,  but  is  content  to  prove  it  of  particular 
circles,  such  as  the  ecliptic,  the  horizon,  &c.  This  is  remark- 

able, because  it  is  easy  to  show  that,  if  a  cone  be  described 
with  the  pole  as  vertex  and  passing  through  any  circle  on  the 
sphere,  i.e.  a  circular  cone,  in  general  oblique,  with  that  circle 
as  base,  the  section  of  the  cone  by  the  plane  of  the  equator 

satisfies  the  criterion  found  for  the  '  subcontrary  sections '  by 
Apollonius  at  the  beginning  of  his  Conies,  and  is  therefore  a 
circle.  The  fact  that  the  method  of  stereographic  projection  is 
so  easily  connected  with  the  property  of  subcontrary  sections 
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of  oblique  circular  cones  has  led  to  the  conjecture  that  Apollo- 
nius  was  the  discoverer  of  the  method.  But  Ptolemy  makes  no 
mention  of  Apollonius,  and  all  that  we  know  is  that  Syuesius 
of  Gyrene  (a  pupil  of  Hypatia,  and  born  about  A.D.  365-370) 
attributes  the  discovery  of  the  method  and  its  application  tc 

Hipparchus ;  it  is  curious  that  he  does  not  mention  Ptolemy's 
treatise  on  the  subject,  but  speaks  of  himself  alone  as  having 
perfected  the  theory.  While  Ptolemy  is  fully  aware  that 
circles  on  the  sphere  become  circles  in  the  projection,  he  says 
nothing  about  the  other  characteristic  of  this  method  of  pro- 

jection, namely  that  the  angles  on  the  sphere  are  represented 
by  equal  angles  011  the  projection. 

We  must  content  ourselves  with  the  shortest  allusion  to 

other  works  of  Ptolemy.  There  are,  in  the  first  place,  other 
minor  astronomical  works  as  follows : 

(1)  $acrei?  a7rAai/a>*>  aorrlpaw  of  which  only  Book  II  sur- 

vives, (2)  'TnoOtaeis  rS>v  TrAayoo/iej/eoi/  in  two  Books,  the  first 
of  which  is  extant  in  Greek,  the  second  in  Arabic  only,  (3)  the 
inscription  in  Canobus,  (4)  IIpo\*ip<QV  xavovw  &ara<n?  Kal 

tyrjQotpopia.  All  these  are  included  in  Heiberg's  edition, vol.  ii. 

The  Optics. 

Ptolemy  wrote  an  Ujttic*  in  five  Books,  which  was  trans- 
lated from  an  Arabic  version  into  Latin  in  the  twelfth 

century  by  a  certain  Admiral  Eugenius  Siculus1;  Book  I, 
however,  and  the  end  of  Book  V  are  wanting.  Books  I,  II 
were  physical,  and  dealt  with  generalities;  in  Book  III 
Ptolemy  takes  up  the  theory  of  mirrors,  Book  IV  deals  with 
concave  and  composite  mirrors,  and  Book  V  with  refraction. 
The  theoretical  portion  would  suggest  that  the  author  was 
not  very  proficient  in  geometry.  Many  questions  are  solved 
incorrectly  owing  to  the  assumption  of  a  principle  which  is 

clearly  false,  namely  that  *  the  image  of  a  point  on  a  mirror  is 
at  the  point  of  concurrence  of  two  lines,  one  of  which  is  drawn 
from  the  luminous  point  to  the  centre  of  curvature  of  the 
mirror,  while  the  other  is  the  line  from  the  eye  to  the  point 

1  See  G.  Govi,  L'ottica  di  Claudia  Tolomeo  di  Euyenio  Ammiraylio  d* Sicilia, ...  Torino,  1884;  and  particulars  in  G.  Loria,  Le  sciense  e#atte 
neW  antica  Grecia,  pp.  570,  571. 
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on  the  mirror  where  the  reflection  takes  place ' ;  Ptolemy  uses 
the  principle  to  solve  various  special  cases  of  the  following 
problem  (depending  in  general  on  a  biquadratic  equation  and 

now  known  as  the  problem  of  Alhazen),  *  Given  a  reflecting 
surface,  the  position  of  a  luminous  point,  and  the  position 
of  a  point  through  which  the  reflected  ray  is  required  to  pass, 
to  find  the  point  on  the  mirror  where  the  reflection  will  take 
place/  Book  V  is  the  most  interesting,  because  it  seems  to 
be  the  first  attempt  at  a  theory  of  refraction.  It  contains 
many  details  of  experiments  with  different  media,  air,  glass, 
and  water,  and  gives  tables  of  angles  of  refraction  (r)  corre- 

sponding to  different  angles  of  incidence  (i) ;  these  are  calcu- 
lated on  the  supposition  that  r  and  i  are  connected  by  an 

equation  of  the  following  form, 

r  =  ai—bi*, 

where  a,  6  are  constants,  which  is  worth  noting  as  the  first 
recorded  attempt  to  state  a  law  of  refraction. 

The  discovery  of  Ptolemy's  Optics  in  the  Arabic  at  once 
made  it  clear  that  the  work  De  S'peculis  formerly  attributed 
to  Ptolemy  is  not  his,  and  it  is  now  practically  certain  that  it 
is,  at  least  in  substance,  by  Heron.  This  is  established  partly 
by  internal  evidence,  e.g.  the  style  and  certain  expressions 

recalling  others  which  are  found  in  the  same  author's  Auto- 
mata and  Dloptra,  and  partly  by  a  quotation  by  Damianus 

(0/6  hypotheses  in  Optics,  chap.  14)  of  a  proposition  proved  by 

'  the  mechanician  Heron  in  his  own  Catoptrica ',  which  appears 
in  the  work  in  question,  but  is  not  found  in  Ptolemy's  Optics, 
or  in  Euclid's.  The  proposition  in  question  is  to  the  effect 
that  of  all  broken  straight  lines  from  the  eye  to  the  mirror 
and  from  that  again  to  the  object,  that  particular  broken  line 
is  shortest  in  which  the  two  parts  make  equal  angles  with  the 
surface  of  the  mirror;  the  inference  is  that,  as  nature  does 

nothing  in  vain,  we  must  assume  that,  in  reflection  from  a 
mirror,  the  ray  takes  the  shortest  course,  i.e.  the  angles  of 
incidence  and  reflection  are  equal.  Except  for  the  notice  in 

Damianus  and  a  fragment  in  Olympiodorus  *  containing  the 
proof  of  the  proposition,  nothing  remains  of  the  Greek  text ; 

1  Olympiodorus  on  Aristotle,  Meteor,  iii.  2,  ed.  Ideler,  ii,  p.  96,  ed. 
Stiive,pp.212.  5-213.  20. 
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but  the  translation  into  Latin  (now  included  in  the  Teubner 

edition  of  Heron,  ii,  1900,  pp.  316-64),  which  was  made  by 
William  of  Moerbeke  in  1269,  was  evidently  made  from  the 
Greek  and  not  from  the  Arabic,  as  is  shown  by  Graecisms  in 
the  translation. 

A  mechanical  work,  lie  pi  fon&v. 

There  are  allusions  in  Simplicius1  and  elsewhere  to  a  book 
by  Ptolemy  of  mechanical  content,  nepl  pojrSiv,  on  balancings 
or  turnings  of  the  scale,  in  which  Ptolemy  maintained  as 

against  Aristotle  that  air  or  water  (e.g.)  in  their  own  '  place  ' 
have  no  weight,  and,  when  they  are  in  their  own  *  place  ',  either 
remain  at  rest  or  rotate  simply,  the  tendency  to  go  up  or  to 
fall  down  being  due  to  the  desire  of  things  which  are  not  in 
their  own  places  to  move  to  them.  Ptolemy  went  so  far  as  to 
maintain  that  a  bottle  full  of  air  was  not  only  not  heavier 
than  the  same  bottle  empty  (as  Aristotle  held),  but  actually 
lighter  when  inflated  than  when  empty.  The  same  work  is 

apparently  meant  by  the  '  book  on  the  elements '  mentioned 
by  Simplicius.2  Suidas  attributes  to  Ptolemy  three  Books  of 
Mechauica. 

Simplicius3  also  mentions  a  single  book,  Trepi  &aoracrea>y, 
'On  divieiisioii',  i.e.  dimensions,  in  which  Ptolemy  tried  to 
show  that  the  possible  number  of  dimensions  is  limited  to 
three. 

•Attempt  to  prove  the  Parallel-Postulate. 

Nor  should  we  omit  to  notice  Ptolemy's  attempt  to  prove 
the  Parallel-Postulate.  Ptolemy  devoted  a  tract  to  this 
subject,  and  Proclus4  has  given  us  the  essentials  of  the  argu- 

ment used.  Ptolemy  gives,  first,  a  proof  of  Eucl.  I.  28,  and 
then  an  attempted  proof  of  I.  29,  from  which  he  deduces 
Postulate  5. 

1  Simplicius  011  Arist.  De  caelo,  p.  710.  14,  Heib.  (Ptolemy,  ed.  Heib., 
vol.  ii,  p.  263). 

2  Ib.,  p.  20.  10  sq. 
3  /&.,  p.  9.  21  sq.,  .(Ptolemy,  ed.  Heib.,  vol.  ii,  p.  265). 
4  Proclus  on  Eucl.  I,  pp.  362.  Usq.,  365.  7-367. 27  (Ptolemy,  ed.  Heib., 

vol.  ii,  pp.  266-70). 
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I.  To  prove  I.  28,  Ptolemy  takes  two  straight  lines  AB,  CD, 
and  a  transversal  EFGH.     We  have  to  prove  that,  if  the  sum 

C  /G  D 

H 

of  the  angles  BFG,  FGD  is  equal  to  two  right  angles,  the 

straight  lines  AB,  CD  are  parallel,  i.e.  non-secant. 
Since  AFG  is  the  supplement  of  BFG,  and  FGC  of  FGD,  it 

follows  that  the  sum  of  the  angles  AFG,  FGC  is  also  equal  to 
two  right  angles. 

Now  suppose,  if  possible,  that  FB,  GD,  making  the  sum  of 
the  angles  £FG,  FGD  equal  to  two  right  angles,  meet  at  K ; 
then  similarly  FA,  GG  making  the  sum  of  the  angles  AFG, 
FGC  equal  to  two  right  angles  must  also  meet,  say  at  L. 

[Ptolemy  would  have  done  better  to  point  out  that  not 
only  are  the  two  sums  equal  but  the  angles  themselves  are 
equal  in  pairs,  i.e.  AFG  to  FGD  and  FGC  to  BFG,  and  we  can 
therefore  take  the  triangle  KFG  and  apply  it  to  FG  on  the  other 

side  so  that  the  sides  FK,  GK  may  lie  along  G(J,  FA  respec- 
tively, in  which  case  GG,  FA  will  meet  at  the  point  where 

K  falls.] 

Consequently  the  straight  lines  LABK,  LCDK  enclose  a 
space :  which  is  impossible. 

It  follows  that  AB,  CD  cannot  meet  in  either  direction ; 

they  are  therefore  parallel. 

II.  To  prove  I.  29,  Ptolemy  takes  two  parallel  lines  AB, 
CD  and  the  transversal  FG,  and  argues  thus.  It  is  required 
to  prove  that  Z  AFG  +  Z  GGF  =  two  right  angles. 

For,  if  the  sum  is  not  equal  to  two  right  angles,  it  must  be 
either  (1)  greater  or  (2)  less. 

(1)  If  it  is  greater,  the  sum  of  the  angles  on  the  other  side, 
BFG,  FGD,  which  are  the  supplements  of  the  first  pair  of 
angles,  must  be  less  than  two  right  angles. 

But  AF,  GG  are  no  more  parallel  than  FB,  GD,  so  that,  if 
FG  makes  one  pair  of  angles  AFG,  FGC  togeilier  greater  than 
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two  rigid  angles,  it  must  also  make  the  other  pair  BFG,  FGD 
together  greater  than  two  right  angles. 

But  the  latter  pair  of  angles  were  proved  less  than  two 
right  angles :  which  is  impossible. 

Therefore  the  sum  of  the  angles  AFG,  FGC  cannot  be 
greater  than  two  right  angles. 

(2)  Similarly  we  can  show  that  the  sum  of  the  two  angles 
AFGy  FGC  cannot  be  less  than  two  right  angles. 

Therefore     L  A  FG  +  Z  CGF  -  two  right  angles. 
[The  fallacy  here  lies  in  the  inference  which  I  have  marked 

by  italics.  When  Ptolemy  says  that  Ab\  CG  are  no  more 
parallel  than  FB,  GD,  he  is  in  effect  assuming  that  through 
any  o)ie  point  only  one  pandlel  can  bedrawn  toagiven  straight 
line,  which  is  an  equivalent  for  the  very  Postulate  he  is 
endeavouring  to  prove.  The  alternative  Postulate  is  known 

as  '  Playfair's  axiom  ',  but  it  is  of  ancient  origin,  since  it  is 
distinctly  enunciated  in  Proclus's  note  on  Eucl.  I.  31.] 

III.   Post.  5  is  now  deduced,  thus. 
Suppose  that  the  straight  lines  making  with  a  transversal 

angles  the  sum  of  which  is  less  than  two  right  angles  do  not 
meet  on  the  side  on  which  those  angles  are. 

Then,  a  fortiori,  they  will  not  meet  on  the  other  side  on 
which  are  the  angles  the  sum  of  whicli  is  greater  than  two 

right  angles.  [This  is  enforced  by  a  supplementary  proposi- 
tion showing  that,  if  the  lines  met  on  that  side,  Eucl.  I.  16 

would  be  contradicted.] 
Hemse  the  straight  lines  cannot  meet  in  either  direction : 

they  are  therefore  parallel. 
But  in  that  case  the  angles  made  with  the  transversal  are 

eyual  to  two  right  angles  :  which  contradicts  the  assumption. 
Therefore  the  straight  lines  will  meet. 



XVIII 

MENSURATION:    HERON   OF  ALEXANDRIA 

Controversies  as  to  Heron's  date. 

THE  vexed  question  of  Heron's  date  lias  perhaps  called 
forth  as  much  discussion  as  any  doubtful  point  in  the  history 
of  mathematics.  In  the  early  stages  of  the  controversy  much 
was  made  of  the  supposed  relation  of  Heron  to  Ctesibius. 
The  Belopoewa  of  Heron  has,  in  the  best  manuscript,  the 

heading  "JH/oau/oy  Krrjo-ifiiov  JBeAoTrouVca,  and  from  this,  coupled 
with  an  expression  used  by  an  anonymous  Byzantine  writer 

of  the  tenth  century,  6  'Ao-Kprjvbs  KTrjo-ifiios  6  rov  X\€gav8p€<D$ 
"Hpou'oy  KadrjyrjTrjs,  'Ctesibius  of  Ascra,  the  teacher  of  Heron 
of  Alexandria  *,  it  was  inferred  that  Heron  was  a  pupil  of 
Ctesibius.  The  question  then  was,  wlien  did  Ctesibius  live  ? 
Martin  took  him  to  be  a  certain  barber  of  that  name  who 

lived  in  the  time  of  Ptolemy  Euergetes  II,  that  is,  Ptolemy  VII, 
called  Physcon  (died  117  B.C.),  and  who  is  said  to  have  made 

an  improved  water-organ l ;  Martin  therefore  placed  Heron  at 
the  beginning  of  the  first  century  (say  126-60)  B.C.  But 
Philon  of  Byzantium,  who  repeatedly  mentions  Ctesibius  by 
name,  says  that  the  first  mechanicians  (Ttyvlrai.)  had  the 
great  advantage  of  being  under  kings  who  loved  fame  and 

supported  the  arts.'2  This  description  applies  much  better 
to  Ptolemy  II  Philadelphus  (285-247)  *ind  Ptolemy  III  Euer- 

getes I  (247-222).  It  is  more  probable,  therefore,  that  Ctesibius 
was  the  mechanician  Ctesibius  who  is  mentioned  by  Athenaeus 

as  having  made  an  elegant  drinking-horn  in  the  time  of 

Ptolemy  Philadelphus3;  a  pupil  then  of  Ctesibius  would 
probably  belong  to  the  end  of  the  third  and  the  beginning  of 

the  second  century  B.C.  But  in  truth  we  cannot  safely  con- 
clude that  Heron  was  an  immediate  pupil  of  Ctesibius.  The 

Byzantine  writer  probably  only  inferred  this  from  the  title 

1  Athenaeus,  Deipno-Soph.  iv.  c.  75,  p.  174  b-e :  cf.  Vitruvius,  x.  9,  13. 
2  Philon,  Mechan  St/nt.,  p.  50.  38,  ed.  SchOne. 
3  Athenaeus,  xi.  c.  97,  p.  497  b-e. 
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above  quoted ;  the  title,  however,  in  itself  need  not  imply 

more  than  that  Heron's  work  was  a  new  edition  of  a  similar 

work  by  Ctesibius,and  the  Krrj(nftiov  may  even  have  been  ad'ded 
by  some  well-read  editor  who  knew  both  works  and  desired  to 

indicate  that  the  greater  part  of  the  contents  of  Heron's  work 
was  due  to  Ctesibius.  One  manuscript  has^Hpan/os  *A\*£av- 
5pc<»y  BeAoTTou/ca,  which  corresponds  to  the  titles  of  the  other 
works  of  Heron  and  is  therefore  more  likely  to  be  genuine. 

The  discovery  of  the  Greek  text  of  the  Metrica  by  R.  Schone 
in  1896  made  it  possible  to  fix  with  certainty  an  upper  limit. 
In  that  work  there  are  a  number  of  allusions  to  Archimedes, 

three  references  to  the  x&piov  aTroTopri  of  Apollonius,  and 

two  to  '  the  (books)  about  straight  lines  (chords)  in  a  circle ' 
(StScLKTai  8e  €i/  roiy  Trepi  rS>v  kv  KVK\O>  tvQti&v).  Now,  although 
the  first  beginnings  of  trigonometry  may  go  back  as  far  as 
Apollonius,  we  know  of  no  work  giving  an  actual  Table  of 
Chords  earlier  than  that  of  Hipparchus.  We  get,  therefore, 
at  once  the  date  150  B.C.  or  thereabouts  as  the  terminus  post 
quein.  A  terminus  aide  quern  is  furnished  by  the  date  of  the 

composition  of  Pappus's  Collect  ion]  for  Pappus  alludes  to,  and 
draws  upon,  the  works  of  Heron.  As  Pappus  was  writing  in 
the  reign  of  Diocletian  (A.D.  284-305),  it  follows  that  Heron 
could  not  be  much  later  than,  say,  A.D.  250.  In  speaking  of 

the  solutions  by  *  the  old  geometers '  (ol  naXcuol  yeoyecrpa*)  of 
the  problem  of  finding  the  two  mean  proportionals,  Pappus  may 
seem  at  first  sight  to  include  Heron  along  with  Eratosthenes, 
Nicomedes  and  Philon  in  that  designation,  and  it  has  been 
argued,  on  this  basis,  that  Heron  lived  long  before  Pappus. 

But  a  close  examination  of  the  passage1  shows  that  this  is 
by  no  means  necessary.  The  relevant  words  are  as  follows : 

*  The  ancient  geometers  were  not  able  to  solve  the  problem 
of  the  two  straight  lines  [the  problem  of  finding  two  mean 
proportionals  to  them]  by  ordinary  geometrical  methods,  since 

the  problem  is  by  nature  '*  solid  " .  .  .  but  by  attacking  it  with 
mechanical  means  they  managed,  in  a  wonderful  way,  to 
reduce  the  question  to  a  practical  and  convenient  construction, 
as  may  be  seen  in  the  Mesolaboii  of  Eratosthenes  and  in  the 
mechanics  of  Philon  and  Heron  .  .  .  Nicomedes  also  solved  it 
by  means  of  the  cochloid  curve,  with  which  he  also  trisected 

an  angle.' 
1  Pappus,  iii,  pp.  54-6. 
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Pappus  goes  on  to  say  that  he  will  give  four  solutions,  one 
of  which  is  his  own ;  the  first,  second,  and  third  he  describes 
as  those  of  Eratosthenes,  Nicomedes  and  Heron.  But  in  the 
earlier  sentence  he  mentions  Philon  along  with  Heron,  and  we 

know  from  Eutocius  that  Heron's  solution  is  practically  the 
same  as  Philon's.  Hence  we  may  conclude  that  by  the  third 
solution  Pappus  really  meant  Philon's,  and  that  he  only  men- 

tioned Heron's  Mechanics  because  it  was  a  convenient  place  in which  to  find  the  same  solution. 

Another  argument  has  been  based  on  the  fact  that  the 

extracts  from  Heron's  Mechanics  given  at  the  end  of  Pappus's 
Book  VIII,  as  we  have  it,  are  introduced  by  the  author  with 

a  complaint  that  the  copies  of  Heron's  works  in  which  he 
found  them  were  in  many  respects  corrupt,  having  lost  both 

beginning  and  end.1  But  the  extracts  appear  to  have  been 
added,  not  by  Pappus,  but  by  some  later  writer,  and  the 
argument  accordingly  falls  to  the  ground. 

The  limits  of  date  being  then,  say,  160  B.C.  to  A.  D.  250,  our 
only  course  is  to  try  to  define,  as  well  as  possible,  the  relation 
in  time  between  Heron  and  the  other  mathematicians  who 

come,  roughly,  within  the  same  limits.  This  method  has  led 

one  of  the  most  recent  writers  on  the  subject  (Tittel-)  to 
place  Heron  jiot  much  later  .than  100  B.C.,  while  another/* 
relying  almost  entirely  on  a  comparison  between  passages  in 
Ptolemy  and  Heron,  arrives  at  the  very  different  conclusion 
that  Heron  was  later  than  Ptolemy  ̂ ncl  belonged  in  fact  to 
the  second  century  A.  D. 

In  view  of  the  difference  between  these  results,  it  will  be 
convenient  to  summarize  the  evidence  relied  on  to  establish 

the  earlier  date,  and  to  consider  how  far  it  is  or  is  not  con- 
clusive against  the  later.  We  begin  with  the  relation  of 

Heron  to  Philon.  Philon  is  supposed  to  come  not  more  than 
a  generation  later  than  Ctesibius,  because  it  would  appear  that 
machines  for  throwing  projectiles  constructed  by  Ctesibius 
and  Philon  respectively  were  both  available  at  one  time  for 

inspection  by  experts  on  the  subject4;  it  is  inferred  that 

1  Pappus,  viii,  p.  1116.  4-7. 
2  Art.  *  Heron  von  Alexandreia '  in  Pauly-Wissowa's  JKeal-JKncyclop&die 

der  class.  Altertumswisnenschaft,  vol.  8.  1,  1912. 
8  I.  Hammer-Jensen  in  Hermes,  vol.  48,  1913,  pp.  224-35. 
4  Philon,  Meek.  Synt.  iv,  pp.  68.  1,  72.  86, 
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Philon's  date  cannot  be  later  than  the  end  of  the  second 
century  B.C.  (If  Ctesibius  flourished  before  247  B.C.  the  argu- 

ment would  apparently  suggest  rather  the  beginning  than  the 
end  of  the  second  century.)  Next,  Heron  is  supposed  to  have 
been  a  younger  contemporary  of  Philon,  the  grounds  being 

the  following.  (1)  Heron  mentions  a  '  stationary-automaton ' 
representation  by  Philon  of  the  Nauplius-story,1  and  this  is 
identified  by  Tittel  with  a  representation  of  the  same  story  by 

some  contemporary  of  Heron's  (ol  KaO9  ̂ /xay2).  But  a  careful 
perusal  of  the  whole  passage  seems  to  me  rather  to  suggest 

that  the  latter  representation  was  not  Philon's,  and  that 
Philon  was  included  by  Heron  among  the  'ancient*  auto- 

maton-makers, and  not  amonghis  contemporaries.3  (2)  Another 
argument  adduced  to  show  that  Philon  was  contemporary 

1  Heron,  Autom.,  pp.  404.  11-408.  9.  -  /&.,  p.  412.  13. 
3  The  relevant  remarks  of  Heron  are  as  follows.  (1)  He  says  that  ho 

has  found  no  arrangements  of  *  stationary  automata1  better  or  more 
instructive  than  those  described  by  Philon  of  Byzantium  (p.  404.  11). 

As  an  instance  he  mentions  Philon's  setting  of  the  Nauplius-story,  in which  he  found  everything  good  except  two  things  (a)  the  mechanism 

for  the  appearance  of  Athene,  which  was  too  difficult  ̂ pyadc'o-rcpor),  and (/>)  the  absence  of  an  incident  promised  by  Philon  in  his  description, 
namely  the  falling  of  a  thunderbolt  on  Ajax  with  a  sound  of  thunder 
accompanying  it  (pp.  404.  15-408.  9).  This  latter  incident  Heron  could 
not  find  anywhere  in  Philon,  though  he  had  consulted  a  great  number 
of  copies  of  his  work.  He  continues  (p.  408.  9-13)  that  we  are  not  to 
suppose  that  he  is  running  down  Philon  or  charging  him  with  not  being 
capable  of  carrying  out  what  he  promised.  On  the  contrary,  the  omission 
was  probably  due  to  a  slip  of  memory,  for  it  is  easy  enough  to  make 

stage-thunder  (he  proceeds  to  show  how  to  do  it).  But  the  rest  of 
Philon's  arrangements  seemed  to  him  satisfactory,  and  this,  he  says,  is 
why  he  has  not  ignored  Philon's  work :  '  for  I  think  that  my  readers  will 
get  the  most  benefit  if  they  are  shown,  first  what  has  been  well  said  by 
the  ancients  and  then,  separately  from  this,  what  the  ancients  overlooked 

or  what  in  their  work  needed  improvement '  (pp.  408. 22-410.  6).  (2)  The 
next  chapter  (pp.  410.  7-412.  2)  explains  generally  the  sort  of  thing  the 
automaton-picture  has  to  show,  and  Heron  says  he  will  give  one  example 
which  he  regards  as  the  best.  Then  (3),  after  drawing  a  contrast  between 

the  simpler  pictures  made  by  *  the  ancients ',  which  involved  three  different 
movements  only,  and  the  contemporary  (nl  *«#'  fjp.as)  representations  of 
interesting  stories  by  means  of  more  numerous  and  varied  movements 
(p.  412.  3-15),  he  proceeds  to  describe  a  setting  of  the  Nauplius-story. 
This  is  the  representation  which  Tittel  identifies  with  Philon's.  But  it is  to  be  observed  that  the  description  includes  that  of  the  episode  of  the 
thunderbolt  striking  Ajax  (c.30,  pp.  448. 1-452.  7)  which  Heron  expressly 
says  that  Philon  omitted.  Further,  the  mechanism  for  the  appearance 

of  Athene  described  in  c.  29  is  clearly  not  Philon's  'more  difficult' 
arrangement,  but  the  simpler  device  described  (pp.  404.  18-408.  5)  as 
possible  and  preferable  to  Philon's  (cf.  Heron,  vol.  i,  ed.  Schmidt,  pp. 
Ixviii-lxix). 
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with  Heron  is  the  fact  that  Philon  has  some  criticisms  of 

details  of  construction  of  projectile-throwers  which  are  found 

in  Heron,  whence  it  is  inferred  that  Philon  had  Heron's  work 
specifically  in  view.  But  if  Heron's  BeXorrouKa  was  based  on 
the  work  of  Ctesibius,  it  is  equally  possible  that  Philon  may 
be  referring  to  Ctesibius. 

A  difficulty  in  the  way  of  the  earlier  date  is  the  relation  in 

which  Heron  stands  to  Posidonius.  In  Heron's  Mechanics, 
i.  24,  there  is  a  'definition  of  '  centre  of  gravity '  which  is 
attributed  by  Heron  to  'Posidonius  a  Stoic'.  But  this  can 
hardly  be  Posidonius  of  Apamea,  Cicero's  teacher,  because  the 
next  sentence  in  Heron,  stating  a  distinction  drawn  by  Archi- 

medes in  connexion  with  this  definition,  seems  to  imply  that 
the  Posidonius  referred  to  lived  before  Archimedes.  But  the 

Definitions  of  Heron  do  contain  definitions  of  geometrical 
notions  which  are  put  down  by  Proclus  to  Posidonius  of 

Apamea  or  Rhodes,  and,  in  particular,  definitions  of  '  figure ' 
and  of  ' parallels'.  Now  Posidonius  lived  from  135  to  51  B.C., 
and  the  supporters  of  the  earlier  date  for  Heron  can  only 
suggest  that  either  Posidonius  was  not  the  first  to  give  these 
definitions,  or  alternatively,  if  he  was,  and  if  they  were 

included  in  Heron's  Definitions  by  Heron  himself  and  not  by 
some  later  editor,  all  that  this  obliges  us  to  admit  is  that 
Heron  cannot  have  lived  before  the  first  century  B.  o. 

Again,  if  Heron  lived  at  the  beginning  of  the  first  cen- 
tury B.C.,  it  is  remarkable  that  he  is  nowhere  mentioned  by 

Vitruvius.  The  De  architecture*  was  apparently  brought  out 
in  14  B.C.  and  in  the  preface  to  Book  VII  Vitruvius  gives 
a  list  of  authorities  on  machinationes  from  whom  he  made 

extracts.  The  list  contains  twelve  names  and  has  every 
appearance  of  being  scrupulously  complete ;  but,  while  it 
includes  Archytas  (second),  Archimedes  (third),  Ctesibius 
(fourth),  and  Philon  of  Byzantium  (sixth),  it  does  not  men- 

tion Heron.  Nor  is  it  possible  to  establish  interdependence 
between  Heron  and  Vitruvius ;  the  differences  seem,  on  the 
whole,  to  be  more  numerous  than  the  resemblances.  A  few  of 
the  differences  may  be  mentioned.  Vitruvius  uses  3  as  the 
value  of  TT,  whereas  Heron  always  uses  the  Archimedean  value 
3^.  Both  writers  make  extracts  from  the  Aristotelian 
MT]%aviKa  TrpojSATj/xara,  but  their  selections  are  different.  The 
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machines  used  by  the  two  for  the  same  purpose  frequently 

differ  in  details  ;  e.  g.  in  Vitru  vius's  hodometer  a  pebble  drops 
into  a  box  at  the  end  of  each  Roman  mile,1  while  in  Heron's 
the  distance  completed  is  marked  by  a  pointer.2  It  is  indeed 
pointed  out  that  the  water-organ  of  Heron  is  in  many  respects 
more  primitive  than  that  of  Vitruvius;  but,  as  the  instru- 

ments are  altogether  different,  this  can  scarcely  be  said  to 
prove  anything. 

On  the  other  hand,  there  are  points  of  contact  between 

certain  propositions  of  Heron  and  of  the  Roman  agrimen- 
sores.  Columella,  about  A.D.  62,  gave  certain  measurements  of 
plane  figures  which  agree  with  the  formulae  used  by  Heron, 
notably  those  for  the  equilateral  triangle,  the  regular  hexagon 
(in  this  case  not  only  the  formula  but  the  actual  figures  agree 

with  Heron's)  and  {-he  segment  of  a  circle  which  is  less  than 
a  semicircle,  the  formula  in  the  last  case  being 

where  s  is  the  chord  and  h  the  height  of  the  segment.  Here 
there  might  seem  to  be  dependence,  one  way  or  the  other  ; 
but  the  possibility  is  not  excluded  that  the  two  writers  may 
merely  have  drawn  from  a  common  source  ;  for  Heron,  in 
giving  the  formula  for  the  area  of  the  segment  of  a  circle, 

states  that  it  was  the  formula  used  by  'the  more  accurate 

investigators'  (oi  a/cpi/Seorepoj/  e^jrij/corer).3 
We  have,  lastly,  to  consider  the  relation  between  Ptolemy 

and  Heron.  If  Heron  lived  about  100  B.C.,  he  was  200  years 

earlier  than  Ptolemy  (A.D.  100—178).  The  argument  used  to 
prove  that  Ptolemy  came  some  time  after  Heron  is  based  on 
a  passage  of  Proclus  where  Ptolemy  is  said  to  have  remarked 
on  the  untrustworthiness  of  the  method  in  vogue  among  the 

"more  ancient  '  writers  of  measuring  the  apparent  diameter  of 
the  sun  by  means  of  water-clocks.4  Hipparchus,  says  Pro- 

clus, used  his  dioptra  for  the  purpose,  and  Ptolemy  followed 
him.  Proclus  proceeds  : 

'Let  us  then  set  out  here  not  only  the  observations  of 
the  ancients  but  also  the  construction  of  the  dioptra  of 

1  Vitruvius,  x.  14.  2  Heron,  Dioptra,  c.  34. 
3  Heron,  Metrica,  i.  31,  p.  74.  21. 
4  Proclus,  Hypohtpo^  pp.  120.  9-15,  124,  7-26. 
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Hipparchus.  And  first  we  will  show  how  we  can  measure  an 
interval  of  time  by  means  of  the  regular  efflux  of  water, 
a  procedure  which  was  explained  by  Heron  the  mechanician 
in  his  treatise  on  water-clocks.' 

Theon  of  Alexandria  has  a  passage  to  a  similar  effect.1  He 
first  says  that  the  most  ancient  mathematicians  contrived 
a  vessel  which  would  let  water  flow  out  uniformly  through  a 
small  aperture  at  the  bottom,  and  then  adds  at  the  end,  almost 
in  the  same  words  as  Proclus  uses,  that  Heron  showed  how 

this  is  managed  in  the  first  book  of  his  work  on  wjiter- 

clocks.  Theon's  account  is  from  Pappus's  Commentary  on 
the  Syntaods,  and  this  is  also  Proclus's  source,  as  is  shown  by 
the  fact  that  Proclus  gives  a  drawing  of  the  water-clock 

which  appears  to  have  been  lost  in  Theon  Js  transcription  from 
Pappus,  but  which  Pappus  must  have  reproduced  from  the 
work  of  Heron.  Tittel  infers  that  Heron  must  have  ranked 

as  one  of  the  'more  ancient'  writers  as  compared  with 
Ptolemy.  But  this  again  does  not  seem  to  be  a  necessary 

inference.  No  doubt  Heron's  work  was  a  convenient  place  to 
refer  to  for  a  description  of  a  water-clock,  but  it  does  not 

necessarily  follow  that  Ptolemy  was  referring  to  Heron's clock  rather  than  some  earlier  form  of  the  same  instrument. 

An  entirely  different  conclusion  from  that  of  Tittel  is 

reached  in  the  article  c  Ptolemaios  and  Heron '  already  alluded 
to.2  The  arguments  are  shortly  these.  (1)  Ptolemy  says  in 
his  Geography  (c.  3)  that  his  predecessors  had  only  been  able 
to  measure  the  distance  between  two  places  (as  an  arc  of  a 

great  circle  on  the  earth's  circumference)  in  the  case  where 
the  two  places  are  on  the  same  meridian.  He  claims  that  he 
himself  invented  a  way  of  doing  this  even  in  the  case  where 
the  two  places  are  neither  on  the  same  meridian  nor  on  the 

same  parallel  circle,  provided  that  the  heights  of  the  pole  at" the  two  places  respectively,  and  the  angle  between  the  great 
circle  passing  through  both  and  the  meridian  circle  through 

one  of  the  places,  are  known.  -Now  Heron  in  his  Dioptra 
deffls  with  the  problem  of  measuring  the  distance  between 
two  places  by  means  of  the  dioptra,  and  takes  as  an  example 

1  Theon,  Comm.  on  the  Syntaxin,  Basel,  1538,  pp.  261  sq.  (quoted  in 
Proclus,  Hypotyposis,  ed.  Manitius,  pp.  309-11). 

2  Hammer-Jensen,  op.  dt. 
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the  distance  between  Rome  and  Alexandria.1  Unfortunately 
the  text  is  in  places  corrupt  and  deficient,  so  that  the  method 
cannot  be  reconstructed  in  detail.  But  it  involved  the  obser- 

vation of  the  same  lunar  eclipse  at  Rome  and  Alexandria 

respectively  and  the  drawing  of  the  aiuilemma  for  Rome'. 
That  is  to  say,  the  mathematical  method  which  Ptolemy- 
claims  to  have  invented  is  spoken  of  by  Heron  as  a  thing 
generally  known  to  experts  and  not  more  remarkable  than 
other  technical  matters  dealt  with  in  the  same  book.  Conse- 

quently Heron  must  have  been  later  than  Ptolemy.  (It  is 
right  to  add  that  some  hold  that  the  chapter  of  the  Dioptra 
in  question  is  not  germane  to  the  subject  of  the  treatise,  and 
was  probably  not  written  by  Heron  but  interpolated  by  some 
later  editor ;  if  this  is  so,  the  argument  based  upon  it  falls  to 

the  ground.)  (2)  The  dioptra  described  in  Heron's  work  is  a 
fine  and  accurate  instrument,  very  much  better  than  anything 
Ptolemy  had  at  his  disposal.  If  Ptolemy  had  been  aware  of 
its  existence,  it  is  highly  unlikely  that  ho  would  have  taken 

the  trouble  to  make  his  separate  and  imperfect  '  parallactic  ' 
instrument,  since  it  could  easily  have  been  grafted  on  to 

Heron's  dioptra.  Not  only,  therefore,  must  Heron  have  been 
later  than  Ptolemy  but,  seeing  that  the  technique  of  instru- 

ment-making had  made  such  strides  in  the  interval,  he  must 

have  been  considerably  later.  (3)  In  his  work  ntpl  poTrtov2 
Ptolemy,  as  we  have  seen,  disputed  the  view  of  Aristotle  that 
air  has  weight  even  when  surrounded  by  air.  Aristotle 
satisfied  himself  experimentally  that  a  vessel  full  of  air  is 
heavier  than  the  same  vessel  empty ;  Ptolemy,  also  by  ex- 

periment, convinced  himself  that  the  former  is  actually  the 
lighter.  Ptolemy  then  extended  his  argument  to  water,  and 
held  that  water  with  water  round  it  has  no  weight,  and  that 
the  diver,  however  deep  he  dives,  does  not  feel  the  weight  of 

the  water  above  him.  Heron :>>  asserts  that  water  has  no 
appreciable  weight  and  has  no  appreciable  power  of  com- 

pressing the  ail'  in  a  vessel  inverted  and  forced  clown  into 
the  water.  In  confirmation  of  this  he  cites  the  case  of  the 

driver,  who  is  not  prevented  from  breathing  when  far  below 

1  Heron,  Dioptra,  c.  35  (vol.  iii,  pp.  302-6). 
2  Simplicius  on  De  caelo,  p.  710.  14,  Heib.  (Ptolemy,  vol.  ii,  p.  263). 
3  Heron,  Pneumatica,  i.  Pref.  (vol.  i,  p.  22.  14  sq.). 
W3.2  X 
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the  surfo.ee.  He  then  inquires  what  is  the  reason  why  the 
diver  is  not  oppressed  ̂   though  he  has  an  unlimited  weight  of 
water  on  his  back.  He  accepts,  therefore,  the  view  of  Ptolemy 
as  to  the  fact,  however  strange  this  may  seem.  But  he  is  not 

satisfied  with  the  explanation  given  :  '  Some  say  ',  he  goes  on, 
'  it  is  because  water  in  itself  is  uniformly  heavy  (/cro/Sapcy  avrb 

KaO*  ai)ro) ' — this  seems  to  be  equivalent  to  Ptolemy's  dictum 
that  water  in  water  has  no  weight — *  but  they  give  no  ex- 

planation whatever  why  divers  .  .  .'  He  himself  attempts  an 
explanation  based  on  Archimedes.  It  is  suggested,  therefore, 

that  Heron's  criticism  is  directed  specifically  against  Ptolemy 
and  no  one  else.  (4)  It  is  suggested  that  the  Dionysius  to  whom 
Heron  dedicated  his  Definitions  is  a  certain  Dionysius  who 
was  praefectus  urbi  at  Rome  in  A.D.  301.  The  grounds  are 
these  (a)  Heron  addresses  Dionysius  as  AIOVVCTM  Aa/nrporare, 

where  Aa/nr/>6raroy  obviously  corresponds  to  the  Latin  clarissi- 
mus,  a  title  which  in  the  third  century  and  under  Diocletian 

was  not  yet  in  common  use.  Further,  'this  Dionysius  was 
curatoi*  aquarnm  and  curator  operum  publicorwni,  so  that  he 
was  the  sort  of  person  who  would  have  to  do  with  the 
engineers,  architects  and  craftsmen  for  whom  Heron  wrote. 
Lastly,  he  is  mentioned  in  an  inscription  commemorating  an 

improvement  of  water  supply  and  dedicated  '  to  Tiberinus, 
father  of  all  waters,  and  to  the  ancient  inventors  of  marvel- 

lous constructions1  (repertoribus  admirab ilium  fabricawim 
precis  viris),  an  expression  which  is  not  found  in  any  other 
inscription,  but  which  recalls  the  sort  of  tributq  that  Heron 
frequently  pays  to  his  predecessors.  This  identification  of  the 
two  persons  named  Dionysius  is  an  ingenious  conjecture,  but 

the  evidence  is  not  such  as  to  make  it  anything  more.1 
The  result  of  the  whole  investigation  just  summarized  is  to 

place  Heron  in  the  third  century  A.D.,  and  perhaps  little,  if 
anything,  earlier  than  Pappus.  Heiberg  accepts  this  conclu- 

sion,2 which  may  therefore,  I  sup'pose,  be  said  to  hold  the  field 
fo*  the  present. 

1  Dionysius  was  of  course  a  very  common  name.  Diophantus  dedicated 
his  Arithmetica  to  a  person  of  this  name  VTifud>TaT€  /ioi  Atoi/ucm),  whom  he 
praised  for  his  ambition  to  learn  the  solutions  of  arithmetical  problems. 
This  Dionysius  must  have  lived  in  the  second  half  of  the  third  century 
A.D.,  and  if  Heron  also  belonged  to  this  time,  is  it  not  possible  that. 

Heron's  Dioriysius  was  the  same  person  ? 
2  Heron,  vol.  vf  p.  ix. 
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Heron  was  known  as  6  'AXtgavSpevs  (e.g.  by  Pappus)  or 
6  priyaviKos  (mechanicus),  to  distinguish  him  from  other 
persons  of  the  same  name  ;  Proclus  and  Damianus  use  the 

latter  title,  while  Pappus  also  speaks  of  ol  nepl  TOV  "Hpcova 

Character  of  works. 

Heron  was  an  almost  encyclopaedic  writer  on  mathematical 
and  physical  subjects.  Practical  utility  rather  than  theoreti- 

cal completeness  was  the  object  aimed  at  ;  his  environment  in 
Egypt  no  doubt  accounts  largely  for  this.  His  Metrica  begins 
with  the  old  legend  of  the  traditional  origin  of  geometry  in 
Egypt,  and  in  the  Dioptra  we  find  one  of  the  very  problems 
which  geometry  was  intended  to  solve,  namely  that  of  re- 

establishing Ixmndaries  of  lands  when  the  flooding  of  the 

Nile  had  destroyed  the  land-marks:  '  When  the  boundaries 
of  an  area  have  become  obliterated  to  such  an  extent  that 

only  two  or  three  marks  remain,  in  addition  to  a  plan  of  the 

area,  to  supply  afresh  the  remaining  marks/  1  Heron  makes 
little  or  no  claim  to  originality  ;  he  often  quotes  authorities, 
but,  in  accordance  with  Greek  practice,  he  more  frequently 
omits  to  do  so,  evidently  without  any  idea  of  misleading  any 
one;  only  when  he  has  made  what  is  in  his  opinion  any 
slight  improvement  on  the  methods  of  his  predecessors  does 
he  trouble  to  mention  the  fact,  a  habit  which  clearly  indi- 

cates that,  except  in  these  cases,  he  is  simply  giving  the  best 
traditional  methods  in  the  form  which  seemed  to  him  easiest 

of  comprehension  and  application.  The  Melrica  seems  to  be 
richest  in  definite  references  to  the  discoveries  of  prede- 

cessors ;  the  names  mentioned  are  Archimedes,  Dionysodorus, 
Eudoxus,  Plato  ;  in  the  Dioptra  Eratosthenes  is  quoted,  and 
in  the  introduction  to  the  (fatoptricu  Plato  and  Aristotle  are 
mentioned. 

The  practical  utility  of  Heron's  manuals  being  so  great,  it 
was  natural  that  they  should  have  great  vogue,  and  equally 
natural  that  the  most  popular  of  them  at  any  rate  should  be 
re-edited,  altered  and  added   to  by  later  writers;   this  was 
inevitable  with  books  which,  like  the  Elements  of  Euclid, 
were  in  regular  use  in  Greek,  Byzantine,  Roman,  and  Arabian 

J  Heron,  Dioptra,  c.  25,  p.  268.  17-19. 

X  'i 
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education  for  centuries.  The  geometrical  or  mensurational 
books  in  particular  gave  scope  for  expansion  by  multiplication 
of  examples,  so  that  it  is  difficult  to  disentangle  the  genuine 
Heron  from  the  rest  of  the  collections  which  have  come  down 

to  us  under  his  name.  Hultsch's  considered  criterion  is  as 
follows:  'The  Heron  texts  which  have  come  down  to  our 

time  are  authentic  in  so  far  as  they  bear  the  author's  name 
and  have  kept  the  original  design  and  form  of  Heron's  works, 
but  are  unauthentic  in  so  far  as,  being  constantly  in  use  for 

practical  purposes,  they  were  repeatedly  re-edited  and,  in  the 
course  of  re-editing,  were  rewritten  with  a  view  to  the 

particular  needs  of  the  time.' 

List  of  Treatises. 
Such  of  the  works  of  Heron  as  have  survived  have  reached 

us  in  very  different  ways.  Those  which  have  come  down  in 
the  Greek  are : 

I.  The   Metrica,   first  discovered  in    1896   in  a  manuscript 
of  the  eleventh    (or  twelfth)  century  at  Constantinople  by 
R.  Scheme  and  edited  by  his  son,  H.  Schone  (Heronis  Opera,  iii, 
Teubner,  1903). 

II.  On  the  Dioptra,  edited  in  an  Italian  version  by  Venturi 
in  1814  ;  the  Greek  text  was  first  brought  out  by  A.  J.  H. 

Vincent1  in  1858,  and  the  critical  edition  of  it  by  H.  Scheme  is 
included  in  the  Teubner  vol.  iii  just  mentioned. 

III.  The  Pneumatica,  in  two  Books,  which  appeared  first  in 
a   Latin   translation   by  Commandinus,  published   after   his 
death  in  1575;  the  Greek  text  was  first  edited  by  Th^venot 
in   Veterum  mathematicorum  opera  Graece  et  Latitte  cdita 
(Paris,  1693),  and  is  now  available  in  Iferonis  Opera,  i  (Teub- 

ner, 1899),  by  W.  Schmidt. 

IV.  On  the  art  of  constructing   automata  (ir€pt   avro^aro" 
TTOtijrjjcijy),  or  The  automaton-theatre,  first  edited  in  an  Italian 
translation  by  B.  Baldi  in  1589 ;  the  Greek  text  was  included 

in  Th^venot's   Vet.  math.,  and  now  forms  part  of  Heroiiis 
Opera,  vol.  i,  by  W.  Schmidt. 

V.  Belopoewa  (on  the  construction  of  engines  of  war),  edited 
1  Notices  et  extraits  des  manuscrits  de  la  Bibliothtque  impMale,  xix,  Dt.  2. 

pp.  157-337.  
P 
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by  B.  Baldi  (Augsburg,  1616),  TWvenot  (Vet.  math.),  Kochly 
and  Rustow  (1853)  and  by  Wescher  (Poliorc&tique  dcs  Grecs, 
1867,  the  first  critical  edition). 

VI.  The  Cheirobalistra  ("Hpawo?  x€LP°^a^crTPa^  wravKevt} 
Kal  a-vfifji€Tpia  (?)),  edited  by  V.  Prou,  Notices  et  extraits>  xxvi.  2 
(Paris,  1877). 

VII.  The  geometrical   works,  Defmitiones,   Geometria,  Geo- 
daesia,  Stereometrica  I  and  11,  Meumrae,  Liber  Geeponicu8> 
edited  by  Hultsch  with  Variae  collectioues  (Hero  MB  Alexan- 
drini   (jeometriourum  et  stereometricortim  relicfuiae,    1864). 
This  edition  will  now  be  replaced  by  that  of  Heiberg  in  the 
Teubner  collection  (vols.  iv,  v),  which  contains  much  addi- 

tional matter  from  the  Constantinople  manuscript  referred  to, 
but  omits  the  Liber  Geeponicus  (except  a  few  extracts)  and  the 
Geodae^ia    (which   contains   only   a   few   extracts   from   the 
Geometry  of  Heron). 

Only  fragments  survive  of  the  Greek  text  of  the  Mechanics 
in  three  Books,  which,  however,  is  extant  in  the  Arabic  (now 
edited,  with  German  translation,  in  lleroius  Opera,  vol.  ii, 
by  L.  Nix  and  W.  Schmidt,  Teubner,  1901). 

A  smaller  separate  mechanical  treatise,  the  Bapov\Ko$,  is 

quoted  by  Pappus.1  The  object  of  it  was  '  to  move  a  given 
weight  by  means  of  a  given  force ',  and  the  machine  consisted 
of  an  arrangement  of  interacting  toothed  wheels  with  different 
diameters. 

At  the  end  of  the  Dioptra  is  a  description  of  a  hodometer  for 
measuring  distances  traversed  by  a  wheeled  vehicle,  a  kind  of 
taxameter,  likewise  made  of  a  combination  of  toothed  wheels. 

A  work  on  Water-clock*  (nept  vSpicw  copocr/eoTmW)  is  men- 
tioned in  the  Pneiimatica  as  having  contained  four  Books, 

and  is  also  alluded  to  by  Pappus.2  Fragments  are  preserved 

in  Proclus  (Hypotyposix,  chap.  4)  and  in  Pappus's  commentary 
on  Book  V  of  Ptolemy's  tiyntaxis  reproduced  by  Theon. 

Of  Heron's  Commentary  on  Euclid's  Elements  only  very 
meagre  fragments  survive  in  Greek  (Proclus),  but  a  large 
number  of  extracts  are  fortunately  preserved  in  the  Arabic 
commentary  of  un-Nairizi,  edited  (1)  in  the  Latin  version  of 
Gherard  of  Cremona  by  Curtze  (Teubner,  1899),  and  (2)  by 

1  Pappus,  viii,  p.  1060.  5*  3  /&.,  p.  1026.  1. 
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Besthorn  and  Heiberg  (Codex  Leidensis  399.  1,  five  parts  of 
which  had  appeared  up  to  1910).  The  commentary  extended 
as  far  as  Elem.  VIII.  27  at  least. 

The  Catoptrica,  as  above  remarked  under  Ptolemy,  exists  in 
a  Latin  translation  from  the  Greek,  presumed  to  be  by  William 
of  Moerbeke,  and  is  included  in  vol.  ii  of  Heronis  Opera, 
edited,  with  introduction,  by  W.  Schmidt. 

Nothing  is  known  of  the  Camarica  ('  on  vaultings ')  men- 
tioned by  Eutocius  (on  Archimedes,  Sphere  and  Cylinder),  the 

Zygia  (balancings)  associated  by  Pappus  with  the  Automata,1 
or  of  a  work  on  the  use  of  the  astrolabe  mentioned  in  the 
Fihrist. 

We  are  in  this  work  concerned  with  the  treatises  of  mathe- 
matical content,  and  therefore  can  leave  out  of  account  such 

works  as  the  Pneumatica,  the  Automata,  and  the  Belopoeica. 
The  Pneumatica  and  Automata  have,  however,  an  interest  to 
the  historian  of  physics  in  so  far  as  they  employ  the  force  of 
compressed  air,  water,  or  steam.  In  the  P neumatica  the 

reader  will  find  such  things  as  siphons,  '  Heron's  fountain ', 
'  penny -in-the-slot '  machines,  a  fire-engine,  a  water-organ,  and 
many  arrangements  employing  the  force  of  steam. 

Geometry. 

(a)  Commentary  OR  Euclid's  Elements. 
In  giving  an  account  of  the  geometry  and  mensuration 

(or  geodesy)  of  Heron  it  will  be  well,  I  think,  to  begin 
with  what  relates  to  the  elements,  and  first  the  Commen- 

tary on  Euclid's  Elements,  of  which  we  possess  a  number 
of  extracts  in  an-Nairizi  and  Proclus,  enabling  us  to  form 
a  general  idea  of  the  character  of  the  work.  Speaking 

generally,  Heron's  comments  do  not  appear  to  have  contained 
much  that  can  be  called  important.  They  may  be  classified 
as  follows  : 

(1)  A  few  general  notes,  e.g.  that  Heron  would  not  admit 
more  than  three  axioms. 

(2)  Distinctions  of  a  number  of  particular  coxes  of  Euclid's 
propositions   according   as  the  figure  is  drawn  in  one  way 
or  another. 

1  Pappus,  viii,  p.  1024.  28. 
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Of  this  class  are  the  different  cases  of  I.  35,  36,  III.  7,  8 
(where  the  chords  to  be  compared  are  drawn  on  different  sides 
of  the  diameter  instead  of  on  the  same  side),  III.  12  (which  is 

not  Euclid's  at  all  but  Heron's  own,  adding  the  case  of 
external  to  that  of  internal  contact  in  III.  11*,  VI.  19  (where 
the  triangle  in  which  an  additional  line  is  drawn  is  taken  to 
be  the  smaller  of  the  two),  VII.  19  (where  the  particular  case 
is  given  of  three  numbers  in  continued  proportion  instead  of 
four  proportionals). 

(3)  Alternative  proofs. 

It  appears  to  be  Heron  who  first  introduced  the  easy  but 

uninstructive  semi-algebraical  method  of  proving  the  proposi- 
tions II.  2-10  which  is  now  so  popular.  On  this  method  the 

propositions  are  proved  '  without  figures '  as  consequences  of 
II.  1  corresponding  to  the  algebraical  formula 

a  (b  +  c  +  d  + . . .)  =  ab  +  oc  +  ad  +  . . . 

Heron  explains  that  it  is  not  possible  to  prove  II.  1  without 
drawing  a  number  of  lines  (i.e.  without  actually  drawing  the 
rcctanglcH),  but  that  the  following  propositions  up  to  II.  10 
can  be  proved  by  merely  drawing  one  line.  He  distinguishes 
two  varieties  of  the  method,  one  by  dissolutio,  the  other  by 

composltio,  by  which  he  seems  to  mean  splittiiig-u-p  of  rect- 
angles and  squares  and  combination,  of  them  into  others. 

But  in  his  proofs  he  sometimes  combines  the  two  varieties. 
Alternative  proofs  are  given  («)  of  some  propositions  of 

Book  III,  namely  III.  25  (placed  after  III.  30  and  starting 
from  the  arc  instead  of  the  chord),  III.  10  (proved  by  means 
of  III.  9),  III.  13  (a  proof  preceded  by  a  lemma  to  the  effect 
that  a  straight  line  cannot  meet  a  circle  in  more  than  two 
points). 

A  class  of  alternative  proof  is  (6)  that  which  is  intended  to 

meet  a  particular  objection  (eixrrao-is)  which  had  been  or  might 
be  raised  to  Euclid's  constructions.  Thus  in  certain  cases 
Heron  avoids  product  ny  a  certain  straight  line,  where  Euclid 
produces  it,  the  object  being  to  meet  the  objection  of  one  who 
should  deny  our  right  to  assume  that  there  is  any  space 
available.  Of  this  class  are  his  proofs  of  I.  11,  20  and  his 

note  on  1. 16.  Similarly  in  I.  48  lie  supposes  the  right-angled 
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triangle  which  is  constructed  to  be  constructed  on  the  same 
side  of  the  common  side  as  the  given  triangle  is. 

A  third  class  (c)  is  that  which  avoids  reciuct'io  ad  ab&ardum, 
e.g.  a  direct  proof  of  I.  19  (for  which  he  requires  and  gives 
a  preliminary  lemma)  and  of  I.  25. 

(4)  Heron  supplies  certain  converses  of  Euclid's  propositions 
e.g.  of  II.  12,  13  and  VIII.  27. 

(5)  A  few  additions  to,  and  extensions  of,  Euclid's  propositions 
are  also  found.     Some  are  unimportant,  e.  g,  the  construction 
of  isosceles  and  scalene  triangles  in  a  note  on  1.  1  and  the 
construction  of  two  tangents  in  III.  17.     The  most  important 
extension  is  that  of  III.  20  to  the  case  where  the  angle  at  the 
circumference  is  greater  than  a  right  angle,  which  gives  an 
easy  way  of  proving  the  theorem  of  III.  22.     Interesting  also 
are  the  notes  on  I.  37   (on  I.  24  in  Proclus),  where  Heron 
proves  that  two  triangles  with  two  sides  of  the  one  equal 

to  two  sides  of  the  other  and  with  the  included  angles  swpple- 
mentcM'y  are  equal  in  area,  and  compares  the  areas  where  the 
sum  of  the  included  angles  (one  being  supposed  greater  than 
the  other)  is  less  or  greater  than  two  right  angles,  and  on  I.  47, 
where  there  is  a  proof  (depending  on  preliminary  lemmas)  of 

the  fact  that,  in  the  figure  of  Euclid's  proposition  ̂ see  next 
page),  the  straight  lines  AL,  BG,  CE  meet  in  a  point.     This 
last  proof  is  worth  giving.     First  come  the  lemmas. 

(1)  If  in  a  triangle  ABG  a  straight   line   I)E  be  drawn 
parallel  to  the  base  BG  cutting  the  sides  AB,  AC  or  those 

sides  produced  in  D,  E,  and  if  F  be  the 

       middle  point  of  BCy  then  the  straight  line 
AF  (produced  if  necessary)  will  also  bisect 
DE.  (UK  is  drawn  through  A  parallel  to 
DE,  and  HDL,  KEM  through  J),  E  parallel 

         to  AF  meeting  the  base  in  L,  M  respec- 
8  L  F  M  C  tively.  Then  the  triangles  ABF,  AFG 
between  the  same  parallels  are  equal.  So  are  the  triangles 
DBF,  EFC.  Therefore  the  differences,  the  triangles  ADF, 
AEFt  are  equal  and  so  therefore  are  the  parallelograms  HF, 

KF.  Therefore  LF '=  FM9  or  DG  =  GE.) 

(2)  is  the  converse  of  Eucl.  1.  43.     If  a  parallelogram  is 
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cut  into  four  others  ADGE,  DF,  FGCB,  CE,  so  that  DF,  CE 

are  equal,  the  common  vertex  G  will  lie  on  the  diagonal  AB. 
Heron  produces  AG  to  meet  OF  in  H,  and  then  proves  that 

AHB  is  a  straight  line. 
Since  DF,  CE  are  equal,  so  are 

the  triangles  DGF,  ECG.  A  elding 
the  triangle  GCF,  we  have  the 
triangles  EOF,  DCF  equal,  and 
DE,  OF  are  parallel. 

But  (by  I.  34,  29,  26)  the  tri- 
angles AKE,  GKJ)  are  congruent, 

HO  that  EK=KD\  and  by  lemma  (1)  it  follows  that  CH=HF. 
Now,  in  the  triangles  F11B,  CHG,  two  sides  (BF,  FH  and 

GO,  Gil)  and  the  included  angles  are  equal;  therefore  the 
triangles  are  congruent,  and  the  angles  BllF,  G11C  are  equal. 

Add  to  each  the  angle  GHF,  and 

Z  B1IF+  L  FUG  =  Z  CHG  +  Z  GHF  =  two  right  angles. 

To  prove  his  substantive  proposition  Heron  draws  AKL 
perpendicular  to  J3G,  and  joins  JKO  meeting  AK  in  M.  Then 
we  have  only  to  prove  that  liMG  is  a  straight  line. 

Complete  the  parallelogram  FAllO*  and  draw  the  diagonals 
OA,  FH  meeting  in  F.  Through  M  draw  PQ,  UR  parallel 
respectively  to  BA,  AG. 
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Now  the  triangles  FAH,  BAG  are  equal  in  all  respects ; 

therefore  LEFA  ==  LAEG 

=  L  CAK  (since  AK  is  at  right  angles  to  BC). 

But,  the  diagonals  of  the  rectangle  FH  cutting  one  another 
in  F,  we  have  FY  =  YA  and  LHFA  =  ZO^l^; 

therefore  LOAF  —  LCAK,  and  OJ.  is  in  a  straight  line 
with  AKL. 

Therefore,  OM  being  the  diagonal  of  SQy  SA  =  4Q,  and,  if 
we  add  AM  to  each,  FM  =  J/fT. 

Also,  since  J£<7  is  the  diagonal  of  FN9  FM  =  J/JV. 
Therefore  the  parallelograms  JMH,  MM  are  equal ;  and 

hence,  by  the  preceding  lemma,  BMG  is  a  straight  line.  Q.E.D. 

(ft)  The  DtfiiwtioH*. 

The  elaborate  collection  of  Definitions  is  dedicated  to  one 

Dionysius  in  a  preface  to  the  following  effect : 

'In  setting  out  for  you  a  sketch,  in  the  shortest  possible 
form,  of  the  technical  terms  premised  in  the  elements  of 
geometry,  I  shall  take  as  my  point  of  departure,  and  shall 
base  my  whole  arrangement  upon,  the  teaching  of  Euclid,  the 
author  of  the  elements  of  theoretical  geometry ;  for  by  this 

means  I  think  that  I  shall  give  you  a  good  general  under- 

standing not  only  of  Euclid's  doctrine  but  of  many  other 
works  in  the  domain  of  geometry.  I  shall  begin  then  with 

the  point.9 

He  then  proceeds  to  the  definitions  of  the  point,  the  line, 

the  different  sorts  of  lines,  straight,  circular,  '  curved '  and 
'spiral-shaped*  (the  Archimedean  spiral  and  the  cylindrical 
helix),  Defs.  1-7 ;  surfaces,  plane  and  not  plane,  solid  body, 
Defs.  8-11;  angles  and  their  different  kinds,  plane,  solid, 
rectilinear  and  not  rectilinear,  right,  acute  and  obtuse  angles, 

Defs.  12-22;  figure,  boundaries  of  figure,  varieties  of  figure, 
plane,  solid,  composite  (of  homogeneous  or  non-homogeneous 

parts)  and  incomposite,  Defs.  23-6.  The  incomposite  plane 
figure  is  the  circle,  and  definitions  follow  of  its  parts,  segments 

(which  are  composite  of  non-homogeneous  parts),  the  semi- 
circle, the  &tyi$  (less  than  a  semicircle),  and  the  segment 

greater  than  a  semicircle,  angles  in  segments,  the  sector, 
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4  concave'  and  'convex',  lune,  garland  (these  last  two  are 
composite  of  homogeneous  parts)  and  axe  (mXtKvs),  bounded  by 
four  circular  arcs,  two  concave  and  two  convex,  Defs.  27-38. 
Rectilineal  figures  follow,  the  various  kinds  of  triangles  and 
of  quadrilaterals,  the  gnomon  in  a  parallelogram,  and  the 
gnomon  in  the  more  general  sense  of  the  figure  which  added 
to  a  given  figure  makes  the  whole  into  a  similar  figure, 
polygons,  the  parts  of  figures  (side,  diagonal,  height  of  a 
triangle),  perpendicular,  parallels,  the  three  figures  which  will 
fill  up  the  space  round  a  point,  Defs.  39-73.  Solid  figures  are 
next  classified  according  to  the  surfaces  bounding  them,  and 
lines  on  surfaces  are  divided  into  (1)  simple  and  circular, 
(2)  mixed,  like  the  conic  and  spiric  curves,  Defs.  74,  75.  The 
sphere  is  then  defined,  with  its  parts,  and  stated  to  be 
the  figure  which,  of  all  figures  having  the  same  surface,  is  the 
greatest  in  content,  Defs.  76-82.  Next  the  cone,  its  different 
species  and  its  parts  are  taken  up,  with  the  distinction 
between  the  three  conies,  the  section  of  the  acute-angled  cone 

('  by  some  also  called  ellipse ')  and  the  sections  of  the  right- 
angled  and  obtuse-angled  cones  (also  called  parabola  and 
hyperbola),  Defs.  83-94;  the  cylinder,  a  section  in  general, 
the  spire  or  tore  in  its  three  varieties,  open,  continuous  (or 

just  closed)  and  '  crossing-itself ',  which  respectively  have 
sections  possessing  special  properties,  '  square  rings '  which 
are  cut  out  of  cylinders  (i.e.  presumably  rings  the  cross-section 
of  which  through  the  centre  is  two  squares),  and  various  other 
figures  cut  out  of  spheres  or  mixed  surfaces,  Defs.  95-7 ; 
rectilineal  solid  figures,  pyramids,  the  five  regular  solids,  the 
semi-regular  solids  of  Archimedes  two  of  which  (each  with 
fourteen  faces)  were  known  to  Plato,  Defs.  98-104;  prisms 
of  different  kinds,  parallelepipeds,  with  the  special  varieties, 
the  cube,  the  beam,  SOKO?  (length  longer  than  breadth  and 
depth,  which  may  be  equal),  the  brick,  Tr\iv6i$  (length  less 
than  breadth  and  depth),  the  <r0?/t>(Woy  or  jSoo/zicr/coy  with 
length,  breadth  and  depth  unequal,  Defs.  105-14. 

Lastly  come  definitions  of  relations,  equality  of  lines,  sur- 

faces, and  solids  respectively,  similarity  of  figures, c  reciprocal 

figures',  Defs.  115-18;  indefinite  increase  in  magnitude, 
parts  (which  must  be,  homogeneous  with  the  wholes,  so  that 
e.  g.  the  horn-like  angle  is  not  a  part  or  submultiple  of  a  right 
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or  any  angle),  multiples,  Defs.  119-21  ;  proportion  in  magni- 
tudes, what  magnitudes  can  have  a  ratio  to  one  another, 

magnitudes  in  the  same  ratio  or  magnitudes  in  proportion, 

definition  of  greater  ratio,  Defs.  122-5;  transformation  of 

ratios  (coniponendo,  separando,  convertendo,  alternando,  in- 
vertendo  and  ex  aequali),  Defs.  126-7;  commensurable  and 
incommensurable  magnitudes  and  straight  lines,  Defs.  128, 
129.  There  follow  two  tables  of  measures,  Defs,  130-2. 

The  Definitions  are  very  valuable  from  the  point  of  view  of 

the  historian  of  mathematics,  for  they  give  the  different  alter- 
native definitions  of  the  fundamental  conceptions;  thus  we 

find  the  Archimedean  'definition'  of  a  straight  line,  other 
definitions  which  we  know  from  Proclus  to  be  due  to  Apol- 
lonius,  others  from  Posidonius,  and  so  on.  No  doubt  the 
collection  may  have  been  recast  by  some  editor  or  editors 

after  Heron's  time,  but  it  seems,  at  least  in  substance,  to  go 
back  to  Heron  or  earlier  still.  So  far  as  it  contains  original 
definitions  of  Posidonius,  it  cannot  have  been  compiled  earlier 
than  the  first  century  B.C.;  but  its  content  seems  to  belong  in 
the  main  to  the  period  before  the  Christian  era.  Heiberg 

adds  to  his  edition  of  the  Definitions  extracts  from  Heron's 
Geometry,  postulates  and  axioms  from  Euclid,  extracts  from 
Geminus  on  the  classification  of  mathematics,  the  principles 

of  geometry,  &c.,  extracts  from  Proclus  or  some  early  collec- 
tion of  scholia  on  Euclid,  and  extracts  from  Anatolius  and 

Theon  of  Smyrna,  which  followed  the  actual  definitions  in  the 
manuscripts.  These  various  additions  were  apparently  collected 
by  some  Byzantine  editor,  perhaps  of  the  eleventh  century. 

Mensuration. 

The  Metrica,  Geometrica,  Stereometrua,  Geodaesia, 
Mensurae. 

We  now  come  to  the  mensuration  of  Heron.  Of  the 

different  works  under  this  head  the  Metr'uu  is  the  most 
important  from  our  point  of  view  because  it  seems,  more  than 
any  of  the  others,  to  have  preserved  its  original  form.  It  is 
also  more  fundamental  in  that  it  gives  the  theoretical  basis  of 
the  formulae  used,  and  is  not  a  mere  application  of  rules  to 
particular  examples.  It  is  also  more  akin  to  theory  in  that  it 
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does  not  use  concrete  measures,  but  simple  numbers  or  units 

which  may  then  in  particular  cases  be  taken  to  be  i§eet,  cubits, 
or  any  other  unit  of  measurement.  Up  to  1896,  when  a 
manuscript  of  it  was  discovered  by  R.  Schone  at  Constanti- 

nople, it  was  only  known  by  an  allusion  to  it  in  Eutocius 

(on  Archimedes's  Measurement  of  a  Circle),  who  states  that 
the  way  to  obtain  an  approximation  to  the  square  root  of 

a  non-square  number  is  shown  by  Heron  in  his  Metrica,  as 
well  as  by  Pappus,  Theon,  and  others  who  had  commented  on 

the  Syntaxis  of  Ptolemy.1  Tannery2  had  already  in  1894 

discovered  a  fragment  of  Heron's  Metrica  giving  the  particular 
rule  in  a  Paris  manuscript  of  the  thirteenth  century  contain- 

ing Prolegomena  to  the  Syntaxis  compiled  presumably  from 
the  commentaries  of  Pappus  and  Theon.  Another  interesting 
difference  between  the  Metrica  and  the  other  works  is  that  in 

the  former  the  Greek  way  of  writing  fractions  (which  is  our 
method)  largely  preponderates,  the  Egyptian  form  (which 
expresses  a  fraction  as  the  sum  of  diminishing  submultiples) 
being  used  comparatively  rarely,  whereas  the  reverse  is  the 
case  in  the  other  works. 

In  view  of  the  greater  authority  of  the  Metrica,  we  shall 
take  it  as  the  basis  of  our  account  of  the  mensuration,  while 

keeping  the  other  works  in  view.  It  is  desirable  at  the 
outset  to  compare  broadly  the  contents  of  the  various  collec- 

tions. Book  I  of  the  Metrica  contains  the  mensuration  of 

squares,  rectangles  and  triangles  (chaps.  1-9),  parallel-trapezia, 
rhombi,  rhomboids  and  quadrilaterals  with  one  angle  right 

(10-16),  regular  polygons  from  the  equilateral  triangle  to  the 
regular  dodecagon  (17-25),  a  ring  between  two  concentric 
circles  (26),  segments  of  circles  (27-33),  an  ellipse  (34),  a  para- 

bolic segment  (35),  the  surfaces  of  a  cylinder  (36),  an  isosceles 
cone  (37),  a  sphere  (38)  and  a  segment  of  a  sphere  (39). 
Book  II  gives  the  mensuration  of  certain  solids,  the  solid 
content  of  a  cone  (chap.  1),  a  cylinder  (2),  rectilinear  solid 
figures,  a  parallelepiped,  a  prism,  a  pyramid  and  a  frustum, 
&c.  (3-8),  a  frustum  of  a  cone  (9, 10),  a  sphere  and  a  segment 
of  a  sphere  (11,  12),  a  vpire  or  tore  (13),  the  section  of  a 

cylinder  measured  in  Archimedes's  Method  (14),  and  the  solid 

1  Archimedes,  vol.  iii,  p.  232.  1S-17. 
2  Tannery,  M&noires  scientijiques,  ii,  1912,  pp.  447-54. 



318  HERON  OF  ALEXANDRIA 

formed  by  the  intersection  of  two  cylinders  with  axes  at  right 
angles  inscribed  in  a  cube,  also  measured  in  the  Method  (15), 

the  five  regular  solids  (16-19).  Book  III  deals  with  the  divi- 
sion of  figures  into  parts  having  given  ratios  to  one  another, 

first  plane  figures  (1-19),  then  solids,  a  pyramid,  a  cone  and  a 
frustum,  a  sphere  (20-3). 

The  Geometria  or  Geometrumena  is  a  collection  based  upon 
Heron,  but  not  his  work  in  its  present  form.  The  addition  of 

a  theorem  due  to  Patrjcius *  and  a  reference  to  him  in  the 
Stereometric^  (1.  22)  suggest  that  Patricias  edited  both  works, 
but  the  date  of  Patricius  is  uncertain.  Tannery  identifies 
him  with  a  mathematical  professor  of  the  tenth  century, 

Nicephorus  Patricius ;  if  this  is  correct,  he  would  be  contem- 
porary with  the  Byzantine  writer  (erroneously  called  Heron) 

who  is  known  to  have  edited  genuine  works  of  Heron,  and 
indeed  Patricius  and  the  anonymous  Byzantine  might  be  one 
and  the  same  person.  The  mensuration  in  the  Geometry  has 
reference  almost  entirely  to  the  same  figures  as  those 
measured  in  Book  I  of  the  Metrica,  the  difference  being  that 
in  the  Geometry  (1)  the  rules  are  not  explained  but  merely 

applied  to  examples,  (2)  a  large  number  of  numerical  illustra- 
tions are  given  for  each  figure,  (3)  the  Egyptian  way  of 

writing  fractions  as  the  sum  of  submultiples  is  followed, 
(4)  lengths  and  areas  are  given  in  terms  of  particular 
measures,  and  the  calculations  are  lengthened  by  a  consider- 

able amount  of  conversion  from  one  measure  into  another. 

The  first  chapters  (1-4)  are  of  the  nature  of  a  general  intro- 
duction, including  certain  definitions  and  ending  with  a  table 

of  measures.  Chaps.  6-99,  Hultsch  (  =  5-20, 14,  Heib.),  though 
for  the  most  part  corresponding  in  content  to  Metrica  I, 
seem  to  have  been  based  on  a  different  collection,  because 

chaps.  100-3  and  105  (=  21,  1-25,  22,  3-24,  Heib.)  are  clearly 
modelled  on  the  Metrica^  arid  101  is  headed  'A  definition 

(really  '  measurement ')  of  a  circle  in  another  book  of  Heron '. 
Heiberg  transfers  to  the  Geometrica  a  considerable  amount  of 
the  content  of  the  so-called  Liber  Geeponicus,  a  badly  ordered 
collection  consisting  to  a  large  extent  of  extracts  from  the 
other  works.  Thus  it  begins  with  41  definitions  identical 
with  the  same  number  of  the  Definitiovies.  Some  sections 

1  Geometrica,  21  26  (vol.  iv,  p.  386.  23). 
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Heiberg  puts  side  by  side  with  corresponding  sections  of  the 
Geometrica  in  parallel  columns ;  others  he  inserts  in  suitable 
places ;  sections  78.  79  contain  two  important  problems  in 

indeterminate  analysis  (=  Geom.  24,  1-2,  Heib.).  Heiberg 
adds,  from  the  Constantinople  manuscript  containing  the 

Metrica,  eleven  more  sections  (chap.  24,  3-13)  containing 
indeterminate  problems,  and  other  sections  (chap.  24, 14-30  and 
37-51 )  giving  the  mensuration,  mainly,  of  figures  inscribed  in  or 
circumscribed  to  others,  e.g.  squares  or  circles  in  triangles, 
circles  in  squares,  circles  about  triangles,  and  lastly  of  circles 
and  segments  of  circles. 

The  titereometrica  I  has  at  the  beginning  the  title  Eicra- 

ycoyat  rS>v  orep€o//€rpoi;/*€i>a>i>  "Hpcoj/o?  but,  like  the  Geometrica, 
seems  to  have  been  edited  by  Patricius.  Chaps.  1-40  give  the 
mensuration  of  the  geometrical  solid  figures,  the  sphere,  the 
cone,  the  frustum  of  a  cone,  the  obelisk  with  circular  base, 

the  cylinder,  the  'pillar',  the  cube,  the  crfyrjvicrKo?  (also  called 
owg),  the  fjittovpov  7rpoeavcapt0€i7io/oi>,  pyramids,  and  frusta. 
Some  portions  of  this  section  of  the  book  go  back  to  Heron ; 
thus  in  the  measurement  of  the  sphere  chap.  1  =  Metrica 
II.  11,  and  both  here  and  elsewhere  the  ordinary  form  of 
fractions  appears.  Chaps.  41-54  measure  the  contents  of  cer- 

tain buildings  or  other  constructions,  e.g.  a  theatre,  an  amphi- 
theatre, a  swimming-bath,  a  well,  a  ship,  a  wine-butt,  and 

the  like. 

The  second  collection,  titereometrica  II,  appears  to  be  of 
Byzantine  origin  and  contains  similar  matter  to  Stereometrica  I, 
parts  of  which  are  here  repeated.  Chap.  31  (27,  Heib.)  gives 
the  problem  of  Thales.  to  find  the  height  of  a  pillar  or  a  tree 
by  the  measurement  of  shadows ;  the  last  sections  measure 
various  pyramids,  a  prism,  a  fi&pfcKos  (little  altar). 

The  Geodaesia  is  nob  an  independent  work,  but  only  con- 
tains extracts  from  the  Geometry ;  thus  chaps.  1—16  =  Geom. 

5-31,  Hultsch  (  =  5,  2-12,  32,  Heib.);  chaps.  17-19  give  the 
methods  of  finding,  in  any  scalene  triangle  the  sides  of  which 
are  given,  the  segments  of  the  base  made  by  the  perpendicular 
from  the  vertex,  and  of  finding  the  area  direct  by  the  well- 

known  '  formula  of  Heron ' ;  i.e.  we  have  here  the  equivalent  of Metrica  I.  5-8. 

Lastly,  the  /zerpqcmy,  or  Mensurae,  was  attributed  to  Heron 
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in  an  Archimedes  manuscript  of  tho  ninth  century,  but  can- 
not in  its  present  form  be  due  to  Heron,  although  portions  of 

it  have  points  of  contact  with  the  genuine  works.  Sects.  2-27 
measure  all  sorts  of  objects,  e.g.  stones  of  different  shapes, 
a  pillar,  a  tower,  a  theatre,  a  ship,  a  vault,  a  hippodrome  ;  but 

sects.  28-35  measure  geometrical  figures,  a  circle  and  segments 
of  a  circle  (cf.  Metrica  I),  and  sects.  36-48  on  spheres,  segments 
of  spheres,  pyramids,  cones  and  frusta  are  closely  connected 

with  Stereom.  I  and  Meti4ca  II ;  sects.  49-59,  giving  the  men- 
suration of  receptacles  and  plane  figures  of  various  shapes, 

seem  to  have  a  different  origin.  We  can  now  take  up  the 

Contents  of  the  Metrics. 

Book  I.     Measurement  of  Areas. 

The  preface  records  the  tradition  that  the  first  geometry 

arose  out  of  the  practical  necessity  of  measuring  and  dis- 

tributing land  (whence  the  name  '  geometry '),  after  which 
extension  to  three  dimensions  became  necessary  in  order  to 
measure  solid  bodies.  Heron  then  mentions  P]udoxus  and 

Archimedes  as  pioneers  in  the  discovery  of  difficult  measure- 
ments, Eudoxus  having  been  the  first  to  prove  that  a  cylinder 

is  three  times  the  cone  on  the  same  base  and  of  equal  height, 
and  that  circles  are  to  one  another  as  the  squares  on  their 
diameters,  while  Archimedes  first  proved  that  the  surface  of 
a  sphere  is  equal  to  four  times  the  area  of  a  great  circle  in  it, 

and  the  volume  two-thirds  of  the  cylinder  circumscribing  it. 

(a)  Area  of  scale  tie  trianyle. 

After  the  easy  cases  of  the  rectangle,  the  right-angled 
triangle  and  the  isosceles  triangle,  Heron  gives  two  methods 

of  finding  the  area  of  a  scalene  triangle  (acute-angled  or 
obtuse-angled)  when  the  lengths  of  the  three  sides  are  given. 

The  first  method  is  based  on  Eucl.  II.  12  and  13.  If  ct,  b,  c 
be  the  sides  of  the  triangle  opposite  to  the  angles  A,  Jl,  C 
respectively,  Heron  observes  (chap.  4)  that  any  angle,  e.g.  C,  is 

acute,  right  or  obtuse  according  as  c2<  =  or  >  a2  +  //2,  and  this 
is<  the  criterion  determining  which  of  the  two  propositions  is 
applicable.  The  method  is  directed  to  determining,  first  the 
segments  into  which  any  side  is  divided  by  the  perpendicular 
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from  the  opposite  vertex,  and  thence  the  length  of  the  per- 
pendicular itself.  We  have,  in  the  cases  of  the  triangle  acute- 

angled  at  C  and  the  triangle  obtuse-angled  at  C  respectively, 

or 67)  = 

whence  AD*  (=  b*  —  CD*)  is  found,  so  that  we  know  the  area 

In  the  cases  given  in  Melrica  I.  5,  0  the  sides  are  (14,  15,  13) 
and  (11,  13,  20)  respectively,  and  AD  is  found  to  be  rational 
(=12).  But  of  course  both  CD  (or  HD)  and  AD  may  be  surds, 
in  which  case  Heron  gives  approximate  values.  Cf.  Geom. 

53,  54,  Hultsch  (15,  1-4,  Heib.)3  where  we  have  a  triangle 
in  which  a  =  8,  b  =  4,  c  =  6,  so  that  a2  +  '>8  — fl2  =  44  and 
C7)  =  44/10  =  2J£.  Thus  4/)2=  16-(2£i)a=  16-7£^ 
=  8J I  r^,  and  .47)=  \/(8 £  f  T^)  =  2§  £  approximately,  whence 
the  area  =  4x2|J=llj|.  Heron  then  observes  that  we  get 

a  nearer  result  still  if  we  multiply  AD2  by  (|a)2  before 
extracting  the  square  root,  for  the  area  is  then  \/(16  x  8£|  ̂ ) 
or  \/(135),  which  is  very  nearly  11|  -^  ̂ T  or  ll^f- 

So  in  Metrlca  I.  9,  where  the  triangle  is  10,  8,  12  (10  being 
the  base),  Heron  finds  the  perpendicular  to  be  \/63,  but  he 

obtains  the  area  as  \/(\AD" .  #(•*).  or  \/(1575),  while  observing 
that  we  can,  of  course,  take  the  approximation  to  \/63,  or 

7£  £  I  iV  anc'  multiply  it  by  half  10.  obtaining  39|  |  y1^  as the  area. 

Proof  of  the  formula  A  =  \/{ts(s  —  a)  (s  —  b)  (s  —  c)}. 

The  second  method  is  that  known  as  the  *  formula  of 

Heron ',  namely,  in  our  notation,  A  =  \/{s  (s  —  a)  (s  —  b)  (s  —  c) } . 
The  proof  of  the  formula  is  given  in  Metrlca  I.  8  and  also  in 
1B23.2  Y 
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chap.  30  of  the  Dioptra ;  but  it  is  now  known  (from  Arabian 
sources)  that  the  proposition  is  due  to  Archimedes. 

Let  the  sides  of  the  triangle  ABC  be  given  in  length. 
Inscribe  the  circle  DEF,  and  let  0  be  the  centre. 

Join  AO,  KG,  CO,  DO,  EG,  FO. 

Then  BG .  01)  =  2  A  50(7, 

CA.GE=  2&COA, 

AB.GF=2AAOB; 

whence,  by  addition, 

where  p  is  the  perimeter. 

Produce  CB  to  H,  so  that  BU  =  AF. 

Then,  since  AE  =  AF,  BF  =  BD,  and  CE  =  CD,  we  have 

CH.OD  =  A  ABC. Therefore 

But  CH.OD  is  the  'side'  of  the  product  C1I*.OD2,  i.e. 
.  OD*), 

so  that 
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Draw  OL  at  right  angles  to  00  cutting  BO  in  K9  and  BL  at 
right  angles  to  BO  meeting  OL  in  L.  Join  OL. 

Then,  since  each  of  the  angles  COL,  OBL  is  right,  COBL  is 
a  quadrilateral  in  a  circle. 

Therefore  L  GO  B  +  L  CLB  =  2  R. 

But  /.COB  +  £AOF  =  27?,  because  AO,  BO,  00  bisect  the 
angles  round  0,  and  the  angles  00 B,  AOF  are  together  equal 
to  the  angles  AOC,  BOF,  while  the  sum  of  all  four  angles 
is  equal  to  4  R. 

Consequently  L  AOF  =  Z  OLB. 

Therefore  the  right-angled  triangles  AOF,  OLB  are  similar ; 

therefore  BO :  BL  =  AF:  FO 

=  Bll :  07), 

and,  alternately,          CB  :  Bit  =  BL  :  OD 
=  BK : KD ; 

whence,  componendo,  OH:  HB  =  BD :  DK. 

It  follows  that 

Oil* :  OH  .  HB  =  BD  .  DO :  C7)  .  DK 

=  7*7) .  7)<7 :  07)2,  since  the  angle  00 K  is  right. 

Therefore     (A  ABC}-  =  6'7/2  .  07)2  (from  above) 
=  (777 .  7/7* .  BD  .  DC 

=  8  (s  —  a)  (s  -  />)  (s  —  c). 

(/J)   Method  of  approximating  to  the  squ«re  root  of 

a  non-square  number. 

It  is  a  propos  of  the  triangle  7,  8,  9  that  Heron  gives  the 
important  statement  of  his  method  of  approximating  to  the 
value  of  a  surd,  which  before  the  discovery  of  the  passage 
of  the  Metrica  had  been  a  subject  of  unlimited  conjecture 
as  bearing  on  the  question  how  Archimedes  obtained  his 

approximations  to  v^3.  * 
In  this  case  s  =  12,  8  — a  =  5,  8  — ?>  =  4,  8  — c  =  3,  so  that 

A  =  \/(12  .5.4.3)  =  \/(720). 
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'  Since',  says  Heron,1  c  720  has  not  its  side  rational,  we  can 
obtain  its  side  within  a  very  small  difference  as  follows.  Since 
the  next  succeeding  square  number  is  729,  which  has  27  for 
its  side,  divide  720  by  27.  This  gives  26§.  Add  27  to  this. 
making  53f  ,  and  take  half  of  this  or  26^.  The  side  of  720 
will  therefore  be  very  nearly  26^  ̂ .  In  fact,  if  we  multiply 
26^^  by  itself  ,  the  product  is  720^,  so  that  the  difference  (in 
the  square)  is  -fe  . 

1  If  we  desire  to  make  the  difference  still  smaller  than  3^,  we 
shall  take  720^  instead  of  729  [or  rather  we  should  take 
26|£  instead  of  27],  and  by  proceeding  in  the  same  way  we 
shall  find  that  the  resulting  difference  is  much  less  than  ̂ / 

In  other  words,  if  we  have  a  non-square  number  A,  and  «2 
is  the  nearest  square  number  to  it,  so  that  A  =  f/2  +  />,  then  we 
have,  as  the  first  approximation  to  \/A. 

for  a  second  approximation  we  take 

««=  a  («i+-)'  <2> 
and  so  on.2 

1  Metrica,  i.  8,  pp.  18.  22-20.  5. 
2  The  method  indicated  by  Heron  was  known  to  Barlaam  and  Nicolas 

Rhabdas  in  the  fourteenth  century.     The  equivalent  of  it  was  used  by 
Luca  Paciuolo  (fifteenth-sixteenth  century),  and  it  was  known  to  the  other 
Italian  algebraists  of  the  sixteenth  century.     Thus  Luca  Paciuolo  gave 
2J,  2^  and  2ftffa  as  successive  approximations  to  -/$•     He  obtained 

2  (21)2  —  6 
the   first  as   2+  5—  o  »  the  second   as  2*  --  ̂   ,  and   the  third  as It  .  Ct  Z  .   Z., 

**~  "'    The  above  rule  Kives  -H2+i)  =  25.  *(5+7>!)  =  25»)> 

The  formula  of  Heron  was  again  put  forward,  in  modern  times,  by 
Buzengeiger  as  a  imians  of  accounting  for  the  Archimedean  approxima- 

tion to  v3,  apparently  without  knowing  its  previous  history.  13ertrand 
also  stated  it  in  a  treatise  on  arithmetic  (1853).  The  method,  too,  by 
which  Oppermann  and  Alexeieff  sought  to  account  for  Archimedea's 
approximations  is  in  reality  the  same.  The  latter  method  depends  on 
the  formula 

Alexeieff  separated  A  into  two  factors  o0,  7'0,  and  pointed  out  that  if,  say. >Z>0. 

then,  l(a.+  Jb)>v^>  or 
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Substituting  in  (1)  the  value  a?±b  for  A,  we  obtain 

Heron  does  riot  seem  to  have  used  this  formula  with  a  nega- 
tive sign,  unless  in  titereoru.  I.  33  (34,  Hultsch),  where  \/(63) 

and  again,  if  J  (</0  -t  &0)  =  «j  ,  2  ̂ /Ia0  -f  b0)  =  ̂   , 

and  so  on. 

Now  suppose  that,  ̂ n  Heron's  formulae,  we  put  a  =  A"0,  A/  a  = 
otj  =•  .Xj,  i/tfi  =  trp  and  so  on.     We  then  have 

f        A  \       ,  ,  ̂         ̂   A  A  2AVo -  • ^        i  f         A  \       ,  , 

A,  =  i    «+  -J  -  J 

that  is,  Xlt  ̂   aie,  lespectively,  the  arithmetic  and  harmonic  means 
between  X0,  x0  •  X2,  jc^  are  the  arithmetic  and  harmonic  means  between 
X19  xl9  and  so  on,  exactly  as  in  AlexeiefTs  formulae. 

Let  us  now  try  to  apply  the  method  to  Archiniedes's  case,  \/3,  and  we 
shall  see  to  what  extent  it  serves  to  give  what  we  want.  Suppose 
we  begin  with  3  >\/3  >  1.  We  then  have 

1),  or  2 
and  iiom  this  we  derive  successively 

But,  if  we  start  trom  $,  obtained  by  the  formula  «+  v    —  ,  <v/(a2-f 

we  obtain  the  following  approximations  by  excess, 

The  second  process  then  gives  one  of  Archiuiedes's  results,  V 
neither  of  the  two  processes  gives  the  other,  £££,  directly.    The  latter 

can,  however,  be  obtained  by  using   the  formula  that,  if  .-<-,  then U  (J, 

a      ma  +  nc      c 

b      mb  -f-  nd      d 

For  we  can  obtain  '{'i$  from  J  J  and  ̂ V*  thus  :  =  —  ,  or  from 

u.       ....         11.97-7      1060      265  . 
Si  and  i  thus:   n   56^j  «  gl2  =  ̂   ;  and  so  on.     Or  again  *&#  can 
t      ,A  -     j^        IMHT-       i  «-  .i         18817497      18914      1351 
be  obtained  from  !8§Ji  and  $4  thus:  108644.56=  1U920  =  ̂ gg-- 

The  advantage  of  the  method  is  that,  as  compared  with  that  of  con- 
tinued fractions,  it  is  a  veiy  rapid  way  of  arriving  at  a  close  approxi- 

mation. G  anther  has  shown  that  the  (wM  l)th  approximation  obtained 

by  Heron's  formula  is  the  2"'tk  obtained  by  continued  fractions.  ('Die 
quadratischen  Iriationahtaten  der  Alten  und  deren  Entwickelungs- 
methodeii  in  Abhandlunyen  zur  Gcxch.  d.  Math.  iv.  1882,  pp.  83-6.) 
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is  given  as  approximately  8  —  TV  In  Metrica  I,  9,  as  we 
have  seen,  \/(63)  is  given  as  7|  £  £  T^,  which  was  doubtless 
obtained  from  the  formula  (1)  as 

The  above  seems  to  be  the  only  classical  rule  which  has 

been  handed  down  for  finding  second  and  further  approxi- 
mations to  the  value  of  a  surd.  But,  although  Heron  thus 

shows  how  to  obtain  a  second  approximation,  namely  by 
formula  (2),  he  does  not  seem  to  make  any  direct  use  of 
this  method  himself,  and  consequently  the  question  how  the 
approximations  closer  than  the  first  which  are  to  be  found  in 
his  works  were  obtained  still  remains  an  open  one. 

(y)   Quadrilaterals. 

It  is  unnecessary  to  give  in  detail  the  methods  of  measuring 

the  areas  of  quadrilaterals  (chaps.  11-16).  Heron  deals  with 
the  following  kinds,  the  parallel-  trapezium  (isosceles  or  non- 
isosceles),  the  rhombus  and  rhomboid,  and  the  quadrilateral 
which  has  one  angle  right  and  in  which  the  four  sides  have 
given  lengths.  Heron  points  out  that  in  the  rhombus  or 
rhomboid,  and  in  the  general  case  of  the  quadrilateral,  it  is 
necessary  to  know  a  diagonal  as  well  as  the  four  sides.  The 
mensuration  in  all  the  cases  reduces  to  that  of  the  rectangle 
and  triangle. 

(8)   The  regular  'polygons  with  3,  4,  5,  6',  7,  #,  ,9,  10  ',  11, or  12  sides. 

Beginning  with  the  equilateral  triangle  (chap.  17),  Heron 
proves  that,  if  a  be  the  side  and  p  the  perpendicular  from 

a  vertex  on  the  opposite  side,  a2  :ya  =  4  :  3,  whence 

a>:^2a2  =  4:3  =  16:  12, 

so  that  a4  :  (A  ABC)*  =16:3, 

and  (AABCJ*  =  T\a4.     In  the  particular  case  taken  a  =  10 
and  A2  =  1875,  whence  A  =  43^  nearly. 

Another  method  is  to  use  an  approximate  value  for  </3  in 

the  formula  \/3  .  &2/4.  This  is  what  is  done  in  the  Geometrica 
14  (10,  Heib.),  where  we  are  told  that  the  area  is  (? 
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now  J  +  ̂o  =  if  =  i"(fS)>  so  ̂ h&i  ̂ e  Approximation  used  by 
Heron  for  \/3  is  here  ff  .  For  the  side  10,  the  method  gives 
the  same  result  as  above,  for  %%  .  100  =  43£. 

The  regular  pentagon  is  next  taken  (chap.  18).  Heron 
premises  the  following  lemma. 

Let  ABC  be  a  right-angled  triangle,  with  the  angle  A  equal 
to  f  A  Produce  AC  to  0  so  that  CO  =  AC 
If  now  AO  is  divided  in  extreme  and 

mean  ratio,  AB  is  equal  to  the  greater 
segment.  (For  produce  AB  to  D  so  that 
AD  =  40,  and  join  BO,  DO.  Then,  since 
A  DO  is  isosceles  and  the  angle  at  A=.\R, 
ZA/)0  =  £AOJ)  =  $Rt  and,  from  the 
equality  of  the  triangles  4  #(7,  OBG, 
LAOE  =  Z7J40  =  f  B.  It  follows  that 
the  triangle  4Z)0  is  the  isosceles  triangle  of  Eucl.  IV.  10,  and 
AD  is  divided  in  extreme  and  mean  ratio  in  B.)  Therefore, 

says  Heron,  (BA  +  ACf  =  5  AC*.  [This  is  Eucl.  XIII.  1.] 
Now,  since  Z  BOG  =  f  jK,  if  /JGf  be  produced  to  #  so  that 

CE  =  -BO,  5A7  subtends  at  0  an  angle  equal  to  \  R,  and  there- 
fore BE  is  the  side  of  a  regular  pentagon  inscribed  in  the 

circle  with  0  as  centre  and  OB  as  radius.  (This  circle  also 
passes  through  7),  and  BJ)  is  the  side  of  a  regular  decagon  in 
the  same  circle.)  If  now  BO  =  AB  =  r,  OC  =  p,  BE  =  a, 

we  have  from  above,  (r-hy;)2  =  5^,  whence,  since  \/5  is 
approximately  f  ,  we  obtain  approximately  r  =  f  />,  and 
£a  =  £/>,  so  that  />  =  |a.  Hence  ?pa  =  %a\  and  the  area 

of  the  pentagon  =  fa2.  Heron  adds  that,  if  we  take  a  closer 
approximation  to  \/5  than  |,  we  shall  obtain  the  area  still 

more  exactly.  In  the  Geometry  l  the  formula  is  given  as  ̂ a2. 
The  regular  hejcayon  (chap.  19)  is  simply  6  times  the 

equilateral  triangle  with  the  same  side.  If  A  be  the  area 
of  the  equilateral  triangle  with  side  a,  Heron  has  proved 

that  A2  =  ̂ a4  (Metrica  I.  17),  hence  (hexagon)2  =  a^a4.  If, 
e.g.  a  =  10,  (hexagon)2  =  67500,  and  (hexagon)  =  259  nearly. 
In  the  Geometry2  the  formula  is  given  as  ̂ a-,  while  'another 
book'  is  quoted  as  giving  6  (J  +T1Ty)c(2;  it  is  added  that  the 
latter  formula,  obtained  from  the  area  of  the  triangle,  (^  +  Yfr)tt2, 
represents  the  more  accurate  procedure,  and  is  fully  set  out  by 

1  Geom.  102  (21,  14,  Heib.).  2  Ib.  102  (21,  16,  17,  Heib.). 
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Heron.     As  a  matter  of  fact,  however,  6  (^  +  ̂ )  =  -^  exactly, 
and  only  the  Metrioa  gives  the  more  accurate  calculation. 

The  regular  heptagon. 

Heron  assumes  (chap.  20)  that,  if  a  be  the  side  and  r  the 

radius  of  the  circumscribing  circle,  a  =  |r,  being  approxi- 
mately equal  to  the  perpendicular  from  the  centre  of  the 

circle  to  the  side  of  the  regular  hexagon  inscribed  in  it  (for  £- 
is  the  approximate  value  of  ̂   \/3).  This  theorem  is  quoted  by 

Jordanus  Nemorarius  (d.  1237)  as  an  'Indian  rule';  he  pro- 
bably obtained  it  from  Abu'l  Wafa  (940-98).  The  Metrica 

shows  that  it  is  of  Greek  origin,  and,  if  Archimedes  really 
wrote  a  book  on  the  heptagon  in  a  circle,  it  may  be  due  to 
him.  If  then  p  is  the  perpendicular  from  the  centre  of  the 
circle  on  the  side  (a)  of  the  inscribed  heptagon,  r/(%a)  =  S/3% 

or  16/7,  whence  p2/(^a}'2  =  -2^V-,  and  p/^i  =  (approxi- 
mately) HJ/7  or  43/21.  Consequently  the  area  of  the 

heptagon  =  7  .  %pa  =  7  .  f|a-  =  f  f  a'-. 
The  regular  octagon,  decagon  and  dodecagon. 

In  these  cases  (chaps.  21,  23,  25)  Heron  finds  p  by  drawing 
the  perpendicular  00  from  0,  the  centre  of  the 
circumscribed  circle,  on  a  side  AB>  and  then  making 
the  angle  OA D  equal  to  the  angle  AOD. 

For  the  octagon, 

/.ADC  =  %R,  and  p  =  £a(l+  v/2)  =  £a(l  +  £|) A       C      B 
or  |  a  .  f  §  approximately. 

For  the  decagon, 

LADG  =  f  JJ,  and  -AD :  DC  =5:4  nearly  (see  preceding  page) ; 

hence         AD :  AC  =5:3,  and  p  =  %a  (|  +f )  =  f  r*. 

For  the  dodecagon, 

LADG =  ̂ Ji,  and 7;  =  Ja(2-h  V3)  =  Ja(2  +  J)  =  V~a 

approximately. 

Accordingly  A%  =  -2^-(t2,  ̂ 110  =  \5-a2,  J.12  =  -\5-^2)  where  a  is 
the  side  in  each  ca&e.   » 

The  regular  enneagon  and  hendecagon. 

In   these   cases  (chaps.   22,   24)  the  Table  of  Chords  (i  e. 
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presumably  Hipparchus's  Table)  is  appealed  to.  If  AB  be  the 
side  (a)  of  an  enneagon  or  hendecagon  inscribed  in  a  circle,  AC 
the  diameter  through  A9  we  are  told  that  the  Table  of  Chords 

gives  £  and  -fa  as  the  respective  approximate  values  of  the 
ratio  AB/AC.  The  angles  subtended  at  the  centre  0  by  the 

side  AB  are  10°  and  32^8T°  respec- 
tively, and  Ptolemy's  Table  gives, 

as  the  chords  subtended  by  angles  of 

40°  and  33°  respectively,  41?'  2'  33" 
and  34^  4'  55"  (expressed  in  120th 

parts  of  the  diameter) ;  Heron's 
figures  correspond  to  40^  and  33^ 

36'  respectively.  For  the  euueayoit 
AC*  =  SAB*,  whence  BC*  =  BAB* 

or  approximately  */£-AB*,  and 
BC  =  ~y a ;  therefore  (area  of 

enueagon)  =  S  .  &ABC=-s£a*.  For 
the  hetulecayoib  AC*  =  $£/-AB*  and  BC*  =  -5J/-AB~,  so  that 
BC  =  tya,  and  urea  of  hendecagon  =  ̂ - .  A  ABC  =  -6^a2. 

An  ancient  formula  for  the  ratio  between  the  side  of  any 
regular  polygon  and  the  diameter  of  the  circumscribing  circle 

is  preserved  in  (jet^m.  147  sq.  (=  Pscudo-Dioph.  23-41), 

namely  dn  =  /t-n.     Now  the  ratio  iutn/dn  tends  to  TT  as  the o 

number  (  H)  of  sides  increases,  and  the  formula  indicates  a  time 
when  TT  was  generally  taken  its  =  3. 

(6)  The  Circle. 

Coming  to  the  circle  (Metrica  1.  26)  Heron  uses  Archi- 

medes's  value  for  TT,  namely  -2T^,  making  the  circumference  of 
a  circle  -\4-r  and  the  area  y-J(f2,  where  /•  is  the  radius  and  d  the 
diameter.  It  is  here  that  he  gives  the  more  exact  limits 
for  TT  which  he  says  that  Archimedes  found  in  his  work  On 
Piinthides  and  Cylinder &>  but  which  are  not  convenient  for 
calculations.  The  limits,  as  we  have  seen,  are  given  in  the 

text  as  ̂ ^^\-<rr  <  V^?i~»  au(l  w^h  Tannery's  alteration  to 
*  <  VaS?!-  are  cluite  satisfactory.1 

1  See  vol.  i,  pp.  232-3. 
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(£)    Segment  of  a  circle. 

According  to  Heron  (Metrica  I.  30)  the  ancients  measured 
the  area  of  a  segment  rather  inaccurately,  taking  the  area 
to  be  ̂   (6  +  h)  h,  where  b  is  the  base  and  h  the  height.  He 
conjectures  that  it  arose  from  taking  TT  =  3,  because,  if  we 

apply  the  formula  to  the  semicircle,  the  area  becomes  ^  .  3  r2, 
where  r  is  the  radius.  Those,  he  says  (chap.  31),  who  have 

investigated  the  area  more  accurately  have  added  T1^(^^)i 
to  the  above  formula,  making  it  %(b  +  h)h  +  -r*(i^)2'  an^  ̂ s 
seems  to  correspond  to  the  value  3^  for  TT,  since,  when  applied 

to  the  semicircle,  the  formula  gives  ̂ (3r2  +  ̂ r2).  He  adds 
that  this  formula  should  only  be  applied  to  segments  of 
a  circle  less  than  a  semicircle,  and  not  even  to  all  of  these,  but 

only  in  cases  where  b  is  not  greater  than  3  h.  Suppose  e.g. 

that  b  =  60,  h  =  1  ;  in  that  case  even  T1^(|6)2=  ̂   .  900  =  64f  , 
which  is  greater  even  than  the  parallelogram  with  60,  1  as 
sides,  which  again  is  greater  than  the  segment.  Where  there- 

fore 6  >  3  h,  he  adopts  another  procedure. 

This  is  exactly  modelled  on  Archimedes's  quadrature  of 
a  segment  of  a  parabola.  Heron  proves  (Metrica  I.  27-29,  32) 
that,  if  ADB  be  a  segment  of  a  circle,  and  1)  the  middle  point 

of  the  arc,  and  if  the  arcs  AD,  DB  be 
similarly  bisected  at  E,  F, 

A  ADB  <  4  (  A  AED  +  A  DFB). 

A  Similarly,  if  the  same  construction  be 
made  for  the  segments  AED,  BFD,  each 

of  them  is  less  than  4  times  the  sum  of  the  two  small  triangles 
in  the  segments  left  over.     It  follows  that 

(area  of  segmt.  ADB)  >  A  ADB  {  \  *  i  +  (i)2  +  ...} 

'  If  therefore  we  measure  the  triangle,  and  add  one-third  of 
it,  we  shall  obtain  the  area  of  the  segment  as  nearly  as 

possible.'  That  is,  for  segments  in  which  b  >  3ft,  Heron 
takes  the  area  to  be  equal  to  that  of  the  parabolic  segment 
with  the  same  base  and  height,  or  f  bh. 

In   addition   to  these   three   formulae  for  8,  the  area  of 
a  segment,  there  are  yet  others,  namely 

8  =  i  (6  +  h)  h(l+  £T),     Mensurae  29, 
l  +      ,  „          31. 
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The  first  of  these  formulae  is  applied  to  a  segment  greater 

than  a  semicircle,  the  second  to  a  segment  less  than  a  semi- 
circle. 

In  the  Metrica  the  area  of  a  segment  greater  than  a  semi- 
circle is  obtained  by  subtracting  the  area  of  the  complementary 

segment  from  the  area  of  the  circle. 
From  the  Geometrica l  we  find  that  the  circumference  of  the 

segment  less  than  a  semicircle  was  taken  to  be  V(h*  +  4 h?)  +  $h 

or  alternatively   V(l?+±W)+  \  v/(/;2-f  4/<2)-&}f- 

(77)   Ellipse,  parabolic  wjiueut,  surface  ofcyliiuter,  right 
cone,  sphere  awl  segment  of  sphere. 

After  the  area  of  an  ellipse  (Metrica  I.  34)  and  of  a  parabolic 
segment  (chap.  35),  Heron  gives  the  surface  of  a  cylinder 
(chap.  36)  and  a  right  cone  (chap.  37) ;  in  both  cases  he  unrolls 
the  surface  on  a  plane  so  that  the  surface  becomes  that  of  a 
parallelogram  in  the  one  case  and  a  sector  of  a  circle  in  the 
other.  For  the  surface  of  a  sphere  (chap.  38)  and  a  segment  of 

it  (chap.  39)  he  simply  uses  Archimedes' s  results. 
Book  I  ends  with  a  hint  how  to  measure  irregular  figures, 

plane  or  not.  If  the  figure  is  plane  and  bounded  by  an 
irregular  curve,  neighbouring  points  are  taken  on  the  curve 
such  that,  if  they  are  joined  in  order,  the  contour  of  the 
polygon  so  formed  is  not  much  different  from  the  curve 
itself,  and  the  polygon  is  then  measured  by  dividing  it  into 
triangles.  If  the  surface  of  an  irregular  solid  figure  is  to  be 
found,  you  wrap  round  it  pieces  of  very  thin  paper  or  cloth, 
enough  to  cover  it,  and  you  then  spread  out  the  paper  or 
cloth  and  measure  that. 

Book  II.     Measurement  of  Volumes. 

The  preface  to  Book  II  is  interesting  as  showing  how 
vague  the  traditions  about  Archimedes  had  already  become. 

*  After  the  measurement  of  surfaces,  rectilinear  or  not,  it  is 
proper  to  proceed  to  the  solid  bodies,  the  surfaces  of  which  we 
have  already  measured  in  the  preceding  book,  surfaces  plane 
and  spherical,  conical  and  cylindrical,  and  irregular  surfaces 
as  well.  The  methods  of  dealing  with  these  solids  are,  in 

1  Cf.  Geom.,  94,  95  (19.  2,  4,  Heib.),  97.  4  (20.  7,  Heib.). 
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view  of  their  surprising  character,  referred  to  Archimedes  by 
certain  writers  who  give  the  traditional  account  of  their 
origin.  But  whether  they  belong  to  Archimedes  or  another, 
it  is  necessary  to  give  a  sketch  of  these  methods  as  well/ 

The  Book  begins  with  generalities  about  figures  all  the 
sections  of  which  parallel  to  the  base  are  equal  to  the  base 
and  similarly  situated,  while  the  centres  of  the  sections  are  on 
a  straight  line  through  the  centre  of  the  base,  which  may  be 
either  obliquely  inclined  or  perpendicular  to  the  base  ;  whether 

the  said  straight  line  ('  the  axis  ')  is  or  is  not.  perpendicular  to 
the  base,  the  volume  is  equal  to  the  product  of  the  area  of  the 
base  and  the  perpendicular  height  of  the  top  of  the  figure 

from  the  base.  The  term  '  height  '  is  thenceforward  restricted 
to  the  length  of  the  perpendicular  from  the  top  of  the  figure 
on  the  base. 

(a)  Cone,  cylinder,  parallelepiped  (prism),  pyramid,  and 

frustum. 

II.  1-7  deal  with  a  cone,  a  cylinder,  a  '  parallelepiped  '  (the 
base  of  which  is  not  restricted  to  the  parallelogram  but  is  in 
the  illustration  given  a  regular  hexagon,  so  that  the  figure  is 
more  properly  a  prism  with  polygonal  bases),  a  triangular 
prism,  a  pyramid  with  base  of  any  form,  a  frustum  of  a 
triangular  pyramid  ;  the  figures  are  in  general  oblique. 

(ft)  Wedge-shaped  solid  (/Soo/LuV/coy  or 

II.  8  is  a  case  which  is  perhaps  worth  giving.  It  is  that  of 
a  rectilineal  solid,  the  base  of  which  is  a  rectangle  ABCD  and 
has  opposite  to  it  another  rectangle  EFGH,  the  sides  of  which 
are  respectively  parallel  but  not  necessarily  proportional  to 
those  of  ABCD.  Take  AK  equal  to  EF,  and  BL  equal  to  FO. 
Bisect  BK,  GL  in  V,  W,  and  draw  KRPU,  VQOM  parallel  to 
AD,  and  LQRN,  WOPT  parallel  to  AB.  Join  FK,  GR,  LG, 
GU,  HN. 
Then  the  solid  is  divided  into  (1)  the  parallelepiped  with 

AR,  EG  as  opposite  faces,  (2)  the  prism  with  KL  as  base  and 
FG  as  the  opposite  edge,  (3)  the  prism  with  NU  as  base  and 
GH  as  opposite  edge,  and  (4)  the  pyramid  with  RLCU  as  base 

and  G  as  vertex.  Let  h  be  the  *  height  '  of  the  figure.  Now 
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the  parallelepiped  (1)  is  on  A  R  as  base  and  has  height  h  ;  the 
prism  (2)  is  equal  to  a  parallelepiped  on  KQ  as  base  and  with 
height  h  ;  the  prism  (3)  is  equal  to  a  parallelepiped  with  NP 
as  base  and  height  h;  and  finally  the  pyramid  (4)  is  equal  to 
a  parallelepiped  of  height  h  and  one-third  of  RC  as  base. 

w 

Therefore  the  whole  solid  is  equal  to  one  parallelepiped 
with  height  h  and  base  equal  to  (AR  +  KQ  +  NP  +  RO  +  $RO) 
or  AO  +  $RO. 

Now,  if  AB  =  a,  #(7  =  ft,  EF  =  r,  FG  =  d, 

AV  =  *  («  4-  c),  4T7  =  J(6  +  rf),  £Q  =  i(c<-c),  RP  =  *(6-d). 
Therefore  volume  of  solid 

The  solid  in  (juestion  is  evidently  the  true  jSoycuriror  ('  little 
altar'),  for  the  formula  is  used  to  calculate  the  content  of 
a  ftwfjLio-Kos  in  titereom.  II.  40  (68,  Heib!)  It  is  also,  I  think, 

the  <r<l>r)vl<rKo$  ('  little  wedge  '),  a  measurement  of  which  is 
given  in  tftereom.  1.  26  (25,  Heib.)  It  is  true  that  the  second 

term  of  the  first  factor  -fa  (a  —  c)  (&  —  d)  is  there  neglected, 
perhaps  because  in  the  case  taken  (a  =••  7,  6  =  6,  c  =  5,  d  =  4) 
this  term  (=  £)  is  small  compared  with  the  other  (=  30).  A 

particular  a-^rj^ia-Ko^  in  which  either  c  =  a  or  d  =  6,  was 
called  &vv£\  the  second  term  in  the  factor  of  the  content 
vanishes  in  this  case,  and,  if  e.g.  c  =  a,  the  content  is  ̂ (6  +  d)ah. 
Another  /Ja>/z/ovco9  is  measured  in  Stereom.  I.  35  (34,  Heib.), 

where  the  solid  is  inaccurately  called  'a  pyramid  oblong 
and  truncated  (/c^Aoupoy)  or  half  -perfect  '. 
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The  method  is  the  same  mutatis  mutandis  as  that  used  in 

II.  6  for  the  frustum  of  a  pyramid  with  any  triangle  for  base, 
and  it  is  applied  in  II.  9  to  the  case  of  a  frustum  of  a  pyramid 
with  a  square  base,  the  formula  for  which  is 

where  a,  a'  are  the  sides  of  the  larger  and  smaller  bases 
respectively,  and  h  the  height;  the  expression  is  of  course 

easily  reduced  to  ̂   h(a?  +  aa'  +  a'2). 

(y)  Frustum  of  cone,  sphere,  and  segment  thereof. 

A.  frustum  of  a  cone  is  next  measured  in  two  ways,  (1)  by 

comparison  with  the  corresponding  frustum  of  the  circum- 
scribing pyramid  with  square  base,  (2)  directly  as  the 

'difference  between  two  cones  (chaps.  9,  10).  The  volume  of 
the  frustum  of  the  cone  is  to  that  of  the  frustum  of  the 

circumscribing  pyramid  as  the  area  of  the  base  of  the  cone  to 

that  of  the  base  of  the  pyramid  ;  i.e.  the  volume  of  the  frus- 
tum of  the  cone  is  £  TT,  or  ̂ J,  times  the  above  expression  for 

the  frustum  of  the  pyramid  with  a2,  a'2  as  bases,  and  it 
reduces  to  ̂ nh  (d*  +  aa'  +  a'2),  where  a,  a'  are  the  diameters 
of  the  two  bases.  For  the  sphere  (chap,  in  Heron  uses 

Archimedes's  proposition  that  the  circumscribing  cylinder  is 
1^  times  the  sphere,  whence  the  volume  of  the  sphere 

=  f  .tZ.-H^2  or  Ir^3;  f°r  a  segment  of  a  sphere  (chap.  12)  he 
likewise  uses  Archimedes's  result  (On  the  Sphere  and  Cylinder, 
II.  4). 

(8)  Anchor-ring  or  tore. 

The  anchor-ring  or  tore  is  next  measured  (chap.  13)  by 
means  of  a  proposition  which  Heron  quotes  from  Dionyso- 
dorus,  and  which  is  to  the  effect  that,  if  a  be  the  radius  of  either 
circular  section  of  the  tore  through  the  axis  of  revolution,  and 
c  the  distance  of  its  centre  from  that  axis, 

?ra2  :  ac  =  (volume  of  tore)  :  ?rc2  .  2  a 

[whence  volume  of  tore  =  2ir2ca2].  In  the  particular  case 
taken  a  =  6,  c  =  14,  and  Heron  obtains,  from  the  proportion 
113^:84  =  F:7392,  F=  9956f  But  he  shows  that  he  is 
aware  that  the  volume  is  the  product  of  the  area  of  the 
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describing  circle  and  the  length  of  the  path  of  its  centre* 
For,  he  says,  since  1  4  is  a  radius  (of  the  path  of  the  centre), 
28  is  its  diameter  and  88  its  circumference.  'If  then  the  tore 
be  straightened  out  and  made  into  a  cylinder,  it  will  have  88 
for  its  length,  and  the  diameter  of  the  base  of  the  cylinder  is 
12;  so  that  the  solid  content  of  the  cylinder  is,  as  we  have 

seen,  9950$'  (=  88  .-^ 

(e)  The  tivo  special  solids  of  Archimedes  8  '  Method  '. 
Chaps.  14,15  give  the  measurement  of  the  two  remarkable 

solids  of  Archimedes's  Method,  following  Archimedes's  results. 

(£)  The  Jive  regular  solids. 

In  chaps.  16-18  Heron  measures  the  content  of  the  five 
regular  solids  after  the  cube.  He  has  of  course  in  each  case 

to  find  the  perpendicular  from  the  centre  of  the  circumscrib- 
ing sphere  on  any  face.  Let  p  be  this  perpendicular,  a  the 

edge  of  the  solid,  r  the  radius  of  the  circle  circumscribing  any 
face.  Then  (1)  for  the  tetrahedron 

a2  =  3r2,  p*  =  a2-£a*  =  §«2. 

(2)  In  the  case  of  the  octahedron,  which  is  the  sum  of  two 

equal  pyramids  on  a  square  base,  the  content  is  one-third 
of  that  base  multiplied  by  the  diagonal  of  the  figure, 

i.e.  \  .a2.  */2a  or  £\/2.a3;  in  the  case  taken  a  =  7,  and 
Heron  takes  10  as  an  approximation  to  \/(2.  72)  or  \/98,  the 
result  being  |.  10.49  or  163J.  (3)  In  the  case  of  the  icosa- 
hedron  Heron  merely  says  that 

p  :  a  =  93  :  127  (the  real  value  of  the  ratio  is  $     77  +  3  s/5\  ̂ 

(4)  In   the    case    of    the    dodecahedron,    Heron     says    that 

p:a  =  9  :  8  (the  true  value  is  ̂      /  >  and,  if  \/5  is 

put  equal  to  f  ,  Heron's  ratio  is  readily  obtained). 
Book  II  ends  with  an  allusion  to  the  method  attributed  to 

Archimedes  for  measuring  the  contents  of  irregular  bodies  by 
immersing  them  in  water  and  measuring  the  amount  of  fluid 
displaced. 
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Book  III.     Divisions  of  figures. 

This  book  has  much  in  common  with  Euclid's  book  On  <Uri- 
sions  (of  figures),  the  problem  being  to  divide  various  figures, 
plane  or  solid,  by  a  straight  line  or  plane  into  parts  having 
a  given  ratio.  In  III.  1-3  a  triangle  is  divided  into  two  parts 
in  a  given  ratio  by  a  straight  line  (1)  passing  through  a  vertex, 
(2)  parallel  to  a  side,  (3)  through  any  point  on  a  side. 

III.  4  is  worth  description:  'Given  a  triangle  ARC,  to  cut 
out  of  it  a  triangle  DEF  (where  D,  E,  F  are  points  on  the 
sides  respectively)  given  in  magnitude  and  such  that  the 
triangles  AEF,  BFD,  CED  may  be  equal  in  area/  Heron 
assumes  that,  if  7),  E,  F  divide  the  sides  so  that 

AF:FB=BD:DC  =  CE:EA, 

the  latter  three  triangles  are  equal  in  area. 
He  then  has  to  find  the  value  of 

each  of  the  three  ratios  which  will 

result  in  the  triangle  DEF  having  a 

given  area. 
Join  AD. 

Since     BD:CD  =  CE:EA, 

BC:CD=CA:AE9 

and  &ABC :  &ADC=  &ADC:  &ADE. 

Also  &ABC:  &ABD  =  &ADC-.AEDC. 

But  (since  the  area  of  the  triangle  DEF  is  given)  A  EDO  is 
given,  as  well  as  A  ABC.     Therefore  AABD  x  A  A  DC  is  given. 

Therefore,  if  AH  be  perpendicular  to  BC, 

AH*.  BD. DC  is  given; 

therefore  BD .  DC  is  given,  and,  since  BC  is  given,  D  is  given 
in  position  (we  have  to  apply  to  BC  a  rectangle  equal  to 
BD .  DC  and  falling  short  by  a  square). 

As  an  example  Heron  takes  AB  =  13,  BC  =  14,  CA  =  15, 
ADEF  =  24.     &ABC  is  then  84,  and  AH  =  1 2. t 

Thus  A  EDO  =  20,  and  AH2 .  BD .  DC  =  4  .  84  .  20  =  6720  ; 

therefore    BD.DC^  6720/144  or  46§  (the  text  omits  the  §). 

Therefore,  says  Heron,  BD  =  8  approximately.     For  8  we 



DIVISIONS   OF   FIGURES  337 

should  Apparently  have  8j,  since  DO  is  immediately  stated  to 
be  5^  (not  6).     That  is,  in  solving  the  equation 

=  0, 

which  gives  #  =  7±  ̂ (2^),  Heron  apparently  substituted  2J  or 
|  for  2^,  thereby  obtaining  1^  as  an  approximation  to  the 
surd. 

(The  lemma  assumed  in  this  proposition  is  easily  proved. 
Let  m  :  »  be  the  ratio  AF:  FB  =  RD  :  DC  =  CE:EA. 

Then  AF—  mc/(m  +  it),  FB  =  nc/(m  +  n),  CE  =  mb/(m  +  71), 
KA  =  nb/(m  +  n),  &c. 

Hence 

<  =   --I-!1:.-  =&BDF/AABC=  ACDE/AAfid, 

(m  +  n)£ and  the  triangles  AFE,  BDF,  CDE  are  equal. 

Pappus 1  has  the  proposition  that  the  triangles  A  BC,  DEF 
have  the  same  centre  of  gravity.) 

Heron  next  shows  how  to  divide  a  parallel-trapezium  into 
two  parts  in  a  given  ratio  by  a  straight  line  (1)  through  the 
point  of  intersection  of  the  non-parallel  sides,  (2)  through  a 
given  point  on  one  of  the  parallel  sides,  (3)  parallel  to  the 
parallel  sides,  (4)  through  a  point  on  one  of  the  non-parallel 
sides  (III.  5-8).  III.  9  shows  how  to  divide  the  area  of  a 
circle  into  parts  which  have  a  given  ratio  by  means  of  an 
inner  circle  with  the  same  centre.  For  the  problems  begin- 

ning with  III.  10  Heron  says  that  numerical  calculation  alone 
no  longer  suffices,  but  geometrical  methods  must  be  applied. 
Threw  problems  are  reduced  to.  problems  solved  by  Apollonius 
in  his  treatise  On,  mdting  off  an  area.  The  first  of  these  is 
III.  10,  to  cut  off  from  the  angle  of  a  triangle  a  given 
proportion  of  the  triangle  by  a  straight  line  through  a  point 
on  the  opposite  side  produced.  III.  11,  12,  13  show  how 
to  cut  any  quadrilateral  into  parts  in  a  given  ratio  by  a 
straight  line  through  a  point  (1)  on  a  side  (a)  dividing  the 
side  in  the  given  ratio,  (6)  not  so  dividing  it,  (2)  not  on  any 
side,  (a)  in  the  case  where  the  quadrilateral  is  a  trapezium, 
i.e.  has  two  sides  parallel,  (6)  in  the  case  where  it  is  not;  the 

last  case  (/>)  is  reduced  (like  III.  10)  to  the  ;  cutting-off*  of  an 

1  Pappus,  viii,  pp.  1034-8.     Of.  pp.  430  2  post. 
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area*.     These    propositions  are    ingenious  and    interesting. 
III.  11  shall  be  given  as  a  specimen. 

Given  any  quadrilateral  ABCD  and  a  point  E  on  the  side 
AD,  to  draw  through  E  a  straight  line  EF  which  shall  cut 

the  quadrilateral  into  two  parts  in 
the  ratio  of  AE  to  ED.  (We  omit 
the  analysis.)  Draw  (76?.  parallel 
to  DA  to  meet  AB  produced  in  G. 

Join  BE,  and  draw  GH  parallel 
to  BE  meeting  BC  in  H. 

A  i  D        Join  CE,  EH,  EG. 

Then  &GBE=  AHBE  and,  adding  &ABE  to  each,  we  have 

A AGE=  (quadrilateral  ABHE). 

Therefore  (quadr.  ABIIE) :  &CED  =  A  GAE:  ACED 
=  AE:ED. 

But  (quadr.  ABHE)  and  AC  ED  are  parts  of  the  quadri- 
lateral, and  they  leave  over  only  the  triangle  EHC.  We  have 

therefore  only  to  divide  &E1W  in  the  same  ratio  AK-.ED  by 
the  straight  line  EF.  This  is  done  by  dividing  HO  at  F  in 
the  ratio  AE:  ED  and  joining  EF. 

The  next  proposition  (III.  1 2)  is  easily  reduced  to  this. 
If  AE:  ED  is  not  equal  to  the  given  ratio,  let  F  divide  AD 

in  the  given  ratio,  and  through  F 
draw  FG  dividing  the  quadri- 

lateral in  the  given  ratio  (III.  11). 
Join  EG,  and  draw  FH  parallel 

to  EG.  Let  FH  meet  BC  in  7/, 
and  join  EH. 

A  FED         Then  is  EH  the  required  straight 
line  through  E  dividing  the  quad- 

rilateral in  the  given  ratio. 
For  &FGE  =  AHGE.    Add  to  each  (quadr.  GEDC). 
Therefore  (quadr.  CGFD)  =  (quadr.  CHED). 
Therefore  EH  divides  the  quadrilateral  in  the  given  ratio, 

just  as  FG  does. 
The  case  (III.  13)  where  E  is  hot  on  a  side  of  the  quadri- 

lateral [(2)  above]  takes  two  different  forms  according  as  the 
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two  opposite  sides  which  the  required  straight  line  cuts  are 
(a)  parallel  or  (6)  not  parallel.  In  the  first  case  (a)  the 

problem  reduces  to  drawing  a  straight  line  through  E  inter- 
secting the  parallel  sides  in  points  F,  G  such  that  BF+AG 

is  equal  to  a  given  length.  In  the  second  case  (b)  where 
BC,  AD  are  not  parallel  Heron  supposes  them  to  meet  in  //. 
The  angle  at  //  is  then  given,  and  the  area  ABH.  It  is  then 
a  question  of  cutting  off  from  a  triangle  with  vertex  //  a 

triangle  IIF(f  of  given  area  by  a  straight  line  drawn  from  E, 

which  is  again  a  problem  in  Apollonius's  Cutting-off  of  an 

HAG  D 

area.  The  auxiliary  problem  in  case  (a)  is  easily  solved  in 
III.  16.  Measure  AH  equal  to  the  given  length.  Join  BH 
and  bisect  it  at  M.  Then  EM  meets  BO,  AD  in  points  such 

that  BF+  AG= the  given  length.  For.  by  congruent  triangles, 
BF  =  Gil. 

The  same  problems  are  solved  for  the  case  of  any  polygon 
in  III.  14,  15.  A  sphere  is  then  divided  (III.  17)  into  segments 
such  that  their  surfaces  are  in  a  given  ratio,  by  means  of 

Archimedes,  On  the  Sphere  and  Cylinder,  II.  3,  just  as,  in 
III.  23,  Prop.  4  of  the  same  Book  is  used  to  divide  a  sphere 
into  segments  having  their  volumes  in  a  given  ratio. 

III.  18  is  interesting  because  it  recalls  an  ingenious  pro- 

position in  Euclid's  book  On  Divisions.  Heron's  problem  is 
*  To  divide  a  given  circle  into  three  equal  parts  by  two  straight 

Z  2 
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lines  ',  and  he  observes  that,  '  as  the  problem  is  clearly  not 
rational,  we  shall,  for  practical  convenience,  make  the  division, 

as  exactly  as  possible,  in  the  follow- 
ing way/  AE  is  the  side  of  an 

equilateral  triangle  inscribed  in  the 
circle.  Let  CD  be  the  parallel 
diameter,  0  the  centre  of  the  circle, 

and  join  AO,  BO,  AD,  DB.  Then 
shall  the  segment  ABD  be  very 

nearly  one-third  of  the  circle.  For, 
since  AB  is  the  side  of  an  equi- 

lateral triangle  in  the  circle,  the 
sector  OAEB  is  one-third  of  the 

circle.  And  the  triangle  AOB  forming  part  of  the  sector 
is  equal  to  the  triangle  ADB\  therefore  the  segment  AEB 

plus  the  triangle  ABD  is  equal  to  one-third  of  the  circle, 
and  the  segment  ABD  only  differs  from  this  by  the  small 

segment  on  BD  as  base,  which  may  be  neglected.  Euclid's 
proposition  is  to  cut  off  one-third  (or  any  fraction)  of  a  circle 
between  two  parallel  chords  (see  vol.  i,  pp.  429-30). 

III.  19  finds  a  point  D  within  any  triangle  ABC  such  that 
the  triangles  DBC9  DCA,  DAB  are  all  equal  ;  and  then  Heron 
passes  to  the  division  of  solid  figures. 
The  solid  figures  divided  in  a  given  ratio  (besides  the 

sphere)  are  the  pyramid  with  base  of  any  form  (III.  20), 
the  cone  (III.  21)  and  the  frustum  of  a  cone  (III.  22),  the 
cutting  planes  being  parallel  to  the  base  in  each  case.  These 
problems  involve  the  extraction  of  the  cube  root  of  a  number 
which  is  in  general  not  an  exact  cube,  and  the  point  of 

interest  is  Heron's  method  of  approximating  to  the  cube  root 
in  such  a  case.  Take  the  case  of  the  cone,  and  suppose  that 
the  portion  to  be  cut  off  at  the  top  is  to  the  rest  of  the  cone  as 
m  to  n.  We  have  to  find  the  ratio  in  which  the  height  or  the 
edge  is  cut  by  the  plane  parallel  to  the  base  which  cuts 
the  cone  in  the  given  ratio.  The  volume  of  a  cone  being 

^7rc2A,  where  c  is  the  radius  of  the  base  and  h  the  height, 
we  have  to  find  the  height  of  the  cone  the  volume  of  which 

is  -  .virc2h,  and,  as  the  height  hf  is  to  the  radius  cf  of *  h 

its  base  as  h  is  to  c,  we  have  simply  to  find  //  where 
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=  m/(m  +  7&).  Or,  if  we  take  the  edges  e,  e'  instead 
of  the  heights,  e'3/e3  =  m/(m  +  7i).  In  the  case  taken  by 
Heron  m  :  u  =  4  :  1,  and  e  =  5.  Consequently  e'3  =  £  .  53  =  100. 
Therefore,  says  Heron,  e4=  4^  approximately,  and  in  III.  20 
he  shows  how  this  is  arrived  at. 

Approximation  to  the  cube  root  of  a  iwu-cube  number. 
'  Take  the  nearest  cube  numbers  to  100  both  above  and 

below;  these  are  125  and  64. 
Then  125-100  =  25. 
and  100-    64  =  36. 

Multiply  5  into  36;  this  gives  180.  Add  100,  making  280. 
(Divide  180  by  280);  this  gives  T\.  Add  this  to  the  side  of 
the  smaller  cube  :  this  gives  4X\.  This  is  as  nearly  as  possible 

the  cube  root  ("cubic  side")  of  100  units.' 

We  have  to  conjecture  Heron's  formula  from  this  example. 
Generally,  if  a:i  <  A  <  (a+  l):i,  suppose  that  A—  a?  =  dl9  and 
(a+l)*  —  A  =  t/2.  The  best  suggestion  that  has  been  made 

is  Wertheim's,1  namely  that  Heron's  formula  for  the  approxi- 

mate   cube   root  was  a+    —         .—*-",  •     The    5    multiplied 

(u  +  ljc^  +  arfg  r 
into  the  36  might  indeed  have  been  the  square  root  of  25  or 
v/6/,,,  and  the  100  added  to  the  180  in  the  denominator  of  the 

fraction  might  have  been  the  original  number  100  (A)  and  not 

4  .25  or  ad^  but  Wertheim's  conjecture  is  the  more  satisfactory 
because  it  can  be  evolved  out  of  quite  elementary  considera- 

tions. This  is  shown  by  G.  Enestrom  as  follows.2  Using  the 
same  notation,  Enestrom  further  supposes  that  x  is  the  exact 

value  of  J/A  ,  and  that  U  —  a)-1  =  8V  •<*  +  1  —x)*  =  52. 
Thus 

5j  =  #3  —  3  it2  a  +  3  tea*  —  aj,  and  3ax(x  —  a)  =  x3  —  a:l  —  8l  =  dl  —  8l  . 

Similarly  from  S2  =  (a+1—  x)*  we  derive 

Therefore 

c/2-52_  3(a4 ~~ 
5  —  a)          ~"  «(a?  —  a) 

_    a  +  1_        a  +  1 "~a(«j—  a)         a 

1  Zeitschr.  f.  Math.  n.  Physik,  xliv,  1899,  hist.-litt.  Abt.,  pp.  1-3, 
2  Bibliotheca  Mathematica,  viiis,  1907-8,  pp.  412-13. 
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and,  solving  for  a;— a,  we  obtain 

x—a  = 

or 

(a 

Since  8V  82  are  in  any  case  the  cubes  of  fractions,  we  may 
neglect  them  for  a  first  approximation,  and  we  have 

(a 

c 
/i\ 
Xl         \ 

III.  22,  which  shows  how  to  cut  a  frustum  of  a  cone  in  a  given 
ratio  by  a  section  parallel  to  the  bases,  shall  end  our  account 
of  the  Metrica.  I  shall  give  the  general  formulae  on  the  left 

and  Heron's  case  on  the  right.  Let  ABED  be  the  frustum, 
let  the  diameters  of  the  bases  be  a,  a',  and  the  height  h. 
Complete  the  cone,  and  let  the  height  of  ODE  be  x. 

Suppose  that  the  frustum  has  to  be  cut  by  a  plane  FG  in 
such  a  way  that 

(frustum  DG) :  (frustum  FB)  =  m  :  u. 

In  the  case  taken  by  Heron 

a  =  28,  a'  =  21,  h  =  12,  m  =  4,  n  =  1. 

Draw  DH  perpendicular  to  AB. 
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Since   (DG) :  (FB)  =  m :  n, 

Now 

(DB)  =  Y$7rh(Q?  +  (ji(Jif' * 

and       (DG)  = 

Let  ?/  be  the  height  (CM)  of  the 
cone  CFG. 

Then  DH:AH  =  CK:KA, 

or    h:%(a— «')  = 

whence  ic  is  known. 

(DG):(Jra)  =  4:l, 

cone  CAS=  (CM)  +  (/)«). 

Now,  says  Heron, 

[He  might  have  said  simply 

This  gives  y  or  CM, 

whence  LM  is  known. 

Now 

so  that  AD  is  known. 

Therefore    DF 

known. 

. 
A 

s 

(DB)  =  5698, 

(DG)  =  4558|. 

i   14.12 x  +  h=  -1-  =  48, 

d5 

and   x  =  48  -12  =  36. 

(cone  £/).#)  =  4158, 

(cone  CFG)  =  4158  +  4558§=8716|, 

(cone  CAB)  =  4158  +  5698  =  9856. 

'' 
8716 

9856  +  4158 

=  87  16|.-^,Y44=  97805, 

whence  y  =  46  approximately. 

Therefore  XJ/  =  y-x  =  10. 

4  ̂   =  (3^  +  1  2- 
=  156}, 

and          AD  =12$. 

Therefore 
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Quadratic  eqfuuttions  solved  in,  Heron. 

We  have  already  met  with  one  such  equation  (in  Metrica 

III.  4),  namely  a?2—  14#  +  46§  =  0,  the  result  only  (x  =  8|) 
being  given.  There  are  others  in  the  Geometrica  where  the 
process  of  solution  is  shown. 

(1)  Geometrica  24,  3  (Heib.).     'Given  a  square  such  that  the 
sum  of  its  area  and  perimeter  is  896  feet:  to  separate  the  area 

from  the  perimeter  '  :  i.e.  x2  4-  4  a;  =  896.     Heron  takes  half  of 
4  and  adds  its  square,  completing  the  square  on  the  left  side. 

(2)  Geometrica  21,  9  and  24,  46  (Heib.)  give  one  and  the  same 

equation,  Geom.  24,  47  another  like  it.     'Given  the  sum  of 
the  diameter,  perimeter  and  area  of  a  circle,  to  find  each 
of  them/ 

The  two  equations  are 

and 

Our  usual  method  is  to  begin  by  dividing  by  ̂   throughout, 

so  as  to  leave  d2  as  the  first  term.  Heron's  is  to  Multiply  by 
such  a  number  as  will  leave  a  square  as  the  first  term.  In  this 

case  he  multiplies  by  154,  giving  H2d2  +  58  .  lid  =  212  .  154 
or  67^,154  as  the  case  may  be.  Completing  the  square, 

he  obtains  (lld-f  29)2  =  32648  +  811  or  10395  +  841.  Thus 
lld  +  29  =  V(33480)  or  ̂ (11236),  that  is,  183  or  106. 
Thus  lid  =  154  or  77,  and  d  =  14  or  7,  as  the  case  may  be. » 

Indeterminate  problems  in  the  Geometrica. 

Some  very  interesting  indeterminate  problems  are  now 
included  by  Heiberg  in  the  Geometrical  Two  of  them  (chap. 

24,  1-2)  were  included  in  the  Geeponicus  in  Hultsch's  edition 
(sections  78,  79;;  the.  rest  are  new,  having  been  found  in  the 
Constantinople  manuscript  from  which  Schone  edited  the 
Metrica.  As,  however,  these  problems,  to  whatever  period 
they  belong,  are  more  akin  to  algebra  than  to  mensuration, 
they  will  be  more  properly  described  in  a  later  chapter  on 
Algebra. 

1  Heronin  Alexandrini  opera,  vol.  iv,  p.  414.  28  sq. 
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The  Dioptra  (rrepl  SiOTTTpas). 

This    treatise  begins  with  a   careful    description  of    the 
dioptra,  an  instrument  which  served  with  the  ancients  for 

the  same  purpose  as  a  theodolite  with  us  (chaps.  1-5).     The 
problems    with    which    the   treatise    goes    on    to    deal    are 

(a)  problems  of  '  heights  and  distances ',  (&)  engineering  pro- 
blems,   (c)    problems   of    mensuration,   to    which    is    added 

(chap.  34)  a  description  of  a  '  hodometer',  or  taxameter,  con- 
sisting of   an    arrangement  of  toothed  wheels   and   endless 

screws  on  the  same  axes  working  on  the  teeth  of  the  next 
wheels    respectively.      The    book    ends    with    the    problem 

(chap.  37),  'With  a  given  force  to  move  a  given  weight  by 
means  of  interacting  toothed  wheels',  which  really  belongs 
to   mechanics,   and   was   apparently  added,  like  some  other 

problems  (e.g.  31,  'to  measure  the  outflow  of,  i.e.  the  volume 
of  water  issuing  from,  a  spring '),  in  order  to  make  the  book 
more  comprehensive.     The  essential  problems  dealt  with  are 
such  as  the  following.     To  determine  the  difference  of  level 
between  two  given  points  (6),  to  draw  a  straight  line  connect- 

ing two  points  the  one  of  which  is  not  visible  from  the  other 
(7),  to  measure  the  least  breadth  of  a  river  (9),  the  distance  of 
two  inaccessible  points  (10),  the  height  of  an  inaccessible  point 
(12),  to  determine  the  difference  between  the  heights  of  two 
inaccessible  points  and  the  position  of  the  straight  line  joining 
them  (13),  the  depth  of  a  ditch  (14) ;  to  bore  a  tunnel  through 
a  mountain  going  straight  from  one  mouth  to  the  other  (15),  to 
sink  a  shaft  through  a  mountain  perpendicularly  to  a  canal 
flowing  underneath  (1(5) ;  given  a  subterranean  canal  of  any 
form,  to  find  on  the  ground    above  a  point  from  which   a 
vertical  shaft  must  be  sunk  in  order  to  reach  a  given  point 
on  the  canal  (for  the  purpose  e.g.  of  removing  an  obstruction) 
(20) ;  to  construct  a  harbour  on  the  model  of  a  given  segment 

of  a  circle,^giveii  the  ends  (17),  to  construct  a  vault  so  that  it 
may  have  a  spherical  surface  modelled  on  a  given  segment 
(18).     The  mensuration  problems  include  the  following:   to 
measure  an   irregular   area,  which  is  done  by  inscribing  a 
rectilineal  figure  and   then   drawing   perpendiculars   to   the 
sides  at  intervals  to  meet  the  contour  (23),  or  by  drawing  one 
straight  line  across  the  area  and  erecting  perpendiculars  from 
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that  to  meet  the  contour  on  both  sides  (24) ;  given  that  all 
the  boundary  stones  of  a  certain  area  have  disappeared  except 

two  or  three,  but  that  the  plan  of  the*  area  is  forthcoming, 
to  determine  the  position  of  the  lost  boundary  stones  (25). 
Chaps.  26-8  remind  us  of  the  Metrica:  to  divide  a  given 
area  into  given  parts  by  straight  lines  drawn  from  one  point 
(26) ;  to  measure  a  given  area  without  entering  it,  whether 
because  it  is  thickly  covered  with  trees,  obstructed  by  houses, 

or  entry  is  forbidden!  (27) ;  chaps.  28-30  =  Metrica  III.  7, 
III.  1,  and  I.  7,  the  last  of  these  three  propositions  being  the 

proof  of  the  '  formula  of  Heron '  for  the  area  of  a  triangle  in 
terms  of  the  sides.  Chap.  35  shows  how  to  find  the  distance 
between  Rome  and  Alexandria  along  a  great  circle  of  the 
earth  by  means  of  the  observation  of  the  same  eclipse  at 

the  two  places,  the  analemma  for  Rome,  and  a  concave  hemi- 
sphere constructed  for  Alexandria  to  show  the  position  of  the 

sun  at  the  time  of  the  said  eclipse.  It  is  here  mentioned  that 

the  estimate  by  Eratosthenes  of  the  earth's  circumference  in 
his  book  On  the  Measurement  of  the  Earth  was  the  most 

accurate  that  had  been  made  up  to  date.1  Some  hold  that 
the  chapter,  like  some  others  which  have  no  particular  con- 

nexion with  the  real  subject  of  the  Dioptra  (e.g.  chaps.  31,  34, 

37-8)  were  probably  inserted  by  a  later  editor,  '  in  order  to 
make  the  treatise  as  complete  as  possible  V2 

The  Mechanics. 

It  is  evident  that  the  Mechanics,  as  preserved  in  the  Arabic, 
is  far  from  having  kept  its  original  form,  especially  in 
Book  I.  It  begins  with  an  account  of  the  arrangement  of 
toothed  wheels  designed  to  solve  the  problem  of  moving  a 
given  weight  by  a  given  force ;  this  account  is  the  same  as 
that  given  at  the  end  of  the  Greek  text  of  the  Diojrtra,  and  it 

is  clearly  the  same  description  as  that  which  Pappus  3  found  in 

tho  work  of  Heron  entitled  Bapov\KO$  ('weight-lifter')  and 
himself  reproduced  with  a  ratio  of  force  to  weight  altered 
from  5 : 1000  to  4 : 160  and  with  a  ratio  of  2  : 1  substituted  for 

5 : 1  in  the  diameters  of  successive  wheels.  It  would  appear 
that  the  chapter  from  the  Bapov\Ko$  was  inserted  in  place  of 

1  Heron,  vol.  iii,  p.  302. 18-17.  2  Ib ,  p.  302.  I). 
3  Pappus,  viii,  p.  1060  sq. 
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the  first  chapter  or  chapters  of  the  real  Mechanics  which  had 
been  lost.  The  treatise  would  doiibtless  begin  with  generalities 
introductory  to  mechanics  such  as  we  find  in  the  (much 
interpolated)  beginning  of  Pappus,  Book  VIII.  It  must  then 
apparently  have  dealt  with  the  properties  of  circles,  cylinders, 
and  spheres  with  reference  to  their  importance  in  mechanics  ; 
for  in  Book  II.  21  Heron  says  that  the  circle  is  of  all  figures 
the  most  movable  and  most  easily  moved,  the  same  thing 
applying  also  to  the  cylinder  and  sphere,  and  he  adds  in 

support  of  this  a  reference  to  a  proof  '  in  the  preceding  Book '. 
This  reference  may  be  to  I.  21,  but  at  the  end  of  that  chapter 

he  says  that  *  cylinders,  even  when  heavy,  if  placed  on  the 
ground  so  that  they  touch  it  in  one  line  only,  are  easily 
moved,  and  the  same  is  true  of  spheres  also,  a  matter  which 

ive  have  already  discussed';  the  discussion  may  have  come 
earlier  in  the  Book,  in  a  chapter  now  lost. 

The  treatise,  beginning  with  chap.  2  after  the  passage 
interpolated  from  the  Bapov\Ko$,  is  curiously  disconnected. 

Chaps.  2-7  discuss  the  motion  of  circles  or  wheels,  equal  or 
unequal,  moving  on  different  axes  (e.g.  interacting  toothed 
wheels),  or  fixed  on  the  same  axis,  much  after  the  fashion  of 
the  Aristotelian  Median  teal  problems. 

Aristotle's  Wheel. 

In  particular  (chap.  7)  Heron  attempts  to  explain  the  puzzle 

of  the  '  Wheel  of  Aristotle ',  which  remained  a  puzzle  up  to  quite 
modern  times,  and  gave  rise  to  the  proverb,  c  rotam  Aristotelis 
magis  torquere,  quo  magis  torqueretur '. l  '  The  question  is ',  says 
the  Aristotelian  problem  24, 6  why  does  the  greater  circle  roll  an 
equal  distance  with  the  lesser  circle  when  they  are  placed  about 
the  same  centre,  whereas,  when  they  roll  separately,  as  the 
size  of  one  is  to  the  size  of  the  other,  so  are  the  straight  lines 

traversed  by  them  to  one  another  ?  '2  Let  AC,  BJ)  be  quadrants 
of  circles  with  centre  0  bounded  by  the  same  radii,  and  draw 
tangents  AE,  BF  at  A  and  B.  In  the  first  case  suppose  the 
circle  BD  to  roll  along  BF  till  D  takes  the  position  //;  then 
the  radius  ODC  will  be  at  right  angles  to  AE,  and  C  will  be 
at  (?,  a  point  such  that  AG  is  equal  to  BH.  In  the  second 

1  See  Van  Capelle,  Aristotelis  quaestiones  mechanicae,  1812,  p.  263  sq. 
2  Avist.  Mechanica,  855  a  28. 
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case  suppose  the  circle  AC  to  roll  along  AE  till  ODG  takes 

the  position  O'FE;  then  D  will  be  at  F  where  AE  =  BF. 
And  similarly  if  a  whole  revolution  is  performed  and  OB  A  is 

again  perpendicular  to  AE.  Contrary,  therefore,  to  the  prin- 
ciple that  the  greater  circle  moves  quicker  than  the  smaller  on 

the  same  axis,  it  would  appear  that  the  movement  of  the 

smaller  in  this  case  is  as  quick  as  that  of  the  greater,  since 

BH  =  AG,  and  BF '=  AE.  Heron's  explanation  is  that,  e.g. 
in  the  case  where  the  larger  circle  rolls  on  AE,  the  lesser 
circle  maintains  the  same  speed  as  the  greater  because  it  has 
tivo  motions;  for  if  we  regard  the  smaller  circle  as  merely 
fastened  to  the  larger,  and  not  rolling  at  all,  its  centre  0  will 

move  to  0'  traversing  a  distance  00'  equal  to  AE  and  BF\ 
-hence  the  greater  circle  will  take  the  lesser  with  it  over  an 
equal  distance,  the  rolling  of  the  lesser  circle  having  no  effect 
upon  this. 

The  parallelogram  of  velocities. 

Heron  next  proves  the  parallelogram  of  velocities  (chap.  8) ; 
he  takes  the  case  of  a  rectangle,  but  the  proof  is  applicable 

generally. 
The  way  it  is  put  is  this.  A 

point  moves  with  uniform  velocity 
along  a  straight  line  AB,  from  A 
to  JB,  while  at  the  same  time  AB 
moves  with  uniform  velocity  always 
parallel  to  itself  with  its  extremity 
A  describing  the  straight  line  AG. 

Suppose  that,  when  the  point  arrives  at  B,  the  straight  line 
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reaches  the  position  CD.  .  Let  EF  be  any  intermediate 
position  of  AB,  and  G  the  position  at  the  same  instant 
of  the  moving  point  on  it.  Then  clearly  AE:AC=EG:EF; 
therefore  AE:EG  =  AC:EF=  AC:CD,  and  it  follows  that 
6r  lies  on  the  diagonal  AD,  which  is  therefore  the  actual  path 
of  the  moving  point. 

Chaps.  9-19  contain  a  digression  on  the  construction  of 
plane  and  solid  figures  similar  to  given  figures  but  greater  or 
less  in  a  given  ratio.  Heron  observes  that  the  case  of  plane 
figures  involves  the  finding  of  a  mean  proportional  between 

two  straight  lines,  and  'the  case  of  solid  figures  the  finding  of 
two  mean  proportionals ;  in  chap.  1 1  he  gives  his  solution  of 
the  latter  problem,  which  is  preserved  in  Pappus  and  Eutocius 

as  well,  and  has  already  been  given  above  (vol.  i,  pp.  262-3). 
The  end  of  chap.  19  contains,  quite  inconsequently,  the  con- 

struction of  a  toothed  wheel  to  move  on  an  endless  screw, 

after  which  chap.  20  makes  a  fresh  start  with  some  observa- 
tions on  weights  in  equilibrium  on  a  horizontal  plane  but 

tending  to  fall  when  the  plane  is  inclined,  and  on  the  ready 
mobility  of  objects  of  cylindrical  form  which  touch  the  plane 
in  one  line  only. 

Motion  on  an  inclined  plane. 

When  a  weight  is  hanging  freely  by  a  rope  over  a  pulley, 
no  force  applied  to  the  other  end  of  the  rope  less  than  the 
weight  itself  will  keep  it  up,  but,  if  the  weight  is  placed  on  an 
inclined  plane,  and  both  the  plane  and  the  portion  of  the 
weight  in  contact  with  it  are  smooth,  the  case  is  different. 
Suppose,  e.g.,  that  a  weight  in  the  form  of  a  cylinder  is  placed 
on  an  inclined  plane  so  that  the  line  in  which  they  touch  is 
horizontal;  then  the  force  required  to  be  applied  to  a  rope 
parallel  to  the  line  of  greatest  slope  in  the  plane  in  order  to 
keep  the  weight  in  equilibrium  is  less  than  the  weight.  For 
the  vertical  plane  passing  through  the  line  of  contact  between 
the  cylinder  and  the  plane  divides  the  cylinder  into  two 

•  unequal  parts,  that  on  the  downward  side  of  the  plane  being 
the  greater,  so  that  the  cylinder  will  tend  to  roll  down ;  but 

the  force  required  to  support  the  cylinder  is  the  '  equivalent ', 
not  of  the  weight  of  the  whole  cylinder,  but  of  the  difference 
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between  the  two  portions  into  which  the  vertical  plane  cuts  it 
(chap.  23). 

On  the  centre  of  gravity. 

This  brings  Heron  to  the  centre  of  gravity  (chap.  24).  Here 

a  definition  by  Posidonius,  a  Stoic,  of  the  c  centre  of  gravity ' 
or  '  centre  of  inclination '  is  given,  namely  '  a  point  such  that, 
if  the  body  is  hung  up  at  it,  the  body  is  divided  into  two 

equal  parts '  (he  should  obviously  have  said  '  divided  by  any 
vertical  plane  through  the  point  of  suspension  into  two  equal 

parts ').  But,  Heron  says,  Archimedes  distinguished  between 
the  c  centre  of  gravity '  and  the  '  point  of  suspension ',  defining 
the  latter  as  a  point  on  the  body  such  that,  if  the  body  is 
hung  up  at  it,  all  the  parts  of  the  body  remain  in  equilibrium 

and  do  not  oscillate  or  incline  in  any  direction.  ' "  Bodies",  said 
Archimedes,  "  may  rest  (without  inclining  one  way  or  another) 

with  either  a  line,  or  only  one  point,  in  the  body  fixed  "/  The 
*  centre  of  inclination ',  says  Heron,  c  is  one  single  p*)int  in  any 
particular  body  to  which  all  the  vertical  lines  through  the 

points  of  suspension  converge/  Comparing  Simplicius's  quo- 
tation of  a  definition  by  Archimedes  in  his  Kei/rpojSapi/ca,  to 

the  effect  that  the  centre  of  gravity  is  a  certain  point  in  the 
body  such  that,  if  the  body  is  hung  up  by  a  string  attached  to 
that  point,  it  will  remain  in  its  position  without  inclining  in 

any  direction,1  we  see  that  Heron  directly  used  a  certain 
treatise  of  Archimedes.  So  evidently  did  Pappus,  who  has 
a  similar  definition.  Pappus  also  speaks  of  a  body  supported 
at  a  point  by  a  vertical  stick :  if,  he  says,  the  body  is  in 
equilibrium,  the  line  of  the  stick  produced  upwards  must  pass 

through  the  centre  of  gravity.2  Similarly  Heron  says  that 
the  same  principles  apply  when  the  body  is  supported  as  when 

it  is  suspended.  Taking  up  next  (chaps.  25-31)  the  question 

of  '  supports ',  he  considers  cases  of  a  heavy  beam  or  a  wall 
supported  on  a  number  of  pillars,  equidistant  or  not,  even 
or  not  even  in  number,  and  projecting  or  not  projecting 
beyond  one  or  both  of  the  extreme  pillars,  and  finds  how 
much  of  the  weight  is  supported  on  each  pillar.  He  says 

that  Archimedes  laid  down  the  principles  in  his  '  Book  on 

1  Simplicius  on  De  caelo,  p.  543.  31-4,  Heib. 
2  Pappus,  viii,  p.  1032.  5-24. 
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Supports '.  As,  however,  the  principles  are  the  same  whether 
the  body  is  supported  or  hung  up,  it  does  not  follow  that 
this  was  a  different  work  from  that  known  as  Trepl  (vy&v. 

Chaps.  32-3,  which  are  on  the  principles  of  the  lever  or  of 
weighing,  end  with  an  explanation  amounting  to  the  fact 

that  '  greater  circles  overpower  smaller  when  their  movement 

is  about  the  same  centre ',  a  proposition  which  Pappus  says 
that  Archimedes  proved  in  his  work  ncpl  {vyS*?.1  In  chap.  32, 
too,  Heron  gives  as  his  authority  a  proof  given  by  Archimedes 
in  the  same  work.  With  I.  33  may  be  compared  II.  7, 
where  Heron  returns  to  the  same  subject  of  the  greater  and 
lesser  circles  moving  about  the  same  centre  and  states  the 

fact  that  weights  reciprocally  proportional  to  their  radii  are 
in  equilibrium  when  suspended  from  opposite  ends  of  the 
horizontal  diameters,  observing  that  Archimedes  proved  the 

proposition  in  his  work  £  On  the  equalization  of  inclination ' 
(presumably  I<roppo7riai). 

Book  II.     The  five  mechanical  powers. 

Heron  deals  with  the  wheel  and  axle,  the  lever,  the  pulley, 
the  wedge  and  the  screw,  and  with  combinations  of  these 

powers.  The  description  of  the  powers  comes  first,  chaps.  1-6, 
and  then,  after  II.  7,  the  proposition  above  referred  to,  and  the 

theory  of  the  several  powers  based  upon  it  (chaps.  8-20). 
Applications  to  specific  cases  follow.  Thus  it  is  shown  how 
to  move  a  weight  of  1000  talents  by  means  of  a  force  of 
5  talents,  first  by  the  system  of  wheels  described  in  the 

Bapov\Ko$,  next  by  a  system  of  pulleys,  and  thirdly  by  a 

combination  of  levers  (chaps.  21-5).  It  is  possible  to  combine 
the  different  powers  (other  than  the  wedge)  to  produce  the 
same  result  (chap.  29).  The  wedge  and  screw  are  discussed 

with  reference  to  their  angles  (chaps.  30-1).  and  chap.  32  refers 
to  the  effect  of  friction. 

Mechanics  in  daily  life;    queries  and  answers. 

After  a  prefatory  chapter  (33),  a  number  of  queries  resem- 
bling  the   Aristotelian   problems   are   stated    and    answered 

(chap.   34),  e.g.  'Why  do  waggons   with   two  wheels  carry 

a  weight  more  easily  than  those  with  four  wheels?',  'Why 
1  Pappus,  viii,  p.  1068.  20-3. 
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do  great  weights  fall  to  the  ground  in  a  shorter  time  than 

lighter  ones?',  'Why  does  a  stick  break  sooner  when  one 
puts  one's  knee  against  i^  in  the  middle  ? ',  '  Why  do  people 
use  pincers  father  than  the  hand  to  draw  a  tooth?',  'Why 
is  it  easy  to  move  weights  which  are  suspended?',  and 
'  Why  is  it  the  more  difficult  to  move  such  weights  the  farther 
the  hand  is  away  from  them,  right  up  to  the  point  of  suspension 
or  a  point  near  it  ?  V  Why  are  great  ships  turned  by  a  rudder 

although  it  is  so  small  ? ',  *  Why  do  arrows  penetrate  armour 
or  metal  plates  but  fail  tp  penetrate  cloth  spread  out  ? ' 

Problems  on  the  centre  of  gravity,  &c. 

II.  35,  36,  37  show  how  to  find  the  centre  of  gravity  of 
a  triangle,  a  quadrilateral  and  a  pentagon  respectively.  Then, 
assuming  that  a  triangle  of  uniform  thickness  is  supported  by 
a  prop  at  each  angle,  Heron  finds  what  weight  is  supported 
by  each  prop,  (a)  when  the  props  support  the  triangle  only, 
(6)  when  they  support  the  triangle  plus  a  given  weight  placed 
at  any  point  on  it  (chaps.  38,  39).  Lastly,  if  known  weights 
are  put  on  the  triangle  at  each  angle,  he  finds  the  centre  of 
gravity  of  the  system  (chap.  40) ;  the  problem  is  then  extended 
to  the  case  of  any  polygon  (chap.  41). 

Book  III  deals  with  the  practical  construction  of  engines 
for  all  sorts  of  purposes,  machines  employing  pulleys  with 

one,  two,  or  more  supports  for  lifting  weights,  oil-presses,  &c. 

The  Catoptrica. 

This  work  need  not  detain  us  long.  Several  of  the  theoretical 
propositions  which  it  contains  are  the  same  as  propositions 
in  the  so-called  Catoptrica  of  Euclid,  which,  as  we  have 
seen,  was  in  all  probability  the  work  of  Theon  of  Alexandria 
and  therefore  much  later  in  date.  In  addition  to  theoretical 

propositions,  it  contains  problems  the  purpose  of  which  is  to 
construct  mirrors  or  combinations  of  mirrors  of  such  shape 
as  will  reflect  objects  in  a  particular  way,  e.g.  to  make  the 
right  side  appear  as  the  right  in  the  picture  (instead  of  the 
reverse),  to  enable  a  person  to  see  his  back  or  to  appear  in 
the  mirror  head  downwards,  with  face  distorted,  with  three 

•eyes  or  two  noses,  and  so  forth.  Concave  and  convex 
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cylindrical  mirrors  play  a  part  in  these  arrangements.  The 
whole  theory  of  course  ultimately  depends  on  the  main  pro- 

positions 4  and  5  that  the  angles  of  incidence  and  reflection 
are  equal  whether  the  mirror  is  plane  or  circular. 

Heron's  proof  of  equality  of  angles  of  Incidence  and  reflection. 
Let  AB  be  a  plane  mirror,  C  the  eye,  D  the  object  seen. 

The  argument  rests  on  the  fact  that  nature  '  does  nothing  in 
vain  '.  Thus  light  travels  in  a  straight  line,  that  is,  by  the quickest  road.  Therefore,  even 
when  the  ray  is  a  line  broken 
at  a  point  by  reflection,  it  must 
mark  the  shortest  broken  line 

of  the  kind  connecting  the  eyo 
and  the  object.  Now,  says 
Heron,  I  maintain  that  the 
shortest  of  the  broken  lines 

(broken  at  the  mirror)  which 
connect  C  and  D  is  the  line,  as 
CAD,  the  parts  of  which  make  equal  angles  with  the  mirror. 
Join  T)  A  and  produce  it  to  meet  in  F  the  perpendicular  from 
C  to  AB.  Let  li  be  any  point  on  the  mirror  other  than  A, 
and  join  FB,  BD. 

Now  LEAF  =  LBAD 

=  L  OAK,  by  hypothesis. 

Therefore  the  triangles  AEF,  AEG,  having  two  angles  equal 
and  AK  common,  are  equal  in  all  respects. 

Therefore  CA  =  AF,  and  OA  +  AD  =  DF. 
Since  FE  =  EG,  and  BE  is  perpendicular  to  FC,  BF  =  BC. 

Therefore  CB  +  BD  =  FB  +  BD 
>  FD, 

i.e.  >  CA+AD. 

The  proposition  was  of  course  known  to  Archimedes.  We 
gather  from  a  scholium  to  the  Pseudo-  Euclidean  Catoptrica 
that  he  proved  it  in  a  different  way,  namely  by  reductio  ad 
absurdum,  thus:  Denote  the  angles  GAEy  DAB  by  a,  /9  re- 

spectively. Then,  a  is  >  =  or  <  ft.  Suppose  ot  >  ft.  Then, 
A  a 



354  HERON   OF   ALEXANDRIA 

reversing  the  ray  so  that  the  eye  is  at  D  instead  of  (7,  and  the 
object  at  C  instead  of  Z),  we  must  have  /8  >  a.  But  /8  was 
less  than  a,  which  is  impossible.  (Similarly  it  can  be  proved 
that  a  is  not  less  than  jS.)  Therefore  oc  =  /8. 

In  the  Pseudo-Euclidean  Catopt^ca  the  proposition  is 
practically  assumed;  for  the  third  assumption  or  postulate 
at  the  beginning  states  in  effect  that,  in  the  above  figure,  if  A 
be  the  point  of  incidence,  CE:EA  =  J)H:HA  (where  DH  is 
perpendicular  to  AB).  It  follows  instantaneously  (Prop.  1) 
that  LGAE^LDAH. 

If  the  mirror  is  the  convex  side  of  a  circle,  the  same  result 

follows  a  fortiori.  Let  CA,  AD  meet 
the  arc  at  equal  angles,  and  CB,  BD  at 

unequal  angles.  Let  AE  be  the  tan- 
gent at  A,  and  complete  the  figure. 

Then,  says  Heron,  (the  angles  GAG, 
BAD  being  by  hypothesis  equal),  if  we 
subtract  the  equal  angles  GAE,  BAF 
from  the  equal  angles  OAC9  BAD  (both 

pairs  of  angles  being  '  mixed ',  be  it 
observed),  we  have  LEAG  =  L  FAD.  Therefore  CA+AD 
<  CF+FD  and  a  fortiori  <  CR  +  BD. 

The  problems  solved  (though  the  text  is  so  corrupt  in  places 
that  little  can  be  made  of  it)  were  such  as  the  following: 

11,  To  construct  a  right-handed  mirror  (i.e.  a  mirror  which 
makes  the  right  side  right  and  the  left  side  left  instead  of 
the  opposite);  12,  to  construct  the  mirror  called  polytheoron 

('with  many  images');  16,  to  construct  a  mirror  inside  the 
window  of  a  house,  so  that  you  can  see  in  it  (while  inside 
the  room)  everything  that  passes  in  the  street;  18,  to  arrange 
mirrors  in  a  given  place  so  that  a  person  who  approaches 
cannot  actually  see  either  himself  or  any  one  else  but  can  see 

any  image  desired  (a  '  ghost-seer '). 



XIX 

PAPPUS   OF   ALEXANDRIA 

WE  have  seen  that  the  Golden  Age  of  Greek  geometry 
ended  with  the  time  of  Apollonius  of  Perga.  But  the  influence 
of  Euclid,  Archimedes  and  Apollonius  continued,  and  for  some 
time  there  was  a  succession  of  quite  competent  mathematicians 
who,  although  not  originating  anything  of  capital  importance, 
kept  up  the  tradition.  Besides  those  who  were  known  for 
particular  investigations,  e.g.  of  new  curves  or  surfaces,  there 
were  such  men  as  Geminus  who,  it  cannot  be  doubted,  were 
thoroughly  familiar  with  the  great  classics.  Geminus,  as  we 
have  seen,  wrote  a  comprehensive  work  of  almost  encyclopaedic 
character  on  the  classification  and  content  of  mathematics, 
including  the  history  of  the  development  of  each  subject. 
But  the  beginning  of  the  Christian  era  sees  quite  a  different 
state  of  things.  Except  in  sphaeric  and  astronomy  (Menelaus 
and  Ptolemy),  production  was  limited  to  elementary  text- 

books of  decidedly  feeble  quality.  In  the  meantime  it  would 
seem  that  the  study  of  higher  geometry  languished  or  was 
completely  in  abeyance,  until  Pappus  arose  to  revive  interest 
in  the  subject.  From  the  way  in  which  he  thinks  it  necessary 
to  describe  the  contents  of  the  classical  works  belonging  to 
the  Treasury  of  Analysis,  for  example,  one  would  suppose 
that  by  his  time  many  of  them  were,  if  not  lost,  completely 
forgotten,  and  that  the  great  task  which  he  set  himself  was 
the  re-establishment  of  geometry  on  its  former  high  plane  of 
achievement.  Presumably  such  interest  as  he  was  able  to 
arouse  soon  flickered  out,  but  for  us  his  work  has  an  in- 

estimable value  as  constituting,  after  the  works  of  the  great 
mathematicians  which  have  actually  survived,  the.  most  im- 

portant of  all  our  sources. 
A  a  2 



356  PAPPUS   OF  ALEXANDRIA 

Date  of  Pappus. 

•  Pappus  lived  at  the  end  of  the  third  century  A.D.  The 
authority  for  this  date  is  a  marginal  note  in  a  Leyden  manu- 

script of  chronological  tables  by  Theon  of  Alexandria,  where, 

opposite  to  the  name  of  Diocletian,  a  scholium  says, '  In  his 
time  Pappus  wrote'.  Diocletian  reigned  from  284  to  305, 
and  this  must  therefore  be  the  period  of  Pappus's  literary 
activity.  It  is  true  that  Suidas  makes  him  a  contemporary 
of  Theon  of  Alexandria,  adding  that  they  both  lived  under 

Theodosius  I  (379-395).  But  Suidas  was  evidently  not  well 
acquainted  with  the  works  of  Pappus;  though  he  mentions 
a  description  of  the  earth  by  him  and  a  commentary  on  four 

Books  of  Ptolemy's  Sytitaxis,  he  has  no  word  about  his  greatest 
work,  the  Synagoge.  As  Theon  also  wrote  a  commentary  on 
Ptolemy  and  incorporated  a  great  deal  of  the  commentary  of 

Pappus,  it  is  probable  that  Suidas  had  Theon's  commentary 
before  him  and  from  the  association  of  the  two  names  wrongly 
inferred  that  they  were  contemporaries. 

Works  (commentaries)  other  than  the  Collection. 

Besides  the  Si/nagoge,  which  is  the  main  subject  of  this 
chapter,  Pappus  wrote  several  commentaries,  now  lost  except  for 
fragments  which  have  survived  in  Greek  or  Arabic.  One  was 

a  commentary  on  the  Elements  of  Euclid.  This  must  presum- 
ably have  been  pretty  complete,  for,  while  Proclus  (on  Eucl.  I) 

quotes  certain  things  from  Pappus  which  may  be  assumed  to 
have  come  in  the  notes  on  Book  I,  fragments  of  his  commen- 

tary on  Book  X  actually  survive  in  the  Arabic  (see  above, 

vol.  i,  pp.  154-5,  209),  and  again  Eutocius  in  his  note  on  Archi- 
medes, On  the  Sphere  and  Cylinder,  I.  13,  says  that  Pappus 

explained  in  his  commentary  on  the  Elements  how  to  inscribe 
in  a  circle  a  polygon  similar  to  a  polygon  inscribed  in  another 
circle,  which  problem  would  no  doubt  be  solved  by  Pappus,  as 
it  is  by  a  scholiast,  in  a  note  on  XII.  1.  Some  of  the  references 
by  Proclus  deserve  passing  mention.  (1)  Pappus  said  that 
the  converse  of  Post.  4  (equality  of  all  right  angles)  is  not 
true,  i.e.  it  is  not  true  that  all  angles  equal  to  a  right  angle  are 

themselves  right,  since  the  '  angle '  between  the  conterminous 
arcs  of  two  semicircles  which  are  equal  and  have  their 
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diameters  at  right  angles  and  terminating  at  one  point  is 

equal  to,  but  is  not,  a  right  angle.1  (2)  Pappus  said  that, 
in  addition  to  the  genuine  axioms  of  Euclid,  there  were  others , 
on  record  about  unequals  added  to 
equals  and  equals  added  to  unequals. 
Others  given  by  Pappus  are  (says 
Proclus)  involved  by  the  definitions, 

e.g.  that  'all  parts  of  the  plane  and  of 
the  straight  line  coincide  with  one 

another ',  that  '  a  point  divides  a  line, 
a  line  a  surface,  and  a  surface  a  solid ',  and  that  '  the  infinite 
is  (obtained)  in  magnitudes  both  by  addition  and  diminution1.2 
(3)  Pappus  gave  a  pretty  proof  of  Eucl.  I.  5,  which  modern 
editors  have  spoiled  when  introducing  it  into  text-books.  If 
AB,  AC  are  the  equal  sides  in  an  isosceles  triangle,  Pappus 
compares  the  triangles  ABC  and  ACB  (i.e.  as  if  he  were  com- 

paring the  triangle  ABC  seen  from  the  front  with  the  same 
triangle  seen  from  the  back),  and  shows  that  they  satisfy  the 
conditions  of  I.  4,  so  that  they  are  equal  in  all  respects,  whence 
the  result  follows.3 

Marinus  at  the  end  of  his  commentary  on  Euclid's  Data 
refers  to  a  commentary  by  Pappus  on  that  book. 

Pappus's  commentary  on  Ptolemy's  tfyibtaxis  has  already 
been  mentioned  (p.  274) ;  it  seems  to  have  extended  to  six 

Books,  if  not  to  the  whole  of  Ptolemy's  work.  The  Fihrist 
says  that  he  also  wrote  a  commentary  on  Ptolemy's  Plani- 
sjtJJiaeri'U/ni,  which  was  translated  into  Arabic  by  Thabit  b. 
Qurra.  Pappus  himself  alludes  to  his  own  commentary  on 
the  Anal&m/Hui  of  Diodorus,  in  the  course  of  which  he  used  the 

conchoid  of  Nicomedes  for  the  purpose  of  trisecting  an  angle. 

We  come  now  to  Pappus's  great  work. 

The  Synayoge  or  Collection, 

(a)  Character  of  the  work;    luide  raiuje. 

Obviously  written  with  the  object  of  reviving  the  classical 
Greek  geometry,  it  covers  practically  the  whole  field.  It  is, 

1  Proclus  on  Eucl.  I,  pp.  189-90.  2  /&.,  pp.  197.  6-198.  15. 
3  Ib.,  pp.  249.  20-250.  12. 
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however,  a  handbook  or  guide  to  Greek  geometry  rather  than 
an  encyclopaedia ;  it  was  intended,  that  is,  to  be  read  with  the 
original  works  (where  still  extant)  rather  than  to  enable  them 
to  be  dispensed  with.  Thus  in  the  case  of  the  treatises 

included  in  the  Treasury  of  Analysis  there  is  a  general  intro- 
duction, followed  by  a  general  account  of  the  contents,  with 

lemmas,  &c.,  designed  to  facilitate  the  reading  of  the  treatises 
themselves.  On  the  other  hand,  where  the  history  of  a  subject 
is  given,  e.g.  that  of  the  problem  of  the  duplication  of  the 
cube  or  the  finding  of  the  two  mean  proportionals,  the  various 
solutions  themselves  are  reproduced,  presumably  because  they 
were  not  easily  accessible,  but  had  to  bo  collected  from  various 
sources.  Even  when  it  is  some  accessible  classic  which  is 

being  described,  the  opportunity  is  taken  to  give  alternative 
methods,  or  to  make  improvements  in  proofs,  extensions,  and 
so  on.  Without  pretending  to  great  originality,  the  whole 
work  shows,  on  the  part  of  the  author,  a  thorough  grasp  of 
all  the  subjects  treated,  independence  of  judgement,  mastery 
of  technique;  the  style  is  terse  and  clear;  in  short,  Pappus 
stands  out  as  an  accomplished  and  versatile  mathematician, 
a  worthy  representative  of  the  classical  Greek  geometry. 

(]8)   List  of  authors  mentioned. 

The  immense  range  of  the  Collection  can  be  gathered  from 
a  mere  enumeration  of  the  names  of  the  various  mathematicians 

quoted  or  referred  to  in  the  course  of  it.  The  greatest  of 
them,  Euclid,  Archimedes  and  Apollonius,  are  of  course  con- 

tinually cited,  others  are  mentioned  for  some  particular 
achievement,  and  in  a  few  cases  the  mention  of  a  name  by 
Pappus  is  the  whole  of  the  information  we  possess  about  the 
person  mentioned.  In  giving  the  list  of  the  names  occurring 
in  the  book,  it  will,  I  think,  be  convenient  and  may  economize 
future  references  if  I  note  in  brackets  the  particular  occasion 
of  the  reference  to  the  writers  who  are  mentioned  for  one 

achievement  or  as  the  authors  of  a  particular  book  or  investi- 
gation. The  list  in  alphabetical  order  is :  Apollonius  of  Perga, 

Archimedes,  Aristaeus  the  elder  (author  of  a  treatise  in  five 
Books  on  the  Elements  of  Conies  or  of  '  five  Books  on  Solid 

Loci  connected  with  the  conies'),  Aristarchus  of  Samos  (On  the 
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sizes  and  distances  of  the  sun  and  moo?*,),  Autolycus  (0/6  the 

moving  sphere),  Carpus  of  Antioch  (who  is  quoted  as  having 
said  that  Archimedes  wrote  only  one  mechanical  book,  that 

on  sphere-making,  since  he  held  the  mechanical  appliances 
which   made   him   famous  to   be  nevertheless  unworthy  of 
written   description :    Carpus   himself,   who    was   known  as 
mechanicus,  applied  geometry  to  other  arts  of  this  practical 
kind),  Charmandrus  (who  added  three  simple  arid  obvious  loci 
to  those  which  formed  the  beginning  of  the  Plane  Loci  of 
Apollonius),  Conon  of  Samos,  the  friend  of  Archimedes  (cited 
as  the  propounder  of  a  theorem  about  the  spiral  in  a  plane 
which  Archimedes  proved :  this  would,  however,  seem  to  be 
a  mistake,  as  Archimedes  says  at  the  beginning  of  his  treatise 
that  he  sent  certain  theorems,  without  proofs,  to  Conon,  who 

would  certainly  have  proved  them  had  he  lived),  Demetrius  of 

Alexandria  (mentioned  as  the  author  of  a  work  called  ' Linear 

considerations',  ypa/jLfjLiKal  CTrio-rao-eiy,  i.e.   considerations  on 
curves,  as  to  which  nothing  more   is   known),  Diriostratus, 

the  brother  of  Menaechmus  (cited,  with  Nicornedes,  as  having 
used  the  curve  of  Hippias,  to  which  they  gave  the  name  of 

quadratriM,  TeTpaya>vi£ovora,  for  the  squaring  of  the  circle), 

Diodorus  (mentioned  as  the  author  of  an  A  nalemma),  Erato- 

sthenes (whose  mean-finder,  an  appliance  for  finding  two  or 
any  number  of  geometric  means,  is  described,  and   who  is 

further  mentioned  as  the  author  of  two  Books  '  On  means ' 

and   of   a    work    entitled   'Loci    witli   reference   to  means'), 
Erycinus  (from  whose  Pamdoxa  are  quoted  various  problems 
seeming  at  first  sight  to  be  inconsistent  with  Eucl.  I.  21,  it 
being  shown  that  straight  lines  can  be  drawn  from  two  points 
on  the  base  of  a  triangle  to  a  point  within  the  triangle  which 
are  together  greater  than  the  other  two  sides,  provided  that  the 
points  in  the  base  may  be  points  other  than  the  extremities), 
Euclid,  Geminus  the  mathematician   (from  whom  is  cited  a 

remark  011  Archimedes  contained  in  his  book  '  On  the  classifica- 

tion of  the  mathematical  sciences ',  see  above,  p.  223),  Heraclitus 
(from  whom  Pappus  quotes  an  elegant  solution  of  a  v€v<ri$ 

with  reference  to  a  square),  Hermodorus  (Pappus's  son,  to 
whom  he  dedicated  Books  VII,  VIII  of  his  Collection),  Heron 

of  Alexandria  (whose  mechanical  works  are  extensively  quoted 

from),  Hierius  the  philosopher  (a  contemporary  of  Pappus, 
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who  is  mentioned  as  having  asked  Pappus's  opinion  on  the 
attempted  solution  by  *  plane '  methods  of  the  problem  of  the  two 
means,  which  actually  gives  a  method  of  approximating  to 

a  solution1),  Hipparchus  (quoted  as  practically  adopting  three 
of  the  hypotheses  of  Aristarchus  of  Samos),  Megethion  (to 
whom  Pappus  dedicated  Book  V  of  his  Collection),  Menelaus 
of  Alexandria  (quoted  as  the  author  of  Sphaerica  and  as  having 
applied  the  name  irapd8o£o$  to  a  certain  curve),  Nicomachus 
(on  three  means  additional  to  the  first  three),  Nicomedes, 
Pandrosion  (to  whom  Book  III  of  the  Collection  is  dedicated), 

Pericles  (editor  of  Euclid's  Data),  Philon  of  Byzantium  (men- 
tioned along  with  Heron),  Philon  of  Tyana  (mentioned  as  the 

discoverer  of  certain  complicated  curves  derived  from  the  inter- 
weaving of  plectoid  and  other  surfaces),  Plato  (with  reference 

to  the  live  regular  solids),  Ptolemy,  Theodosius  (author  of  the 
Sphaerica  and  On  Days  and  Nights). 

(y)   Translations  and  editions. 
4 

The  first  published  edition  of  the  Collection  was  the  Latin 
translation  by  Commandimis  (Venice  1589,  but  dated  at  the 

end  'Pisauri  apud  Hicronymum  Concordiam  1588';  reissued 
with  only  the  title-page  changed  'Pisauri...  1602').     Up  to 
1876  portions  only  of  the  Greek  text  had  appeared,  namely 
Books  VII,  VIII  in  Greek  and  German,  by  C.  J.  Gerharclt,  1871 
chaps.  33-105  of  Book  V,  by  Eisenmann,  Paris  1824,  chaps 
45-52  of  Book  IV  in  losephi  Torelli  Veronensis  Geometrica 
1769,  the   remains  of   Book  II,  by  John  Wallis  (in    Open 
inathematica,  III,  Oxford   1699);   in  addition,  the  restorers 
of  works   of    Euclid    and   Apollonius   from   the   indication! 
furnished   by   Pappus  give   extracts    from    the    Greek   tex 

relating  to  the  particular  works,  Breton  le  Champ  on  Euclid'i 
Porisms,  Halley  in  his  edition  of  the  Conies  of  Apolloniu 
(1710)  and  in  his  translation  from  the  Arabic  and  restoratioi 
respectively  of  the  De  sectione  rationis  and  De  sections  spati 

of  Apollonius  (1706),  Carnerer  on  Apolloiiius's  Tactiones  (1795 
Simson  and  Horsley  in  their  restorations  of  Apollonius's  Plan 
Loci  and  Inclinations  published  in  the  years  1749  and  177 

respectively.     In  the  years   1876-8  appeared  the  only  coin 

1  See  vol.  i,  pp.  268-70. 
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plete  Greek  text,  with  apparatus,  Latin  translation,  com- 
mentary, appendices  and  indices,  by  Friedrich  Hultsch ;  this 

great  edition  is  one  of  the  first  monuments  of  the  revived 
study  of  the  history  of  Greek  mathematics  in  the  last  half 
of  the  nineteenth  century,  and  has  properly  formed  the  model 
for  other  definitive  editions  of  the  Greek  text  of  the  other 

classical  Greek  mathematicians,  e.g.  the  editions  of  Euclid, 
Archimedes,  Apollonius,  &c.,  by  Heiberg  and  others.  The 
Greek  index  in  this  edition  of  Pappus  deserves  special  mention 
because  it  largely  serves  as  a  dictionary  of  mathematical 

terms  Uvsecl  not  only  in  Pappus  but  by  the  Greek  -mathe- 
maticians generally. 

(8)   tiunvinary  of  contents. 

At  the  beginning  of  the  work,  Book  I  and  the  first  13  pro- 
positions (out  of  26)  of  Book  II  are  missing.  The  first  13 

propositions  of  Book  II  evidently,  like  the  rest  of  the  Book, 

dealt  with  Apollonius's  method  of  working  with  very  large 
numbers  expressed  in  successive  powers  of  the  myriad,  10000. 

This  system  has  already  been  described  (vol.  i,  pp.  40,  54-7). 
The  work  of  Apollouius  seems  to  have  contained  26  proposi- 

tions (25  leading  up  to,  and  the  26th  containing,  the  final 
continued  multiplication). 

Book  III  consists  of  four  sections.  Section  (1)  is  a  sort  of 
history  of  the  problem  of  finding  two  mean  proportionals,  in 
continued  proportion,  between  two  given  straight  lines. 

It  begins  with  some  general  remarks  about  the  distinction 
between  theorems  and  problems.  Pappus  observes  that, 

whereas  the  ancients  called  them  all  alike 'by  one  name,  some 
regarding  them  all  as  problems  and  others  as  theorems,  a  clear 
distinction  was  drawn  by  those  who  favoured  more  exact 
terminology.  According  to  the  latter  a  problem  is  that  in 
which  it  is  proposed  to  do  or  construct  something,  a  theorem 
that  in  which,  given  certain  hypotheses,  we  investigate  that 
which  follows  from  and  is  necessarily  implied  by  them. 
Therefore  he  who  propounds  a  theorem,  no  matter  how  he  has 
become  aware  of  the  fact  which  is  a  necessary  consequence  of 
the  premisses,  must  state,  as  the  object  of  inquiry,  the  right 
result  and  no  other.  On  the  other  hand,  he  who  propounds 



362  PAPPUS  OF   ALEXANDRIA 

a  problem  may  bid  us  do  something  which  is  in  fact  im- 
possible, and  that  without  necessarily  laying  himself  open 

to  blame  or  criticism.  For  it  is  part  of  the  solver's  duty 
to  determine  the  conditions  under  which  the  problem  is 

possible  or  impossible,  and,  'if  possible,  when,  how,  and  in 

how  many  ways  it  is  possible  '.  When,  however,  a  man  pro- 
fesses to  know  mathematics  and  yet  commits  some  elementary 

blunder,  he  cannot  escape  censure.  Pappus  gives,  as  an 

example,  the  case  of  an  unnamed  person  '  who  was  thought  to 

be  a  great  geometer'  but  who  showed  ignorance  in  that  he 
claimed  to  know  how  to  solve  the  problem  of  the  two  mean 

proportionals  by  'plane'  methods  (i.e.  by  using  the  straight 
line  and  circle  only).  He  then  reproduces  the  argument  of 
the  anonymous  person,  for  the  purpose  of  showing  that  it 
does  not  solve  the  problem  as  its  author  claims.  We  have 

seen  (vol.  i,  pp.  269-70)  how  the  method,  though  not  actually 
solving  the  problem,  does  furnish  a  series  of  successive  approxi- 

mations to  the  real  solution.  Pappus  adds  a  few  simple 
lemmas  assumed  in  the  exposition. 

Next  comes  the  passage1,  already  referred  to,  on  the  dis- 
tinction drawn  by  the  ancients  between  (1)  plane  pi'oblems  or 

problems  which  can  be  solved  by  means  of  the  straight  line 
and  circle,  (2)  solid  problems,  or  those  which  require  for  their 
solution  one  or  more  conic  sections,  (3)  linear  problems,  or 
those  which  necessitate  recourse  to  higher  curves  still,  curves 
with  a  more  complicated  and  indeed  a  forced  or  unnatural 
origin  (^^La(T^vr]v)  such  as  spirals,  quadratrices,  cochloids 
and  cissoids,  which  have  many  surprising  properties  of  their 
own.  The  problem  of  the  two  mean  proportionals,  being 
a  solid  problem,  required  for  its  solution  either  conies  or  some 
equivalent,  and,  as  conies  could  not  be  constructed  by  purely 
geometrical  means,  various  mechanical  devices  were  invented 

such  as  that  of  Eratosthenes  (the  mean-finder),  those  described 
in  the  Mechanics  of  Philon  and  Heron,  and  that  of  Nicomedes 

(who  used  the  '  cochloidal '  curve).  Pappus  proceeds  to  give  the 
solutions  of  Eratosthenes,  Nicomedes  and  Heron,  and  then  adds 
a  fourth  which  he  claims  as  his  own,  but  which  is  practically 
the  same  as  that  attributed  by  Eutocius  to  Sporu»s.  All  these 

solutions  have  been  given  above  (vol.  i,  pp.  258-64,  266-8). 

1  Pappus,  iii,  p.  54.  7-22. 
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Section  (2).     The  theory  of  means. 

Next  follows  a  section  (pp.  69-105)  on  the  theory  of  the 
different  kinds  of  means.  The  discussion  takes  its  origin 

from  the  statement  of  the  '  second  problem ',  which  was  that 
of  'exhibiting  the  three  means'  (i.e.  the  arithmetic,  geometric 
and  harmonic)  'in.  a  semicircle'.  Pappus  first  gives  a  con- 

struction by  which  another  geometer  (aAXoy  riy)  claimed  to 
have  solved  this  problem,  but  he  does  not  seem  to  have  under- 

stood it,  and  returns  to  the  same  problem  later  (pp.  80-2). 
In  the  meantime  he  begins  with  the  definitions  of  the 

three  means  and  then  shows  how,  given  any  two  of  three 
terms  a,  b,  c  in  arithmetical,  geometrical  or  harmonical  pro- 

gression, the  third  can  be  found.  The  definition  of  the  mean 
(b)  of  three  terms  a,  b,  c  in  harmonic  progression  being  that  it 

satisfies  the  relation  a:c=a  —  b:b  —  c,  Pappus  gives  alternative 
definitions  for  the  arithmetic  and  geometric  means  in  corre- 

sponding form ,  namely  for  the  arithmetic  mean  a :  a = a  —  b :  b  —  c 
and  for  the  geometric  a :  b  =  a  —  b :  b — c. 

The  construction  for  the  harmonic  mean  is  perhaps  worth 
giving.     Let  AB,  BG  be  two  given  straight  lines.     At  A  draw 
DAE  perpendicular  to  AB,  and  make  DA,  AE  equal.     Join 
DB,  BE.  From  G  draw  GF&t  right 
angles  to  AB  meeting  DB  in  F.      D 
Join  EF  meeting  AB  in  C.     Then 
BC  is  the  required  harmonic  mean. 

For 

=  EA:FG 

'C      Q 

B 

=  AC:CG 

=  (AB-BC):(BC-BG).     "" 
Similarly,  by  means  of  a  like  figure,  we  can  find  BG  when 

AB,  BO  are  given,  and  AB  when  5(7,  BG  are  given  (in 
the  latter  case  the  perpendicular  DE  is  drawn  through  G 
instead  of  A). 

Then  follows  a  proposition  that,  if  the  three  means  and  the 
several  extremes  are  represented  in  one  set  of  lines,  there  must 
be  five  of  them  at  least,  and,  after  a  set  of  five  such  lines  have 
been  found  in  the  smallest  possible  integers,  Pappus  passes  to 
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the  problem  of  representing  the  three  means  with  the  respective 
extremes  by  six  lines  drawn  in  a  semicircle. 

Given  a  semicircle  on  the  diameter  AC,  and  B  any  point  on 
the  diameter,  draw  BD  at  right  angles  to  A  C.    Let  the  tangent 

at  D  meet  AC  produced  in  G,  and  measure  DH  along  the 
tangent  equal  to  DG.  Join  HB  meeting  the  radius  OD  in  K. 
Let  EF\}Q  perpendicular  to  Of). 

Then,  exactly  as  above,  it  is  shown  that  OK  is  a  harmonic 
mean  between  OF  and  OD.  Also  BD  is  the  geometric  mean 
between  AB,  BC,  while  OC  (=  OD)  is  the  arithmetic  mean 
between  AB,  BC. 

Therefore  the  six  lines  DO  (=  OC),  OK,  ̂ F,  AB,  BC,  BD 
supply  the  three  means  with  the  respective  extremes. 

But  Pappus  seems  to  have  failed  to  observe  that  the  '  certain 

other  geometer ',  who  has  the  same  figure  excluding  the  dotted 
lines,  supplied  the  same  in  Jive  lines.  For  he  said  that  OF 
is  'a  harmonic  mean'.  It  is  in  fact  the  harmonic  mean 
between  AB,  BC,  as  is  easily  seen  thus. 

Since  ODB  is  a  right-angled  triangle,  and  BF  perpendicular 
to  OD, 

DF:BD  =  BD:DO, 

or  DF.  DO  =  BD*  =  AB .  BC. 

But  DO  ̂ %(AB+BC\\ 

therefore  DF .  (AB  +  BC)  =  2AB.  BC. 

Therefore    AB .  (DF- BC)  =  BC.(AB- DF), 

that  is,  AB:  BC  =  (AB  -  DF) :  (DF-  BC), 
and  DF  is  the  harmonic  mean  between  AB,  BC. 

Consequently  the  Jive  lines  D0(  =  OC),  DF,  AB,  BC,  BD 
exhibit  all  the  three  means  with  the  extremes. 
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Pappus  does  not  seem  to  have  seen  this,  for  he  observes 
that  the  geometer  in  question,  though  saying  that  DF  is 
a  harmonic  mean,  does  not  say  how  it  is  a  harmonic  mean 
or  between  what  straight  lines. 

In  the  next  chapters  (pp.  84-104)  Pappus,  following  Nico- 
machus  and  others,  defines  seven  more  means,  three  of  which 
were  ancient  and  the  last  four  more  modern,  and  shows  how 
we  can  form  all  ten  means  as  linear  functions  of  a,  )8,  y,  where 
a,  /3,  y  are  in  geometrical  progression.  The  exposition  has 
already  been  described  (vol.  i,  pp.  86-9). 

Section  (3).     The  'Paradoxes'  of  Erycinus. 

The  third  section  of  Book  III  (pp.  104-30)  contains  a  series 
of  propositions,  all  of  the  same  sort,  which  are  curious  rather 
than  geometrically  important.  They  appear  to  have  been 

taken  direct  from  a  collection  of  Paradoxes  by  one  Erycinus.1 
The  first  set  of  these  propositions  (Props.  28-34)  are  connected 
with  Eucl.  I.  21,  which  says  that,  if  from  the  extremities 
of  the  base  of  any  triangle  two  strafght  lines  be  drawn  meeting 
at  any  point  within  the  triangle,  the  straight  lines  are  together 
less  than  the  two  sides  of  the  triangle  other  than  the  base, 
but  contain  a  greater  angle.  It  is  pointed  out  that,  if  the 
straight  lines  are  allowed  to  be  drawn  from  points  in  the  base 
other  than  the  extremities,  their  sum  may  be  greater  than  the 
other  two  sides  of  the  triangle. 

The  first  case  taken  is  that  of  a  right-angled  triangle  ABC 
right-angled  at  B.    Draw  AD  to  any  point  7)  on  BC.    Measure 
on  it  DE  equal  to  A  B,  bisect  A  E 
in  F,  and  join  F(J.     Then  shall          A 

DF+FC  be   >  BA  +  AC. 

For  EF+FC=AF+FC>AC. 

Add  DE  and  AB  respectively, 
and  we  have 

DF+FC>  BA  +  AC. 

More  elaborate  propositions  are  next  proved,  such  as  the 
following. 

1.  In  any  triangle,  except  an  equilateral  triangle  or  an  isosceles 

1  Pappus,  iii,  p.  106.  5-9. 
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triangle  with  base  less  than  one  of  the  other  sides,  it  is  possible 
to  construct  on  the  base  and  within  the  triangle  two  straight 
lines  meeting  at  a  point,  the  sum  of  which  is  equal  to  the  sum 
of  the  other  two  sides  of  the  triangle  (Props.  29,  30). 

2.  In  any  triangle  in  which  it  is  possible  to  construct  two 
straight  lines  from  the  base  to  one  internal  point  the  sum 
of  which  is  equal  to  the  sum  of  the  two  sides  of  the  triangle, 
it  is  also  possible  to  construct  two  other  such  straight  lines  the 
sum  of  which  is  greater  than  that  sum  (Prop.  31). 

3.  Under  the  same  conditions,  if  the  base  is  greater  than  either 
of  the  other  two  sides,  two  straight  lines  can  be  so  constructed 
from  the  base  to  an  internal  point  which  are   respectively 
greater  than  the  other  two  sides  of  the  triangle ;  and  the  lines 
may  be  constructed  so  as  to  be  respectively  equal  to  the  two 
sides,  if  one  of  those  two  sides  is  less  than  the  other  and  each 
of  them  is  less  than  the  base  (Props.  32,  33), 

4.  The  lines  may  be  so  constructed  that  their  sum  will  bear  to 
the  sum  of  the  two  sides  of  the  triangle  any  ratio  less  than 
2  :  1  (Prop.  34). 

As  examples  of  the  proofs,  we  will  take  the  case  of  the 
scalene  triangle,  and  prove  the  first  and  Part  1  of  the  third  of 
the  above  propositions  for  such  a  triangle. 

In  the  triangle  ABC  with  base  BG  let  AB  be  greater 
than  AC. 

Take  D  on  BA  such  that  BD  =  \  (BA  +  AC}. 

B     H 

On  DA  between  D  and  A  take  any  point  E,  and  draw  EF 
parallel  to  BO.  Let  G  be  any  point  on  EF\  draw  GH  parallel 
to  AB  and  join  GO. 
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Now     JSA  +  AC  >  EF+  FC 

>  EG  +  GC  and   >  GO,  a  fortiori. 

Produce  GO  to  K  so  that  GK  =  EA  +  AC,  and  with  G  as 
centre  and  GK  as  radius  describe  a  circle.  This  circle  will 
meet  HC  and  HG,  because  GH  =  EB  >  BD  or  DA  +  AC  and 
>  GK,  a  fortiori. 

Then        HG  +  GL  =  BE+EA+AC  =  BA  +  AC. 

To  obtain  two  straight  lines  #G',  <?'£  such  that  HG'  +  G'L 
>BA  +  AC,  we  have  only  to  choose  (?'  so  that  HG',  G'L 
enclose  the  straight  lines  IIG,  GL  completely. 

Next  suppose  that,  given  a  triangle  ABC  in  which  BC  >  BA 

>  AC,  we  are  required  to  draw  from  two  points  on  BC  to 
an  internal  point  two  straight  lines  greater  respectively  than 
BA,  AC. 

With  B  as  centre  and  BA  as  radius  describe  the  arc  AEF. 

Take  any  point  E  on  it,  and  any  point  7)  on  BE  produced 
but  within  the  triangle.  Join  DC,  and  produce  it  to  G  so 
that  DG  =  AC.  Then  with  D  as  centre  and  DG  as  radius 
describe  a  circle.  This  will  meet  both  BC  and  BD  because 

BA  >  AC,  and  a  fortiori  DB  >  DG. 
Then,  if  L  be  any  point  on  BJf,  it  is  clear  that  BD,  DL 

are  two  straight  lines  satisfying  the  conditions. 
A  point  ]/  on  BH  can  be  found  such  that  /)//  is  equal 

to  AB  by  marking  oft*  DN  on  DB  equal  to  AB  and  drawing 
with  /)  as  centre  and  DN  as  radius  a  circle  meeting  BH 
in  //.  Also,  if  DH  be  joined,  1)11  =  AC. 

Propositions  follow  (35-9)  having  a  similar  relation  to  the 
Postulate  in  Archimedes,  On  the  Sphere  ami  Cylinder,  I, 
about  conterminous  broken  lines  one  of  which  wholly  encloses 
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the  other,  i.e.  it  is  shown  that  broken  lines,  consisting  of 
several  straight  lines,  can  be  drawn  with  two  points  on  the 
base  of  a  triangle  or  parallelogram  as  extremities,  and  of 
greater  total  length  than  the  remaining  two  sides  of  the 
triangle  or  three  sides  of  the  parallelogram. 

Props.  40-2  show  that  triangles  or  parallelograms  can  be 
constructed  with  sides  respectively  greater  than  those  of  a  given 
triangle  or  parallelogram  but  having  a  less  area. 

Section  (4).     The  inscribing  of  tie  five  regular  solids 
in  a  sphere. 

The  fourth  section  of  Book  Til  (pp.  132-G2)  solves  the 
problems  of  iiibcribing  each  of  the  five  regular  solids  in  a 
given  sphere.  After  some  preliminary  lemmas  (Props.  43-53), 
Pappus  attacks  the  substantive  problems  (Props.  54-8),  using 
the  method  of  analysis  followed  by  synthesis  in  the  case  of 
each  solid. 

(a)  In  order  to  inscribe  a  regular  pyramid  or  tetrahedron  in 
the  sphere,  he  finds  two  circular  sections  equal  and  parallel 
to  one  another,  each  of  which  contains^  one  of  two  opposite 
edges  as  its  diameter.     If  d  be  the  diameter  of  the  sphere,  the 

parallel  circular  sections  have  d/  as  diameter,  where  d2  =  f cZ'2. 
(b)  In  the  case  of  the  cube  Pappus  again  finds  two  parallel 

circular  sections  with  diameter  d'  such  that  d2=%d'2 ;  a  square 
inscribed  in  one  of  these  circles  is  one  face  of  the  cube  and 

"the  square  with  sides  parallel  to  those  of  the  first  square inscribed  in  the  second  circle  is  the  opposite  face. 

(r)  In  the  case  of  the  octahedron  the  same  two  parallel  circular 

sections  with  diameter  d'  such  that  d*  =  f  d'2  are  used ;  an 
equilateral  triangle  inscribed  in  one  circle  is  one  face,  and  the 
opposite  face  is  an  equilateral  triangle  inscribed  in  the  other 
circle  but  placed  in  exactly  the  opposite  way. 

(d)  In  the  case  of  the  icosahedron  Pappus  finds  four  parallel 
circular  sections  each  passing  through  three  of  the  vertices  of 
the  icosahedron ;  two  of  these  are  small  circles  circumscribing 
two  opposite  triangular  faces  respectively,  and  the  other  two 
circles  are  between  these  two  circles,  parallel  to  them,  and 
equal  to  one  another.  The  pairs  of  circles  are  determined  in 
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this  way.  If  d  be  the  diameter  of  the  sphere,  set  out  two 
straight  lines  x,  y  such  that  d,  a,  y  are  in  the  ratio  of  the  sides 
of  the  regular  pentagon,,  hexagon  and  decagon  respectively 
described  in  one  and  the  same  circle.  The  smaller  pair  of 

circles  have  r  as  radius  where  r2  =  £#2,  and  the  larger  pair 
have  r'  as  radius  where  r'2  =  %x2. 

(e)  In  the  case  of  the  dodecahedron  the  saw  e  four  parallel 
circular  sections  are  drawn  as  in  the  case  of  the  icosahedron. 

Inscribed  pentagons  set  the  opposite  way  are  inscribed  in  the 
two  smaller  circles ;  these  pentagons  form  opposite  faces. 
Regular  pentagons  inscribed  in  the  larger  circles  with  vertices 
at  the  proper  points  (and  again  set  the  opposite  way)  determine 
ten  more  vertices  of  the  inscribed  dodecahedron. 

'The  constructions  are  quite  different  from  those  in  Euclid 
XIII.  13,  15,  14,  16,  17  respectively,  where  the  problem  is  first 

to  construct  the  particular  regular  solid  and  then  to  '  com- 

prehend it  in  a  sphere ',  i.  e.  to  determine  the  circumscribing 
sphere  in  each  case.  I  have  set  out  Pappus's  propositions  in 
detail  elsewhere.1 

Book  IV. 

At  the  beginning  of  Book  IV  the  title  and  preface  are 
missing,  and  the  first  section  of  the  Book  begins  immediately 

with  an  enunciation.  The  first  section  (pp.  176-208)  contains 
Propositions  1-12  which,  with  the  exception  of  Props.  8-10, 
seem  to  be  isolated  propositions  given  for  their  own  sakes  and 
not  connected  by  any  general  plan. 

Section  (1).     Extension  of  the  theorem  of  Pythagoras. 

The  first  proposition  is  of  great  interest,  being  the  generaliza- 
tion of  Eucl.  I.  47,  as  Pappus  himself  calls  it,  which  is  by  this 

time  pretty  widely  known  to  mathematicians.  The  enunciation 
is  as  follows. 

'If  ABC  be  a  triangle  and  on  AB,  AC  any  parallelograms 
whatever  be  described,  as  ABDE,  ACFG,  and  if  DE,  FO 
produced  meet  in  H  and  HA  be  joined,  then  the  parallelo- 

grams ABDE,  ACFG  are  together  equal  to  the  parallelogram 

1  Vide  notes  to  Euclid's  propositions  in  The  Thirteen  Books  of  Euclid's 
Elements,  pp.  473,  480,  477,  489-91,  501-3. 
1028.2  H  b 
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contained  by  BC,  HA  in  an  angle  which  is  equal  to  the  sum  of 
the  angles  ABC,  DHA? 

Produce  HA  to  meet  BG  in  K,  draw  EL,  CM  parallel  to  KH 
meeting  DE  in  L  and  FG  in  M,  and  join  LNM. 

Then  BLHA  is  a  parallelogram,  and  HA  is  equal  and 
parallel  to  EL. 

B 

Similarly  HA,  CM  are  equal  and  parallel  ;  therefore  EL,  CM 
are  equal  and  parallel. 

Therefore  BLMC  is  a  parallelogram  ;  and  its  angle  LBK  is 
equal  to  the  sum  of  the  angles  ABC,  DHA. 

Now    D  ABDE  =  D  BLHAt  in  the  same  parallels, 

=  a  BLNK,  for  the  same  reason. 

Similarly    a  ACFG  =  a  4(W#  =  D  NKCM. 

Therefore,  by  addition,  a  ABDE+  a  4(7^(7  =  a  JBUfCL 

It  has  been  observed  (by  Professor  Cook  Wilson  1)  that  the 
parallelograms  on  AB,  AC  need  not  necessarily  be  erected 
outwards  from  AB,  AC.  If  one  of  them,  e.g.  that  on  AC,  be 

drawn  inwards,  as  in  the  second  figure  above,  and  Pappus's 
construction  be  made,  we  have  a  similar  result  with  a  negative 
sign,  namely, 

=  0  ABDE  -O  ACFG. 

Again,  if  both  ABDE  and  ACFG  were  -drawn  inwards,  their 
sum  would  be  equal  to  BLMC  drawn  outwards.  Generally,  if 
the  areas  of  the  parallelograms  described  outwards  are  regarded 
as  of  opposite  sign  to  those  of  parallelograms  drawn  inwards, 

1  Mathematical  Gazette,  vii,  p.  107  (May  1913). 
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we  may  say  that  the  algebraic  sum  of  the  three  parallelograms 
is  equal  to  zero. 

Though  Pappus  only  takes  one  case,  as  was  the  Greek  habit, 
•I  see  no  reason  to  doubt  that  he  was  aware  of  the  results 
in  the  other  possible  cases. 

Props.  2,  3  are  noteworthy  in  that  they  use  the  method  and 
phraseology  of  Eucl.  X,  proving  that  a  certain  line  in  one 
figure  is  the  irrational  called  minor  (see  Eucl.  X.  76),  and 

a  certain  line  in  another  figure  is  *  the  excess  by  which  the 
binomial  exceeds  the  straight  line  which  produces  with  a 

rational  area  a  medial  whole  '  (Eucl.  X.  77).  The  propositions 
4-7  and  11-12  are  quite  interesting  as  geometrical  exercises, 
but  their  bearing  is  not  obvious  :  Props.  4  and  1  2  are  remark- 

able in  that  they  are  cases  of  analysis  followed  by  synthesis 

applied  to  the  proof  of  theorems.  Props.  8-10  belong  to  the 
subject  of  tangencies,  being  the  sort  of  propositions  that  would 
come  as  particular  cases  in  a  book  such  as  that  of  Apollonius 

On  Contacts',  Prop.  8  shows  that,  if  there  are  two  equal 
circles  and  a  given  point  outside  both,  the  diameter  of  the 
circle  passing  through  the  point  and  touching  both  circles 

is  '  given  '  ;  the  proof  is  in  many  places  obscure  and  assumes 
lemmas  of  the  same  kind  as  those  given  later  a  propos  of 

Apollonius's  treatise;  Prop.  10  purports  to  show  how,  given 
three  unequal  circles  touching  one  another  two  and  two,  to 
find  the  diameter  of  the  circle  including  them  and  touching 
all  three. 

Section  (2).     On  circles  inscribed  in  the 

('shoemaker's  knife9). 
The  next  section  (pp.  208-32),  directed  towards  the  demon- 

stration of  a  theorem  about  the  relative  sizes  of  successive 

circles  inscribed  in  the  dpftrjXos  (shoemaker's  knife),  is  ex- 
tremely interesting  and  clever,  and  I  wish  that  I  had  space 

to  reproduce  it  completely.  The  dpfirjXos,  which  we  have 

already  met  with  in  Archimedes's  'Book  of  Lemmas',  is 
formed  thus.  BO  is  the  diameter  of  a  semicircle  BOO  and 

BO  is  divided  into  two  parts  (in  general  unequal)  at  D; 
semicircles  are  described  on  BD,  DO  as  diameters  on  the  same 
side  of  BO  as  BOO  is  ;  the  figure  included  between  the  three 
semicircles  is  the  &pf$ri\os. 

Bb2 
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There  is,  says  Pappus,  on  record  an  ancient  proposition  to 
the  follo^ng  effect.  Let  successive  circles  be  inscribed  in  the 
<fy>/3i7\oy  touching  the  semicircles  and  one  another  as  shown 
in  the  figure  on  p.  376,  their  centres  being  A,  P,  0  ... .  Then,  if 
Pi^  Pv  Pz  •••  be  the  perpendiculars  from  the  centres  A,  P,  0 ... 
on  BG  and  cZa,  c£2,  c?3  ...  the  diameters  of  the  corresponding 
circles, 

pl  =  dl,    p2  =  2(12,    ̂ 3  =  3^3.... 

He  begins  by  some  lemmas,  the  course  of  which  I  shall 
reproduce  as  shortly  as  I  can. 

I.  If  (Fig.  1)  two  circles  with  centres  A,  C  of  which  the 
former  is  the  greater  touch  externally  at  J5,  and  another  circle 
with  centre  G  touches  the  two  circles  at  K,  L  respectively, 
then  KL  produced  cuts  the  circle  BL  again  in  D  and  meets 

AC  produced  in  a  point  E  such  that  AB:BC—AE:EC. 
This  is  easily  proved,  because  the  circular  segments  DL,  LK 
are  similar,  and  CD  is  parallel  to  AG.  Therefore 

AB:BC  =  AK:CD  =  AE:  EC. 

Also  KE.EL  =  E&. 

For  AE:EC  =  AB  :  BC  =  AB:  CF  =  (AE-AB) : (EC-CF) 
=  BE:EF. 

FIG  1. 

But  AE :  EC  =  KE :  ED ;  therefore  KE :  ED  =  BE :  EF. 

Therefore       KE  .EL:  EL.  ED  =  BE2 :  BE .  EF. 

And  EL  .ED  =  BE.  EF',   therefore  KE .  EL  =  EB2. 
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II.  Let  (Fig.  2)  BC,  BD,  being  in  one  straight  line,  be  the 
diameters  of  two  semicircles  BGC,  BED,  and  let  any  circle  as 
FGH  touch  both  semicircles,  A  being  the  centre  of  the  circle. 
Let  M  be  the  foot  of  the  perpendicular  from  A  on  EC,  r  the 
radius  of  the  circle  FGH.  There  are  two  cases  according 
as  BD  lies  along  BC  or  B  lies  between  D  and  C\  i.e.  in  the 
first  case  the  two  semicircles  are  the  outer  and  one  of  the  inner 

semicircles  of  the  ap/fyAoy,  while  in.  the  second  case  they  are 
the  two  inner  semicircles;  in  the  latter  case  the  circle  FGH 
may  either  include  the  two  semicircles  or  be  entirely  external 
to  them.  Now,  says  Pappus,  it  is  to  be  proved  that 

in  case  (1) BM:r  =  (BG+BD) :  (BC-BD), 

and  in  case  (2)      BM:  r  =  (BC-BD) :  (BG+BD). 

We  will  confine  ourselves  to  the  first  case,  represented  in 
the  figure  (Fig.  2). 
Draw  through  A  the  diameter  HF  parallel  to  BC.  Then, 

since  the  circles  BOG,  HGF  touch  at  G,  and  BC,  HF  are 
parallel  diameters,  GHB,  GFC  are  both  straight  lines. 

Let  E  be  the  point  of  contact  of  the  circles  FGH  and  BED] 
then,  similarly,  BEF,  HED  are  straight  lines. 

Let  HK,  FL  be  drawn  perpendicular  to  BC. 

By  the  similar  triangles  BGC,  BKH  we  have 

BC:BG  =  BH:  BK,  or  CB .  BK  =  GB.BH\ t 

and  by  the  similar  triangles  ELF,  BED 

=  BD:BE,  or  DB.BL  =  FB.BE. 



374  PAPPUS  OF  ALEXANDRIA 

But    GB.BH=FB.BE\ 

therefore  CB.BK=DB.  BL, 

or  BC:BD  =  BL:BK. 

Therefore  (BG + BD) :  (BG-  BD)  =  (BL  +  BK) :  (BL  - BK) 
=  2BM:KL 

And    KL  =  HF=2r; 

therefore  BM:r  =  (BC+  BD) :  (BG-  BD).  (a) 

It  is  next  proved  that  BK  .LG  =  AM2. 

For,  by  similar  triangles  BKH,  FLC, 

BK : KH=FL: LG,  or  BK .  LC  =  KH.FL 
=  AM 2.  (6) 

Lastly,  since  BG :  BD  =  BL :  BK,  from  above, 

BC:CD  =  BL: KL,  or  BL.CD  =  BC.KL 
=  BC.2r.  (c) 

Also   BD-.GD  =  BK:KL,  or  BK.GD  =BD.KL 
=  BD.2r.  (d) 

III.  We  now  (Fig.  3)  take  any  two  circles  touching  the 
semicircles  BGG,  BED  and  one  another.  Let  their  centres  be 

A  and  P,  H  their  point  of  contact,  d,  d'  their  diameters  respec- 
tively. Then,  if  AM,  PN  are  drawn  perpendicular  to  BG, 

Pappus  proves  that 

(AM+d):d  =  PN:df. 
Draw  BF  perpendicular  to  BG  and  therefore  touching  the 

semicircles  BGG,  BED  at  B.  Join  AP,  and  produce  it  to 
meet  BF  in  F. 

Now,  by  II.  (a)  above, 

(BG+  BD) :  (BC-  BD)  =  BM-.AH, 
and  for  the  same  reason  =  BN:  PH; 

it  follows  that  AH:PH=  BM :  BN 

=  FA:FP. 
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Therefore  (Lemma  I),  if  the  two  circles  touch  the  semi- 
circle BED  in  jR,  E  respectively,  FRE  is  a  straight  line  and 

EF.  FR  =  FH\ 

But    EF  .  FR  =  FB*  ;  therefore  FH  =  FB. 

If  now  BH  meets  PN  in  0  and  MA  produced  in  8,  we  have, 

by  similar  triangles,  FH:FB  =  PHiPO  =  A&  :AS,  whence 
PH  =  PO  and  &4  =  AH,  so  that  0,  S  are  the  intersections 
of  PN,  AM  with  the  respective  circles. 

N  DM 

FIG.  3. 

BMiBN=BK:BP 

Join  BP,  and  produce  it  £o  meet  MA  in  AT. 

Now  BM:BN=FA:FP 

=  AH:  PH,  from  above, 

And 

Therefore  Kti  = 
circle  EUG. 

Lastly, 

that  is, 

or 

,   and   KA  =  </,  the   diameter  of   the 



376  PAPPUS  OF  ALEXANDRIA 

IV.  We  now  come  to  the  substantive  theorem. 

Let  FGH  be  the  circle  touching  all  three  semicircles  (Fig.  4). 
We  have  then,  as  in  Lemma  II, 

•nsi     T*ir      z>r*      -nj JjLf  .  £)/i   =  JjJJ  •  JjJj, 

and  for  the  same  reason  (regarding  FGH  as  touching  the 
semicircles  BGC,  DUG) 

BC.CL'=GD.CK. 
From  the  first  relation  we  have 

BC:BD  =  BL:BK, 

S  N       K          D  M  L  C 
FIG.  4. 

whence  DC:BD  =  KL  :  BK,  and  inversely  BD :  DC=  BK :  KL, 

while,  from  the  second  relation,  EG :  CD  =  CK  :  CL, 

whence  BD:  DC  =  KL  :  CL. 

Consequently          UK :  KL  =  KL  :  CL, 

or  BK .  LC  =  KL*. 

But  we  saw  in  Lemma  II  (6)  that  BK  .LC  =  AM2. 
Therefore  KL  =  AM,  or  pl  =  dr 

For  the  second  circle  Lemma  III  gives  us 

whence,  since  pl  —  dl,    pz 
For  the  third  circle 

whence  pa  =  3d3. 
And  so  on  ad  infinitum. 
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The  same  proposition  holds  when  the  successive  circles, 
instead  of  being  placed  between  the  large  and  one  of  the  small 
semicircles,  come  down  between  the  two  small  semicircles. 

Pappus  next  deals  with  special  cases  (1)  where  the  two 
smaller  semicircles  become  straight  lines  perpendicular  to  the 
diameter  of  the  other  semicircle  at  its  extremities,  (2)  where 
we  replace  one  of  the  smaller  semicircles  by  a  straight  line 
through  D  at  right  angles  to  BC,  and  lastly  (3)  where  instead 
of  the  semicircle  DUO  we  simply  have  the  straight  line  DC 
and  make  the  first  circle  touch  it  and  the  two  other  semi- 
circles. 

Pappus's  propositions  of  course  include  as  particular  cases 
the  partial  propositions  of  the  same  kind  included  in  the '  Book 
of  Lemmas '  attributed  to  Archimedes  (Props.  5,  6) ;  cf.  p.  102. 

Sections  (3)  and  (4).    Methods  of  squaring  the  circle,  and  of 
trisecting  (or  dividing  in  any  ratio)  any  given  angle. 

The  last  sections  of  Book  IV  (pp.  234-302)  are  mainly 
devoted  to  the  solutions  of  the  problems  (1)  of  squaring  or 
rectifying  the  circle  and  (2)  of  trisecting  any  given  angle 
or  dividing  it  into  two  parts  in  any  ratio.  To  this  end  Pappus 
gives  a  short  account  of  certain  curves  which  were  used  for 
the  purpose. 

(a)  The  Archimedean  spiral. 

He  begins  with  the  spiral  of  Archimedes,  proving  some 
of  the  fundamental  properties.  His  method  of  finding  the 
area  included  (1)  between  the  first  turn  and  the  initial  line, 
(2)  between  any  radius  vector  on  the  first  turn  and  the  curve, 

is  worth  giving  because  it  differs  from  the  method  of  Archi- 
medes. It  is  the  area  of  the  whole  first  turn  which  Pappus 

works  out  in  detail.  We  will  take  the  area  up  to  the  radius 
vector  OJB,  say. 

With  centre  0  and  radius  OB  draw  the  circle  A' BCD. 

Let  BC  be  a  certain  fraction,  say  1  /  nth,  of  the  arc  BCD  A', 
and  CD  the  same  fraction,  OC,  OD  meeting  the  spiral  in  F,  E 

respectively.  Let  Ar$,  8V  be  the  same  fraction  of  a  straight 
line  KR,  the  side  of  a  square  KNLR.  Draw  ST,  VW  parallel 

to  KN  meeting  the  diagonal  KL  of  the  square  in  U,  Q  respec- 
tively, and  draw  MU>  PQ  parallel  to  KR. 
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With  0  as  centre  and  OE,  OF  as  radii  dr&w  arcs  of  circles 

meeting  OF,  OB  in  H,  G  respectively. 
For  brevity  we  will  now  denote  a  cylinder  in  which  r  is  the 

radius  of  the  base  and  h  the  height  by  (cyl.  r,  h)  and  the  cone 
with  the  same  base  and  height  by  (cone  r,  h). 

N  T  w 

By  the  property  of  the  spiral, 

OB:BG  =  (arc  A' DOB) :  (arc  CB) 
=  RK :  KS 

=  NK :  KM, 

whence  OB:OG  =  NK:  NM. 

Now 

(sector  OBG) :  (sector  OGF)  =  0£2 :  OG2  =  JVTf2 : 

=  (cyl.  KN,  NT) :  (cyl.  MN,  NT). 

Similarly 

(sector  000) :  (sector  OEH)  =  (cyl.  ST,  TW) :  (cyl.  PT.  TW), 
and  so  on. 

The  sectors  OBC,  OCD...  form  the  sector  OA'DB,  and  the 
sectors  OFG,  OEH ...  form  a  figure  inscribed  to  the  spiral. 
In  like  manner  the  cylinders  (KN,  TN),  (XT,  TW)  ...  form  the 
cylinder  (KN,  NL),  while  the  cylinders  (MN,  NT),  (PTy  TW) ... 
form  a  figure  inscribed  to  the  cone  (KN>  NL). 

Consequently 

(sector  OA'DB)  :(fig.  inscr.  in  spiral) 
=  (cyl.  KN,  NL) :  (fig.  inscr.  in  cone  KN,  NL). 
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We  have  a  similar  proportion  connecting  a  figure  circum- 
scribed to  the  spiral  and  a  figure  circumscribed  to  the  cone. 

By  increasing  n  the  inscribed  and  circumscribed  figures  can 
be  compressed  together,  and  by  the  usual  method  of  exhaustion 
we  have  ultimately 

(sector  OA'DB) :  (area  of  spiral)  =  (cyL  KN,  NL) :  (cone  KN,  NL) =  3:1, 

or  (area  of  spiral  cut  off' by  OB)  =  £  (sector  OA'DB). 
The  ratio  of  the  sector  OA'DB  to  the  complete  circle  is  that 

of  the  angle  which  the  radius  vector  describes  in  passing  from 
the  position  OA  to  the  position  OB  to  four  right  angles,  that 
is,  by  the  property  of  the  spiral,  r :  a,  where  r  =  OB,  a  =  OA. 

Therefore  (area  of  spiral  cut  off  by  OB)  =  §  r  •  irr*. a 

Similarly  the  area  of  tfye  spiral  cut  off  by  any  other  radius 
/ 

vector  r'  =  4—  •  nr'*. a 

Therefore  (as  Pappus  proves  in  his  next  proposition)  the 
first  area  is  to  the  second  as  r3  to  r'3. 

Considering  the  areas  cut  off  by  the  radii  vectores  at  the 
points  where  the  revolving  line  has  passed  through  angles 
of  £TT,  TT,  ITT  and  %TT  respectively,  we  see  that  the  areas  are  in 

the  ratio  of  (£)3,  (£)3,  (|)3, 1  or  1,  8,  27,  64,  so  that  the  areas  of 
the  spiral  included  in  the  four  quadrants  are  in  the  ratio 
of  1,  7,  19,  37  (Prop.  22). 

()3)    The  conchoid  of  N'icomedes. 

The  conchoid  of  Nicomedes  is  next  described  (chaps.  26-7), 
and  it  is  shown  (chaps.  28,  29)  how  it  can  be  used  to  find  two 
geometric  means  between  two  straight  lines,  and  consequently 
to  find  a  cube  having  a  given  ratio  to  a  given  cube  (see  vol.  i, 

pp.  260-2  and  pp.  238-40,  where  I  have  also  mentioned 

Pappus's  remark  that  the  conchoid  which  he  describes  is  the 
first  conchoid,  while  there  also  exist  a  second,  a  third  and  a 
fourth  which  are  of  use  for  other  theorems). 

(y)   The  quadratrix. 

The  quadratrix  is  taken  next  (chaps.  30-2),  with  Sporus's 
criticism  questioning  the  construction  as  involving  a  petitio 
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prinoipii.  Its  use  for  squaring  the  circle  is  attributed  to 
Dinostratus  and  Nicomedes.  The  whole  substance  of  this 

subsection  is  given  above  (vol.  i,  pp.  226-30). 

Tivo  constructions  for  the  quadratrix  by  means  of 

1  surface-loci '. 

In  the  next  chapters  (chaps.  33,  34,  Props.  28,  29)  Pappus 

gives  two  alternative  ways  of  producing  the  quadratrix  '  by 
means  of  surface-loci',  for  which  he  claims  the  merit  that 

they  are  geometrical  rather  than  ctoo  mechanical'  as  the 
traditional  method  (of  Hippias)  was. 

(1)  The  first  method  uses  a  cylindrical  helix  thus. 

Let  ABC  be  a  quadrant  of  a  circle  with  centre  B,  and 
let  BD  be  any  radius.  Suppose 
that  EF,  drawn  from  a  point  E 
on  the  radius  BD  perpendicular 
to  BC,  is  (for  all  such  radii)  in 
a  given  ratio  to  the  arc  DC. 

'  I  say ',  says  Pappus, c  that  the 
locus  of  E  is  a  certain  curve.' 

Suppose  a  right  cylinder 
erected  from  the  quadrant  and 
a  cylindrical  helix  CGH  drawn 
upon  its  surface.  Let  DH  be 

the  generator  of  this  cylinder  through  J)9  meeting  the  helix 
in  H.  Draw  BL,  El  at  right  angles  to  the  plane  of  the 
quadrant,  and  draw  HIL  parallel  to  BD. 

Now,  by  the  property  of  the  helix,  EI(  =  DH)  is  to  the 
arc  CD  in  a  given  ratio.  Also  EF :  (arc  CD)  =  a  given  ratio. 

Therefore  the  ratio  EF :  El  is  given.  .And  since  EF,  El  are 
given  in  position,  Fl  is  given  in  position.  But  FI  is  perpen- 

dicular to  BG.  Therefore  FI  is  in  a  plane  given  in  position, 
and  so  therefore  is  7. 

But  I  is  also  on  a  certain  surface  described  by  the  line  LH9 
which  moves  always  parallel  to  the  plane  ABC,  with  one 
extremity  L  on  BL  and  the  other  extremity  //  on  the  helix. 
Therefore  /  lies  on  the  intersection  of  this  surface  with  the 

plane  through  FI. 
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Hence  /  lies  on  a  certain  curve.  Therefore  E,  its  projection 
on  the  plane  ABC,  also  lies  on  a  curve. 

In  the  particular  case  where  the  given  ratio  of  EF  to  the 
arc  CD  is  equal  to  the  ratio  of  BA  to  the  arc  CA,  the  locus  of 
E  is  a  quadratrix. 

[The  surface  described  by  the  straight  line  LH  is  a  plectold. 
The  shape  of  it  is  perhaps  best  realized  as  a  continuous  spiral 
staircase,  i.e.  a  spiral  staircase  with  infinitely  small  steps. 
The  quadratrix  is  thus  produced  as  the  orthogonal  projection 
of  the  curve  in  which  the  plectoid  is  intersected  by  a  plane 
through  BC  inclined  at  a  given  angle  to  the  plane  ABC.  It  is 
not  difficult  to  verify  the  result  analytically.] 

(2)  The  second  method  uses  a  right  cylinder  the  base  <jf  which 
is  aji  Archimedean  spiral. 

Let  ABC  be  a  quadrant  of  a  circle,  as  before,  and  EF,  per- 
pendicular at  F  to  BC,  a  straight 

line  of  such  length   that  EF  is 
to  the  arc   DC  as  AB  is  to  the 
arc  ADC. 

Let  a  point  on  AB  move  uni- 
formly from  A  to  B  while,  in  the 

same  time,  AB  itself  revolves 
uniformly  about  B  from  the  position  BA  to  the  position  BC. 
The  point  thus  describes  the  spiral  A  OB.  If  the  spiral  cuts 
BD  in  #, 

BA:BG  =  (arc  ADC) :  (arc  DC), 

or  BG :  (arc  DC)  =  BA  :  (arc  ADC). 

Therefore  BG  =  EF. 

Draw  GK  at  right  angles  to  the  plane  ABC  and  equal  to  BG. 
Then  GK,  and  therefore  K,  lies  on  a  right  cylinder  with  the 
spiral  as  base. 

But  BK  also  lies  on  a  conical  surface  with  vertex  B  such  that 

its  generators  all  make  an  angle  of  %TT  with  the  plane  ABC. 
Consequently  K  lies  on  the  intersection  of  two  surfaces, 

and  therefore  on  a  curve. 

Through  K  draw  LKl  parallel  to  BDy  and  let  BL9  El  be  at 
right  angles  to  the  plane  ABC. 

Then  LKl,  moving  always  parallel  to  the  plane  ABC,  with 
one  extremity  on  BL  and  passing  through  K  on  a  certain 
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curve,  describes  a  certain  plectoid,  which  therefore  contains  the 

point  J. 
Also  IE  =  EF,  IF  is  perpendicular  to  BC,  and  hence  IF,  and 

therefore  /,  lies  on  a  fixed  plane  through  BC  inclined  to  ABO 
at  an  angle  of  ̂ TT. 

Therefore  I,  lying  on  the  intersection  of  the  plectoid  and  the 
said  plane,  lies  on  a  certain  curve.  So  therefore  does  the 
projection  of  /  on  ABC,  i.e.  the  point  E. 

The  locus  of  E  is  clearly  the  quadratrix. 
[This  result  can  also  be  verified  analytically.] 

(S)  Digression:  a  spiral  on  a  sphere. 

Prop.  30  (chap.  35)  is  a  digression  on  the  subject  of  a  certain 
spiral  described  on  a  sphere,  suggested  by  the  discussion  of 
a  spiral  in  a  plane. 

Take  a  hemisphere  bounded  by  the  great  circle  KLM, 
with  H  as  pole.  Suppose  that  the  quadrant  of  a  great  circle 
HNK  revolves  uniformly  about  the  radius  HO  so  that  K 
describes  the  circle  KLM  and  returns  to  its  original  position 
at  K,  and  suppose  that  a  point  moves  uniformly  at  the  same 

N 

time  from  H  to  K  at  such  speed  that  the  point  arrives  at  K 
at  the  same  time  that  HK  resumes  its  original  position.  The 
point  will  thus  describe  a  spiral  on  the  surface  of  the  sphere 
between  the  points  H  and  K  as  shown  in  the  figure. 

Pappus  then  sets  himself  to  prove  that  the  portion  of  the 
surface  of  the  sphere  cut  off  towards  the  pole  between  the 
spiral  and  the  arc  HNK  is  to  the  surface  of  the  hemisphere  in 
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a  certain  ratio  «hown  in  the  second  figure  where  ABC  i$ 
a  quadrant  of  a  circle  equal  to  a  great  circle  in  the  sphere, 
namely  the  ratio  of  the  segment  ABC  to  the  sector  DABC. 

Draw  the  tangent  CF  to  the  quadrant  at  C.  With  C  as 
centre  and  radius  CA  draw  the  circle  A EF  meeting  CF  in  F. 

Then  the  sect&r  CAF  is  equal  to  the  sector  ADC  (since 

CA*  =  2AD\  while  Z  ACF  =  £  Z  4£(7). 
It  is  required,  therefore,  to  prove  that,  if  S  be  the  area  cut 

off  by  the  spiral  as  above  described, 

8 :  (surface  of  hemisphere)  =  (segmt.  A  BC) :  (sector  CAF). 

Let  KL  be  a  (small)  fraction,  say  l/?ith,  of  the  circum- 
ference of  the  circle  KLM,  and  let  HPL  be  the  quadrant  of  the 

great  circle  through  H,  L  meeting  the  spiral  in  P.  Then,  by 
the  property  of  the  spiral, 

(arc  HP) :  (arc  HL)  =  (arc  KL) :  (circumf .  of  KLM) 
=  1 : 71. 

Let  the  small  circle  NPQ  passing  through  P  be  described 
about  the  pole  H. 

Next  let  FE  be  the  same  fraction,  I/nth,  of  the  arc  FA 
that  KL  is  of  the  circumference  of  the  circle  KLMy  and  join  EC 
meeting  the  arc  ABC  in  B.  With  C  as  centre  and  CB  as 
radius  describe  the  arc  BG  meeting  GF  in  G. 

Then  the  arc  CB  is  the  same  fraction,  I/ nth,  of  the  arc 
CBA  that  the  arc  FE  is  of  FA  (for  it  is  easily  seen  that 
LFGE  =  \LBDC,  while  LFCA  =  %£CDA).  Therefore,  since 
(arc  CBA)  =  (arc  HPL),  (arc  CB)  =  (arc  HP),  and  chord  CB 
=  chord  HP. 
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Now  (sector  HPN  on  sphere)  :  (sector  HKL  on  sphere) 

=  (chord  //P)2:  (chord  7//,)2 

(a  consequence  of  Archimedes,  On  Sphere  and  Cylinder,  I.  42). 

And  HP2  :  HL2  =  OB2  :  GA  2 

Therefore 

(sector  HPN)  :  (sector  HKL)  =  (sector  f77?(?)  :  (sector 

Similarly,  if  the  arc  LI/  be  taken  equal  to  the  arc  KL  and 

the  great  circle  through  H,  L/  cuts  the  spiral  in  P',  and  a  small 
circle  described  about  H  and  through  P'  meets  the  arc  HPL 
in  p  ;  and  if  likewise  the  arc  BB'  is  made  equal  to  the  arc  Jt(  \ 
and  CB'  is  produced  to  meet  AF  in  E',  while  again  a  circular 
arc  with  G  as  centre  and  CB'  as  radius  meets  CE  in  6, 

(sector  /fP'?;  on  sphere)  :  (sector  HLL'  on  sphere) 

=  (sector  CB'b)  :  (sector  CE'K). And  so  on. 

Ultimately  then  we  shall  get  a  figure  consisting  of  sectors 
on  the  sphere  circumscribed  about  the  area  H  of  the  spiral  and 
a  figure  consisting  of  sectors  of  circles  circumscribed  about  the 
segment  GBA  ;  and  in  like  manner  we  shall  have  inscribed 
figures  in  each  case  similarly  made  up. 

The  method  of  exhaustion  will  then  give 

$:  (surface  of  hemisphere)  =  (segint.  ABC)  :  (sector  CAP) 

=  (segmt.  ABC)  :  (sector  DAG). 

[We  may,  as  an  illustration,  give  the  analytical  equivalent 
of  this  proposition.  If  p,  o>  be  the  spherical  coordinates  of  P 
with  reference  to  H  as  pole  and  the  arc  HNK  as  polar  axis, 

the  equation  of  Pappus's  curve  is  obviously  o>  =  4  p. 
If  now  the  radius  of  the  sphere  is  taken  as  unity,  we  have  as 

the  element  of  area 

dA  =  dco(l—  cosp)  =  4rfp(l—  cosp). 

pi* 

Ther
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e   
   

A  =    
    

4dp
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=  27r  —  4. 

Jo 
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Therefore 

A  27r-4       -4--^ 

(surface  of  hemisphere)  "~~      2?r 

__  (segment  ABC)  ̂  

~  "(sector  DABC)  "J 
The  second  part  of  the  last  section  of  Book  IV  (chaps.  36-41, 

pp.  270-302)  is  mainly  concerned  with  the  problem  of  tri- 
secting any  given  angle  or  dividing  it  into  parts  in  any  given 

ratio.  Pappus  begins  with  another  account  of  the  distinction 
between  plane,  solid  and  linear  problems  (cf.  Book  III,  chaps. 

20-2)  according  as  they  require  for  their  solution  (1)  the' 
straight  line  and  circle  only,  (2)  conies  or  their  equivalent, 

(3)  higher  curves  still,  '  which  have  a  more  complicated  and 
forced  (or  unnatural)  origin,  being  produced  from  more 
irregular  surfaces  and  involved  motions.  Such  are  the  curves 

which,  are  discovered  in  the  so-called  loci  on  surfaces,  as 
well  as  others  more  complicated  still  and  many  in  number 

discovered  by  Demetrius  of  Alexandria  in  his  Linear  con- 

siderations and  by  Philoii  of  Tyana  by  means  of  the  inter- 
lacing of  plectoids  and  other  surfaces  of  all  sorts,  all  of  which 

curves  -possess  many  remarkable  properties  peculiar  to  them. 
Some  of  these  curves  have  been  thought  by  the  more  recent 

writers  to  be  worthy  of  considerable  discussion  ;  one  of  them  is 
that  which  also  received  from  Menelaus  the  name  of  the 

jxirado.rical  curve.  Others  of  the  Fame  class  are  flpirals, 

cjuadratrices,  cochloids  and  cissoids.'  He  adds  the  often-quoted 
reflection  -on  the  error  committed  by  geometers  w.hen  they 

solve  a  -problem  by  means  of  an  'inappropriate  class*  (of 
curve  or  its  equivalent),  illustrating  this  by  the  use  in 
Apollonius,  Book  V,  of  a  rectangular  hyperbola  for  finding  the 
feet  of  normals  to  a  parabola  passing  through  one  point 

(where  a  circle  would  serve  the  purpose),  and  by  the  assump- 
tion by  Archimedes  of  a  tolid  i/ei/(7*9  in  his  book  On  Spirals 

(see  above,  pp.  65-8). 

Trisection  (or  division  in  any  ratio]  of  any  angle. 

The  method  of  trisecting  any  angle  based  on  a  certain  i/cOcny 
is  next  described,  with  the  solution  of  the  vevvis  itself  by 

1MS  ?  C  C 
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means  of  a  hyperbola  which  has  to  be  constructed  from  certain 
data,  namely  the  asymptotes  and  a  certain  point  through 
which  the  curve  must  pass  (this  easy  construction  is  given  in 

Prop.  33,  chap.  41-2).  Then  the  problem  is  directly  solved 
(chaps.  43,  44)  by  means  of  a  hyperbola  in  two  ways  prac- 

tically equivalent,  the  hyperbola  being  determined  in  the  one 
case  by  the  ordinary  Apollonian  property,  but  in  the  other  by 
means  of  the  focus-directrix  property.  Solutions  follow  of 
the  problem  of  dividing  any  angle  in  a  given  ra^tio  by  means 
(1)  of  the  quadratrix,  (2)  of  the  spiral  of  Archimedes  (chaps. 
45,  46).  All  these  solutions  have  been  sufficiently  described 

above  (vol.  i,  pp.  235-7,  241-3,  225-7). 
Some  problems  follow  (chaps.  47-51)  depending  on  these 

results,  namely  those  of  constructing  an  isosceles  triangle  in 
which  either  of  the  base  angles  has  a  given  ratio  to  the  vertical 
angle  (Prop.  37),  inscribing  in  a  circle  a  regular  polygon  of 
any  number  of  sides  (Prop.  38),  drawing  a  circle  the  circum- 

ference of  which  shall  be  equal  to  a  given  straight  line  (Prop. 
39),  constructing  on  a  given  straight  line  AB  a  segment  of 
a  circle  such  that  the  arc  of  the  segment  inay  have  a  given 

ratio  to  the  base  (Prop.  40),  and  constructing  an  angle  incom- 
mensurable with  a  given  angle  (Prop.  41). 

Section  (5).   Solution  of  the  j/cCo-iy  of  Archimedes,  c  On  Spirals  ', 
Prop.  8,  by  means  of  conies. 

Book  IV  concludes  with  the  solution  of  the  vevtns  which, 
according  ,to  Pappus,  Archimedes  unnecessarily  assumed  in 

On  Spirals,  Prop.  8.  Archimedes's  assumption  is  this.  Given 
a  circle,  a  chord  (BC)  in  it  less  than  the  diameter,  and  a  point 
A  on  the  circle  the  perpendicular  from  which  to  BC  cuts  BC 
in  a  point  D  such  that  BD  >  DC  and  meets  the  circle  again 
in  E,  it  is  possible  to  draw  through  A  a  straight  line  ARP 
cutting  BC  in  R  and  the  circle  in  P  in  such  a  way  that  RP 

shall  be  equal  to  DE  (or,  in  the  phraseology  of  vcvo-ei?,  to 
place  between  the  straight  line  BC  and  the  circumference 
of  the  circle  a  straight  line  equal  to  DE  and  verging 
towards  A). 

Pappus  makes  the  problem  rather  more  general  by  not 
requiring  PR  to  be  equal  to  DE,  but  making  it  of  any  given 
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length  (consistent  with  a  real  solution).    The  problem  is  best 
exhibited  by  means  of  analytical  geometry. 

If  BD  =  a,  DC  =  6,  AD  =  c  (so  that  DE  =  ab/c),  we  have 

to  find  the  point  R  on  BC  such  that  AR  produced  solves  the 
problem  by  making  PR  equal  to  k,  say. 

Let  DR  =  x.     Then,  since  BR  .  RC  =  PR.RA,we  have 

when 

(I) 

(a-x)(b  +  x)  =  A 

An   obvious   expedient   is   to   put  T/   for   \/('2 
we  have 

(a-x)  (b  +  x)  =  ky, 
and if  =  c.'2  +  x2.  (2) 

These  equations  represent  a  parabola  and  a  hyperbola 
respectively,  and  Pappus  does  in  fact  solve  the  problem  by 
means  of  the  intersection  of  a  parabola  and  a  hyperbola  ;  one 
of  his  preliminary  lemmas  is,  however,  again  a  little  more 
general.  In  the  above  figure  y  is  represented  by  RQ. 

The  first  lemma  of  Pappus  (Prop.  42,  p.  298)  states  that,  if 
from  a  given  point  A  any  straight  line  be  drawn  meeting 
a  straight  line  BC  given  in  position  in  R,  and  if  RQ  be  drawn 

at  right  angles  to'JSC  and  of  length  bearing  a  given  ratio 
to  AR,  the  locus  of  Q  is  a  hyperbola. 

For  draw  AD  perpendicular  to  BC  and  produce  it  to  A  ' so  that 

QR:RA  =  A'D:DA  =  the  given  ratio. 
cc  2 
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Measure  DA"  along  DA  equal  to  DA'. 
Then,  if  QN  be  perpendicular  to  AD, 

(AR*-AD*):(QR*-A'D*)  =  (const.), 

that  is,  QN2  :  A'N  .A"N  =  (const.), 
and  the  locus  of  Q  is  a  hyperbola. 

The  equation  of  the  hyperbola  is  clearly 

where  p,  is  a  constant.  In  the  particular  case  taken  by 
Archimedes  QR  =  RA9  or  p,  =  1,  and  the  hyperbola  becomes 
the  rectangular  hyperbola  (2)  above. 

The  second  lemma  (Prop.  43,  p.  300)  proves  that,  if  BC  is 
given  in  length,  and  Q  is  such  a  point  that,  when  QR  is  drawn 
perpendicular  to  BC,  BR  .  RC  =  k  .  QR,  where  k  is  a  given 

length,  the  locus  of  Q  is  a  'parabola. 
Let  0  be  the  middle  point  of  BC,  and  let  OK  be  drawn  at 

right  angles  to  BC  and  of  length  such  that 

Let  QN'  be  drawn  perpendicular  to  OK. 

Then        QN'*  =  OR2 

=  k  .  (KO  -  QJJ),  by  hypothesis, 

=  k  .  KN'. 
Therefore  the  locus  of  Q  is  a  parabola. 
The  equation  of  the  parabola  referred  to  DB,  DE  as  axes  of 

x  and  y  is  obviously 

which  easily  reduces  to 

(a  —  x)  (&  +  #)  =  ky,  as  above  (1). 

In  Archimedes's  particular  case  k  =  ab/c. 

To  solve  the  problem  then  we  have  only  to  draw  the  para- 
bola and  hyperbola  in  question,  and  their  intersection  then 

gives  Q,  whence  R,  and  therefore  ARP,  is  determined. 
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Book  V.     Preface  on  the  Sagacity  of  Bees. 

It  is  characteristic  of  the  great  Greek  mathematicians  that, 
whenever  they  were  free  from  the  restraint  of  the  technical 

language  of  mathematics,  as  when  for  instance  they  had  occa- 
sion to  write  a  preface,  they  were  able  to  write  in  language  of 

the  highest  literary  quality,  comparable  with  that  of  the 
philosophers,  historians,  and  poets.  We  have  only  to  recall 

the  introductions  to  Archimedes' s  treatises  and  the  prefaces 
to  the  different  Books  of  Apollonius's  Conies.  Heron,  though 
severely  practical,  is  no  exception  when  he  has  any  general 
explanation,  historical  or  other,  to  give.  We  have  now  to 
note  a  like  case  in  Pappus,  namely  the  preface  to  Book  V  of 
the  Collection.  The  editor,  Hultsch,  draws  attention  to  the 
elegance  and  purity  of  the  language  and  the  careful  writing ; 

the  latter  is  illustrated  by  the  studied  avoidance  of  hiatus.1 
The  subject  is  one  which  a  writer  of  taste  arid  imagination 
would  naturally  find  attractive,  namely  the  practical  intelli- 

gence shown  by  bees  in  selecting  the  hexagonal  form  for  the 
cells  in  the  honeycomb.  Pappus  does  not  disappoint  us ;  the 
passage  is  as  attractive  as  the  subject,  and  deserves  to  be 
reproduced. 

4  It  is  of  course  to  men  that  God  has  given  the  best  and 
most  perfect  notion  of  wisdom  in  general  and  of  mathematical 
science  in  particular,  but  a  partial  share  in  these  things  he 
allotted  to  some  of  the  unreasoning  animals  as  well.  To  men, 
as  being  endowed  with  reason,  he  vouchsafed  that  they  should 
do  everything  in  the  light  of  reason  and  demonstration,  but  to 
the  other  animals,  while  denying  them  reason,  he  granted 
that  each  of  them  should,  by  virtue  of  a  certain  natural 
instinct,  obtain  just  so  much  as  is  needful  to  support  life. 
This  instinct  may  be  observed  to  exist  in  very  many  other 
species  of  living  creatures,  but  most  of  all  in  bees.  In  the  first 
place  their  orderliness  and  their  submission  to  the  queens  who 
rule  in  their  state  are  truly  admirable,  but  much  more  admirable 
still  is  their  emulation,  the  cleanliness  they  observe  in  the 
gathering  of  honey,  and  the  forethought  and  housewifely  care 
they  devote  to  its  custody.  Presumably  because  they  know 
themselves  to  be  entrusted  with  the  task  of  bringing  from 
the  gods  to  the  accomplished  portion  of  mankind  a  share  of 

1  Pappus,  vol.  iii,  p.  1233. 
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ambrosia  in  this  form,  they  do  not  think  it  proper  to  pour  it 
carelessly  on  ground  or  wood  or  any  other  ugly  and  irregular 
material ;  but,  first  collecting  the  sweets  of  the  moat  beautiful 
flowers  which  grow  on  the  earth,  they  make  from  them,  for 
the  reception  of  the  honey,  the  vessels  which  we  call  honey- 

combs, (with  cells)  all  equal,  similar  and  contiguous  to  one 
another,  and  hexagonal  in  form.  And  that  they  have  con- 

trived this  by  virtue  of  a  certain  geometrical  forethought  we 
may  infer  in  this  way.  They  would  necessarily  think  that 
the  figures  must  be  such  as  to  be  contiguous  to  one  another, 
that  is  to  say,  to  have  their  sides  common,  in  order  that  no 
foreign  matter  could  enter  the  interstices  between  them  and 
so  defile  the  purity  of  their  produce.  Now  only  three  recti- 

lineal figures  would  satisfy  the  condition,  I  mean  regular 

figures  which  are  equilateral  and  equiangular;  for  the 'bees would  have  none  of  the  figures  which  are  not  uniform.  .  .  . 
There  being  then  three  figures  capable  by  themselves  of 
exactly  filling  up  the  space  about  the  same  point,  the  bees  by 
reason  of  their  instinctive  wisdom  chose  for  the  construction 
of  the  honeycomb  the  figure  which  has  the  most  angles, 
because  they  conceived  that  it  would  contain  more  honey  than 
either  of  the  two  others. 

'  Bees,  then,  know  just  this  fact  which  is  of  service  to  them- 
selves, that  the  hexagon  is  greater  than  the  square  and  the 

triangle  and  will  hold  more  honey  for  the  same  expenditure  of 
material  used  in  constructing  the  different  figures.  We,  how- 

ever, claiming  as  we  do  a  greater  share  in  wisdom  than  bees, 
will  investigate  a  problem  of  still  wider  extent,  namely  that, 
of  all  equilateral  and  equiangular  plane  figures  having  an 
equal  perimeter,  that  which  has  the  greater  number  of  angles 
is  always  greater,  and  the  greatest  plane  figure  of  all  those 
which  have  a  perimeter  equal  to  that  of  the  polygons  is  the 
circle/ 

Book  V  then  is  devoted  to  what  we  may  call  isoperivietry, 
including  in  the  term  not  only  the  comparison  of  the  areas  of 
different  plane  figures  with  the  same  perimeter,  but  that  of  the 
contents  of  different  solid  figures  with  equal  surfaces. 

Section  (1).     Isoperimetry  after  Zetiodorus. 

The  first  section  of  the  Book  relating  to  plane  figures 

(chaps.  1-10,  pp.  308-34)  evidently  followed  very  closely 
the  exposition  of  Zenodorus  Trepi  /<ro/*erpo>j/  cryrffidr^if  (see 
pp.  207-13,  above) ;  but  before  passing  to  solid  figures  Pappus 
inserts  the  proposition  that  of  all  circular  segments  having 
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the  sa'fne  circumference  the  semicircle  is  the  greatest,  with  some 
preliminary  lemmas  which  deserve  notice  (chaps.  15,  16). 

(1)  ABC  is  a  triangle  right-angled,  at  B.     With  C  as  centre 
and  radius  CA   describe   the  arc 

AD  cutting   CB  produced  in   D. 
To  prove  that  ( R  denoting  a  right 
angle) 

(sector  CA  D) :  (area  ABD) 

>R:/.BCA. 

Draw  A F  at  right  angles  to  CA  meeting  CD  produced  in  F9 
and  dfaw  BH  perpendicular  to  AF.  With  A  as  centre  and 
AB  as  radius  describe  the  arc  GBE. 

Now  (area  EBF) :  (area  EBH)  >  (area  EBF) :  (.sector  ABE), 

and,  component,  &FBH:(EBH)  >  &ABF:  (ABE). 

But  (by  an  easy  lemma  which  has  just  preceded) 

AFBU:(E/UI)  =  &ABF:(ABD), 

whence  &ABF:  (ABD)  >  &ABF:  (ABE), 

and  (ABE)  >  (ABD). 

Therefore     (ABE) :  (ABG)  >  (ABD) :  (ABG) 

>  (ABD)  :^ ABC,  a  fortiori. 

Therefore     L  BAF:  L  BAC  >  (ABD) :  &ABC, 

whence,  inversely,     A  ABC:  (ABD)  >  L  BAC:  L  BAF. 

and,  comiwneiuto,     (sector  ACD) :  (A BD)  >  R :  L  BCA. 

[If  a  be  the  circular  measure  of  LEG  A,  this  gives  (if  AC=b) i 

£  aft2  :(£a&2---|  sin  a  cosa.fr2)  >  £TT  :a, 

or  2a:(2a  — sin2a)  >  7r:2a; 

that  is,         0/(0-sin0)  >  ir/0,  where  0  <  0  <  TT.] 

(2)  ABC  is  again  a  triangle  right-angled  at  B.  With  C  as 
centre  and  CA  as  radius  draw  a  circle  AD  meeting  BC  pro- 

duced in  D.  To  prove  that 

(sector  CAD) :  (area  ABD)  >  R :  LAGD.       , 
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Draw  AE  at  right  angles  to  AC.'  With  A  as  centre  and 
AC  as  radius  describe  the  circle  FOE  meeting  AB  produced 
in  F&ud  AEmE. 

Then,  since  LACD  >  LVAE,  (sector  ACD)  >  (sector  ACE). 

Therefore        (AGO)  :  &ABC  >  (ACE)  :  &ABG 

>  (ACE)  :  (ACF),  a  fortiori, 

>  LEAC-.LGAB. 
Inversely, 

A  ABC:  (ACD)  <  LGAB^EAC, 

and,  componendoy 

(ABD)  :  (ACD)  <  L  EAB  :  L  EAC. 

Inversely,       (ACD)  :  (ABD)  >  Z  EAC  :  L  EAB 

We  come  now  to  the  application  of  these  lemmas  to  the 

proposition  comparing  the  area  of  a  semicircle  with  that  of 
other  segments  of  equal  circumference  (chaps.  17,  18). 

A  semicircle  is  the  greatest  of  all  segments  of  circles  which 
have  the  same  circumference. 

Let  ABC  be  a  semicircle  with  centre  0,  and  DEF  another 

segment  of  a  circle  such  that  the  circumference  DEF  is  equal 

to  the  circumference  ABC.    I  say  that  the  area  of  ABC  is 

greater  than  the  area  of  DEF. 
Let  H  be  the  centre  of  the  circle  DEF.  Draw  EUK,  BG  at 

right  angles  to  DF,  AC  respectively.  Join  D1I,  and  draw 
LHM  parallel  to  DF. 
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Then  LH:AG  =  (arc  LE)  :  (arc  AB) 

=  (sector  LHE)  :  (sector 

Also  Lll*  :  AG*  =  (sector  LHE)  :  (sector 
Therefore  the  sector  LHE  is  to  the  sector  AGB  in  the 

ratio  duplicate  of  that  which  the  sector  LHE  has  to  the 
sector  DUE. 

Therefore 

(sector  LHE)  :  (sector  DUE)  =  (sector  DHE)  :  (sector  AGB). 

Now  (1)  in  the  case  of  the  segment  less  than  a  semicircle 
and  (2)  in  the  case  of  the  segment  greater  than  a  semicircle 

(sector  EDH)  :  (EDK)  >  R  :  Z  DHE, 

by  the  lemmas  (1)  and  (2)  respectively. 
That  is, 

(sector  EDH  )  :  (EDK)  >  Z  LHE:  Z  DHE 

>  (sector  LHE)  :  (sector  DHE) 

>  (sector  EDH)  :  (sector  AGB), 
from  above. 

Therefore  the  half  segment  EDK  is  less  than  the  half 
semicircle  A(1B,  whence  the  semicircle  ABC  is  greater  than 
the  segment  DEh\ 

We  have  already  described  the  content  of  Zenodorus's 
treatise  (pp.  207-13,  above)  to  which,  so  far  as  plane  figures 
are  concerned,  Pappus  added  nothing  except  the  above  pro- 

position relating  to  segments  of  circles. 

JSection  (2).      Comparison  of  volumes  of  solids  liaviny  their 
surfaces  equal.     Case  of  the  spfiere. 

The  portion  of  Book  V  dealing  with  solid  figures  begins 
(p.  350.  20)  with  the  statement  that  the  philosophers  who 
considered  that  the  creator  gave  the  universe  the  form  of  a 
sphere  because  that  was  the  most  beautiful  of  all  shapes  also 
asserted  that  the  sphere  is  the  greatest  of  all  solid  figures 
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which  have  their  surfaces  equal ;  this,  however,  they  had  not 
proved,  nor  could  it  be  proved  without  a  long  investigation. 
Pappus  himself  does  not  attempt  to  prove  that  the  sphere  is 
greater  than  all  solids  with  the  same  surface,  but  only  that 
the  sphere  is  greater  than  any  of  the  five  regular  solids  having 
the  same  surface  (chap.  19)  and  also  greater  than  either  a  cone 
or  a  cylinder  of  equal  surface  (chap.  20). 

Section  (3).     Digression  on  the  semi-regular  solids 
of  Archimedes. 

He  begins  (chap.  19)  with  an  account  of  the  thirteen  tsenii- 
regular  solids  discovered  by  Archimedes,  which  are  contained 
by  polygons  all  equilateral  and  all  equiangular  but  not  all 

similar  (see  pp.  98-101,  above),  and  he  shows  how  to  determine 
the  number  of  solid  angles  and  the  number  of  edges  which 

they  have  respectively ;  he  then  gives  them  the  go-by  for  his 
present  purpose  because  they  are  not  completely  regular ;  still 
less  does  he  compare  the  sphere  with  any  irregular  solid 
having  an  equal  surface. 

The  sphere  is  greater  than  any  of  the  regular  solids  which 
has  its  surface  equal  to  that  of  the  sphere. 

The  proof  that  the  sphere  is  greater  than  any  of  the  regular 
solids  with  surface  equal  to  that  of  the  sphere  is  the  same  as 
that  given  by  Zenodorus.  Let  P  be  any  one  of  the  regular  solids, 
S  the  sphere  with  surface  equal  to  that  of  P.  To  prove  that 
S>P.  Inscribe  in  the  solid  a  sphere  s,  and  suppose  that  r  is  its 
radius.  Then  the  surface  of  P  is  greater  than  the  surface  of  s, 
and  accordingly,  if  It  is  the  radius  of  /S,  R  >  r.  But  the 
volume  of  8  is  equal  to  the  cone  with  base  equal  to  the  surface 
of  Sy  and  therefore  of  P,  and  height  equal  to  R ;  and  the  volume 
of  P  is  equal  to  the  cone  with  base  equal  to  the  surface  of  P 

and  height  equal  to  r.  Therefore,  since  R  >?*,  volume  of  tf  > 
volume  of  P. 

Section  (4).     Propositions  on  the  lilies  of  Archimedes, 

'  On  the  Sphere  and  Cylinder '. 
For  the  fact  that  the  volume  of  a  sphere  is  equal  to  the  cone 

with  base  equal  to  the  surface,  arid  height  equal  to  the  radius, 
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of  the  sphere,  Pappus  quotes  Archimedes,  On  the  Sphere  and 
Cylinder,  but  thinks  proper  to  add  a  series  of  propositions 

(chaps,  20-43,  pp.  362-410)  on  much  the  same  lines  as  those  of 
Archimedes  and  leading  to  the  same  results  as  Archimedes 
obtains  for  the  surface  of  a  segment  of  a  sphere  and  of  the  whole 
sphere  (Prop.  28),  and  for  the  volume  of  a  sphere  (Prop.  35). 
Prop.  36  (chap.  42)  shows  how  to  divide  a  sphere  into  two 
segments  such  that  their  surfaces  are  in  a  given  ratio  and 

Prop.  37  (chap.  "43)  proves  that  the  volume  as  well  as  the surface  of  the  cylinder  circumscribing  a  sphere  is  1^  times 
that  of  the  sphere  itself. 
Among  the  lemmatic  propositions  in  this  section  of  the 

Book  Props.  21,  22  may  be  mentioned.  Prop.  21  proves  that, 
if  C,  E  be  two  points  on  the  tangent  at  H  to  a  semicircle  such 
that  CH  =  HE,  and  if  CD,  EF  be  drawn  perpendicular  to  the 

diameter  ABy  then  (CD  +  EF)  CE-AB.  DF\  Prop.  22  proves 
a  like  result  where  C,  E  are  points  on  the  semicircle,  CD,  EF 
are  as  before  perpendicular  to  AB,  and  EH  is  the  chord  of 
the  circle  subtending  the  arc  which  with  CE  makes  up  a  semi- 

circle ;  in  this  case  (CD  +  EF)  CE  =  EH  .  DF.  Both  results 
are  easily  seen  to  be  the  equivalent  of  the  trigonometrical 
formula 

sin  (x  +  y)  +  sin  (x  —  y)  =  2  sin  x  cos  yy 

or,  if  certain  different  angles  be  taken  as  x,  y, 

sin  x  4-  sin  y          ,  ,  ,         v    =  cot  4(8  —  y). 
cos  //  —  cos  x 

Section  (5).     Of  regular  solufs  with  surfaces  equal,  that  is 
greater  which  has  more  faces. 

Returning  to  the  main  problem  of  the  Book,  Pappus  shows 
that,  of  the  five  regular  solid  figures  assumed  to  have  their 
surfaces  equal,  that  is  greater  which  has  the  more  faces,  so 
that  the  pyramid,  the  cube,  the  octahedron,  the  dodecahedron 
and  the  icosahedron  of  equal  surface  are,  as  regards  solid 

content,  in  ascending  order  of  magnitude  (Props.  3£-56). 

Pappus  indicates  (p.  410.  27)  that  'some  of  the  ancients'  had 
worked  out  the  proofs  of  these  propositions  by  the  analytical 
method;  for  himself,  he  will  give  a  method  of  his  own  by 
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synthetical  deduction,  for  which  he  claims  that  it  is  clearer 
and  shorter.  We  have  first  propositions  (with  auxiliary 
lemmas)  about  the  perpendiculars  from  the  centre  of  the 
circumscribing  sphere  to  a  face  of  (a)  the  octahedron,  (6)  the 
icosahedron  (Props.  39,  43),  then  the  proposition  that,  if  a 
dodecahedron  and  an  icosahedron  be  inscribed  in  the  same 

sphere,  the  same  small  circle  in  the  sphere  circumscribes  both 
the  pentagon  of  the  dodecahedron  and  the  triangle  of  the 
icosahedron  (Prop.  48) ;  this  last  is  the  proposition  proved  by 

Hypsicles  in  the  so-called  '  Book  XIV  of  Euclid ',  Prop.  2,  and 
Pappus  gives  two  methods  of  proof,  the  second  of  which  (chap. 
56)  corresponds  to  that  of  Hypsicles.  Prop.  49  proves  that 
twelve  of  the  regular  pentagons  inscribed  in  a  circle  are  together 
greater  than  twenty  of  the  equilateral  triangles  inscribed  in 
the  same  circle.  The  final  propositions  proving  that  the  cube 
is  greater  than  the  pyramid  with  the  same  surface,  the  octa- 

hedron greater  than  the  cube,  and  so  on,  are  Props.  52-6 

(chaps.  60-4).  Of  Pappus's  auxiliary  propositions,  Prop.  41 
is  practically  contained  in  Hypsicles's  Prop.  1,  and  Prop.  44 
in  Hypsicles's  last  lemma;  but  otherwise  the  exposition  is different. 

Book  VI. 

On  the  contents  of  Book  VI  we  can  be  brief.  It  is  mainly 
astronomical,  dealing  with  the  treatises  included  in  the  so- 
called  Little  Astronomy,  that  is,  the  smaller  astronomical 
treatises  which  were  studied  as  an  introduction  to  the  great 
tiyntaxis  of  Ptolemy.  The  preface  says  that  many  of  those 
who  taught  the  Treasury  of  Astronomy >  through  a  careless 
understanding  of  the  propositions,  added  some  things  as  being 
necessary  and  omitted  others  as  unnecessary.  Pappus  mentions 
at  this  point  an  incorrect  addition  to  Theodosius,  Sphaerica, 

III.  6,  an  omission  from  Euclid's  Phaenomena,  Prop.  2,  an 
inaccurate  representation  of  Theodosius,  On  Days  and  Nights, 
Prop.  4,  and  the  omission  later  of  certain  other  things  as 
bein£  unnecessary.  His  object  is  to  put  these  mistakes 

right.  Allusions  are  also  found  in  the  Book  to  Menelaus's 
Spftaertca,  e.g.  the  statement  (p.  476.  16)  that  Menelaus  in 
his  Sphaerica  called  a  spherical  triangle  TpiirXtvpov,  three-side. 
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The  Sphaerica  of  Theodosius  is  dealt  with  at  some  length 

(chaps.  1-26,  Props.  1-27),  and  so  are  the  theorems  of 
Autolycus  On  the  moving  Sphere  (chaps.  27-9),  Theodosius 
On  Days  and  Nights  (chaps.  30-6,  Props.  29-38),  Aristarchus 
0??,  the  sizes  and  distances  of  the  Sun  and  Moon  (chaps.  37-40, 
including  a  proposition,  Prop.  39  with  two  lemmas,  which  is 

corrupt  at  the  end  and  is  not  really  proved),  Euclid's  Optics 
(chaps.  41-52,  Props.  42-54),  and  Euclid's  Phaenomena  (chaps. 
53-60,  Props.  55-61). 

Problem  arising  out  of  Euclid's  'Optws*. 
There  is  little  in  the  Book  of  general  mathematical  interest 

except  the  following  propositions  which  occur  in  the  section  on 

Euclid's  Optics. 
Two  propositions  are  fundamental  in  solid  geometry, 

namely : 

(a)  If  from  a  point  A  above  a  plane  AB  be  drawn  perpen- 
dicular to  the  plane,  and  if  from  B  a  straight  line  BD  be 

drawn  perpendicular  to  any  straight  line  EF  in  the  plane, 
then  will  AD  also  be  perpendicular  to  EF  (Prop.  43). 

(/>)  If  from  a  point  A  above  a  plane  A  B  be  drawn  to  the  plane 
but  not  at  right  angles  to  it,  and  AM  be  drawn  perpendicular 
to  the  plane  (i.e.  if  BM  be  the  orthogonal  projection  of  BA  on 
the  plane),  the  angle  ABM  is  the  least  of  all  the  angles  which 
AB  makes  with  any  straight  lines  through  B,  as  BP,  in  the 
plane ;  the  angle  A  BP  increases  as  BP  moves  away  from  BM 

on  either  side* ;  and,  given  any  straight  line  BP  making 
a  certain  angle  with  BA>  only  one  other  straight  line  in  the 
plane  will  make  the  same  angle  with  BA,  namely  a  straight 

line  Rlv  on  the  other  side  of  BM  making  the  same  angle  with 
it  that  BP  does  (Prop.  44). 

These  are  the  first  of  a  series  of  lemmas  leading  up  to  the 
main  problem,  the  investigation  of  the  apparent  form  of 
a  circle  as  seen  from  a  point  outside  its  plane.  In  Prop.  50 
(=  Euclid,  Optics,  34)  Pappus  proves  the  fact  that  all  the 
diameters  of  the  circle  will  appear  equal  if  the  straight  line 
drawn  from  the  point  representing  the  eye  to  the  centre  of 
the  circle  is  either  (a)  at  right  angles  to  the  plane  of  the  circle 
or  (6),  if  not  at  right  angles  to  the  plane  of  the  circle,  is  equal 
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in  length  to  the  radius  of  the  circle.  In  all  other  cases 
(Prop.  51  =  Eucl.  Optics,  35)  the  diameters  will  appear  unequal. 

Pappus's  other  propositions  carry  farther  Euclid's  remark 
that  the  circle  seen  under  these  conditions  will  appear 
deformed  or  distorted  (TrapcerTraoy-eli'os),  proving  (Prop.  53, 
pp.  588-92)  that  the  apparent  form  will  be  an  ellipse  with  its 

centre  not,  'as  some  think',  at  the  centre  of  the  circle  but 
at  another  point  in  it,  determined  in  this  way.  Given  a  circle 
ABDE  with  centre  0,  let  the  eye  be  at  a  point  F  above  the 
plane  of  the  circle  such  that  FO  is  neither  perpendicular 
to  that  plane  nor  equal  to  the  radius  of  the  circle.  Draw  FG 
perpendicular  to  the  plane  of  the  circle  and  let  ADG  be  the 
diameter  through  G.  Join  AF,  DF,  and  bisect  the  angle  AFD 
by  the  straight  line  FC  meeting  AD  in  C.  Through  C  draw 
BE  perpendicular  to  AD,  and  let  the  tangents  at  B,  E  meet 
AG  produced  in  K.  Then  Pappus  proves  that  C  (not  0)  is  the 
centre  of  the  apparent  ellipse,  that  AD,  BE  are  its  major  and 
minor  axes  respectively,  that  the  ordinates  to  AD  are  parallel 
to  BE  both  really  and  apparently,  and  that  the  ordinates  to 
BE  will  pass  through  K  but  will  appear  to  be  parallel  to  AD. 
Thus  in  the  figure,  G  being  the  centre  of  the  apparent  ellipse, 

it  is  proved  that,  if  LCM  is  any  straight  line  through  (7,  LC  is 

apparently  equal  to  CM  (it  is  practically  assumed— a  proposi- 
tion proved  later  in  Book  VII,  Prop.  156 — that,  if  LK  meet 

the  circle  again  in  P,  and  if  PM  be  drawn  perpendicular  to 
AD  to  meet  the  circle  again  in  M,  LM  passes  through  0). 
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The  test  of  apparent  equality  is  of  course  that  the  two  straight 
lines  should  subtend  equal  angles  at  F. 

The  main  points  in  the  proof  are  these.  The  plane  through 
OF,  CK  is  perpendicular  to  the  planes  BFJB,  PFM  and  LFR; 
hence  OF  is  perpendicular  to  BE,  QF  to  PM  and  HF  to  LR, 
whence  BG  and  CE  subtend  equal  angles  at  F:  so  do  LH,  HR, 
and  PQ,  QM. 

Since  FG  bisects  the  angle  AFD,  and  AC:GD  =  AK :  KD 
(by  the  polar  property),  Z.CFK  is  a  right  angle.  And  GF  is 
the  intersection  of  two  planes  at  right  angles,  namely  AFK 
and  BFJS,  in  the  former  of  which  FK  lies;  therefore  KF  is 
perpendicular  to  the  plane  BFE,  and  therefore  to  FN.  Since 
therefore  (by  the  polar  property)  L N :  NP  =  LK :  KP,  it 
follows  that  the  angle  LFP  is  bisected  by  FN]  hence  LN,  NP 
are  apparently  equal. 

Again     LC :  CM  =  LN:NP  =  LF:  FP  =  i^:  m 

Therefore  the  angles  LFC,  GFM  are  equal,  and  LC,  CM 
are  apparently  equal. 

Lastly  LR:PM=LK:KP=LN:NP=LFiFP\  therefore 
the  isosceles  triangles  FLR,  FPM  are  equiangular;  there- 

fore the  angles  PFM,  LFR,  and  consequently  PFQ,  LFH,  are 
equal.  Hence  LP,  RM  will  appear  to  be  parallel  to  AD. 
We  have,  based  on  this  proposition,  an  easy  method  of 

solving  Pappus's  final  problem  (Prop,  54).  *  Given  a  circle 
ABDE  and  any  point  within  it,  to  find  outside  the  plane  of 
the  circle  a  point  from  which  the  circle  will  have  the  appear- 

ance of  an  ellipse  with  centre  C! 
We  have  only  to  produce  the  diameter  AD  through  C  to  the 

pole  K  of  the  chord  BE  perpendicular  to  AD  and  then,  in 
the  plane  through  A  K  perpendicular  to  the  plane  of  the  circle, 
to  describe  a  semicircle  on  CK  as  diameter.  Any  point  F  on 
this  semicircle  satisfies  the  condition. 

Book  VII.     On  the  '  Treasury  of  A  nalysis '. 
Book  VII  is  of  much  greater  importance,  since  it  gives  an 

account  of  the  books  forming  what  was  called  the  Treasury  of 
Analysis  (avaXvontvos  r6iro$)  and,  as  regards  those  of  the  books 

which  are  now  lost,  Pappus's  account,  with  the  hints  derivable 
from  the  large  collection  of  lemmas  supplied  by  him  to  each 
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book,  practically  constitutes  our  only  source  of  information. 
The  Book  begins  (p.  634)  with  a  definition  of  analysis  and 
synthesis  which,  as  being  the  most  elaborate  Greek  utterance 
on  the  subject,  deserves  to  be  quoted  in  full. 

cThe  so-called  Hi/aAv6/z€i/o9  is,  to  put  it  shortly,  a  special 
body  of  doctrine  provided  for  the  use  of  those  who,  after 
finishing  the  ordinary  Elements,  are  desirous  of  acquiring  the 
power  of  solving  problems  whicli  may  be  set  them  involving 
(the  construction  of)  lines,  and  it  is  useful  for  this  alone.  It  is 
the  work  of  three  men,  Euclid  the  author  of  the  Elements, 
Apollonius  of  Perga  and  Aristaeus  the  elder,  and  proceeds  by 

way  of  analysis  and  synthesis.' 

Definition  of  Analysis  and  Synthesis. 

c  Analysis,  then,  takes  that  which  is  sought  as  if  it  were 
admitted  and  passes  from  it  through  its  successive  conse- 

quences to  something  which  is  admitted  as  the  result  of 
synthesis:  for  in  analysis  we  assume  that  which  is  sought 
as  if  it  were  already  done  (yeyoi/os),  and  we  inquire  what  it  is 
from  which  this  results,  and  again  what  is  the  antecedent 
cause  of  the  latter,  and  so  on,  until  by  so  retracing  our  steps 
we  come  upon  something  already  known  or  belonging  to  the 
class  of  first  principles,  and  such  a  method  we  call  analysis 

as  being  solution  backwards  (avaira\iv  Xvo-iv). 
1  But  in  synthesis,  reversing  the  process,  we  take  as  already 

done  that  which  was  last  arrived  at  in  the  analysis  and,  by 
arranging  in  their  natural  order  as  consequences  what  before 
were  antecedents,  and  successively  connecting  them  one  with 
another,  we  arrive  finally  at  the  construction  of  what  was 
sought ;  and  this  we  call  synthesis. 

'  Now  analysis  is  of  two  kinds,  the  one  directed  to  searching 
for  the  truth  and  called  theoretical,  the  other  directed  to 
finding  what  we  are  told  to  find  and  called  problematical. 
(1)  In  the  theoretical  kind  we  assume  what  is  sought  as  if 
it  were  existent  and  true,  after  which  we  pass  through  its 
successive  consequences,  as  if  they  too  were  true  and  established 
by  virtue  of  our  hypothesis,  to  something  admitted:   then 
(a),  if  that  something  admitted  is  true,  that  which  is  sought 
will  also  be  true  and  the  proof  will  correspond  in  the  reverse 
order  to  the  analysis,  but  (b),  if  we  come  upon  something 
admittedly   false,   that   which   is  sought  will  also  be  false. 
(2)  In  the  jyroUematical  kind  we  assume  that  which  is  pro- 

pounded as  if  it  were  known,  after  which  we  pass  through  its 
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vsuccessive  consequences,  taking  them  as  true,  up  to  something 
admitted :  if  then  (a)  what  is  admitted  is  possible  and  obtain- 

able, that  is,  what  mathematicians  call  given,  what  was 
originally  proposed  will  also  be  possible,  and  the  proof  will 
again  correspond  in  the  reverse  order  to  the  analysis,  but  if  (b) 
we  come  upon  something  admittedly  impossible,  the  problem 
will  also  be  impossible/ 

This  statement  could  hardly  be  improved  upon  except  that 
it  ought  to  be  added  that  each  step  in  the  chain  of  inference 
in  the  analysis  must  be  unconditionally  convertible]  that  is, 
when  in  the  analysis  we  say  that,  if  A  is  true,  B  is  true, 
we  must  be  sure  that  each  statement  is  a  necessary  conse- 

quence of  the  other,  so  that  the  truth  of  A  equally  follows 
from  the  truth  of  B.  This,  however,  is  almost  implied  by 
Pappus  when  he  says  that  we  inquire,  not  what  it  is  (namely 
B)  which  follows  from  A,  but  what  it  is  (B)  from  which  A 
follows,  and  so  on. 

List  of  works  in  the  '  Treasury  of  Analysis  \ 

Pappus   adds   a   list,  in  order,  of  the  books  forming  the 
Sy  namely : 

*  Euclid's  Data,  one  Book,  Apollonius's  Cutting-off  of  a  ratio, 
two  Books,  Cutting-off  of  an  area,  two  Books,  Determinate 
Section,  two  Books,  Contacts,  two  Books,  Euclid's  Por/sms, 
three  Books,  Apollonius's  Inclinations  or  Vergings  (v€va€t$), 
two  Books,  the  same  author's  Plane  Loci,  two  Books,  and 
Conies,  eight  Books,  Aristaeus's  Solid  Loci,  five  Books,  Euclid's 
Surface-Loci,  two  Books,  Eratosthenes's  On  means,  two  Books. 
There  are  in  all  thirty-three  Books,  the  contents  of  which  up 
to  the  Conies  of  Apolloniua  I  have  set  out  for  your  considera- 

tion, including  not  only  the  number  of  the  propositions,  the 
diorismi  and  the  cases  dealt  with  in  each  Book,  but  also  the 
lemmaa  which  are  required;  indeed  I  have  not,  to  the  best 
of  my  belief,  omitted  any  question  arising  in  the  study  of  the 

Books  in  question.' 

Description  of  the  treatises. 

Then  follows  the  short  description  of  the  contents  of  the 

various  Books  down  to  Apollonius's  Conies;  no  account  is 
given  of  Aristaeus'&  Solid  Loci,  Euclid's  Surface-Loci  and 
1531.2  D  d 
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Eratosthenes's  On  rrt^ans,  nor  are  there  any  lemmas  to  these 
works  except  two  on  the  Surface-Loci  at  the  end  of  the  Book. 

The  contents  of  the  various  works,  including  those  of  the 
lost  treatises  so  far  as  they  can  be  gathered  from  Pappus, 
have  been  described  in  the  chapters  devoted  to  their  authors, 
and  need  not  be  further  referred  to  here,  except  for  an 

addendum  to  the  account  of  Apollonius's  Conies  which  is 
remarkable.  Pappus  has  been  speaking  of  the  '  locus  with 

respect  to  three  or  four  lines '  (which  is  a  conic),  and  proceeds 
to  say  (p.  678.  26)  that  we  may  in  like  manner  have  loci  with 
reference  to  five  or  six  or  even  more  lines ;  these  had  not  up 
to  his  time  become  generally  known,  though  the  synthesis 
of  one  of  them,  not  by  any  means  the  most  obvious,  had  been 
worked  out  and  its  utility  shown.  Suppose  that  there  are 
five  or  six  lines,  and  that  pl ,  p2 ,  #, ,  p^ ,  p6  or  p^  tp29p.^p4t  pr, ,  pQ 
are  the  lengths  of  straight  lines  drawn  from  a  point  to  meet 
the  five  or  six  at  given  angles,  then,  if  in  the  first  case 

PiP^'Ps  ==  ̂ PiP&a  (where  X  is  a  constant  ratio  and  a  a  given 
length),  and  in  the  second  case  Pip^p^  =  Aj047>6^6,  the  locus 
of  the  point  is  in  each  case  a  certain  curve  given  in  position. 
The  relation  could  not  be  expressed  in  the  same  form  if 
there  were  more  lines  than  six,  because  there  are  only  three 
dimensions  in  geometry,  although  certain  recent  writers  had 
allowed  themselves  to  speak  of  a  rectangle  multiplied  by 
a  square  or  a  rectangle  without  giving  any  intelligible  idea  of 
what  they  meant  by  such  a  thing  (is  Pappus  here  alluding  to 

Heron's  proof  of  the  formula  for*  the  area  of  a  triangle  in 
terms  of  its  sides  given  on  pp.  322-3,  above  ?).  But  the  system 
of  compounded,  ratios  enables  it  to  be  expressed  for  any 

number  of  lines   thus,  2-1.*-? —  ̂   for  ?r^\  =  A.     Pappus 
/>2  PI        a    \       pn/  ™ 

proceeds  in  language  not  very  clear  (p.  680.  30) ;  but  the  gist 
seems  to  be  that  the  investigation  of  these  curves  had  not 
attracted  men  of  light  and  leading,  as,  for  instance,  the  old 
geometers  and  the  best  writers.  Yet  there  were  other  impor- 

tant discoveries  still  remaining  to  be  made.  For  himself,  he 
noticed  that  every  one  in  his  day  was  occupied  with  the  elements, 
the  first  principles  and  the  natural  origin  of  the  subject- 
matter  of  investigation ;  ashamed  to  pursue  such  topics,  he  had 
himself  proved  propositions  of  much  more  importance  and 
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utility.  In  justification  of  this  statement  and  '  in  order  that 
he  may  not  appear  empty-handed  when  leaving  the  subject ', 
he  wijl  present  his  readers  with  the  following. 

(Anticipation  of  Guldins  Theorem.) 

The  enunciations  are  not  very  clearly  worded,  but  there 
is  no  doubt  as  to  the  sense. 

c  Figures  generated  by  a  complete  revolution  of  a  plane  figure 
about  an  axis  are  in  a  ratio  compounded  (1)  of  the  ratio 
of  the  areas  of  the  figures,  and  (2)  of  the  ratio  of  the  straight 
lines  similarly  drawn  to  (i.e.  drawn  to  meet  at  the  same  angles) 
the  axes  of  rotation  from  the  respective  centres  of  gravity. 
Figures  generated  by  incomplete  revolutions  are  in  the  ratio 
compounded  (1)  of  the  ratio  of  the  areas  of  the  figures  and 
(2)  of  the  ratio  of  the  arcs  described  by  the  centres  of  gravity 
of  the  respective  figure*,  the  latter  ratio  being  itself  compounded 
(a)  of  the  ratio  of  the  straight  lines  similarly  drawn  (from 
the  respective  centres  of  gravity  to  the  axes  of  rotation)  and 
(b)  of  the  ratio  of  the  angles  contained  (i.e.  described)  about 
the  axes  of  revolution  by  the  extremities  of  the  said  straight 

lines  (i.e.  the  centres  of  (jravity).9 
Here,  obviously,  we  have  the  essence  of  the  celebrated 
theorem  commonly  attributed  to  P.  Guldin  (1577-1643)», 

'quantitas  rotunda  in  viam  rotationis  ducta  producit  Pote- 
statem  Rotundam  uno  grado  altiorem  Potestate  sive  Quantitate 

Rotata'.1 
Pappus  adds  that 

'  these  propositions,  which  are  practically  one,  include  any 
number  of  theorems  of  all  sorts  about  curves,  surfaces,  and 
solids,  all  of  which  are  proved  at  once  by  one  demonstration, 
and  include  propositions  both  old  and  new,  and  in  particular 

those  proved  in  the  twelfth  Book  of  these  Elements.' 

Hultsch  attributes  the  whole  passage  (pp.  680.  30-682.  20) 
to  an  interpolator,  I  do  not  know  for  what  reason;  but  it 
seems  to  me  that  the  propositions  are  quite  beyond  what 
could  be  expected  from  an  interpolator,  indeed  I  know  of 

no  Greek  mathematician  from  Pappus's  day  onward  except 
Pappus  himself  who  was  capable  of  discovering  such  a  pro- 
position. 

1  Centrobaryca,  Lib.  ii,  chap,  viii,  Prop.  3.  Viennae  1641. 
Dd2 
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If  the  passage  is  genuine,  it  seems  to  indicate,  what  is  not 
elsewhere  confirmed,  that  the  Collection  originally  contained, 
or  was  intended  to  contain,  twelve  Books. 

Lemmas  to  the  different  treatises. 

After  the  description  of  the  treatises  forming  the  Treasury 
of  Analysis  come  the  collections  of  lemmas  given  by  Pappus 

to  .assist  the  student  of  each  of  the  books  (except  Euclid's 
Data)  down  to  Apollonius's  Conies,  with  two  isolated  lemmas 
to  the  Surface-Loci  of  Euclid.  It  is  difficult  to  give  any 
summary  or  any  general  idea  of  these  lemmas,  because  they 

are  very  numerous,  extremely  various,  and  often  quite  diffi- 
cult, requiring  first-rate  ability  and  full  command  of  all  the 

resources  of  pure  geometry.  Their  number  is  also  greatly 
increased  by  the  addition  of  alternative  proofs,  often  requiring 
lemmas  of  their  own,  and  by  the  separate  formulation  of 
particular  cases  where  by  the  use  of  algebra  and  conventions 
with  regard  to  sign  we  can  make  one  proposition  cover  all  the 
cases.  The  style  is  admirably  terse,  often  so  condensed  as  to 
make  the  argument  difficult  to  follow  without  some  little 
filling-out;  the  hand  is  that  of  a  master  throughout.  The 
only  misfortune  is  that,  the  books  elucidated  being  lost  (except 

the  Conies  and  the  Cutting-off  of  a  ratio  of  Apollonius),  it  is 
difficult,  often  impossible,  to  see  the  connexion  of  the  lemmas 
with  one  another  and  the  problems  of  the  book  to  which  they 
relate.  In  the  circumstances,  all  that  I  can  hope  to  do  is  to 
indicate  the  types  of  propositions  included  in  the  lemmas  and, 
by  way  of  illustration,  now  and  then  to  give  a  proof  where  it 
is  sufficiently  out  of  the  common. 

(a)  Pappus  begins  with  Lemmas  to  the  tiectio  rationiv  and 

Sectio  spatii  of  Apollonius  (Props.  1-21,  pp.  684-704).  The 
first  two  show  how  to  divide  a  straight  line  in  a  given  ratio, 

and  how,  given  the  first,  second  and  fourth  terms  of  a  pro- 
portion between  straight  lines,  to  find  the  third  term.  The 

next  section  (Props.  3-12  and  16)  shows  how  to  manipulate 
relations  between  greater  and  less  ratios  by  transforming 
them,  e.g.  componendo,  convertendo,  &c.,  in  the  same  way 
as  Euclid  transforms  equal  ratios  in  Book  V ;  Prop.  1 6  proves 
that,  according  as  a :  b  >  or  <  c :  d,  ad  >  or  <  be.  Props. 
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17-20  deal  with  three  straight  lines  a,  6,  c  in  geometrical 
progression,  showing  how  to  mark  on  a  straight  line  containing 

a,  6,  c  as  segments  (including  the  whole  among  'segments'), 
lengths  equal  to  a  +  c  +  2  v/(ac) ;  the  lengths  are  of  course  equal 
to  a  +  c±2b  respectively.  These  lemmas  are  preliminary  to 
the  problem  (Prop.  21),  Given  two  straight  lines  AB,  BC 
(C  lying  between  A  and  B)y  to  find  a  point  D  on  BA  produced 

such  that  BD:DA  =  CD :  (AB  +  %C-2  SAB7BCJ.  This  is, 
of  course,  equivalent  to  the  quadratic  equation  (a  +  x):x 

=  (a  —  c  +  x) :  (a  +  c  —  2  \/ac),  and,  after  marking  off  A E  along 
AD  equal  to  the  fourth  term  of  this  proportion,  Pappus  solves 
the  equation  in  the  usual  way  by  application  of  areas. 

(ft)  Lemmas  to  the  'Determinate  Section9  of  Apollonius. 

The  next  set  of  Lemmas  (Props.  22-64,  pp.  704-70)  belongs 
to  the  Determinate  Section  of  Apollonius.  As  we  have  seen 

(pp.  180-1,  above),  this  work  seems  to  have  amounted  to 
a  Theory  of  Involution.  Whether  the  application  of  certain 

of  Pappus's  lemmas  corresponded  to  the  conjecture  of  Zeuthen 
or  not,  we  have  at  all  events  in  this  set  of  lemmas  some 

remarkable  applications  of  *  geometrical  algebra '.  They  may 
be  divided  into  groups  as  follows 

1.  Props.  22,  25,  29 

If  in  the  figure  AD.  DC  =  BD .  DE,  then 

=  AB.BC:AE.  EC. 

The  proofs  by  proportions  are  not  difficult.     Prop.  29  is  an 

alternative   proof  by  means  of  Prop.  26   (see  below).     The 

algebraic  equivalent  may  be  expressed  thus  :  if  ax  =  6y,  then 
6 

II.  Props.  30,  32,  34. 

If  in  the  same  figure  AD  .  DE  =  BD  .  DC,  then 

=  AB.Bti:EC.CA. 
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Props.  32,  34  ar«  alternative  proofs  based  on  other  lemmas 

(Props.  31,  33  respectively).  The  algebraic  equivalent  may  be 

i.  *  j  *u        -e  L     *u      b stated  thus :  if  ax  =  by,  then  -  = "        y 

III.  Props.  35,  36. 

If  AB.BE=CB. BD,  then  AB : BE  =  DA  .  AC : CE .  ED, 
and  GB:BD  =  AC.  CE:  AD  .  DE,  results  equivalent  to  the 
following :  if  ax  =  by,  then 

a  _  (a— y)  (a—b)        ,   b  _  (a—b)  (b—x) 

x  ~  (b^x^T-x)  an     y  ~  (a-y)(y-x)' 
IV.  Props.  23,  24,  31,  57,  58. 

If  AB  =  CD,  and  E  is  any  point  in  GD, 
AC.CD  =  AE .  ED  +  BE .  EC, 

and  similar  formulae  hold  for  other  positions  of  E.  If  E  is 

between  B  and  C,  AG .  GD  =  AE.ED-BE.  EC;  and  if  E 

is  on  AD  produced,  BE.  EC  =  AE.  ED  +  BD  .  DC. 

V.  A  small  group  of  propositions  relate  to  a  triangle  ABC 

with  two  straight  lines  AD,  AE  drawn  from  the  vertex  A  to 

points  on  the  base  BC  in  accordance  with  one  or  other  of  the 
conditions  (a)  that  the  angles  BAG,  DAE  are  supplementary, 

(b)  that  the  angles  BAE,  DAG  are  both  right  angles  or,  as  we 

may  add  from  Book  VI,  Prop.  12,  (c)  that  the  angles  BAD, 
EAG  are  «qual.    The  theorems  are : 

In  case          (a)  BG.CD: BE . ED  =  CA* :  AE'2, 

(b)  BG.CE-.BD. DE  =CAZ:A D'\ 

(c)  DC .  CE :  EB .  BD  =  AC3 :  A&. 
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Two  proofs  are  given  of  the  first  theorem.  We  will  give  the 
first  (Prop.  26)  because  it  is  a  case  of  theoretical  analysis 
followed  by  synthesis.  Describe  a  circle  about  ABD :  produce 
EA,  CA  to  meet  the  circle  again  in  F,  G,  and  join  BF,  FG. 

Substituting  GC .  CA  for  BC .  CD  and  FE .  EA  for  BE.  ED, 

we  have  to  inquire  whether  GC .  CA  :  CA2  =  FE .  EA  :  AE*, 

i.e.  whether  GC:CA  =  FE-.EA, 

i.e.  whether  GA :  AC  =  FA  :  AE, 

i.e.  whether  the  triangles  GAP,  CAE  are  similar  or,  in  other 
words,  whether  GF  is  parallel  to  BC. 

But  GF  is  parallel  to  BC,  because,  the  angles  BAC,  DAE 
being  supplementary,  Z  DAE  =  Z  GAB  =  Z  GFB,  while  at  the 
same  time  Z  DAE  =  suppt.  <ALFAD  =  L  FBD. 

The  synthesis  is  obvious. 
An  alternative  proof  (Prop.  27)  dispenses  with  the  circle, 

and  only  requires  EKH  to  be  drawn  parallel  to  CM  to  meet 
AB,  A  Din  II,  K. 

Similarly  (Prop.  28)  for  case  (b)  it  is  only  necessary  to  draw 
FG  through  /)  parallel  to  AC  meeting  BA  in  F  and  AE 
produced  in  G. 

Then,  /.FAG,  Z  A  DF  (=  Z  /XA0)  being  both  right  angles, 
DG  = 

Therefore  C43  :  4Da  =  C^  :FD.DG  =  (CA  :  FD)  .  (CA  :  DG) 
=  (BC:BD).(CE:DE) 
=  BC.CE:BD.DE. 

In  case  (c)  a  circle  is  circumscribed  to  A  DE  cutting  AB  in  F 
and  AC  in  G.  Then,  since  Z  ̂4  J!)  =  Z  G4#,  the  arcs  DFy  EG 
are  equal  and  therefore  FG  is  parallel  to  DE.  The  proof  is 
like  that  of  case  (a). 
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VI.  Props.  37,  38. 

If  AB:BC  =  ADZ:DC*,  whether   AB  be  greater  or  less 
than  AD,  then 

[E  in  the 'figure  is  a  point  such  that  ED  = 
(E)          09 

c   B        P  (E) 
A   (E)         096 

The  algebraical  equivalent  is:  If  -  =    ,  ~    2,  then  ac=62. c      (o  T  c) 

These  lemmas  are  subsidiary  to  the  next  (Props.  39,  40), 
being  used  in  the  first  proofs  of  them. 

Props.  39,  40  prove  the  following  : 
If  AGDEB  be  a  straight  line,  and  if 

BA  .  AE:  BD.DE  =  AC*  :  CD*, 

then  AB.BD:AE.ED  =  BC*  :  CE*  ; 

if,  again,  AC.  CB  :  AE.  EB  =  CD2  :  DE*, 
then  EA  .AC:CB.BE  =  AD*  :  DB\ 

If  AB  =  a,  BC  =  I),  BD  —  c,  BE  =  d,  the  algebraic  equiva- 
lents are  the  following. 

a£-d)_(a-Z£  P ~ 

c(c-<Z)  ~  (b-cf  (a-d)(c-d)~  (b-d 
..    (a-b)b      (b- if    -  -  T-.  = 

,..        -  -  ..  --  - 
and  if    -  -  JT-.  =  J  -  j-  ,  then    -  p.  -  -  =  v-  —  --'  . 

(a—d)d      (c—  a)2  bd  c* i 

VIL  Props.  41,  42,  43. 

If  AD.DC=BD.DE,  suppose  that  in  Figures  (1)  and  (2) 

0)    0___A  _  C      p        E    B 

(2)  A  EDO 

(3)  A  _  E     B         C 

k  =  AE+CB,  and  in  Figure  (3)  k  —  AE-BC,  then 
=  BA.AE,  k.CD  =  BC.CE,  k.BD  =  AB.BC, 

k.DE=AE.EC. 
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The  algebraical  equivalents  for  Figures  (1)  and  (2)  re- 
spectively may  be  written  (if  a  =  AD,  b  =  DC,  c  =  BD, 

d  =-  DE)  : 

If  ab  =  cd,  then  (a  +  d  +  c  +  b)  a  =  (a  +  c)  (a  ±  d), 

(a±d  +  c±b)  b  =  (c±b)(b  +  d), 

(a±d  +  c±b)  c  =  (c  + 

Figure  (3)  gives  other  varieties  of  sign.  Troubles  about 
sign  can  be  avoided  by  measuring  all  lengths  in  one  direction 
from  an  origin  0  outside  the  line.  Thus,  if  0  A  =  a,  OB  =  6, 
&c.,  the  proposition  may  be  as  follows  : 

If  (d  —  a)  (d  —  c)  =  (6  —  d)  (e  —  d)  and  /c  =  e—  a  +  6  —  c, 

then     k(d—  a)  =  (6—  a)(e—  a),  k(d—  c)  =  (6  —  c)(e—  c), 

—  d)  =  (&—  «)(&—  f)  and  &(e—  d)  =  (e  —  a)(0—  c). 

VIII.  Props.  45-56. 

More  generally,  if  AD  .  DC  =  BD.DE  and  /k  =  AE±BC, 

then,  if  J^T  be  any  point  on  the  line,  we  have,  according  to  the 
position  of  F  in  relation  to  A,  B,  (7,  /),  J£, 

V  +  EF.  FB  =  k.  DF. 

Algebraically,  if  OA  =  a,  OjS  =  6  ...  0^T  =  a;,  the  equivalent 
:    If   (d-tt)(ti-c)  =  (6-d)(6~d!),  and  &  =  (e-  a) 

then  (x  —  a)(x 

By  making  .f  =  a,  6,  c,  e  successively  in  this  equation,  we 
obtain  the  results  of  Props.  41-3  above. 

IX.  Props.  59-64. 
In  this  group  Props.  59,  60,  63  are  lemmas  required  for  the 

remarkable  propositions  (61,  62,  64)  in  which  Pappus  investi- 

gates '  singular  and  minimum  '  values  of  the  ratio 
AP.PJ):BP.PC, 

where  (A,  D),  (Bt  C)  are  point-pairs  on  a  straight  line  and  P 
is  another  point  on  the  straight  line.  He  finds,  not  only  when 

the  ratio  has  the  '  singular  and  minimum  (or  maximum)  '  value, 
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'but  also  what  the  value  is,  for  three  different  positions  of  P  in relation  to  the  four  given  points. 
I  will  give,  as  an  illustration,  the  first  case,  on  account  of  its 

elegance.  It  depends  on  the  following  Lemma.  AEB  being 
a  semicircle  on  AB  as  diameter,  (7,  D  any  two  points  on  AB, 
and  CE,  DF  being  perpendicular  to  AB,  let  EF  be  joined  and 

X  C  D       B 

produced,  and  let  BG  be  drawn  perpendicular  to   EG.    To 
prove  that 

CB.BD  =  BGZ,  (I) 

(2) 
0) 

Join  GC,  GD,  FB,  EB,  AF. 

(1)  Since  the  angles  at  G,  D  are  right,  F,  G,  B,  D  are  concyclic. 
Similarly  E,  G,  B,  C  are  concyclic. 

Therefore 

=  Z  FAB 

=  Z  FEB,  in  the  same  segment  of  the  semicircle, 

=  Z  GOB,  in  the  same  segment  of  the  circle  EGBC. 

And   the  triangles  GOB,  DGB  also  have  the  angle,  CHG 
common ;  therefore  they  are  similar,  and  CJi :  B(J  =  BG :  BD, 

or  CR.U1)  =  Mi*. 

(2)  We  have  A  B .  BD  =  BF* ; 

therefore,  by  subtraction,  AC.  DB  =  BF*-BG*  =  FG*. 

(3)  Similarly  AB .  BG  =  /JJ5?2; 

therefore,  by  subtraction,  from  the  same  result  (1), 

AD.BC=  BE'2-  BG*  =  W. 

Thus  the  lemma  gives  an  extremely  elegant  construction  for 
squares  equal  to  each  of  the  three  rectangles. 
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Now  suppose  (A,  D),  (B,  C)  to  be  two  point-pairs  on  a 
straight  line,  and  let  P,  another  point  on  it,  be  determined  by 
the  relation 

then,  says  Pappus,  the  ratio  AP  .  PD  :  BP  .  PC  is  singular  and 
a  minimum,  and  is  equal  to 

AD*  :  (  V'ACTBD-  VAB  .  CD)\ 
On  AD  as  diameter  draw  a  circle,  and  draw  BF,  CG  perpen- 

dicular to  AD  on  opposite  sides. 

Then,  by  hypothesis,  A  Ii .  BD :  AC .  CD  -  BP- :  CP- ; 

therefore  HF* :  CG*  =  BP°- :  CP*. 
or  BF:CG  =  BP:CP, 

whence  the  triangles  FBP,   GCP  arc  similar  and  therefore 
equiangular.  .«o  that  FPG  is  a  straight  line. 

Produce  G( '  to  meet  the  circle  in  11,  join  Fll,  and  draw  DK 
perpendicular  to  Fll  produced.  Draw  the  diameter  FL  and 
join  Lll. 

Now,  by  the  lemma,  VK*  =  AC .  BD,  and  HK*=  ABt.  CD ; 
therefore    FH  =  FK  -  UK  =  V(AC .  BD)  -  S(AB .  CD). 

Since,  in  the  triangles  FHL,  PCG,  the  angles  at  //,  C  are 
right  and  LFLH  —  LPGC>  the  triangles  are  similar,  and 

GP  :PC  =  FL:F1I  =  AD:  FH 

=  AD:{  V(AC .  BD) -  V(AB .  CD)}. 

But  GP:PC=FP:PB- 
therefore  (U* .'  PC-  =  FP  .  PG  :  BP  .  PC 

=  AP.P1):BP.PC. 
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Therefore 

AP.  PD :  BP.PC  =  AD2 :  {  V(AC . BD)-  V(AB  . CD)}*. 

The  proofs  of  Props.  62  and  64  are  different,  the  former 
being  long  and  involved.  The  results  are  : 

Prop.  62.  If  P  is  between  C  and  J9,  and 

AD.DB:AC.CB  =  DP2 :  PC2, 

then  the  ratio  AP  .  PB :  GP  .  PD  is  singular  and  a  minimum 

and  is  equal  to  {  J(AG .  BD)  +  V(AD  .  BC)  }* :  DC2. 

Prop.  64.  If  P  is  on  A D  produced,  and 

AB .  BD  :  AC .  CD  =  BP* :  CP\ 

then  the  ratio  AP  .  PD  :  BP  .  PC  is  singular  and  a  maximum, 

and  is  equal  to  AD2 :  {  V(AC .  BD)  +  V(AB .  CD)  }2. 

(y)   Lemmas  on  the  Neva-eis  of  Apollonius. 

After  a  few  easy  propositions  (e.g.  the  equivalent  of  the 

proposition  that,  if  ax  -f  #2  =  by  +  y2,  then,  according  as  a  > 
or  <  b,  a  +  x  >  or  <  b  +  y),  Pappus  gives  (Prop.  70)  the 

lemma  leading  to  the  solution  of  the  j/eSo-iy  with  regard  to 
the  rhombus  (see  pp.  190-2,  above),  and  after  that  the  solu- 

tion by  one  Heraclitus  of  the  same  problem  with  respect  to 

a  square  (Props.  71,  72,  pp.  780-4).  The  problem  is,  Given  a 
square  ABCD,  to  draw  through  B  a  straight  line,  meeting  CD 
in  H  and  AD  produced  in  E,  such  that  HE  is  ajual  to  a  given 
length. 

The  solution  depends  on  a  lemma  to  the  effect  that,  if  any 
straight  line  BHE  through  B  meets  CD  in  //  and  AD  pro- 

H 

duced  in  E,  and  if  EF  be  drawp  perpendicular  to  BE  meeting 
BC  produced  in  F9  then 
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Draw  EG  perpendicular  to  BF. 
Then  the    triangles    BCH,  EOF  are    similar   and   (since 

BO  =  EG)  equal  in  all  respects  :  therefore  EF  =  BH. 

Now 

or          BO  .  BF+  BF  .  FC  =  BH  .  BE+  BE.EH+  EF\ 

But,  the  angles  HCF,  HEF  being  right,  H,  C,  F9  E  are 

concyclic,  and  BC.BF=  BH  .  BE. 

Therefore,  by  subtraction, 

=  FB.BC+EH*. 

Taking  away  the  common  part,  BC  .  CF,  we  have 

Now  suppose  that  we  have  to  draw  BHE  through  B  in 
such  a  way  that  HE  =  k.  Since  BC,  EH  are  both  given,  we 

have  only  to  determine  a  length  x  such  that  x2  =  BC*  +  k2, 
produce  BC  to  F  so  that  OF  =  x,  draw  a  semicircle  on  BF  as 
diameter,  produce  AD  to  meet  the  semicircle  in  E,  and  join 
BE.  BE  is  thus  the  straight  line  required. 

Prop.  73  (pp.  784-6)  proves  that,  if  7)  be  the  middle  point 
of  BC,  the  base  of  an  isosceles  triangle  ABC,  then  BC  is  the 
shortest  of  all  the  straight  lines  through  D  terminated  by 

the  straight  lines  AB,  AC,  and  the  nearer  to  .66'  is  shorter  than the  more  remote. 

There  follows  a  considerable  collection  of  lemmas  mostly 
showing  the  equality  of  certain  intercepts  made  on  straight 
lines  through  one  extremity  of  the  diameter  of  one  of  two 
semicircles  having  their  diameters  in  a  straight  line,  either 

one  including  or  partly  including  the  other,  or  wholly  ex- 
ternal to  one  another,  on  the  same  or  opposite  sides  of  the 

diameter. 
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I  need  only  draw  two  figures  by  way  of  illustration. 

In  the  first  figure  (Prop.  83),  ABC,  DEF  being  the  semi- 
circles, BEKC  is  any  straight  line  through  C  cutting  both ; 

FG  is  made  equal  to  AD ;  AB  is  joined ;  GU  is  drawn  per- 
pendicular to  BK  produced.  It  is  required  to  prove  that 

L 

PIG.  1. 

BE  =  KH.  (This  is  obvious  when  from  L,  the  centre  of  the 
semicircle  DEF,  LM  is  drawn  perpendicular  to  BK.)  If  Ey  K 

coincide  in  the  point  M'  of  the  semicircle  so  that  B'Gll'  is 
a  tangent,  then  B'M'  =  M'H'  (Props.  83,  84). 

In  the  second  figure  (Prop.  91)  D  is  the  centre  of  the 
semicircle  ABC  and  is  also  the  extremity  of  the  diameter 
of  the  semicircle  DEF.  If  BEGF  be  any  straight  line  through 

A  0  C  P 

FIG.  2. 

F  cutting  both  semicircles,  BE  =  EG.    This  is  clear,  since  DE 
is  perpendicular  to  BG. 

The  only  problem  of  any  difficulty  in  this  section  is  Prop. 
85  (p.  796).  Given  a  semicircle  ABC  on  the  diameter  AC 
and  a  point  D  on  the  diameter,  to  draw  a  semicircle  passing 
through  D  and  having  its  diameter  along  DC  such  that,  if 
CEB  be  drawn  touching  it  at  E  and  meeting  the  semicircle 
ABO  in  JS,  BE  shall  be  equal  to  AD. 
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The  problem  is  reduced  to  a  problem  contained  in  Apollo- 
nius's  Determinate  Section  thus. 

Suppose  the  problem  solved  by  the  semicircle  DEF>  BE 
being  equal  to  AD.  Join  E  to  the  centre  G  of  the  semicircle 

F  C 

DEF.     Produce  DA  to  77,  making  HA  equal  to  AD.     Let  K 
be  the  middle  point  of  DC. 

Since  the  triangles  ABC,  GEC  are  similar, 

=  AD*:EG\  by  hypothesis, 

7r'--  7W*  (since  DG  =  (££ 

=  //trf  : 
Therefore 

=  AD*:2DC.GK. 

Take  a  straight  line  Z  such  that  4J9-  =  L.2DC: 

therefore  //(;  :  DG  =  A  :  ̂Ar, 

or  //tf  .  GA'  =  L  .  DG. 

Therefore,  given  the  two  straight  lines  //D,  DK  (or  the 
three  points  77,  D,  K  on  a  straight  line),  we  have  to  find 
a  point  G  between  D  and  7C  such  that 

which  is  the  second  epitagma  of  the  third  Problem  in  the 
Determinate  Section  of  Apollonius,  and  therefore  may  be 
taken  as  solved.  (The  problem  is  the  equivalent  of  the 
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solution  of  a  certain  quadratic  equation.)  Pappus  observes 
that  the  problem  is  always  possible  (requires  no  Siopurfios), 
and  proves  that  it  has  only  one  solution, 

(8)  Lemmas  on  the  treatise  €  On  contacts '  by  Apollonius. 
These  lemmas  are  all  pretty  obvious  except  two,  which  are 

important,  one  belonging  to  Book  I  of  the  treatise,  and  the  other 
to  Book  II.  The  two  lemmas  in  question  have  already  been  set 

out  &  propos  of  the  treatise  of  Apollonius  (see  pp.  1 82-5,  above). 
As,  however,  there  are  several  cases  of  the  first  (Props.  105, 

107,  108,  109),  one  case  (Prop.  108,  pp.  836-8),  different  frotoi 
that  before  given,  may  be  put  down  here:  Given  a  circle  and 
two  points  D,  E  within  it,  to  draiv  straight  lines  through  7),  E 
to  a  point  A  on  the  circumference  in  such  a  way  that,  if  they 
meet  the  circle  again  in  B,  (7,  BG  shall  be  parallel  to  DE. 

We  proceed  by  analysis.  Suppose  the  problem  solved  and 

DA,EA  drawn  ('inflected')  to  A  in  such  a  way  that,  if  AD, 
AE  meet  the  circle  again  in  B,  C, 

BC  is  parallel  to  DE. 
Draw  the  tangent  at  B  meeting 

ED  P«>d«ced  in  F. 

Then  Z  FBD  =  L  AGB  =  LAED; 

therefore  A,  E,  B,  F  are  concyclic, 
and  consequently 

FD.DE=AD.DB. 

But  the  rectangle  AD .  DB  is  given,  since  it  depends  only 
on  the  position  of  D  in  relation  to  the  circle,  and  the  circle 
is  given. 

Therefore  the  rectangle  FD .  DE  is  given. 
And  DE  is  given ;  therefore  FD  is  given,  and  therefore  F. 
If  follows  that  the  tangent  FB  is  given  in  position,  and 

therefore  B  is  given.  Therefore  EDA  is  given  and  conse- 
quently AE  also. 

To  solve  the  problem,  therefore,  we  merely  take  F  on  ED 
produced  such  that  FD .  DE  =  the  given  rectangle  made  by 
the  segments  of  any  chord  through  D,  draw  the  tangent  FB, 
join  BD  and  produce  it  to  A,  and  lastly  draw  AE  through  to 
C ;  BC  is  then  parallel  to  DE. 
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The  other  problem  (Prop.  117,  pp.  848-50)  is,  as  we  have 
seen,  equivalent  to  the  following:  Given  a  circle  arid  three 
points  D,  E,  F  in  a  straight  line  external  to  it,  to  inscribe  in 
the  circle  a  triangle  ABO  such  that  its  sides  pass  severally 
through  the  three  points  D,  E,  F.  For  the  solution,  see 

pp.  182-4,  above. 

(e)  The  Lemmas  to  the  Plane  Loci  of  Apollonius  (Props. 

119-26,  pp.  852-64)  are  mostly  propositions  in  geometrical 
algebra  worked  out  by  the  methods  of  Eucl.,  Books  II  and  VI. 
We  may  mention  the  following : 

Prop.  122  is  the  well-known  proposition  that,  if  D  be  the 
middle  point  of  the  side  BG  in  a  triangle  ABC, 

BA*  +  AC2  =  2  (AD*  +  DC*). 

PropiS.  123  and  124  are  two  cases  of  the  same  proposition, 
the  enunciation  being  marked  by  an  expression  which  is  also 

found  in  Euclid's  Data.  Let  AB :  BC  be  a  given  ratio,  and 

A  P  E    c  B 

let  the  rectangle  CA  .AD\w  given;  then,  if  BE  is  a  mean 

proportional  between  DB,  BC,  'the  square  on  AE  is  greater 
by  the  rectangle  CA  .  AD  than  in  the  ratio  of  AB  to  BO  to  the 
square  on  EC  \  by  which  is  meant  that 

or 

The  algebraical  equivalent  may  be  expressed  thus  (if  A  B=  a, 

TC  //  -  rr   i.i       (a  +  .r)2-(a—  b)c      n If         x  =  v/(a-c)6,  then  = 

Prop.  125  is  remarkable  :  If  C,  D  be  two  points  on  a  straight 
line  AB, 

AD*  +        .  7)52  =  AC*+  AC  .  GB+ 
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This  is  equivalent  to  the  general  relation  between  four 
points  on  a  straight  line  discovered  by  Simson  and  therefore 

wrongly  known  as  Stewart's  theorem  : 

AD*  .  BC+BD*  .  CA  +  CD*  .  AB  +  BC.CA  .AB  =  0. 

(Simson  discovered  this  theorem  for  the  more  general  case 
where  D  is  a  point  outside  the  line  ABG.) 

An  algebraical  equivalent  is  the  identity 

(d  -  a)2  (6  -  r)  +  (d  -  6)2  (r  -  a)  +  (d  -  <f  («  -  &) 

Pappus's   proof   of  the   last-mentioned   lemma   is   perhaps 
worth  giving. 

A  C         O       a 

(7,  D  being  two  points  on  the  straight  line  AB,  take  the 
point  F  on  it  such  that 

FD:DB  =  AC:CH.  (1) 

Then  FB  :  BD  =  AB  :  BC, 

and  (AB- FB) :  (BC- BD)  =  AB :  BC, 

or  AF:CD  =  AB:BC, 

and  therefore 

AF.CD:CD*  =  AB:BC.  (2) 

From  (1)  we  derive 

AC 

and  from  (2) 

We  have 'now  to  prove  that 

AD2  +  BD .  DF  =  AC*  +  AC .  CB  +  AF .  CD, 

or  AD*  +  BD .  DF  =  CA  .  AB  +  AF.  CD, 
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i.e.  (if  DA  .  AC  be  subtracted  from  each  side) 

that          AD  .  DC  +  FD .  DB  =  AC.  DB  +  AF.  CD, 

i.e.  (if  AF .  CD  be  subtracted  from  each  side) 

that  FD.  DC+FD.  DB  =  AC.  DB, 

or  FD.CB^AC.DB: 

which  is  true,  since,  by  (1)  above,  FD:DB-  AC:  CB. 

(£)   Lemmas  fo  the  '  Porisms'  of  Endid. 
.  The  38  Lemmas  to  the  Por  turns  of  Euclid  form  an  important 
collection  which,  of  course,  has  been  included  in  one  form  or 

other  in  the  '  restorations '  of  the  original  treatise.  Chasles l 
in  particular  gives  a  classification  of  them,  and  we  cannot 

do  better  than  use  it  in  this  place :  '  23  of  the  Lemmas  relate 
to  rectilineal  figures,  7  refer  to  the  harmonic  ratio  of  four 
points,  and  8  have  reference  to  the  circle. 

1  Of  the  23  relating  to  rectilineal  figures,  6  deal  with  the 
quadrilateral  cut  by  a  transversal;  6  with  the  equality  of 
the  anharmonic  ratios  of  two  systems  of  four  points  arising 
from  the  intersections  of  four  straight  lines  issuing  from 
one  point  with  two  other  straight  lines ;  4  may  be  regarded  as 
expressing  a  property  of  the  hexagon  inscribed  in  two  straight 
lines;  2  give  the  relation  between  the  areas  of  two  triangles 
which  have  two  angles  equal  or  supplementary ;  4  others  refer 
to  certain  systems  of  straight  lines;  and  the  last  is  a  case 

of  the  problem  of  the  Cutting-off  of  an  area.9 
The  lemmas  relating  to  the  quadrilateral  and  the  transversal 

are  1,  2,  4,  5,  6  and  7  (Props.  127,  128,  130,  131,  132,  133). 
Prop.  130  is  a  general  proposition  about  any  transversal 

whatever,  and  is  equivalent  to  one  of  the  equations  by  which 

we  express  the  involution  of  six  points.  If  A,  A' \  B,  B'\ 
C,  C'  be  the  points  in  which  the  transversal  meets  the  pairs  of 

1  Chasles,  Les  trois  ?iv>-es  de  Ponsmes  d'Eitclide,  Paris,  1860,  pp.  74  sq. 
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opposite  sides  and  the  two  diagonals  respectively,  Pappus's 
result  is  equivalent  to 

AB^B'C  _  CA 

ArBr.BC'~  C'A'' 
Props.  127,  128  are  particular  cases  in  which  the  transversal 
is  parallel  to  a  side;  in  Prop.  131  the  transversal  passes 
through  the  points  of  concourse  of  opposite  sides,  and  the 
result  is  equivalent  to  the  fact  that  the  two  diagonals  divide 
into  proportional  parts  the  straight  line  joining  the  points  of 
concourse  of  opposite  sides;  Prop.  132  is  the  particular  case 
of  Prop.  131  in  which  the  line  joining  the  points  of  concourse 
of  opposite  sides  is  parallel  to  a  diagonal;  in  Prop.  133  the 
transversal  passes  through  one  only  of  the  points  of  concourse 
of  opposite  sides  and  is  parallel  to  a  diagonal,  the  result  being 
CA*  =  CB  .  CB'. 

Props.  129,  136,  137,  140,  142,  145  (Lemmas  3,  10,  11,  14,  16, 
19)  establish  the  equality  of  the  anharmonic  ratios  which 
four  straight  lines  issuing  from  a  point  determine  on  two 
transversals ;  but  both  transversals  are  supposed  to  be  drawn 
from  the  same  point  on  one  of  the  four  straight  lines.  Let 

AB,  AC,  AD  be  cut  by  transversals  HBCD,  HEFO.  It  is 
required  to  prove  that 

HE.FG  _HB.CD 

HQ.EF~*HD.BC 
Pappus  gives  (Prop.  129)  two  methods  of  proof  which  are 

practically  equivalent.  The  following  is  the  proof  '  by  com- 

pound ratios '. 
Draw  HK  parallel  to  AF  meeting  DA  and  AE  produced 
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in  K,  L ;  and  draw  LM  parallel  to  AD  meeting  GH  pro- 
duced in  M. 

HE.FG  _  HE    FG_LU     AF  _  LH 

n      HG .  EF~  EF  '  HG  ~  AF  '  //#  ~~  UK  ' 
In  exactly  the  same  way,  if  JDY/  produced  meets  LAI  in  it/' 

we  prove  that 
HB .  CD      LH 

Therefore 
UD.BC~  UK 
HE.FG      UB.CD 

UG.EF~  HD.BC 
(The  proposition  is  proved  for  HBCD  and  any  other  trans- 

versal not  passing  through  //  by  applying  our  proposition 
twice,  as  usual.) 

Props.  136,  142  are  the  reciprocal;  Prop.  137  is  a  particular 
case  in  which  6ne  of  the  transversals  is  parallel  to  one  of  the 
straight  lines,  Prop.  140  a  reciprocal  of  Prop.  137,  Prop.  145 
another  case  of  Prop.  129. 

The  Lemmas  12,  13,  15,  17  (Props.  138,  139,  141,  143)  are 
equivalent  to  the  property  of  the  hexagon  inscribed  in  two 
straight  lines,  viz.  that,  if  the  vertices  of  a  hexagon  are 
situate,  three  and  three,  on  two  straight  lines,  the  points  of 
concourse  of  opposite  sides  are  in  a  straight  line;  in  Props. 
138,  141  the  straight  lines  are  parallel,  in  Props.  139,  143  not 
parallel. 

Lemmas  20,  21  (Props.  146,  147)  prove  that,  when  one  angle 
of  one  triangle  is  equal  or  supplementary  to  one  angle  of 
another  triangle,  the  areas  of  the  triangles  are  in  the  ratios 
of  the  rectangles  contained  by  the  sides  containing  the  equal 
or  supplementary  angles. 

The  seven  Lemmas  22,  23.  24,  25,  26,  27,  34  (Props.  148-53 
and  160)  are  propositions  relating  to  the  segments  of  a  straight 
line  on  which  two  intermediate  points  arc  marked.  Thus : 

Props.  148,  150. 

If  (7,  D  be  two  points  on  AB,  then 

(a)  if  2AB .  CD  =  CB*t  AD*  =  AC2  +  DB* ; 

A  C        D  B 

(6)  if  2AC.BD  =  CD\  AB*  =  A1P  +  U1P. 
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Props.  149,  161. 

If  AB .  BC  =  BD*, 

then  (AD  ±  DC)  BD  =  AD .  DC, 

(AD±DC)BO=  DC2, 

B 

and  (4£  ±  DC)  BA  =  AD*. 

Props.  152,  153. 

If        AB:BC=AD*:DC*,  then  A B .  BC  =  BD*. 

4- 

B 

«  _  5  _  §  _  § 

Prop.  160. 

If  AB  :  BC=AD  :  DC,  then,  if  E  be  the  middle  point  of  AC, 

BE.  ED  =  EC\ 

BD.DE  =  AD.  DC, 

E    D       C 

The  Lemmas  about  the  circle  include  the  harmonic  proper- 
ties of  the  pole  and  polar,  whether  the  pole  is  external  to  the 

circle  (Prop.  154)  or  internal  (Prop.  161).  Prop.  155  is  a 
problem,  Given  a  segment  of  a  circle  on  AB  as  base,  to  inflect 
straight  lines  AC,  BC  to  the  segment  in  a  given  ratio  to  one 
another. 

Prop.  156  is  one  which  Pappus  has  already  used  earlier 
in  the  Collection.  It  proves  that  the  straight  lines  drawn 
from  the  extremities  of  a  chord  (DE)  to  any  point  (F)  of  the 

circumference  divide  harmonically  the  diameter  (AB)  perpen- 
dicular to  the  chord.  Or,  if  ED,  FK  be  parallel  chords,  and 

EF,  DK  meet  in  (?,  and  EK>  DF  in  //,  then 
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Since  AB  bisects  ])E  perpendicularly,  farcAE)  =  (arc4D) 
and  LEFA  =  Z  AFD,  or  AF bisects  the  angle  EFD. 

Since  the  angle  AFB  is  right,  FB  bisects  Z.1IFG,  the  supple- 
ment of  Z  EFD. 

Therefore  (Eucl.  VI.  3)  GB  :  BH  =  GF:  FH  = 

and,  alternately  and  inversely,  AH  :  II  B  =  AG  :  GB. 

Prop.  157  is  remarkable  in  that  (without  any  mention  of 

a  conic)  it  is  practically  identical  with  Apollonius's  Conies 
III.  15  about  the  foci  of  a  central  conic.  Pappus's  theorem 
is  as  follows.  Let  AB  be  the  diameter  of  a  semicircle,  and 

from  Ay  B  let  two  straight  lines  AM,  BI)  be  drawn  at  right 

angles  to  AB.     Let  any  straight  line  A)ATmeet  the  two  perpen- 
diculars in  D,  E  and  the  semicircle  in  F.     Further,  let  FG  be 

drawn  at  right  angles  to  DE,  meeting  AB  produced  in  Or. 
It  is  to  be  proved  that 

AG.GB  =  AE.BD 

Since  F,  D,  G>  B  are  concyclic,  Z  BDG  =  Z  BFG. 
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And,  since  AFB,  EFG  are  both  right  angles,  LBFG^LAFE. 

But,  since  A,  E,  G,  F  are  concyclic,  LAFE  =  LAGE. 

Therefore  L  BDG  =  L  AGE] 

and  the  right-angled  triangles  DBG,  GAE  are  similar. 

Therefore  AG:AE  =  BD:  GB, 

or  AG.GB  =  AE.DB. 

In  Apollonius  G  and  the  corresponding  point  G'  on 
produced  which  is  obtained  by  drawing  F'G'  perpendicular  to 
ED  (where  DE  meets  the  circle  again  in  F')  are  the  foci 
of  a  central  conic  (in  this  case  a  hyperbola),  and  DE  is  any 
tangent  to  the  conic  ;  the  rectangle  A  E  .  BD  is  of  course  equal 
to  the  square  on  half  the  conjugate  axis. 

(rj)  The  Lemmas  to  the  Conies  of  Apollonius  (pp.  918-1004) 
do  not  call  for  any  extended  notice.  There  arc  a  large  number 
of  propositions  in  geometrical  algebra  of  the  usual  kind, 
relating  to  the  segments  of  a  straight  line  marked  by  a  number 

of  points  on  it  ;  propositions  about  lines  divided  into  propor- 
tional segments  and  about  similar  figures;  two  propositions 

relating  to  the  construction  of  a  hyperbola  (Props.  204,  205) 
and  a  proposition  (208)  proving  that  two  hyperbolas  with  the 
same  asymptotes  do  not  meet  one  another.  There  are  also 

two  propositions  (221,  222)  equivalent  to  an  obvious  trigono- 

E' 

„  -» 

^  *  ~  
   

 
i 

'  _  ,0 

metrical  formula.  Let  ABCD  be  a  rectangle,  and  let  any 
straight  line  through  A  meet  DC  produced  in  E  and  BC 
(produced  if  necessary)  in  F. 

Then  EA  .  AF  =  ED .  DC  +  CB .  BF. 
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For  EA*  +  AF*  =  ED*  +  DA2  +  A  B*  +  BF* 

=  #D2  4-  5C2  +  <7D*  +  BF*. 

Also         £42  +  ̂  ̂   =  EF*  +  2EA.AF. 

Therefore 

2  EA  .  AF  =  AM2  +  AF*-EF* 

=--  A1/)2  +  BC*  +  CD*  +  £J*  -  EF* 

=  (ED*  +  CD*)  +  (BC*  +  BF*)  -  EF* 

=  EC*  +  2  ED  .  DC+  CF*  +  2CB.  BF-EF* 

i.e.      *KA  .  AF  =  ED  .  DC+  CB  . 

This  is  equivalent  to     sec  5  cosec  0  =  tan  0  +  cot  6. 

The  algebraical  equivalents  of  some  of  the  results  obtained 

by  the  usual  geometrical  algebra  may  be  'added. 

Props.  178,  179,  192-1. 

Prop.  195.    4cr  =  2{  (a  —  .f) 

Prop.  196. 

(a  +  6  -  a?)2  +  (a  +  b  +  x)*  =  (#-  6j-  +  (^  +  6)2  +  2  (a  +  26)  a. 

Props.  1CJ7,  199,  198. 

If  (x  4-  y  +  a)  a  +  ̂ -  = 

or  if  (a:  +  -//  -f-  a)  a  +  x-  =  (a  +  y)-,      then  x  = 
or  if 

Props.  200,  201.     If  (a  .  +  b)z  =  62,  then  =  J—f  and 1  v        7  a          6—  x 

Prop.  207.     If  (a  +  6)6  =  2  a2,  then  a  =  6. 

(5)  The  two  Lemmas  to  the  Surface-Loci  of  Euclid  have 
already  been  mentioned  as  significant.  The  first  has  the 
appearance  of  being  a  general  enunciation,  such  as  Pappus 
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is  fond  of  giving,  to  cover  a  class  of  propositions.  The 

enunciation  may  be  translated  as  follows :  '  If  AB  be  a  straight 
line,  and  CD  a  straight  line  parallel  to  a  straight  line  given  in 

position,  and  if  the  ratio  AD .  DB :  D(72  be  given,  the  point  0 
lies  on  a  conic  section.  If  now  A  B  be  no  longer  given  in 
position,  and  the  points  A,  B  are  no  longer  given  but  lie 
(respectively)  on  straight  lines  AE,  EB  given  in  position,  the 
point  0  raised  above  (the  plane  containing  AE,  EB)  lies  on 
a  surface  given  in  position.  And  this  was  proved/  Tannery 

was  the  first  to  explain  this  intelligibly ; 
and  his  interpretation  only  requires  the 

very  slight  change  in  the  text  of  sub- 
stituting €v0€tai$  for  evdeTa  in  the  phrase 

ytvrfrai  5e  rrpoy  0€trei  tvOtia  rats  AJE,  EB. 
It  is  not  clear  whether,  when  AB  ceases 

to  be  given  in  position,  it  is  still  given 
in  length.  If  it  is  given  in  length  and  A,  B  move  on  the  lines 
AE,  EB  respectively,  the  surface  which  is  the  locus  of  C  is 
«/  complicated  one  such  as  Euclid  would  hardly  have  been 
in  a  position  to  investigate.  But  two  possible  cases  are 
indicated  which  he  may  have  discussed,  (1)  that  in  which  AB 
moves  always  parallel  to  itself  and  varies  in  length  accord- 

ingly, (2)  £hat  in,  which  the  two  lines  on  which  A,  B  move  are 
parallel  instead  of  meeting  at  a  point.  The  loci  in  these  two 
cases  would  of  course  be  a  cone  and  a  cylinder  respectively. 

The  second  Lemma  is  still  more  important,  since  it  is  the 
first  statement  on  record  of  the  focus-directrix  property  of 
the  three  conic  sections.  The  proof,  after  Pappus,  has  been 
set  out  above  (pp.  119-21). 

(£)   An  uutdlocated  Lemfma. 

Book  VII  ends  (pp.  1016-18)  with  a  lemma  which  is  not 
given  under  any  particular  treatise  belonging  to  the  Treasury 

of  Analysis,  but  is  simply  called  'Lemma  to  the  'AvaXvofiei'os'. 
If  ABC  be  a  triangle  right-angled  at  B,  and  AB,  BG  be 
divided  at  F,  G  so  that  AF :  FB  =  BG  :  GO  =  AB :  BC,  and 
if  AEG,  GEF  be  joined  and  BE  joined  and  produced  to  D, 
then  shall  BD  be  perpendicular  to  AC. 

The  text  is  unsatisfactory,  for  there  is  a  long  interpolation 
containing  an  attempt  at  a  proof  by  reductio  ad  absurdum ; 
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but   the  genuine  proof  is  indicated,  although  it  breaks  off 
before  it  is  quite  complete. 

AF:  FB  =  BG:GC, Since 

or  AB:BC  =  FB:GC. 

But,  by  hypothesis,    AB:BC=BG:  GC  ; 

therefore  BF  =  BG. 

From  this  point  the  proof  apparently  proceeded  by  analysis. 

1  Suppose  it  done  '  (yeyoi>eTa>),  i.e.  suppovse  the  proposition  true, 
and  BED  perpendicular  to  AC. 

Then,  by  similarity  of  triangles,  AD  :  DB  =  AB :  BC ; 

therefore  AF:  FB  =  AD:  DB,  and  consequently  the  angle 
ADB  is  bisected  by  DP. 

Similarly  the  angle  BDC  is  bisected  by  DG. 
Therefore  each  of  the  angles  BDF,  BDG  is  half  a  right 

angle,  and  consequently  the  angle  FDG  is  a  right  angle. 
Therefore  J5,  (7,  D,  F  are  concyclic ;  and,  since  the  angles 

FDB,  BDG  are  equal,        FB  =  BG. 

This  is  of  course  the  result  above  proved. 

Evidently  the  interpolator  tried  to  clinch  the  argument  by 

proving  that  the  angle  BDA  could  not  be  anything  but  a  right 
angle. 

Book  VIII. 

Book  VIII  of  the  Collection  is  mainly  on  mechanics,  although 
it  contains,  in  addition,  some  propositions  of  purely  geometrical 
interest. 
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Historical  preface. 

It  begins  with  an  interesting  preface  on  the  claim  of 
theoretical  mechanics,  as  distinct  from  the  merely  practical 
or  industrial,  to  be  regarded  as  a  mathematical  subject. 
Archimedes,  Philon,  Heron  of  Alexandria  are  referred  to  as 

the  principal  exponents  of  the  science,  while  Carpus  of  Antioch 

is  also  mentioned  as  having  applied  geometry  to  'certain 

(practical)  arts'. 
The  date  of  Carpus  is  uncertain,  though  it  is  probable  that 

he  caine  after  Geminus;  the  most  likely  date  seems  to  be  the 
first  or  second  century  A.D.  Simplicius  gives  the  authority  of 
lamblichus  for  the  statement  that  Carpus  squared  the  circle 
by  means  of  a  certain  curve,  which  he  simply  called  a  curve 

generated  by  a  double  motion.1  Proclus  calls  him  '  Carpus  the 

writer  on  mechanics  (o  fAriyaviKos) ',  and  quotes  from  a  work  of 
his  on  Astronomy  some  remarks  about  the  relation  between 

problems  and  theorems  and  the  'priority  in  order'  of  the 
former.2  Proclus  also  mentions  him  as  having  held  that  an 
angle  belongs  to  the  category  of  quantity  (TTOOW),  since  it 

represents  a  sort  of  '  distance '  between  the  two  lines  forming 
it,  this  distance  being  'extended  one  way'  (40*  <EJ>  &6orei>y) 
though  in  a  different  sense  from  that  in  which  a  line  represents 

extension  one  way,  so  that  Carpus's  view  appeared  to  be/  the 
greatest  possible  paradox ' ;5 ;  Carpus  seems  in  reality  to  have 
been  anticipating  the  modern  view  of  an  angle  as  representing 

divergence  rather  than  distance,  and  to  have  meant  by  €<f>*  <EI/ 
in  oue  sense  (rotationally),  as  distinct  from  one  way  or  in  one 
dimension  (linearly). 

Pappus  tells  us  that  Heron  distinguished  the  logical,  i.e. 
theoretical,  part  of  mechanics  from  the  practical  or  manual 
(yfipovpyiKov),  the  former  being  made  up  of  geometry,  arith- 

metic, astronomy  and  physics,  the  latter  of  work  in  metal, 
architecture,  carpentering  and  painting;  the  man  who  had 

been  trained  from  his  youth  up  in  the  scie'nces  aforesaid  as  well 
as  practised  in  the  said  arts  would  naturally  prove  the  best 
architect  and  inventor  of  mechanical  devices,  but,  as  it  is  diffi- 

cult or  impossible  for  the  same  person  to  do  both  the  necessary 

1  Simplicius  on  Ariat.  Categ.,  p.  192,  Kalbfleisch. 
a  Proclus  on  EucL  I,  pp.  241-3.  3  lb.,  pp.  125.  25-126.  6. 
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mathematics  and  the  practical  work,  he  who  has  not  the  former 
must  perforce  use  the  resources  which  practical  experience  in 
his  particular  art  or  craft  gives  him.  Other  varieties  of 

mechanical  work  included  by  the  ancients  under  the" general 
term  mechanics  were  (1)  the  use  of  the  mechanical  powers, 
or  devices  for  moving  or  lifting  great  weights  by  means  of 
a  small  force,  (2)  the  construction  of  engines  of  war  for 
throwing  projectiles  a  long  distance,  (3)  the  pumping  of  water 

from  great  depths,  (4)  the  devices  of  'wonder-workers' 
(OavfjLao-iovpyot),  some  depending  on  pneumatics  (like  Heron 
in  the  Pneumatwa),  some  using  strings,  &c.,  to  produce  move- 

ments like  those  of  living  things  (like  Heron  in  *  Automata  and 

Balancings'),  some  employ  ing  floating  ladies  (like  Archimedes 
in  '  Floating  Bodies '),  others  using  water  to  measure  time 
(like  Heron  in  his  '  Water-clocks'),  and  lastly '  sphere-making ', 
or  the  construction  of  mechanical  imitations  of  the  movements 

of  the  heavenly  bodies  with  the  uniform  circular  motion  of 
water  as  the  motive  power.  Archimedes,  says  Pappus,  was 
held  to  be  the  one  person  who  had  understood  the  cause  and 
the  reason  of  all  these  various  devices,  and  had  applied  his 
extraordinarily  versatile  genius  and  inventiveness  to  all  the 
purposes  of  daily  life,  and  yet,  although  this  brought  him 
unexampled  fame  the  world  over,  so  that  his  name  was  on 

every  one's  lips,  he  disdained  (according  to  Carpus)  to  write 
any  mechanical  work  save  a  tract  on  sphere-making,  but 
diligently  wrote  all  that  he  could  in  a  small  compass  of  the 
most  advanced  parts  of  geometry  and  of  subjects  connected 
with  arithmetic.  Carpus  himself,  says  Pappus,  as  well  as 
others  applied  geometry  to  practical  arts,  and  with  reason: 

'  for  geometry  is  in  no  wise  injured,  nay  it  is  by  nature 
capable  of  giving  substance  to  many  arts  by  being  associated 
with  them,  and,  so  far  from  being  injured,  it  may  be  said, 
while  itself  advancing  those  arts,  to  be  honoured  and  adorned 

by  them  in  return.' 

The  object  of  the  Book. 

Pappus  then  describes  the  object  of  the  Book,  namely 
to  set  out  the  propositions  which  the  ancients  established  by 
geometrical  methods,  besides  certain  useful  theorems  dis- 

covered by  himself,  but  in  a  shorter  and  clearer  form  and 



430  PAPPUS  OF  ALEXANDRIA 

in  better  logical  sequence  than  his  predecessors  had  attained. 
The  sort  of  questions  to  be  dealt  with  are  (1)  a  comparison 
between  the  force  required  to  move  a  given  weight  along 
a  horizontal  plane  and  that  required  to  move  the  same  weight 
upwards  on  an  inclined  plane,  (2)  the  finding  of  two  mean 
proportionals  between  two  unequal  straight  lines,  (3)  given 
a  toothed  wheel  with  a  certain  number  of  teeth,  to  find  the 

diameter  of,  and  to  construct,  another  wheel  with  a  given  num- 
ber of  teeth  to  work  on  the  former.  Each  of  these  things,  he  says, 

will  be  clearly  understood  in  its  proper  place  if  the  principles 

on  which  the  '  centrobaric  doctrine  '  is  built  up  are  first  set  out. 
It  is  not  necessary,  he  adds,  to  define  what  is  meant  by  <  heavy  ' 
and  'light*  or  upward  and  downward  motion,  since  these 
matters  are  discussed  by  Ptolemy  in  his  Mathematical  but 
the  notion  of  the  centre  of  gravity  is  so  fundamental  in  the 
whole  theory  of  mechanics  that  it  is  essential  in  the  first 

place  to  explain  what  is  meant  by  the  '  centre  of  gravity  ' 
of  any  body. 

On  the  centre  of  gravity. 

Pappus  then  defines  the  centre  of  gravity  as  'the  point 
within  a  body  which  is  such  that,  if  the  weight  be  conceived 
to  be  suspended  from  the  point,  it  will  remain  at  rest  in  any 
position  in  which  it  is  put  V  The  method  of  determining  the 
point  by  means  of  the  intersection,  first  of  planes,  and  then  of 
straight  lines,  is  next  explained  (chaps.  1,2),  and  Pappus  then 
proves  (Prop.  2)  a  proposition  of  some  difficulty,  namely  that, 
if  D9  E,  F  be  points  on  the  sides  BC,  CA,  AB  of  a  triangle  ABC 

such  that  BD:DC=CE:EA  =  AF:  FB, 
then  the  centre  of  gravity  of  the  triangle  ABC  is  also  the 
centre  of  gravity  of  the  triangle  DEF. 

Let  H,  K  be  the  middle  points  of  BC,  CA  respectively; 
join  AH,  BK.  Join  HK  meeting  DE  in  L. 

Then  AH,  BK  meet  in  6r,  the  centre  of  gravity  of  the 
triangle  ABC,  and  AG  =  2  OH,  BO  =  2  OK,  so  that 

CA  :AK  =  AB:HK  =  BO  :  OK  =  AO  :  OH. 

1  Pappus,  viii,  p.  1030.  11-13. 
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Now,  by  hypothesis, 
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whence  CA  :  AE  =  BC  :  CD, 

and,  if  we  halve  the  antecedents, 

AK:AE=HC:CD; 

therefore         A  K  :  EK  =  HC  :  HD  or  BH:  HD, 

whence,  cvmpoiMtido,  CE:  EK  =  BD  :  DH.  (1) 

But     AF:FB=  BD  :  DC  =  (BD  :  DH) .  (DH :  DC) 

=  (CE:EK).(DH:DC).  (2) 

Now,  ELD  being  a  transversal  cutting   the  sides  of   the 
triangle  KJIC,  we  have 

HL  :  KL  =  (CE:EK) .  (DH :  DC).  (3) 

[This  is  '  Menelaus's  theorem ' ;  Pappus  does  not,  however, 
quote  it,  but  proves  the  relation  ad  hoc  in  an  added  lemma  by 
drawing  CM  parallel  to  DE  to  meet  HK  produced  in  M.  The 

proof  is  easy,  for  HL .  LK  =  (HL  .  LM)  (LM .  LK) 
=  (HD:DC).(CE:EK).] 

It  follows  from  (2)  and  (3)  that 
A   r*.    ETO  TIT    .    T  \7 
^LjT  .  r/>  =  fiJLj  .  Z/A, 

and,  since  AB  is  parallel  to  7//i,  and  AH,  BK  are  straight 
lines  meeting  in  G,  FGL  is  a  straight  line. 

[This   is   proved   in  another  easy  lemma   by  reductio  ad 
absurdumJ] 
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We  have  next  to  prove  that  EL  =  LD. 

Now  [again  by  'Menelaus's  theorem',  proved  ad  hoc  by 
drawing  CN  parallel  to  HK  to  meet  ED  produced  in  N] 

EL :  LD  =  (EK :  KG) .  (CH :  HD).  (4) 

But,  by  (1)  above,  CE:EK  =  BD :  DH\ 

therefore          OK :  KE  =  BH :  HD  =  CH :  HD, 

so  that  (EK:KC).(CH:HD)=\,  and  therefore,  from   (4), 
EL  =  LD. 

It  remains  to  prove  that  FG  =  2  GL,  which  is  obvious  by 

parallels,  since  FG :  GL  =  AG :  Gil  =  2  : 1. 

Two  more  propositions  follow  with  reference  to  the  centre 
of  gravity.  The  first  is,  Given  a  rectangle  with  AB,  BC  as 
adjacent  sides,  to  draw  from  G  a  straight  line  meeting  the  side 
opposite  BC  in  a  point  D  such  that,  if  the  trapezium  A  DOB  is 
hung  from  the  point  D,  it  will  rest  with  AD,  BG  horizontal. 

In  other  words,  the  centre  of  gravity  must  be  in  DL  drawn 
perpendicular  to  BC.  Pappus  proves  by  analysis  that 

CL2  =  3BL2,  so  that  the  problem  is  reduced  to  that  of 
dividing  BC  into  parts  BL,  LC  such  that  this  relation  holds. 
The  latter  problem  is  solved  (Prop.  6)  by  taking  a  point, 
say  X,  in  CB  such  that  (JX  =  3  XB,  describing  a  semicircle  on 
BO  as  diameter  and  drawing  XY  at  right  angles  to  BC  to 

meet  the  semicircle  in  F,  so  that  XY*  =  T\  B<72,  and  then 
dividing  CB  at  L  so  that 

CL:LB  =  CX  :  XY  (= 
=  v/3  :  1). 

The  second  proposition  is  this  (Prop.  7).    Given  two  straight 
lines  AB,  AC,  and  B  a  fixed  point  on  AB,  if  CD  be  drawn 
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with  its  extremities  on  AC,  AB  and  so  that  AC :  BD  is  a  given 
ratio,  then  the  centre  of  gravity  of  the  triangle  ADC  will  lie 
on  a  straight  line. 

Take  Ey  the  middle  point  of  AC,  and  F  a  point  on  DE  such 
that  DF  =  2  FE.     Also  let  //  be  a  point  on  BA  such  that 
BH  =2 HA.     Draw  FG  parallel  to  AC. 
Then    4(?  =  £^/_),    and    AH=%AB\ 

therefore  HG  =  $BD.  '   * 
Also  FG  =  §  AE  =  £  4(7.  Therefore, 

since  the  ratio  AC:BD  is  given,  the 
ratio  6r// :  G F  is  given. 

And  the  angle  FGH  (—A)  is  given ; 
therefore  the  triangle  FGH  is  given  in 
species,  and  consequently  the  angle  GHF 
is  given.  And  //  is  a  given  point. 
Therefore  HF  is  a  given  straight  line,  and  it  contains  the 
centre  of  gravity  of  the  triangle  ADC. 

The  inclined  plane. 

Prop.  8  is  on  the  construction  of  a  plane  at  a  given  inclina- 
tion to  another  plane  parallel  to  the  horizon,  and  with  this 

Pappus  loaves  theory  and  proceeds  to  the  practical  part. 

Prop.  9  (p.  1054.  4  sq.)  investigates  the  problem  'Given 
a  weight  which  can  be  drawn  along  a  plane  parallel  to  the 
horizon  by  a  given  force,  and  a  plane  inclined  to  the  horizon 
at  a  given  angle,  to  find  the  force  required  to  draw  the  weight 

upwards  on  the  inclined  plane'.  This  seems  to  be  the  first 
or  only  attempt  in  ancient  times  to  investigate  motion  on 
an  inclined  plane,  and  as  such  it  is  curious,  though  of  no 
value. 

Let  A  be  the  weight  which  can  be  moved  by  a  force  C  along 
a  horizontal  plane.  Conceive  a  sphere  with  weight  equal  to  A 
placed  in  contact  at  L  with  the  given  inclined  plane ;  the  circle 
OGL  represents  a  section  of  the  sphere  by  a  vertical  plane 
passing  through  E  its  centre  and  LK  the  line  of  greatest  slope 
drawn  through  the  point  L.  Draw  EGH  horizontal  and  there- 

fore parallel  to  MN  in  the  plane  of  section,  and  draw  LF 
perpendicular  to  EH.  Pappus  seems  to  regard  the  plane 
as  rough,  since  he  proceeds  to  make  a  system  in  equilibrium 
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about  FL  as  if  L  were  the  fulcrum  of  a  lever.  Now  the 

weight  A  acts  vertically  downwards  along  a  straight  line 
through  E.  To  balance  it,  Pappus  supposes  a  weight  B 
attached  with  its  centre  of  gravity  at  G. 

Then      A:B=GF:EF 

=  (EL-EF):EF 

[=  (1  -sin  6):  sin  6, 

where  £KMN  =  ff\\ 

and,  since  /.KMNis  given,  the  ratio  EF:  EL, 
and  therefore  the  ratio  (EL  -  EF) :  EF,  is M  N 

given ;  thus  B  is  found. 
Now,  says  Pappus,  if  D  is  the  force  which  will  move  B 

along  a  horizontal  plane,  as  C  is  the  force  which  will  move 
A  along  a  horizontal  plane,  the  sum  of  C  and  D  will  be  the 

force  ̂   required  to  move  the  sphere  upwards  on  the  inclined 
plane.  He  takes  the  particular  case  where  6  =  60°.  Then 
sin0  is  approximately  £f -J  (he  evidently  uses  -|.ff  for  -1^/3), 

and  4:5  =  16:104. 

Suppose,  for  example,  that  A  =  200  talents;  then  B  is  1300 
talents.  Suppose  further  that  C  is  40  man-power;  then,  since 
D  :  C  =  B :  A,  D  =  260  man-power ;  and  it  will  take  D  +  C,  or 
300  man-power,  to  move  the  weight  up  the  plane! 

Prop.  10  gives,  from  Heron's  Barulcus,  the  machine  con- 
sisting of  a  pulley,  interacting  toothed  wheels,  and  a  spiral 

screw  working  on  the  last  wheel  and  turned  by  a  handle; 
Pappus  merely  alters  the  proportions  of  the  weight  to  the 
force,  and  of  the  diameter  of  the  wheels.  At  the  end  of 

the  chapter  (pp.  1070-2)  he  repeats  his  construction  for  the 
finding  of  two  mean  proportionals. 

Construction  of  a  conic  through  jive  paints. 

Chaps.  13-17  are  more  interesting,  for  they  contain  the 
solution  of  the  problem  of  constructing  a  conic  through  five 
given  points.  The  problem  arises  in  this  way.  Suppose  we 
are  given  a  broken  piece  of  the  surface  of  a  cylindrical  column 
such  that  no  portion  of  the  circumference  of  either  of  its  base 



THE  COLLECTION.    BOOK  VIII 
435 

is  left  intact,  and  let  it  be  required  to  find  the  diameter  of 

a  circular  section  of  the  cylinder.  We  take-  any  two  points 
-A,  B  on  the  surface  of  the  fragment  and  by  means  of  these  we 
find  five  points  on  the  surface  all  lying  in  one  plane  section, 
in  general  oblique.  This  is  done  by  taking  five  different  radii 
and  drawing  pairs  of  circles  with  A,  B  as  centres  and  with 
each  of  the  five  radii  successively.  These  pairs  of  circles  with 
equal  radii,  intersecting  at  points  on  the  surface,  determine 
five  points  on  the  plane  bisecting  AB  at  right  angles.  The  five 
points  are  then  represented  on  any  plane  by  triangulation. 

Suppose  the  points  are  A,  B,  C9  D,  E  and  are  such  that 
no  two  of  the  lines  connecting  the  different  pairs  are  parallel. 

This  case  can  be  reduced  to  the  construction  of  a  conic  through 
the  five  points  A,  B,  D,  E,  F  where  EF  is  parallel  to  AB. 
This  is  shown  in  a  subsequent  lemma  (chap.  16). 

For,  if  EF  be  drawn  through  E  parallel  to  ABy  and  if  CD 

meet  AB  in  0  and  EF  in  0',  we  have,  by  the  well-known 
proposition  about  intersecting  chords, 

CO  .OD:AO.OB  =  CO' .  O'D :  EO' .  Q'F, 

whence  O'F  is  known,  and  F  is  determined. 
We  have  then  (Prop.  13)  to  construct  a  conic  through  A,  B, 

D,  Ey  F,  where  EF  is  parallel  to  AB. 
Bisect  AB,  EF  at  V,  W\  then  VW  produced  both  ways 

is  a  diameter.  Draw  DR,  the  chord  through  7)  parallel 
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to  this  diameter.  Then  li  is  determined  by  means  of  the 
relation 

RG.GD:BG.GA  =  RH.HD:FH.HE  (1) 

in  this  way. 
Join  DBy  RA,  meeting  EF  in  K,  L  respectively. 
Then,  by  similar  triangles, 

RG  .  GD  :  BG  .  GA  =  (RH:  1IL)  .  (DH:HK) 
=  RH.HD\KH.HL. 

Therefore,  by  (1),     FH  .  HE  =  KH.HL, 

whence  HL  is  determined,  and  therefore  L.  The  intersection 
of  AL,  DH  determines  R. 

Next,  in  order  to  find  the  extremities  P,  P'  of  the  diameter 
through  V,  W,  we  draw  ED,  RF  meeting  PP'  in  M,  N  respec- 
tively. 

Then,  as  before, 

FW.  WE-.P'W.  WP  =  FH.  HE:  RH.  HD,  by  the  ellipse, 

=  FW.WE-.NW.WM,  by  similar  triangles. 

Therefore  P'  W.  WP  =  NW  .  WM  ; 

and  similarly  we  can  find  the  value  of  P'V  '.  VP. 

Now,  says  Pappus,  since  l^W.WP  and  P'KFP  are  given 
areas  and  the  points  V,  W  are  given,  P,  P7  are  given.  His 
determination  of  P,  P'  amounts  (Prop.  14  following)  to  an 
elimination  of  one  of  the  points  and  the  finding  of  the  other 
by  means  of  an  equation  of  the  second  degree. 

Take  two  points  Q,  Q'  on  the  diameter  such  that 

P'V.VP=WV.VQ,  (a) 

Q,  Q'  are  thus  known,  while  P,  P'  remain  to  be  found. 

By  (a)  P'V:  VW=  QV:  VP, 

whence  P'W:VW=  PQ  :  PV. 

Therefore,  by  means  of  (j8), 

PQ:PV=Q'W:WP9 
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so  that  PQ:(JV=Q'W:PQ', 

or  PQ.1>W=QV.VW. 

Thus  P  can  be  found,  and  similarly  P'. 
The  conjugate  diameter  is  found  by  virtue  of  the  relation 

(conjugate  diam.)* :  PP'*  =  p :  PI*. 

where  p  is  the  latus  rectum  to  PPf  determined  by  the  property 

of  the  curve  V,PP>=  AV*:PV.V1*. 

Problem,  Given  two  conjugate  diameters  of  an  ellipse, 

to  find  the  axes. 

Lastly,  Pappus  shows  (Prop.  14,  chap.  17)  how,  when  we  are 
given  two  conjugate  diameters,  we  can  find  the  axes.  The 
construction  is  as  follows.  Let  AB>  CD  be  conjugate  diameters 

(CD  being  the  greater),  E  the  centre. 
Produce  EA  to  II  so  that 

KA.AH  =  DE*. 

Through  A  draw  FG  parallel  to  CD.  Bisect  Ell  in  Ky  and 
draw  KL  at  right  angles  to  EH  meeting  FG  in  L. 

With  L  as  centre,  and  LE  as  radius,  describe  a  circle  cutting 
GFmG,  F. 

Join  EF,  EG,  and  from  A  draw  AM,  AN  parallel  to  EF,  EG 

respectively.  • 
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Take  points  P,  R  on  EG,  EF  such  that 

EP*  =  GE.  EM,  and  ER*  =  FE.  EN. 

Then  EP  is  half  the  major  axis,  and  ER  half  the  minor  axis. 
Pappus  omits  the  proof. 

Problem  of  seven  hexagons  in  a  circle. 

Prop.  19  (chap.  23)  is  a  curious  problem.     To  inscribe  seven 
equal  regular  hexagons  in  a  circle  in  such  a  way  that  one 

is  about  the  centre  of  the  circle,  while  six  others  stand  on  its 

sides  and  have  the  opposite  sides  in  each  case  placed  as  chords 
in  the  circle. 

Suppose  GUKLNM  to  be  the  hexagon  so  described  on  HK, 
a  side  of  the  inner  hexagon ;  OKL  will  then  be  a  straight  line. 
Produce  OL  to  meet  the  circle  in  P. 

Then  OK  =  KL  =  LN.  Therefore,  in  the  triangle  OLN, 

OL  =  2LN,  while  the  included  angle  OLN  (=  120°)  is  also 
given.  Therefore  the  triangle  is  given  in  species;  therefore 
the  ratio  ON :  NL  is  given,  and,  since  ON  is  given,  the  side  NL 
of  each  of  the  hexagons  is  given. 

Pappus  gives  the  auxiliary  construction  thus.  Let  AF  bo 
taken  equal  to  the  radius  OP.  Let  AC  =  £  AF,  and  on  AC  as 

base  describe  a  segment  of  a  circle  containing  an  angle  of  60°. 
Take  GE  equal  to  £  AC,  and  draw  EB  to  touch  the  circle  at  B. 
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Then  he  proves  that,  if  we  join  AB,  AB  is  equal  to  the  length 
of  the  side  of  the  hexagon  required. 

Produce  BC  to  D  so  that  BD  =  BA,  and  join  DA.  ABD 
is  then  equilateral. 

Since  EB  is  a  tangent  to  the  segment,  AE.EC  =  EB*  or 
AE:  EB  =  EB  :  EG,  and  the  triangles  EAB,  EBC  are  similar. 

Therefore     BA2  :  BC*  =  4  A*  :  JEB*  =  A  E  :  EC  =  9  :  4  ; 

and  BC  =  |£4  =  §#A  so  that  JW;  =  2C7A 

But  CF=2CA;  therefore  AC:CF=  D(J:CB,  and 
are  parallel. 

Therefore  BFi  AD  =  BC:CD  =  2:1,  so  that 

Also  ̂ ^J?(7  =  ZJWXA  =  60°,  so  that  LABF=  120°,  and 
the  triangle  ABF  is  therefore  equal  and  similar  to  the  required 
triangle  NLO. 

Construction  of  toothed  wheels  and  indented  screw*. 

The  rest  of  the  Book  is  devoted  to  the  construction  (1)  of 

toothed  wheels  with  a  given  number  of  teeth  equal  to  those  of 

a  given  wheel,  (2)  of  a  cylindrical  helix,  the  cocM-ias,  indented 
so  as  to  work  011  a  toothed  wheel.  The  text  is  evidently 

defective,  and  at  the  end  an  interpolator  has  inserted  extracts 

about  the  mechanical  powers  from  Heron's  Mechanics. 
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ALGEBRA:    DIOPHANTUS   OF   ALEXANDRIA 

Beginnings  learnt  from  Egypt. 

IN  algebra,  as  in  geometry,  the  Greeks  learnt  the  beginnings 
from  the  Egyptians.  Familiarity  on  the  part  of  the  Greeks 
with  Egyptian  methods  of  calculation  is  well  attested.  (1) 
These  methods  are  found  in  operation  in  the  Heronian  writings 
and  collections.  (2)  Psellus  in  the  letter  published  by  Tannery 

in  his  edition  of  Diophantus  speaks  of  *  the  method  of  arith- 
metical calculations  used  by  the  Egyptians,  by  which  problems 

in  analysis  are  handled';  he  adds  details,  doubtless  taken 
from  Anatolius,  of  the  technical  terms  used  for  different  kinds 
of  numbers,  including  the  powers  of  the  unknown  quantity. 

(3)  The  scholiast  to  Plato's  Cliarmides  165  E  says  that  'parts 
of  Xoyia-TiKrj,  the  science  of  calculation,  are  the  so-called  Greek 
and  Egyptian  methods  in  multiplications  and  divisions,  and 

the  additions  and  subtractions  of  fractions '.  (4)  Plato  himself 
in  the  Laws  819  A-c  says  that  free-born  boys  should,  as  is  the 
practice  in  Egypt,  learn,  side  by  side  with  reading,  simple 
mathematical  calculations  adapted  to  their  age,  which  should 
be  put  into  a  form  such  as  to  combine  amusement  with 
instruction :  problems  about  the  distribution  of,  say,  apples  or 
garlands,  the  calculation  of  mixtures,  and  other  questions 
arising  in  military  or  civil  life. 

'  Hau  '-calculations. 

The  Egyptian  calculations  here  in  point  (apart  from  their 
method  of  writing  and  calculating  in  fractions,  which,  with 
the  exception  of  §,  were  always  decomposed  and  written 
as  the  sum  of  a  diminishing  series  of  aliquot  parts  or  sub- 
multiples)  are  the  /tau-calculations.  Hau,  meaning  a  heap,  is 
the  term  denoting  the  unknown  quantity,  and  the  calculations 
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in  terms  of  it  are  equivalent  to  the  solutions  of  simple  equations 
with  one  unknown  quantity.  Examples  from  the  Papyrus 
Rhind  correspond  to  the  following  equations  : =  19, 

x  =  33, 

=  10. 

The  Egyptians  anticipated,  though  only  in  an  elementary 

form,  a  favourite  method  of  Diophantus,  that  of  the  'false 

supposition'  or  'regula  falsi'.  An  arbitrary  assumption  is 
made  as  to  the  value  of  the  unknown,  and  the  true  value 

is  afterwards  found  by  a  comparison  of  the  result  of  sub- 
stituting the  wrong  \&alue  in  the  original  expression  with  the 

actual  data.  Two  examples  may  be  given.  The  first,  from 
the  Papyrus  Rhind,  is  the  problem  of  dividing  100  loaves 
among  five  persons  in  such  a  way  that  the  shares  are  in 
arithmetical  progression,  and  one-seventh  of  the  sum  of  the 
first  three  shares  is  equal  to  the  sum  of  the  other  two.  If 
a  +  4d,  a+3d,  a  +  2t/,  a  +  d,  a  be  the  shares,  then 

or  d  =  5ja. 

Alnnes  says,  without  any  explanation,  'make  the  difference, 

as  it  is,  5  1',  and  then,  assuming  a  =  1,  writes  the  series 
23,  17£,  12,  6^,  1.  The  addition  of  these  gives  60,  and  100  is 

If  times  60.  Ahmes  says  simply  *  multiply  If  times'  and, 
thus  gets  the  correct  values  38£,  29£,  20,  10§£,  If. 

The  second  example  (taken  from  the  Berlin  Papyrus  6619) 
is  the  solution  of  the  equations 

x2  +  y2  =  100, 

x:y=  1:£,  or  y  =  £#. 

x  is  first  assumed  to  be  1,  and  #-  +  7/2  is  thus  found  to  be  f£. 
In  order  to  make  100,  ff  has  to  be  multiplied  by  64  or  82. 
The  true  value  of  x  is  therefore  8  times  1,  or  8. 

Arithmetical  epigrams  in  the  Greek  Anthology. 

The  simple  equations  solved  in  the  Papyrus  Rhind  are  just 
the  kind  of  equations  of  which  we  find  many  examples  in  the 
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arithmetical  epigrams  contained  in  the  Greek  Anthology.  Most 

of  these  appear  under  the  name  of  Metrodorus,  a  grammarian, 

probably  of  the  time  of  the  Emperors  Anastasius  I  (A.D.  491- 
518)  and  Justin  I  (A.D.  518-27).  They  were  obviously  only 
collected  by  Metrodorus,  from  ancient  as  well  as  more  recent 
sources.  Many  of  the  epigrams  (46  in  number)  lead  to  simple 

equations,  and  several  of  them  are  problems  of  dividing  a  num- 
ber of  apples  or  nuts  among  a  certain  number  of  persons,  that 

is  to  say,  the  very  type  of  problem  mentioned  by  Plato.  For 

example,  a  number  of  apples  has  to  be  determined  such  that, 

if  four  persons  out  of  six  receive  one-third,  one-eighth,  one- 
fourth  and  one-fifth  respectively  of  the  whole  number,  while 
the  fifth  person  receives  10  apples,  there  is  one  apple  left  over 
for  the  sixth  person,  i.e. 

=  x. 

Just  as  Plato  alludes  to  bowls  (<f>id\at)  of  different  metals, 
there  are  problems  in  which  the  weights  of  bowls  have  to 
be  found.  We  are  thus  enabled  to  understand  the  allusions  of 
Proclus  and  the  scholiast  on  Charmides  165  E  to  fjLrjXiTai 

and  ̂ ia\lraL  dpidpoi,  '  numbers  of  apples  or  of  bowls'. 
It  is  evident  from  Plato's  allusions  that  the  origin  of  such 
simple  algebraical  problems  dates  back,  at  least,  to  the  fifth 
century  B.C. 

The  following  is  a  classification  of  the  problems  in  the 

Anthology.  (1)  Twenty-three  are  simple  equations  in  one 
unknown  and  of  the  type  shown  above;  one  of  these  is  an 

epigram  on  the  age  of  Diophantus  and  certain  incidents  of 
his  life  (xiv.  1  26).  (2)  Twelve  are  easy  simultaneous  equations 
with  two  unknowns,  like  Dioph.  I.  6  ;  they  can  of  course  be 
reduced  to  a  simple  equation  with  one  unknown  by  means  of 
an  easy  elimination.  One  other  (xiv.  51)  gives  simultaneous 
equations  in  three  unknowns 

and  one  (xiv.  49)  gives  four  equations  in  four  unknowns, 

40,     #  +  0=45,     o;  +  u  =  36,     x  +  y  +  z  +  u  =  60. 

With  these  may  be  compared  Dioph.  I.  16-21,  as  well  as  the 
general  solution  of  any  number  of  simultaneous  linear  equa- 
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tions  of  this  type  with  the  same  number  of  unknown  quantities 
which  was  given  by  Thymaridas,  an  early  Pythagorean,  and 

was  called  the  ewdvOrjua,  '  flower  '  or  '  bloom  '  of  Thymaridas 
(see  vol.  i,  pp.  94-6).  (3)  Six  more  are  problems  of  the  usual 
type  about  the  filling  and  emptying  of  vessels  by  pipes  ;  e.g. 
(xiv.  130)  one  pipe  fills  the  vessel  in  one  day,  a  second  in  two 
and  a  third  in  three  ;  how  long  will  all  three  running  together 
take  to  fill  it?  Another  about  brickmakers  (xiv.  136)  is  of 
the  same  sort. 

Indeterminate  equations  of  the  first  degree. 

The  Anthology  contains  (4)  two  indeterminate  equations  of 
the  first  degree  which  can  be  solved  in  positive  integers  in  an 
infinite  number  of  ways  (xiv.  48,  144)  ;  the  first  is  a  distribu- 

tion of  apples,  3x  in  number,  into  parts  satisfying  the  equation 
x  —  3y  =  T/,  where  y  is  not  less  than  2;  the  second  leads  to 
three  equations  connecting  four  unknown  quantities  : 

xl  = the  general  solution  of  which  is  x  =  4&,  y  =  k,  xl  =  3kt 
yl  =  2k.  These  very  equations,  which,  however,  are  made 
determinate  by  assuming  that  x  +  y  =  xl  +  yl  =  100,  are  solved 
in  Dioph.  I.  1  2. 

Enough  has  been  said  to  show  that  Diophantus  was  not 
the  inventor  of  Algebra.  Nor  was  he  the  first  to  solve  inde- 

terminate problems  of  the  second  degree. 

Indeterminate  equations  of  second  degree  before 
Diophantus. 

Take  first  the  problem  (Dioph.  II.  8)  of  dividing  a  square 
number  into  two  squares,  or  of  finding  a  right-angled  triangle 
with  sides  in  rational  numbers.  We  have  already  seen  that 
Pythagoras  is  credited  with  the  discovery  of  a  general  formula 
for  finding  such  triangles,  namely, 
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where  n  is  any  odd  number,  and  Plato  with  another  formula 

of  the  same  sort,  namely  (2?&)2  +  (7&2  —  I)3  =  (/&a+l)a.  Euclid 
(Lemma  following  X.  28)  finds  the  following  more  general 
formula 

m2  M2;p2g2  =  { 4  (™>np2  +  mnq*)  }2  —  [  4  (w  ft^2  —  mitq*)  }2. 

The  Pythagoreans  too,  as  we  have  seen  (vol.  i,  pp.  91-3), 
solved  another  indeterminate  problem,  discovering,  by  means 

of  the  series  of  '  side- '  and  '  diameter-numbers ',  any  number 
of  successive  integral  solutions  of  the  equations 

»-7la=    +1. 

Diophantus  does  not  particularly  mention  this  equation, 
but  from  the  Lemma  to  VI.  15  it  is  clear  that  he  knew  how 

to  find  any  number  of  solutions  when  one  is  known.  Thus, 

seeing  that  2  a;2—  1  =  y2  is  satisfied  by  x  =  1,  y  =  1,  he  would 

put 2(1  +  a;)2—  1  =  a  square 
1)-,  say; 

whence  x  =  (4  +  2p)/(jr  —  2). 

Take  the  value  p  =  2,  and  we  have  x  ==  4,  and  .«+  1  =.  5; 

in  this  case  2  .  52—  1  =  49  =  72.  Putting  jj  +  5  in  place  of  a;, 
we  can  find  a  still  higher  value,  and  so  on. 

Indeterminate  equations  in  the  Heronian  collections. 

Some  further  Greek  examples  of  indeterminate  analysis  are 
now  available.  They  come  from  the  Constantinople  manuscript 
(probably  of  the  twelfth  century)  from  which  Scheme  edited 
the  Metrica  of  Heron  ;  they  have  been  published  and  translated 

by  Heiberg,  with  comments  by  Zeuthen.1  Two  of  the  problems 
(thirteen  in  number)  had  been  published  in  a  less  complete 

form  in  Hultsch's  Heron  (Geeponicus,  78,  79);  the  others are  new. 

I.  The  first  problem  is  to  find  two  rectangles  such  that  the 
perimeter  of  the  second  .is  three  times  that  of  the  first,  and 
the  area  of  the  first  is  three  times  that  of  the  second.  The 

1  Bibliotheca  mathematics,  viii8,  1907-8,  pp.  118-34.  See  now  Geom. 
24.  1-13  in  Heron,  vol.  iv  (ed.  Heiberg),  pp.  411-26. 
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number  3  is  of  course  only  an  illustration,  and  the  problem  is 

equivalent  to  the  solution  of  the  equations 
(1) 

(2)        xy  =  n.uv 

The  solution  given  in  the  text  is  equivalent  to 

U  =  >fc(4>63~  2),       V  =  71 

Zeuthen  suggests  that  the  solution  may  have  been  obtained 
thus.  As  the  problem  is  indeterminate,  it  would  be  natural 

to  start  with  some  hypothesis,  e.g.  to  put  v  =  n.  It  would 
follow  from  equation  (1)  that  u  is  a  multiple  of  n,  say  nz. 
We  have  then 

while,  by  (2),  ,/•?/  =  M30, 

whence  xy  =  it3  (^  +  #)  —  >r, 

or  (x  —  -/t3)  (2;  —  /ta)  =  /t3  (u3  —  1  ). 

An  obvious  solution  is 

u1—  u:i  =  7t:>>—  1,     y.—  /t3  =  >/:i, 

which  gives     z  =  2?i3—  1  -f  2  /t:j—  1  =  4  H,3  —  2,  so  that 

-u  =  nz  =  n(4  u3—  2). 

II.    The   second  is  a  similar  problem  about  two  rectangles, 
equivalent  to  the  solution  of  the  equations 

(1)  x+  y  =  u+v 

(2)  a:?/     =  u  .  w 

an<f  the  solution  given  in  the  text  is 

x  +  y  =  u  +  ?'  =  >i3-!,  (3) 

(  ' 

In  this  case  trial  may  have  been  made  of  the  assumptions 
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when  equation  (1)  would  give 

(n  —  l)x  =  (7i2  —  l)it, 

a  solution  of  which  is  x  =  n2—  1,  u  =  TI—  1. 

III.  The  fifth  problem  is  interesting  in  one  respect.    We  are 
asked  to  find  a  right-angled  triangle  (in  rational  numbers) 
with  area  of  5  feet.     We  are  told  to  multiply  5  by  some 
square  containing  6  as  a  factor,  e.g.  36.     This  makes  180, 
and  this  is  the  area  of  the  triangle  (9,  40,  41).    Dividing  each 
side  by  6,  we  have  the  triangle  required.     The  author,  then, 
is  aware  that  the  area  of  a  right-angled  triangle  with  sides  in 
whole  numbers  is  divisible  by  6.     If  we  take  the  Euclidean 

formula  for  a  right-angled  triangle,  making  the  sides  a  .  win, 

a  .  ̂(m2—  ft2),  a  ,  ̂(m2  4-  ?62),  where  a  is  any  number,  and  m,  n 
are  numbers  which  are  both  odd  or  both  even,  the  area  is 

^  mn  (m  —  n)  (m  +  n)  a2, 

and,  as  a  matter  of  fact,  the  number  mn(m  —  n)  (m  +  n)  is 
divisible  by  24,  as  was  proved  later  (for  another  purpose)  by 
Leonardo  of  Pisa. 

IV.  The  last  four  problems  (10  to  13)  are  of  great  interest. 
They  are  different  particular  cases  of  one  problem,  that  of 
finding  a  rational  right-angled  triangle  such  that  the  numerical 
sum  of  its  area  and  its  perimeter  is  a  given  number.    The 

author's  solution  depends  on  the  following  formulae,  where 
a,  b  are  the  perpendiculars,  and  c  the  hypotenuse,  of  a  right- 
angled  triangle,  8  its  area,  r  the  radius  of  the  inscribed  ciixsle, 
and  s  = 

S  =  rs  =  -|a&,    r  +  8  =  a  -f  b,    c  =  s  —  r. 

(The  proof  of  these  formulae  by  means  of  the  usual  figure, 
namely  that  used  by  Heron  to  prove  the  formula 

is  easy.) 
Solving  the  first  two  equations,  in  order  to  find  a  and  ft, 

we  have 

which  formula  is  actually  used  by  the  author  for  finding  a 
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and  b.  The  method  employed  is  to  take  the  sum  of  the  area 
and  the  perimeter  £+28,  separated  into  its  two  obvious 
factors  s(r+2),  to  put  s(r+2)  =  A  (the  given  number),  and 
then  to  separate  A  into  suitable  factors  to  which  s  and  r  +  2 
may  be  equated.  They  must  obviously  be  such  that  sr,  the 
area,  is  divisible  by  6.  To  take  the  first  example  where 
A  —  280  :  the  possible  factors  are  2  x  140,  4  x  70,  5  x  56,  7  x  40, 
8  x  35,  10  x  28,  14  x  20.  The  suitable  factors  in  this  case  are 

?*  +  2  =  8,  s  =  35,  because  r  is  then  equal  to  6,  and  rs  is 
a  multiple  of  6. 

The  author  then  says  that 

rt  =  4[G  +  35-</{(6  +  35)2 -8.6.  35]]  ̂ ^(41-U  =  20, 

6  =  4(41  +  1)=  21, 

c  =  35  — 6  =  29. 

The  triangle  is  therefore  (20,  21,  29)  in  this  case.  The 
triangles  found  in  the  other  three  cases,  by  the  same  method, 
are  (9,  40,  41),  (8,  15,  17)  and  (9,  12,  15). 

Unfortunately  there  is  no  guide  to  the  date  of  the  problems 
just  given.  The  probability  is  that  the  original  formulation 
of  the  most  important  of  the  problems  belongs  to  the  period 
between  Euclid  and  Diophantus.  This  supposition  best  agrees 
with  the  fact  that  the  problems  include  nothing  taken  from 
the  great  collection  in  the  Arithmetica.  On  the  other  hand, 
it  is  strange  that  none  of  the  seven  problems  above  mentioned 
is  found  in  Diophantus.  The  five  relating  to  rational  right- 
angled  triangles  might  well  have  been  included  by  him ;  thus 

he  finds  rational  right-angled  triangles  such  that  the  area  plus 
or  minus  one  of  the  perpendiculars  is  a  given  number,  but  not 
the  rational  triangle  which  has  a  given  area;  and  he  finds 
rational  right-angled  triangles  such  that  the  area  jdus  or  minus 
the  sum  of  two  sides  is  a  given  number,  but  not  the  rational 
triangle  such  that  the  sum  of  the  area  and  the  three  sides  is 
a  given  number.  The  omitted  problems  might,  it  is  true,  have 
come  in  the  lost  Books ;  but,  on  the  other  hand,  Book  VI  would 
have  been  the  appropriate  place  for  them. 

The  crowning  example  of  a  difficult  indeterminate  problem 

propounded  before  Diophantus's  time  is  the  Cattle-Problem 
attributed  to  Archimedes,  described  above  (pp.  97-8). 
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Numerical  solution  of  quadratic  equations. 

The  geometrical  algebra  of  the  Greeks  has  been  in  evidence 
all  through  our  history  from  the  Pythagoreans  downwards, 
and  no  more  need  be  said  of  it  here  except  that  its  arithmetical 
application  was  no  new  thing  in  Diophantus.  It  is  probable, 
for  example,  that  the  solution  of  the  quadratic  equation, 
discovered  first  by  geometry,  was  applied  for  the  purpose  of 
finding  numerical  values  for  the  unknown  as  early  as  Euclid, 
if  not  earlier  still.  In  Heron  the  numerical  solution  of 

equations  is  well  established,  so  that  Diophantus  was  not  the 
first  to  treat  equations  algebraically.  What  he  did  was  to 
take  a  step  forward  towards  an  algebraic  notation. 

The  date  of  DIOPHANTUS  can  now  be  fixed  with  fair  certainty. 
He  was  later  than  Hypsicles,  from  whom  he  quotes  a  definition 
of  a  polygonal  number,  and  earlier  than  Theon  of  Alexandria, 

who  has  a  quotation  from  Diophantus's  definitions.  The 
possible  limits  of  date  are  therefore,  say,  150  B.C.  to  A.D.  360. 
But  the  letter  of  Psellus  already  mentioned  says  that  Anatolius 
(Bishop  of  Laodicea  about  A.D.  280)  dedicated  to  Diophantus 
a  concise  treatise  on  the  Egyptian  method  of  reckoning; 
hence  Diophantus  must  have  been  a  contemporary,  so  that  lie 
probably  flourished  A.D.  250  or  not  much  later. 

An  epigram  in  the  Anthology  gives  some  personal  particulars: 
his  boyhood  lasted  £th  of  his  life  ;  his  beard  grew  after  T^th 
more  ;  he  married  after  ̂ th  more,  and  his  son  was  born  5  years 

later;  the  son  lived  to  half  his  father's  ago,  and  the  father 
died  4  years  after  his  son.  Thus,  if  x  was  his  aye  when 
he  died, 

=  X, 

which  gives  x  =  84. 

Works  of  Diophantus. 

The  works  on  which  the  fame  of  Diophantus  rests  are  : 

(1)  the  Arithmetica  (originally  in  thirteen  Books), 

(2)  a  tract  OH  Polygonal  Numbers. 
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Six  Books  only  of  the  former  and  a  fragment  of  the  latter 
survive. 

Allusions  in  the  Arithmetica  imply  the  existence  of 

(3)  A  collection  of  propositions  under  the  title  of  Porisms ; 
in  three  propositions  (3,  5,  16)  of  Book  V,  Diophantus  quotes 
as  known  certain  propositions  in  the  Theory  of  Numbers, 

prefixing  to  the  statement  of  them  the  words  *  We  have  it  in 
the  Porisms  that . .  / 

A  scholium  on  a  passage  of  lamblichus,  where  lamblichus 
cites  a  dictum  of  certain  Pythagoreans  about  the  unit  being 
the  dividing  line  (neQopiov)  between  number  and  aliquot  parts, 

says  '  thus  Diopliantus  in  the  Moriastica ....  for  he  describes 
as  "parts"  the  progression  without  limit  in  the  direction  of 
less  than  the  unit '.  The  Moriastica  may  be  a  separate  work 
by  Diophantus  giving  rules  for  reckoning  with  fractions ;  but 
I  do  not  feel  sure  that  the  reference  may  not  simply  be  to  the 
definitions  at  the  beginning  of  the  Arithmetica. 

The  Arithmetica. 

The  seven  lost  Hooks  and  their  place. 

None  of  the  manuscripts  which  we  possess  contain  more 
than  six  Books  of  the  Arithmetica,  the  only  variations  being 
that  some  few  divide  the  six  Books  into  seven,  while  one  or 

two  give  the  fragment  on  Polygonal  Numbers  as  VIII.  The 
missing  Books  were  evidently  lost  at  a  very  early  date. 

Tannery  suggests  that  Hypatia's  commentary  extended  only 
to  the  first  six  Books,  and  that  she  left  untouched  the  remain- 

ing seven,  which,  partly  as  a  consequence,  were  first  forgotten 

and  then  lost  (cf.  the  case  of  Apollonius's  Conic*,  where  the 
only  Books  which  have  survived  in  Greek,  I-IV,  are  those 
on  which  Eutocius  commented).  There  is  no  sign  that  even 
the  Arabians  ever  possessed  the  missing  Books.  The  Fakhn, 

an  algebraical  treatise  by  Abu  Bekr  Muh.  b.  al-Hasan  al- 
Karkhi  (d.  about  1029),  contains  a  collection  of  problems  in 
determinate  and  indeterminate  analysis  which  not  only  show 
that  their  author  had  deeply  studied  Diopliantus  but  in  many 
cases  are  taken  direct  from  the  Arithmetica,  sometimes  with 
a  change  in  constants;  in  the  fourth  section  of  the  work, 
1523.2  G  g 
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between  problems  corresponding  to  problems  in  Dioph.  II 
and  III,  are  25  problems  not  found  in  Diophantus,  but 
internal  evidence,  and  especially  the  admission  of  irrational 
results  (which  are  always  avoided  by  Diophantus),  exclude 
the  hypothesis  that  we  have  here  one  of  the  lost  Books. 
Nor  is  there  any  sign  that  more  of  the  work  than  we  possess 

was  known  to  Abu'l  Wafa  al-Buzjam  (A'.D.  940-98)  who  wrote 
a  'commentary  on  the  algebra  of  Diophantus',  as  well  as 
a  '  Book  of  proofs  of  propositions  used  by  Diophantus  in  his 
work'.  These  facts  again  point  to  the  conclusion  that  the 
lost  B6oks  wore  lost  before  the  tenth  century. 

The  old  view  of  the  place  originally  occupied  by  the  lost 
seven  Books  is  that  of  Nesselmann,  who  argued  it  with  great 

ability.1  According  to  him  (1)  much  less  of  Diophantus  is 
wanting  than  would  naturally  be  supposed  on  the  basis  of 
the  numerical  proportion  of  7  lost  to  6  extant  Books,  (2)  the 
missing  portion  came,  not  at  the  end,  but  in  the  middle  of 
the  work,  and  indeed  mostly  between  the  first  and  second 

Books.  Nesselmann's  general  argument  is  that,  if  we  care- 
fully read  the  last  four  Books,  from  the  third  to  the  sixth, 

we  shall  find  that  Diophantus  moves  in  a  rigidly  defined  and 
limited  circle  of  methods  and  artifices,  and  seems  in  fact  to  be 
at  the  end  of  his  resources.  As  regards  the  possible  contents 
of  the  lost  portion  on  this  hypothesis,  Nesselmann  can  only 
point  to  (1)  topics  which  we  should  expect  to  find  treated, 
either  because  foreshadowed  by  the  author  himself  or  as 
necessary  for  the  elucidation  or  completion  of  the  whole 

subject,  (2)  the  Porisms',  under  head  (1)  come,  (a)  deter- 
minate equations  of  the  second  degree,  and  (b)  indeterminate 

equations  of  the  first  degree.  Diophantus  does  indeed  promise 

to  show  how  to  solve  the  general  quadratic  ax~  +  bx  ±  c  =  0  so 
far  as  it  has  rational  and  positive  solutions ;  the  suitable  place 
for  this  would  have  been  between  Books  I  and  II.  But  there 

is  nothing  whatever  to  show  that  indeterminate  equations 

of  the  first  degree  formed  part  of  the  writer's  plan.  Hence 
Nesselmann  is  far  from  accounting  for  the  contents  of  seven 
whole  Books;  and  he  is  forced  to  the  conjecture  that  the  six 
Books  may  originally  have  been  divided  into  even  more  than 
seven  Books ;  there  is,  however,  no  evidence  to  support  this. 

1  Nesaelmann,  ,AI(jebra  der  GHechen,  pp.  264-73. 
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Relation  of  tlte  c  Porisms '  to  the  Arithmetica. 

Did  the  Porisms  form  part  of  the  Arithmetica  in  its  original 
form  ?  The  phrase  in  which  they  are  alluded  to,  and  which 

occurs  three  times,  'We  have  it  in  the  Porisms  that . . .'  suggests 
that  they  were  a  distinct  collection  of  propositions  concerning 
the  properties  of  certain  numbers,  their  divisibility  into  a 
certain  number  of  squares,  and  so  on ;  and  it  is  possible  that 
it  was  from  tho  same  collection  that  Diophantus  took  the 
numerous  other  propositions  which  he  assumes,  explicitly  or 
implicitly.  If  the  collection  was  part  of  the  Arithmetica,  it 
would  be  t  strange  to  quote  the  propositions  under  a  separate 
title  'The  Porisms'  when  it  would  have  been  more  natural 
to  refer  to  particular  propositions  of  particular  Books,  and 
more  natural  still  to  say  TOVTO  yap  TrpoStSeiKTai,  or  some  such 

phrase,  '  for  this  has  been  proved ',  without  any  reference  to 
the  particular  place  where  the  proof  occurred.  The  expression 

'  We  have  it  in  the  PorismH*  (in  the  plural)  would  be  still 
more  inappropriate  if  the  Porisms  had  been,  as  Tannery 
supposed,  not  collected  together  us  one  or  more  Books  of  the 
Arithmetica,  but  scattered  about  in  the  work  as  corollaries  to 

particular  propositions.  Hence  I  agree  with  the  view  of 
Hultscli  that  the  Porisms  were  not  included  in  the  Arith- 

metica at  all,  but  formed  a  separate  work. 
If  this  is  right,  we  cannot  any  longer  hold  to  the  view  of 

Nesselmann  that  the  lost  Books  were  in  the  middle  and  not  at 

the  end  of  the  treatise ;  indeed  Tannery  produces  strong 
arguments  in  favour  of  the  contrary  view,  that  it  is  the  last 
and  most  difficult  Books  which  are  lost.  He  replies  first  to 
the  assumption  that  Diophantus  could  not  have  proceeded 

to  problems  more  difficult  than  those  of  Book  V.  'If  the 
fifth  or  the  sixth  Book  of  the  Arithmetica  had  been  lost,  who, 

pray,  among  us  would  have  believed  that  such  problems  had 
ever  been  attempted  by  the  Greeks  ?  It  would  be  the  greatest 
error,  in  any  case  in  which  a  thing  cannot  clearly  be  proved 
to  have  been  unknown  to  all  the  ancients,  to  maintain  that 
it  could  not  have  been  known  to  some  Greek  mathematician. 

If  we  do  not  know  to  what  lengths  Archimedes  brought  the 
theory  of  numbers  (to  say  nothing  of  other  things),  let  us 
admit  our  ignorance.  But,  between  the  famous  problem  of  the 

o  ir » 
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cattle  and  the  most  difficult  of  Diophantus's  problems,  is  there 
not  a  sufficient  gap  to  require  seven  Books  to  fill  it?  And, 

without  attributing  to  the  ancients  what  modern  mathe- 
maticians have  discovered,  may  not  a  number  of  the  things 

attributed  to  the  Indians  and  Arabs  have  been  drawn  from 

Greek  sources?  May  not  the  same  be  said  of  a  problem 
solved  by  Leonardo  of  Pisa,  which  is  very  similar  to  those  of 
Diophantus  but  is  not  now  to  be  found  in  the  Arithmetica  ? 
In  fact,  it  may  fairly  be  said  that,  when  Chasles  made  his 
reasonably  probable  restitution  of  the  Porisms  of  Euclid,  he, 

notwithstanding  that  he  had  Pappus's  lemmas  to  help  him, undertook  a  more  difficult  task  than  he  would  have  undertaken 

if  he  had  attempted  to  fill  up  seven  Diophantine  Books  with 
numerical  problems  which  the  Greeks  may  reasonably  be 

supposed  to  have  solved.' l 
It  is  not  so  easy  to  agree  with  Tannery's  view  of  the  relation 

of  the  treatise  On  Polygonal  Numbers  to  the  Arithmetica. 

According  to  him,  just  as  Serenus's  treatise  on  the  sections 
of  cones  and  cylinders  was  added  to  the  mutilated  Conies  of 
Apollonius  consisting  of  four  Books  only,  in  order  to  make  up 
a  convenient  volume,  so  the  tract  on  Polygonal  Numbers  was 
added  to  the  remains  of  the  Arithmetica,  though  forming  no 

part  of  the  larger  work.2  Thus  Tannery  would  seem  to  deny 
the  genuineness  of  the  whole  tract  on  Polygonal  Numbers, 
though  in  his  text  he  only  signalizes  the  portion  beginning 

with  the  enunciation  of  the  problem  '  Given  a  number,  to  find 

in  how  many  ways  it  can  be  a  polygonal  number '  as  '  a  vain 
attempt  by  a  commentator '  to  solve  this  problem.  Hultsch, 
on  the  other  hand,  thinks  that  we  may  conclude  that  Dio- 

phantus really  solved  the  problem.  The  tract  begins,  like 
Book  I  of  the  Arithmetica)  with  definitions  and  preliminary 
propositions;  then  comes  the  difficult  problem  quoted,  the 
discussion  of  which  breaks  off  in  our  text  after  a  few  pages, 
and  to  these  it  would  be  easy  to  tack  on  a  great  variety  of 
other  problems. 

The  name  of  Diophantus  was  used,  as  were  the  names  of 
Euclid,  Archimedes  and  Heron  in  their  turn,  for  the  pur- 

pose of  palming  oft*  the  compilations  of  much  later  authors. 
1  Diophantus,  ed.  Tannery,  vol.  ii,  p.  xx. 
•  /&.,  p.  xviii. 
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Tannery  includes  in  his  edition  three  fragments  under  the 

heading  '  Diophantus  Pseudepigraphus '.  The  first,  which  is 
not ' from  the  Arithmetic  of  Diophantus '  as  its  heading  states, 
is  worth  notice  as  containing  some  particulars  of  one  of  *  two 

methods  of  finding  the  square  root  of  any  square  number'; 
we  are  told  to  begin  by  writing  the  number  'according  to 
the  arrangement  of  the  Indian  method',  i.e.  in  the  Indian 
numerical  notation  which  reached  us  through  the  Arabs.  The 
second  fragment  is  the  work  edited  by  C.  Henry  in  1879  as 
Ojiusculum  de  multiplicatioiie  et  divisions  sexagesimalibus 
Diophanto  vel  Pwppo  attribuendum.  The  third,  beginning 
with  AiofydvTov  C7n7r€5o/*erpi/ca  is  a  Byzantine  compilation 

from  later  reproductions  of  the  yeo>/z€T/)orf/z€J>a  and  <rr€/>€o- 
HeTpovfAcva  of  Heron.  Not  one  of  the  three  fragments  has 
anything  to  do  with  Diophantus. 

Commentators  from  Hypatia  dowmvards. 

The  first  commentator  on  Diophantus  of  whom  we  hear 
is  Hypatia,  the  daughter  of  Theon  of  Alexandria;  she 
was  murdered  by  Christian  fanatics  in  A.D.  415.  I  have 
already  mentioned  the  attractive  hypothesis  of  Tannery  that 

Hypatia's  commentary  extended  only  to  our  six  Books,  and that  this  accounts  for  their  survival  when  the  rest  were  lost 

It  is  possible  that  the  remarks  of  Psellus  (eleventh  century)  at 
the  l>eginning  of  his  letter  about  Diophantus,  Anatolius  and 
the  Egyptian  method  of  arithmetical  reckoning  were  taken 

from  Hypatia's  commentary. 
Georgius  Pachy meres  (1240  to  about  1310)  wrote  in  Greek 

a  paraphrase  of  at  least  a  portion  of  Diophantus.  Sections 

25-44  of  this  commentary  relating  to  Book  I,  Dcf.  1  to  Prop 
11,  survive.  Maximus  Plamides  (about  1260-1310)  also  wrote 
a  systematic  commentary  on  Books  I,  II.  Arabian  commen- 

tators were  Abu'l  Wafa  al-Bfizjam  (940-98),  Qusta  b.  Liiqa 
al-Ba'labakki  (d.  about  912)  and  probably  Ibn  al-Huithaui 
(about  965-1039). 

Translations  and  editions. 

To  Regiomontanus  belongs  the  credit  of  being  the  first  tc 
call  attention  to  the  work  of  Diophantus  as  being  extant  in 
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Greek.  In  an  Oratio  delivered  at  the  end  of  1463  as  an 

introduction  to  a  course  of  lectures  on  astronomy  which  he 

gave  at  Padua  in  1463-4  he  observed:  'No  one  has  yet 
translated  from  the  Greek  into  Latin  the  fine  thirteen  Books 

of  Diophantus,  in  which  the  very  flower  of  the  whole  of 
arithmetic  lies  hid,  the  ars  rei  et  cemus  which  to-day  they 
call  by  the  Arabic  name  of  Algebra/  Again,  in  a  letter  dated 
February  5, 1464,  to  Bianchini,  he  writes  that  he  has  found  at 

Venice  'Diofantus,  a  Greek  arithmetician  who  has  not  yet 
been  translated  into  Latin '.  Rafael  Bombelli  was  the  first  to 
find  a  manuscript  in  the  Vatican  and  to  conceive  the  idea  of 
publishing  the  work;  this  was  towards  1570,  and,  with 
Antonio  Maria  Pazzi,  he  translated  five  Books  out  of  the 
seven  into  which  the  manuscript  was  divided.  The  translation 
was  not  published,  but  Bombelli  took  all  the  problems  of  the 
first  four  Books  and  some  of  those  of  the  fifth  and  embodied 

them  in  his  Algebra  (1572),  interspersing  them  with  his  own 
problems. 

The  next  writer  on  Diophantus  was  Wilhelm  Holzmann, 
who  called  himself  Xylander,  and  who  with  extraordinary 

industry  and  care  produced  a  very  meritorious  Latin  trans- 
lation with  commentary  (1575).  Xylander  was  an  enthusiast 

for  Diophantus,  and  his  preface  and  notes  are  often  delightful 
reading.  Unfortunately  the  book  is  now  very  rare.  The 
standard  edition  of  Diophantus  till  recent  years  was  that  of 
Bachet,  who  in  1621  published  for  the  first  time  the  Greek 
text  with  Latin  translation  and  notes.  A  second  edition 

(1670)  was  carelessly  printed  and  is  untrustworthy  as  regards 
the  text ;  on  the  other  hand  it  contained  the  epoch-making 
notes  of  Fermat;  the  editor  was  S.  Format,  his  son.  The 
great  blot  on  the  work  of  Bachet  is  his  attitude  to  Xylander, 
to  whose  translation  he  owed  more  than  he  was  willing  to 
avow.  Unfortunately  neither  Bachet  nor  Xylander  was  able 
to  use  the  best  manuscripts ;  that  used  by  Bachet  was  Parisinus 
2379  (of  the  middle  of  the  sixteenth  century),  with  the  help 
of  a  transcription  of  part  of  a  Vatican  MS.  (Vat.  gr.  304  of 

the  sixteenth  century),  while  Xylander's  manuscript  was  the 
Wolfenbiittel  MS.  Guelferbytanus  Gudianus  1  (fifteenth  cen- 

tury). The  best  and  most  ancient  manuscript  is  that  of 
Madrid  (Matritensis  48  of  the  thirteenth  century)  which  was 
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unfortunately  spoiled  by  corrections  made,  especially  in  Books 

I,  II,  from  some  manuscript  of  the  '  Planudean '  class ;  where 
this  is  the  case  recourse  must  be  had  to  Vat.  gr.  191  which 
was  copied  from  it  befqre  it  had  suffered  the  general  alteration 
referred  to :  these  are  the  first  two  of  the  manuscripts  used  by 
Tannery  in  his  definitive  edition  of  the  Greek  text  (Teubner, 
1893,  1895). 

Other  editors  can  only  be  shortly  enumerated.  In  1585 
Simon  Stevin  published  a  French  version  of  the  first  four 
Books,  based  on  Xylander.  Albert  Girard  added  the  fifth  and 
sixth  Books,  the  complete  edition  appearing  in  1625.  German 
translations  were  brought  out  by  Otto  Schulz  in  1822  and  by 
G.  Wertheim  in  1890.  Poselger  translated  the  fragment  on 
Polygonal  Numbers  in  1810.  All  these  translations  depended 
on  the  text  of  Bachet. 

A  reproduction  of  Diophaiitus  in  modern  notation  with 
introduction  and  notes  by  the  present  writer  (second  edition 
1910)  is  based  on  the  text  of  Tannery  and  may  claim  to  be  the 
most  complete  and  up-to-date  edition. 

My  account  of  the  Arithmetica  of  Diophantus  will  be  most 
conveniently  arranged  under  three  main  headings  (1)  the 
notation  and  definitions,  (2)  the  principal  methods  employed, 
so  far  as  they  can  be  generally  stated,  (3)  the  nature  of  the 
contents,  including  the  assumed  Porisms,  with  indications  of 
the  devices  by  which  the  problems  are  solved. 

Notation  and  definitions. 

In  his  work  Die  Algebra  der  Griecheii  Nesselmaim  distin- 
guishes three  stages  in  the  evolution  of  algebra.  (1)  The 

first  stage  he  calls  'Rhetorical  Algebra'  or  reckoning  by 
means  of  complete  words.  The  characteristic  of  this  stage 
is  the  absolute  want  of  all  symbols,  the  whole  of  the  calcula- 

tion being  carried  on  by  means  of  complete  words  and  forming 
in  fact  continuous  prose.  This  first  stage  is  represented  by 
such  writers  as  lamblichus,  all  Arabian  and  Persian  algebraists, 
and  the  oldest  Italian  algebraists  and  their  followers,  including 
Regiomontanus.  (2)  The  second  stage  Nesselmann  calls  the 

4  Syncopated  Algebra',  essentially  like  the  first  as  regards 
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literary  style,  but  marked  by  the  use  of  certain  abbreviational 

symbols  for*  constantly  recurring  quantities  and  operations. 
To  this  stage  belong  Diophantus  and,  after  him,  all  the  later 
Europeans  until  about  the  middle  of  the  seventeenth  century 
(with  the  exception  of  Vieta,  who  was  the  first  to  establish, 

under  the  name  of  Logistica  speciosa,  as  distinct  from  Logist'ica 
numerosa,  a  regular  system  of  reckoning  with  letters  denoting 
magnitudes  as  well  as  numbers).  (3)  To  the  third  stage 

Nesselmann  gives  the  name  of  'Symbolic  Algebra',  which 
uses  a  complete  system  of  notation  by  signs  having  no  visible 
connexion  with  the  words  or  things  which  they  represent, 
a  complete  language  of  symbols,  which  entirely  supplants  the 

'  rhetorical '  system,  it  being  possible  to  work  out  a  solution 
without  using  a  single  word  of  ordinary  language  with  the 
exception  of  a  connecting  word  or  two  here  and  there  used  for 
clearness'  sake. 

Sign  for  the  unknown  (=  x),  and  its  origin. 

Diophantus's  system  of  notation  then  is  merely  abbrevia- 
tional. We  will  consider  first  the  representation  of  the 

unknown  quantity  (our  x).  Diophantus  defines  the  unknown 

quantity  as  c  containing  an  indeterminate  or  undefined  multi- 

tude of  units '  (7rA?J0oy  novdSoov  dopurrov),  adding  that  it  is 
called  aped/to?,  i.e.  number  simply,  and  is  denoted  by  a  certain 
sign.  This  sign  is  then  used  all  through  the  book.  In  the 
earliest  (the  Madrid)  MS.  the  sign  takes  the  form  ij,  in 
Marcianus  308  it  appears  as  S.  In  the  printed  editions  of 

Diophantus  before  Tannery's  it  was  represented  by  the  final 
sigma  with  an  accent,  $\  which  is  sufficiently  like  the  second 
of  the  two  forms.  Where  the  symbol  takes  the  place  of 
inflected  forms  aptd/iop,  dpi6p,ovt  &c.,  the  termination  was  put 
above  and  to  the  right  of  the  sign  like  an  exponent,  e.g.  $p  for 

dpidjjLov  as  f*  for  rd*>,  yo0  for  dpiOpovl  the  symbol  was,  in 
addition,  doubled  in  the  plural  cases,  thus  ss°<,  yy0*,  &c.  The 
coefficient  is  expressed  by  putting  the  required  Greek  numeral 

immediately  after  it ;  thus  yy°l  la  =  1 1  dpiOpoi,  equivalent 

to  II x,  y'a  =  x,  and  so  on.  Tannery  gives  reasons  for  think- 
ing that  in  the  archetype  the  case-endings  did  not  appear,  and 
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that  the  sign  was  not  duplicated  for  the  plural,  although  such 
duplication  was  the  practice  of  the  Byzantines.  That  the 
sign  was  merely  an  abbreviation  for  the  word  dpiOpos  and  no 
algebraical  symbol  is  shown  by  the  fact  that  it  occurs  in  the 
manuscripts  for  aptd/*6?  in  the  ordinary  sense  as  well  as  for 
dpiOfjLos  in  the  technical  sense  of  the  unknown  quantity.  Nor 
is  it  confined  to  Diophantus.  It  appears  in  more  or  less 
similar  forms  in  the  manuscripts  of  other  Greek  mathe- 

maticians, e.g.  in  the  Bodleian  MS.  of  Euclid  (D'Orville  301) 
of  the  ninth  century  (in  the  forms  9  99,  or*  as  a  curved  line 
similar  to  the  abbreviation  for  /ecu),  in  the  manuscripts  of 
the  Sand-reckoner  of  Archimedes  (in  a  form  approximat- 

ing to  y),  where  again  there  is  confusion  caused  by  the 
similarity  of  the  signs  for  dpiO/jiSs  and  tat,  in  a  manuscript 
of  the  Geodaesia  included  in  the  Heronian  collections  edited 

by  Hultsch  (where  it  appears  in  various  forms  resembling 
sometimes  £,  sometimes  p,  sometimes  o,  and  once  £,  with 
case-endings  superposed)  and  in  a  manuscript  of  Theon  of 
Smyrna. 

What  is  the  origin  of  the  sign?  It  is  certainly  not  the 
final  sigma,  as  is  proved  by  several  of  the  forms  which  it 
takes.  I  found  that  in  the  Bodleian  manuscript  of  Diophantus 

it  is  written  in  the  form  ?c§,  larger  than  and  quite  unlike  the 
final  sigma.  This  form,  combined  with  the  fact  that  in  one 

place  Xylander's  manuscript  read  ap  for  the  full  word,  suggested 
to  me  that  the  sign  might  be  a  simple  contraction  of  the  first 
two  letters  of  dpiOpos.  This  seemed  to  be  confirmed  by 

Gardthausen's  mention  of  a  contraction  for  ap,  in  the  form  vp 
occurring  in  a  papyrus  of  A.D.  154,  since  the  transition  to  the 
form  found  in  the  manuscripts  of  Diophantus  might  easily 
have  been  made  through  an  intermediate  form  ̂ >.  The  loss  of 
the  downward  stroke,  or  of  the  loop,  would  give  a  close 
approximation  to  the  forms  which  we  know.  This  hypothesis 
as  to  the  origin  of  the  sign  has  not,  so  far  as  I  know,  been 
improved  upon.  It  has  the  immense  advantage  that  it  makes 
the  sign  for  aptd/io?  similar  to  the  signs  for  the  powers  of 

the  unknown,  e.g.  AY  for  Swapis,  KY  for  /crf£oy,  and  to  the o 

sign  M  for  the  unit,  the  sole  difference  being  that  the  two 
letters  coalesce  into  one  instead  of  being  separate. 
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ISignsfor  the  powers  of  the  unknown  and  their  reciprocals. 

The  powers  of  the  unknown,  corresponding  to  our  #2,  x*  .  .  .  XQ, 
are  defined  and  denoted  as  follows  : 

x2  is  8vva/ju$  and  is  denoted  by  AY, 

#3  „  Kvpos         „  „          „    KY, X4  „ 

„          „    AK  , 

of*  „  /o/jSo/cf/Jos'  „•         „          „    K  K. 

Beyond  the  sixth  power  Diophantus  does  not  go.  It  should 
be  noted  that,  while  the  terms  from  KV&OS  onwards  may  be 
used  for  the  powers  of  any  ordinary  known  number  as  well  as 
for  the  powers  of  the  unknown,  Swa/us  is  restricted  to  the 
square  of  the  unknown  ;  wherever  a  particular  square  number 
is  spoken  of,  the  term  is  rer/oayooi/oy  dpiO/ios.  The  term 
SwapoSwaiJus  occurs  once  in  another  author,  namely  in  the 

Metrica  of  Heron,1  where  it  is  used  for  the  fourth  power  of 
the  side  of  a  triangle. 

Diophantus  has  also  terms  and  signs  for  the  reciprocals  of 

the  various  powers  of  the  unknown,  i.e.  for  I/  x,  l/x*.... 
As  an  aliquot  part  was  ordinarily  denoted  by  the  corresponding 

numeral  sign  with  an  accent,  e.g.  y'=  ̂ ,  *a'=  -rr,  Diophantus 
has  a  mark  appended  to  the  symbols  for  x,  x*  ...  to  denote  the 
reciprocals;  this,  which  is  used  for  aliquot  parts  as  well,  is 
printed  by  Tannery  thus,  *.  With  Diophantus  then 

,  denoted  by  s*,  is  equivalent  to  1/ir, 

and  so  on.  .  ' 

The  coefficient  of  the  term  in  x,  xl  ...  or  I/  x,  I/  x*  ...  is 
expressed  by  the  ordinary  numeral  immediately  following, 

e.g.  AKY  *r  =  26x\  AYX  or  =  250/a2. 
Diophantus  does  not  need  any  signs  for  the  operations  of 

multiplication  and  division.  Addition  is  indicated  by  mere 

juxtaposition  ;  thus  KY  a  AY  ty  y  e  corresponds  to  XA  +  13#2  +  5x. 

1  Heron,  Metrica,  p.  48.  11,  19,  Schone. 
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When  there  are  units  in  addition,  the  units  are  indicated  by 
o  o 

the  abbreviation   M  ;    thus  KYaAYty$€M£  corresponds  to 

The  sign  (A)  for  minus  and  its  meaning. 

For  subtraction  alone  is  a  sign  used.  The  full  term  for 
wanting  is  Aen/^9,  as  opposed  to  virapfcis,  a  fortlicominf/, 
which  denotes  a  yxwitive  term.  The  symbol  used  to  indicate 
a  ivanting,  corresponding  to  our  sign  for  minus,  is  A,  which 

is  described  in  the  text  as  a  '  ̂   turned  downwards  and 
truncated  '  (W  cAAiTrey  Araro)  vtvov).  The  description  is  evidently 
interpolated,  and  it  is  now  certain  that  the  sign  has  nothing 
to  do  with  \lr.  Nor  is  it  confined  to  Diophantus,  for  it  appears 

in  practically  the  same  form  in  Heron's  Metrical  where  in  one 
place  the  reading  of  the  manuscript  is  fjiovd8a>v  oS  T  I'tf, 
74  —  T^.  In  the  manuscripts  of  Diophantus,  when  the  sign 
is  resolved  by  writing  the  full  word  instead  of  it,  it  is 
generally  resolved  into  Xttyet,  the  dative  of  Aen/riy,  but  in 
other  places  the  symbol  is  used  instead  of  parts  of  the  verb 
\tiirttv,  namely  AITTOJ/  or  AeM/ray  and  once  even  \irr<ocri  ; 
sometimes  Aefyei  in  the  manuscripts  is  followed  by  the 
accusative,  which  shows  that  in  these  cases  the  sign  was 

Wrongly  resolved.  It  is  therefore  a  question  whether  Dio- 
phantus himself  ever  used  the  dative  Xetyti  for  minus  at  all. 

The  use  is  certainly  foreign  to  classical  Greek.  Ptolemy  has 
in  two  places  Aetyai/  and  Xtinovvav  respectively  followed, 
properly,  by  the  accusative,  and  in  one  case  he  has  TO  airb 

FA  Aet00€j/  IJTTTO  rov  dirb  rrjy  ZF  (where  the  meaning  is 

—  TA*-).  Hence  Heron  would  probably  have  written  a 
participle  where  the  T  occurs  in  the  expression  quoted  above, 
say  fjiovaStov  08  Acix/racrcoj/  T€crerapaKCu5eKaroj>.  On  the  whole, 
therefore,  it  is  probable  that  in  Diophantus,  and  wherever  else 
it  occurred,  A  is  a  compendium  for  the  root  of  the  verb  Ae/Tra*', 
in  fact  a  A  with  I  placed  in  the  middle  (cf.  A,  an  abbreviation 
for  rdXavTov).  This  is  the  hypothesis  which  I  put  forward 
in  1885,  and  it  seems  to  be  confirmed  by  the  fresh  evidence 
now  available  as  shown  above. 

1  Heron,  Metrica,  p.  156.  8,  10. 
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Attached  to  the  definition  of  minus  is  the  statement  that 

'a  wanting  (i.e,  a  minus)  multiplied  by  a  wanting  makes 
a  forthcoming  (i.e.  a  plus) ;  and  a  wanting  (a  minus)  multi- 

plied by  a,  forthcoming  (a  plus)  makes  a  wanting  (a  minus) '. 
Since  Diophantus  uses  no  .sign  for  plus,  he  has  to  put  all 

the  positive  terms  in  an  expression  together  and  write  all  the 
negative  terms  together  after  the  sign  for  minus',  e.g.  for 

#3—  5x2  +  8x- 1  he  necessarily  writes  KY  a  s  17  A  AY  €  M  a. 
The  Diophantine  notation  for  fractions  as  well  as  for  large 

numbers  has  been  fully  explained  with  many  illustrations 
in  Chapter  II  above.  It  is  only  necessary  to  add  here  that, 
when  the  numerator  and  denominator  consist  of  composite 
expressions  in  terms  of  the  unknown  and  its  powers,  he  puts 
the  numerator  first  followed  by  kv  poptip  or  popiov  and  the denominator. 

Thus       AY  £  M  £<f>x  kv  pop!?  AYA  a  M  ̂   A  AY  £ 

=  (60a>2  +  2520)/(a4  +  900-60a2),     [VI.  12] 

and       AY  ie  A  M  X?  h  /topfp  AYA  a  M  A<r  A  AY  4|8 

[VI.  14]. 

For  a  terra  in  an  algebraical  expression,  i.e.  a  power  of  x 
with  a  certain  coefficient,  and  the  term  containing  a  certain 
number  of  units,  Diophantus  uses  the  word  eTflos,  'species', 
which  primarily  means  the  particular  power  of  the  variable 
without  the  coefficient.  At  the  end  of  the  definitions  he  gives 
directions  for  simplifying  equations  until  each  side  contains 
positive  terms  only,  by  the  addition  or  subtraction  of  coeffi- 

cients, and  by  getting  rid  of  the  negative  terms  (which  is  done 
by  adding  the  necessary  quantities  to  both  sides)  ;  the  object, 
he  says,  is  to  reduce  the  equation  until  one  term  only  is  left 
on  each  side;  'but',  he  adds,  'I  will  show  you  later  how,  in the  case  also  where  two  terms  are  left  equal  to  one  term, 
such  a  problem  is  solved  '.  We  find  in  fact  that,  when  he  has 
to  solve  a  quadratic  equation,  he  endeavours  by  means  of 
suitable  assumptions  to  reduce  it  either  to  a  simple  equation 
or  a  'jwre  quadratic.  The  solution  of  the  mixed  quadratic 
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in  three  terms  is  clearly  assumed  in  several  places  of  the 
Arithmetica,  but  Diophantus  never  gives  the  necessary  ex- 

planation of  this  case  as  promised  in  the  preface. 
Before  leaving  the  notation  of  Diophantus,  we  may  observe 

that  the  form  of  it  limits  him  to  the  use  of  one  unknown  at 

a  time.    The  disadvantage  is  obvious.    For  example,  where 
we  can  begin  with  any  number  of  unknown  quantities  and 
gradually  eliminate  all  but  one,  Diophantus  has  practically  to 
perform  his  eliminations  beforehand  so  as  to  express  every 
quantity  occurring  in   the   problem   in   terms  of  only  one 
unknown.    When  he  handles  problems  which  are  by  nature 
indeterminate  and  would  lead  in  our  notation  to  an  inde- 

terminate equation  containing  two  or  three  unknowns,  he  has 
to  assume  for  one  or  other  of  these  some  particular  number 
arbitrarily  chosen,  the  effect   being  to  make  the  problem 
determinate.     However,  in  doing  so,  Diophantus  is  careful 
to  say  that  we  may  for  such  and  such  a  quantity  put  any 
number  whatever,  say  such  and  such  a  number;   there   is 
therefore  (as  a  rule)  no  real  loss  of  generality.     The  particular 
devices  by  which  he  contrives  to  express  all  his  unknowns 
in  terms  of  one  unknown  are  extraordinarily  various   and 
clever.     He  can,  of  course,  use  the  same  variable  y  in  the 
safrne   problem    with    different   significations   successively,  as 
when  it  is  necessary  in  the  course  of  the  problem  to  solve 
a  subsidiary  problem  in  order  to  enable  him  to  make  the 
coefficients  of  the  different  terms  of  expressions  in  x  such 
as  will  answer  his  purpose  and  enable  the  original  problem 
to  be  solved.     There  are,  however,  two  cases,  II.  28,  29,  where 

for  the  proper  working-out  of  the  problem  two  unknowns  are 
imperatively  necessary.    We  should  of  course  use  x  and  y\ 
Diophantus  calls  the  first  y  as  usual;  the  second,  for  want 

of  a  term,  he  agrees  to  call  in  the  first  instance  'one  unit9, 
i.e.  1.    Then  later,  having  completed  the  part  of  the  solution 
necessary  to  find  x,  he  substitutes  its  value  and  uses  y  over 
again  for  what  he  had  originally  called  1.    That  is,  he  has  to 
put  his  finger  on  the  place  to  which  the  1  has  passed,  so  as 
to  substitute  y  for  it.    This  is  a  tour  deforce  in  the  particular 
cases,  and  would  be  difficult  or  impossible  in  more  complicated 
problems, 
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The  methods  of  Diophantus. 

It  should  be  premised  that  Diophantus  will  have  in  his 

solutions  no  numbers  whatever  except  'rational'  numbers; 
he  admits  fractional  solutions  as  well  as  integral,  but  he 
excludes  not  only  surds  and  imaginary  quantities  but  also 

negative  quantities.  Of  a  negative  quantity  per  se,  i.e.  with- 
out some  greater  positive  quantity  to  subtract  it  from,  he 

had  apparently  no  conception.  Such  equations  then  as  lead 
to  imaginary  or  negative  roots  he  regards  as  useless  for  his 
purpose;  the  solution  is  in  these  cases  a&Ji/aroy,  impossible. 
So  we  find  him  (V.  2)  describing  the  equation  4  =  4*0  +  20  as 
LOTTOS,  absurd,  because  it  would  give  x  =  —  4.  He  does,  it  is 
true,  make  occasional  use  of  a  quadratic  which  would  give 
a  root  which  is  positive  but  a  surd,  but  only  for  the  purpose 
of  obtaining  limits  to  the  root  which  are  integers  or  numerical 
fractions ;  he  never  uses  or  tries  to  express  the  actual  root  of 
such  an  equation.  When  therefore  he  arrives  in  the  course 

of  solution  at  an  equation  which  would  give  an  'irrational' 
result,  he  retraces  his  steps,  finds  out  how  his  equation  has 
arisen,  and  how  he  may,  by  altering  the  previous  work, 
substitute  for  it  another  which  shall  give  a  rational  result. 
This  gives  rise  in  general  to  a  subsidiary  problem  the  solution 
of  which  ensures  a  rational  result  for  the  problem  itself. 

It  is  difficult  to  give  a  complete  account  of  Diophantus's 
methods  without  setting  out  the  whole  book,  so  great  is  the 
variety  of  devices  and  artifices  employed  in  the  different 
problems.  There  are,  however,  a  few  general  methods  which 

do  admit  of  differentiation  and  description,  and  these  we  pro- 
ceed to  set  out  under  subjects. 

I.    Diophantus's  treatment  of  equations. 
(A)   Determinate  equations. 

Diophantus  solved  without  difficulty  determinate  equations 
of  the  first  and  second  degrees ;  of  a  cubic  we  find  only  one 
example  in  the  Arithmetica,  and  that  i«s  a  very  special  case. 

(1)  Pure  determinate  equations. 

Diophantus  gives  a  general  rule  for  this  case  without  regard 
to  degree.  We  have  to  take  like  from  like  on  both  sides  of  an 
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equation  ahd  neutralize  negative  terms  by  adding  to  both 
sides,  then  take  like  from  like  again,  until  we  have  one  term 
left  equal  to  one  term.  After  these  operations  have  been 
performed,  the  equation  (after  dividing  out,  if  both  sides 

contain  a  power  of  x,  by  the  lesser  power)  reduces  to  Axm  =  JB, 
and  is  considered  solved.  Diophantus  regards  this  as  giving 

one  root  only,  excluding  any  negative  value  as  'impossible'. 
No  equation  of  the  kind  is  admitted  which  does  not  give 

a  '  rational  '  value,  integral  or  fractional.  The  value  x  =  0  is 
ignored  in  the  case  where  the  degree  of  the  equation  is  reduced 
by  dividing  out  by  any  power  of  x. 

(2)  Mixed  quadratic  equations. 

Diophantus  never  gives  the  explanation  of  the  method  of 
solution  which  he  promises  in  the  preface.  That  he  had 
a  definite  method  like  that  used  in  the  Geometry  of  Heron 
is  proved  by  clear  verbal  explanations  in  different  propositions. 
As  he  requires  the  equation  to  be  in  the  form  of  two  positive 
terms  being  equal  to  one  positive  term,  the  possible  forms  for 
Diophantus  are 

(a)  mx2  +  'px  =  </,     (/>)  m,/r  =  px  +  q,     (c)  mjp  +  q  =  px. 

It  does  not  appear  that  Diophantus  divided  by  in  in  order  to 
make  the  first  term  a  square  ;  rather  he  multiplied  by  m  for 
this  purpose.  It  is  clear  that  he  stilted  the  roots  in  the  above 
capes  in  a  form  equivalent  to 

m  m 

The  explanations  which  show  this  arc  to  be  found  in  VI.  6, 
in  IV.  39  and  31,  and  in  V.  10  and  VI.  22  respectively.  For 
example  in  V.  10  he  has  the  equation  17ar+  17  <  f2x,  and  he 

says  '  Multiply  half  the  coefficient  of  x  into  itself  and  we  have 
1296;  subtract  the  product  of  the  coefficient  of  x2  and  the 
term  in  units,  or  289.  The  remainder  is  1007,  the  square  root 
of  which  is  not  greater  than  31.  Add  half  the  coefficient  of  x 
and  the  result  is  not  greater  than  67.  Divide  by  the  coefficient 

of  a;2,  and  x  is  not  greater  than  f  £.'  In  IV.  39  he  has  the 
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equation  2x2  >  6x+  18  and  says,  'To  solve  this,  take  the  square 
of  half  the  coefficient  of  xy  i.e.  9,  and  the  product  of  the  unit- 

term  and  the  coefficient  of  x2,  i.e.  36.  Adding,  we  have  45, 
the  square  root  of  which  is  not  less  than  7.  Add  half  the 

coefficient  of  x  [and  divide  by  the  coefficient  of  #2] ;  whence  x 
is  not  less  than  5.'  In  these  cases  it  will  be  observed  that  3 1 
and  7  are  not  accurate  limits,  but  are  the  nearest  integral 
limits  which  will  serve  his  purpose. 

Diophantus  always  uses  the  positive  sign  with  the  radical, 
and  there  has  been  much  discussion  as  to  whether  he  knew 

that  a  quadratic  equation  has  two  roots.  The  evidence  of  the 
text  is  inconclusive  because  his  only  object,  in  every  case,  is  to 
get  one  solution;  in  some  cases  the  other  root  would  be 

negative,  and  would  therefore  naturally  be  ignored  as  'absurd' 
or  '  impossible '.  In  yet  other  cases  where  the  second  root  is 
possible  it  can  be  shown  to  be  useless  from  Diophantus's  point 
of  view.  For  my  part,  I  find  it  difficult  or  impossible  to 
believe  that  Diophantus  was  unaware  of  the  existence  of  two 
real  roots  1131  such  cases.  It  is  so  obvious  from  the  geometrical 
form  of  solution  based  on  Eucl.  II.  5,  6  and  that  contained  in 

Eucl.  VI.  27-9;  the  construction  of  VI.  28,  too,  corresponds 
in  fact  to  the  negative  sign  before  the  radical  in  the  case  of  the 
particular  equation  there  solved,  while  a  quite  obvious  and 
slight  variation  of  the  construction  would  give  the  solution 
corresponding  to  the  positive  sign. 

The  following  particular  cases  of  quadratics  occurring  in 
the  Arithmetics  may  be  quoted,  with  the  results  stated  by 
Diophantus. 

X*  =  4o;  —  4  ;  therefore  x  =  2.  (IV.  22) 

i/;2  =  3x+  18;  x  =  Jfa  or  aV  (Iv-  31) 

7o;=  7;  x  =  -J.  (VI.  6) 

a?a-7^=  7;  sc  =  £.  (VI.  7) 

630ar-73;/;  =  6;  x  =  3\.  (VI.  9) 

630#2+  73x  =  6 ;  #  is  rational.  (VI.  8) 

5x  <  a;2r-60  <  8x;  x  not  <  11  and  not  >  12.    (V.  30) 

17a2+17  <  72#<19#2+19;  x  not  >f£andnot  <f|.  (V.  10) 

22x  <  x*  +  6Q  <  24#;  x  not  <  19  but  <  21.      (V.  30) 
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In  the  first  and  third  of  the  last  three  cases  the  limits  are  not 

accurate,  but  are  integral  limits  which  are  a  fortiori  safe. 
In  the  second  f  f  should  have  been  f  f  ,  and  it  would  have  been 
more  correct  to  say  that,  if  x  is  not  greater  than  f  %  and  not 
less  than  y|,  the  given  conditions  are  a  fortiori  satisfied. 

For  comparison  with  Diophantus's  solutions  of  quadratic 
equations  we  may  refer  to  a  few  of  his  solutions  of 

(3)  Simultaneous  equations  involving  quadratics. 

In  I.  27,  28,  and  30  we  have  the  following  pairs  of  equations. 

(a)    £  +  7;  =  2a  (ft)      £  +  ,  =  2</  (y)    £-17  =  2  a} 

I  use  the  Greek  letters  for  the  numbers  required  to  be  found 
as  distinct  from  the  one  unknown  which  Diopliantus  uses,  and 

which  I  shall  call  ,/•. 

In  (a),  he  says,  lut  £-?;  =  2.r  (£  >  77). 

It  follows,  by  addition  and  subtraction,  that  £  =  a  +  x, 
rj  =  r*,-;*;; 

therefore          £?;  =  (a  +  *i)  (a  —  .*')  =  a2  —  ./*2  =  ̂ , 

and  &  is  found  from  the  pure  quadratic  equation. 

In  (/3)  similarly  he  assumes  g  —  rj  =  2x,  and  the  resulting 

equation  is     f2  -f  t)~  =  (a  +  ,<•)-  -f  (a  -  #)2  =  2  (a-  +  ur)  =  B. 

In  (y)  he  puts  f  +  ?;  =  2^'  and  solves  as  in  the  case  of  (a). 

(4)  C'tt&^J  equation. 

Only  one  very  particular  case  occurs,     hi  VI.  17  the  problem 
leads  to  the  equation 

Diophantus  says  simply  '  whence  x  is  found  to  bo  4  '.     In  fact 
the  equation  reduces  to  ^ 

x*  +  X  =  4#2  +  4. 

Diophantus  no  doubt  detected,  and  divided  out  by,  the  common 

factor  x2  +  1,  leaving  x  =  4. 
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(B)  Indeterminate  equations. 

Diophantns  says  nothing  of  indeterminate  equations  of  the 
first  degree.  The  reason  is  perhaps  that  it  is  a  principle  with 
him  to  admit  rational  fractional  as  well  as  integral  solutions, 
whereas  the  whole  point  of  indeterminate  equations  of  the 
first  degree  is  to  obtain  a  solution  in  integral  numbers. 

Without  this  limitation  (foreign  to  Diophantus)  such  equa- 
tions have  no  significance. 

(a)  Indeterminate  equations  of  tJie  second  deyree. 

The  form  in  which  these  equations  occur  is  invariably  this : 
one  or  two  (but  never  more)  functions  of  x  of  the  form 

Ax*  +  Bx  +  C  or  simpler  forms  are  to  be  made  rational  square 
numbers  by  finding  a  suitable  value  for  x.  That  is,  we  have 
to  solve,  in  the  most  general  case,  one  or  two  equations  of  the 

form  Ax*  +  Bx  +  C  =  y2. 

(1)  Single  equation. 

The  solutions  take  different  forms  according  to  the  particular 
values  of  the  coefficients.  Special  cases  arise  when  one  or 
more  of  them  vanish  or  they  satisfy  certain  conditions. 

1.  When  A  or  C  or  both  vanish,  the  equation  can  always 
be  solved  rationally. 

Form  Bx  =  yz. 

Form  Bx  +  C  =  y2. 

Diophantus  puts  for  y2  any  determinate  square  m2,  and  x  is 
immediately  found. 

Form  Ax*  +  Bx  —  y2. 

Diophantus  puts  for  y  any  multiple  of  x,  as  —  x. 

2.  The  equation  Ax2  +  C  =  y2  can  be  rationally  solved  accord- 
ing to  Diophantus : 

(a)  when  A  is  positive  and  a  square,  say  a2 ; 

in  this  case  we  put  a2x2  +  C  =  (ax  ±  m)2,  whence 

tf-m2 x  =  +  —   

-   2ma 

(m  and  the  sign  being  so  chosen  as  to  give  x  a  positive  value) ; 
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()8)  when  C  is  positive  and  a  square,  say  c2 ; 

in  this  case  Diophantus  puts  Ax2  +  c2  =  (w#  +  c)2,  and  obtains 
2  m  c 

x=  4- .  —  r/r 

(y)  When  one  solution  is  known,  any  number  of  other 
solutions  can  be  found.  This  is  stated  in  the  Lemma  to 

VI.  15.  It  would  be  true  not  only  of  the  cases  +  Ax2  +  C  =  y2, 
but  of  the  general  case  Ax2  +  Bx  +  C  =  y\  Diophantus,  how- 

ever, only  states  it  of  the  case  Ax*  —  C  =  y2. 
His  method  of  finding  other  (greater)  values  of  x  satisfy- 

ing the  equation  when  one  (x0)  is  known  is  as  follows.  If 

A  xQ2  —  C  =  q~,  he  substitutes  in  the  original  equation  (XQ 
for  x  and  (q—kx)  for  y,  where  k  is  some  integer. 

Then,  since  A  (a*0  +  x)2  —  C  =  (7  —  £,»)*,  while   4aj02  —  C  = 
it  follows  by  subtraction  that 

whence 

and  the  new  value  of  x  is  ;c0  + 1C"  —  ./l 

Form  Ax2  —  c2  =  ?/2. 

Diophantus  says  (VI.  14)  that  a  rational  solution  of  this 
case  is  only  possible  when  A  is  the  sum  of  two  squares. 

[In  fact,  if  x  =  p/q  satisfies  the  equation,  and  Ax2  —  c2  =  /c2, 

we  have  Ap 

or  A  = 

Form  Ax2  +  C  =  y2. 

Diophantus  proves  in  the  Lemma  to  VI.  12  that  this  equa- 
tion has  an  infinite  number  of  solutions  when  A  +  C  is  a  square, 

i.e.  in  the  particular  case  where  x  =  1  is  a  solution.  (He  does 
not,  however,  always  bear  this  in  mind,  for  in  III.  10  he 

regards  the  equation  52x2+l2  =  y*  as  impossible  though 
52  +  12  =  64  is  a  square,  just  as,  in  III.  11,  266#2-10  =  y2 
is  regarded  as  impossible.) 

Suppose  that  A  +  C  =  q2 ;   the  equation  is  then  solved  by 
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substituting  in  the  original  equation  1  4-  x  for  x  and  (q  —  kx) 
for  y,  where  k  is  some  integer. 

3.  Form  Ax*  +  Ex  +0  =  y*. 
This  can  be  reduced  to  the  form  in  which  the  second  term  is 

wanting  by  replacing  x  by  z  —    -  .  • 

Diophantus,  however,  treats  this  case  separately  and  less 
fully.  According  to  him,  a  rational  solution  of  the  equation 

Ax*  +  £x  +  C=y*  is  only  possible 

(a)  when  A  is  positive  and  a  square,  say  a2  ; 

(£)  when  G  is  positive  and  a  square,  say  c2  ; 

(y)  when  ̂   J92  —  AC  is  positive  and  a  square. 

In  case  (a)  y  is  put  equal  to  (ax  —  m),  and  in  case  (ft)  y  is  put 
equal  to  (mx—  c). 

Case  (y)  is  not  expressly  enunciated,  but  occurs,  as  it 
were,  accidentally  (IV.  31).  The  equation  to  be  solved  is 

3  x  +  1  8  —  x*  =  y2.  Diophantus  first  assumes  3  s  +  1  8  —  ./:2  =  4  ,//-, 
which  gives  the  quadratic  3&+  18  =  5jj2;  but  this  'is  not 
rational  '.  Therefore  the  assumption  of  4  x2  for  y2  will  not  do, 
c  aud  we  must  find  a  square  [to  replace  4]  such  that  1  8  times 
(this  square  4-  1)  +  (|)2  may  be  a  square'.  The  auxiliary 
equation  is  therefore  18(m'2+  l)  +  f  =  ?/2,  or  7  2m2  +  81=  a 
square,  and  Diophantus  assumes  72  ?//2  +  8  1  =  (8  m  +  9)2,  whence 
m=  18.  Then,  assuming  3;/;+  18  —  x1  =  (!8)2,/;2,he  obtains  the 
equation  32  5  #2  —  3i/:  —  18  =  0,  whence  x  =  372\,  that  is,  2V 

(2)  Double  equation,. 

The  Greek  term  is  &7rAoar6r??y,  8i7rXfj  lo-orr}?  or  SnrXfj  fraxrtr. 
Two  different  functions  of  the  unknown  have  to  be  made 

simultaneously  squares.  The  general  case  is  to  solve  in 
rational  numbers  the  equations 

mrc2  +  a  x  +  a  =  u2 

b  = The  necessary  preliminary  condition  is  that  each  of  the  two 
expressions  can  be  made  a  square.  This  is  always  possible 

when  the  first  term  (in  xz)  is  wanting.  We  take  this  simplest 
case  first. 
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1.  Double  equation  of  the  first  degree. 

The  equations  arc 
a  x  -f  a  =  u2, 

Diophantus  lias  one  general  method  taking  slightly  different 
forms  according  to  the  nature  of  the  coefficients. 

(a)  First  method  of  solution. 

This  depends  upon  the  identity 

1C  the  difference  between  the  two  expressions  in  x  can  he 
separated  into  two  factors  ̂ >,  <?,  the  expressions  themselves 

are  equated  to  {i(^  +  Qf)J2  an(l  {  ̂G>  —  7)  }~  respectively.  As 
Diophantus  himself  says  in  II.  1  1,  we  '  equate  either  the  square 
of  half  the  difference  of  the  two  factors  to  the  lesser  of  the 

expressions,  or  the  square  of  half  the  sum  to  the  greater5. 
We  will  consider  the  general  case  and  investigate  to  what 

particular  classes  of  cases  the  method  is  applicable  from 

Diophantus's  point  of  view,  remembering  that  the  final  quad- 
ratic in  x  must  always  reduce  to  a  single  equation. 

Subtracting,  we  have  (a  —  j8)  #  +  ((*—  b)  =  M-  —  ?/•-. 

Separate  (a  —  P)x  -f  (a  —  b)  into  the  factors 

We  write  accordingly 

w  
=  (*-

 

P 

u  +  iv  =  p. 

m  o  .  l(ot-P)x  +  (a—b)         )- 
Thus     u-  =  «;>•  +  (/  =  J-  j-  -  £-  -    +^ji  ; 

therefore         (  (a  -  j8)  .«  +  a  -  ft  +  p*  }  2  =  4  p2  (a  .c  +  a). 

This  reduces  to  * 

+  (a  -  b)*  -  2  v2  (a  +  b)  +  r>*  =  0. 
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In  order  that  this  equation  may  reduce  to  a  simple  equation, 
either 

(1)  the  coefficient  of  x*  must' vanish,  or  a  —  j8  =  0, 

or  (2)  the  absolute  term  must  vanish,  that  is, 

p*-2p2  (a  +  b)  +  (a-6)2  =  0, 

or  {p2-(a  +  ft)}2  =  4ci&, 

so  that  ab  must  be  a  square  number. 

As  regards  condition  (1)  we  observe  that  it  is  really  sufficient 

if  an2  =  )8m2,  since,  if  a x  +  a  is  a  square,  (a x  +  a) ?i2  is  equally 
a  square,  and,  if  ftx  +  b  is  a  square,  so  is  (/8#  +  6)m2,  and 
vice  versa. 

That  is,  (1)  we  can  solve  any  pair  of  equations  of  the  form 

/v  /YtTt  •*  i'    I    ft    — —    if  *  \ 
LA  i/v    w     |^  vt/    —     iv     I 

a/i'2a;  +  6=  w-J 

Multiply  by  ri2,  m~  respectively,  and  we  have  to  solve  tilt- 
equations 

a  m2 
Separate  the  difference,  cm2  —  6m2,  into  two  factors^;,  5  and 

put 

therefore  u/2  = 

and  a  m2  7i2^  +  an2  =  i  (  ̂  -f  g)2, 

and  from  either  of  these  equations  we  get 

-  £  (a^2  +  6m2) ,^  = 

since  2><?  =  «^2 — 6m2. 

Any  factors  p,  q  can  be  chosen  provided  that  the  resulting 
value  of  x  is  positive. 
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Ex.  from  Diophantus  : 

65-  60:=  r       % 
-  32) 

' 

therefore  260  -  24  x  =  u/2  1 

G5-24#=iC'/2j  ' 
The  difference  =  195  =  15.13,  Sciy  ; 

therefore  £(15  —  1  3)*  =  05  -  24  #  ;  that  is,  24#  =  64,  and  x  =  §. 

Taking  now  the  condition  (2)  that  ab  is  a  square,  we  see 
that  the  equations  can  be  solved  in  the  cases  where  either 
a  and  b  are  both  squares,  or  the  ratio  of  a  to  6  is  the  ratio  of 
a  square  to  a  square.  If  the  equations  are 

OLX+  (T  =  U2, 

and  factors  are  taken  of  the  difference  between  the  expressions 

as  they  stand,  then,  since  one  factor  p,  as  we  saw,  satisfies  the 

equation  [  />2  —  (<?  +  d2)  ] 2  =  4  <?<l*, 

we  must  have  p  =  c  ±  d. 

Ex.  from  Diophantus: 

10#  +  9  =  u2| 

5x+  4  =  fiv*\ 

The  difference  is  5o;  +  5  =  5(a;+l);  the  solution  is  given  by 

(^#+3)2  =  10#  +  9,  and  x  =  28. 
Another  method  is  to  multiply  the  equations  by  squares 

such  that,  when  the  expressions  are  subtracted,  the  absolute 
term  vanishes.  The  case  can  be  worked  out  generally,  thus. 

Multiply  by  d2  and  c2  respectively,  and  we  have  to  solve 

Difference  =  (ad2  —  |8c2)#  =  px.q  say. 
Then  x  is  found  from  the  equation 

which  gives    p*x2  +  2x(i)q  —  2ad2)  +  ?2-4r2d2  =  0, 
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or,  since  pq  =  ad2— )8c2, 

p*x*-2x(ocd*  +  pc*)  +  q*-*c*d2  =  0. 

In  order  that  this  may  reduce  to  a  simple  equation,  as 
Diophantus  requires,  the  absolute  term  must  vanish,  so  that 
q  =  2cd.  The  method  therefore  only  gives  one  solution,  since 
q  is  restricted  to  the  value  2  cd. 

Ex.  from  Diophantus : 

(IV.  39) 

6a  +  4=™" 
Difference  2o?;  q  necessarily  taken  to  be  2\/4  or  4;  factors 

therefore  \x,  4.     Therefore   8#  +  4  =  £  (|x  +  4)2,  and  a;  =112. 

(j9)  Second  method  of  solution  of  a  double  equation  of  the 
first  degree. 

There  is  only  one  case  of  this  in  Diophantus,  the  equations 
being  of  the  form 

Jix  +  n2  =  u1} 

Suppose  hx  +  ?i2  =  (y  +  n}1  ;   therefore  Jut  =  yl  -f  2  wy, 

and  (A  +/  )o;  +  n2  =  (y  +  n)2  +  t  (y* 

It  only  remains  to  make  the  latter  expression  a  square, 

which  is  done  by  equating  it  to  (py  —  n)*. 
The  case  in  Diophantus  is  the  same  as  that  last  mentioned 

(IV.  39).  Where  I  have  used  y,  Diophantus  as  usual  contrives 
to  use  his  one  unknown  a  second  time. 

2.  Double  equations  of  the  second  degree. 

The  general  form  is 

L  +Bx  +0  = 

but  only  three  types  appear  in  Diophantus,  namely 

p2/#2  +  (xx  +  a  =  u2  } 
(1)    0  0     -       7         0K  where,  except  in  one  case,  a  =  b. 

/rar  +  pas-f  6  =  w  ) 
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,     *2+  a»  +  a  =  t  ~ 

(The  case  where  the  absolute  terms  are  in  the  ratio  of  a  square 
to  a  square  reduces  to  this.) 

In  all  examples  of  these  cases  the  usual  method  of  solution 

applies. 

The  usual  method  does  not  lierc  serve,  and  a  special  artifice 
is  required. 

Diophantus  assumes      u2  =  m2#2. 

Then  x  =  a/(m2  —  a)  and,  by  substitution  in  the  second 
equation,  we  have 

)S  (---,-  —  )  +   -  .,       3  which  must  l)e  made  a  square, 
Vw,-  —  a/       mj  —  a  A 

or  a-  (3  +  Ixifyn?  —  01)  must  be  a  square. 

Wu  have  therefore  to  solve  the  equation 

(a/3  —  <xb)  =  2T, 

whicli  can  or  cannot  be  solved  by  Diophantus's  methods 
according  to  the  nature  of  the  coefficients.  Thus  it  can  be 

solved  if  (a{i  —  (xb)/a  is  a  square,  or  if  a/b  is  a  square. 
Examples  in  VI.  12.  14. 

(/>)  Indeterminate  equations  of  a  degree  hiyher  than  the 
second. 

(1)  Single  equations. 

There  are  two  classes,  namely  those  in  which  expressions 
in  x  have  to  be  made  squares  or  cubes  respectively.  The 
general  form  is  therefore 

Ajp  +  Bjp-1  4-  ...  +  Kx-L  =  #~  or  y*. 
In  Diophantus  n  does  not  exceed  6,  and  in  the  second  class 

of  cases,  where  the  expression  has  to  be  made  a  cube,  n  does 

not  generally  exceed  3. 
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The  species  of  the  first  class  found  in  the  Arithmetica  are 
as  follows. 

1  .  Equation  Ax*  +  Bx2  +  Ox  +  c/2  =  if. 
As  the  absolute  term  is  a  square,  we  can  assume 

or  we  might  assume  y  =  m2x*  +  nx  +  d  and  determine  m,  n  so 
that  the  coefficients  of  x,  x*  in  the  resulting  equation  both 
vanish. 

Diophantus  has  only  one  case,  &3  —  3x2  +  3x  +  I  =  y2  (VI.  18), 
and  uses  the  first  method. 

2.  Equation  Ax*  +  Bx3  +  Cx*  +  Dx  +  E  =  y\  where  either  A  or 
E  is  a  square. 

If  A  is  a  square  (=  a2),  we  may  assume  y  =  ax*  +  -  •—  x  +  n, 
&(.(> 

determining  n  so  that  the  term  in  x2  in  the  resulting  equa- 
tion may  vanish.  If  E  is  a  square  (==  e2),  we  may  assume 

y  =  mx2  +    -  x  +  e,  determining  m  so  that  the  term  in  x1  in  the A  6 

resulting  equation  may  vanish.  We  shall  then,  in  either  case, 
obtain  a  simple  equation  in  x. 

3.  Equation  Ax*  +  Cx2  +  E  =  7/2,  but  in  special  cases  only  where 
all  the  coefficients  are  squares. 

4.  Equation  Ax*  +  E  =  2/2. 

The  case  occurring  in  Diophantus  is  #4  +  97  =  y*  (V.  29). 
Diophantus  tries  one  assumption,  y  =  x2  —  1  0,  and  finds  that 
this  gives  a?2  =  -jfc  ,  which  leads  to  no  rational  result.  He 
therefore  goes  back  and  alters  his  assumptions  so  that  he 

is  able  to  replace  the  refractory  equation  by  x*  +  337  =  y\ 
and  at  the  same  time  to  find  a  suitable  value  for  y,  namely 

y  =  #2  —  26,  which  produces  a  rational  result,  x  =  \2-. 

5.  Equation  of  sixth  degree  in  the  special  form 

Putting     y  =  x3  +  c,     we     have     —  Ax2  +  B  =  2c#2,     and 

i> 

,   which  gives  a  rational   solution   if  -A  —  -     is 5  A  +  2c 
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a  square.  Where  this  does  not  hold  (in  IV.  18)  Diophantus 

harks  back  and  replaces  the  equation  a?0  —  16#:)  +  oj  +  64  =  y/2 
by  another,  &°-  128#3  +  x  +  4096  =  y\ 

Of  expressions  which  have  to  be  made  cubes,  we  have  the 
following  cases. 

There  are  only  two  cases  of  this.  First,  in  VI.  1,  cr,2—  4x  +  4 
has  to  be  made  a  cube,  being  already  a  square.  Diophantus 
naturally  makes  #  —  2  a  cube. 

Secondly,  a  peculiar  case  occurs  in  VI.  17,  where  a  cube  has 
to  be  found  exceeding  a  square  by  2.  Diophantus  assumes 

(a?—  I)3  for  the  cube  and  (x  +  I)2  for  the  square.  This  gives 
a;3  -  3  a;2  +  3,0  -  1  =  ;r2  +  2x  +  3, 

or  ,*:'  +  ,*:  =  4«2  +  4.  We  divide  out  by  #2  +  1,  and  x  =  4.  It 
seems  evident  that  the  assumptions  were  made  with  knowledge 

and  intention.  That  is,  Diophantus  knew  'of  the  solution  27 
and  25  and  deliberately  led  up  to  it.  It  is  unlikely  that  he  was 
aware  of  the  fact,  observed  by  Fermat,  that  27  and  25  are  the 
only  integral  numbers  satisfying  the  condition. 

2.  Ax*  +  Bx2  +  Cx  +  D  =  y/3,  where  either  A  or  D  is  a  cube 
number,  or  both  are  cube  numbers.  Where  A  is  a  cube  (a3), 

we  have  only  to  assume  y  =  c«c+  —  ̂ ,  and  where  D  is  a  cube 3d 

(7 
(<7,3),  y=     -    x  +  d.     Where  A  =  a3  and  D  =  e23,  we  can  use O  (v 

either  assumption,  or  put  y  —  ax  +  d.  Apparently  Diophantus 
used  the  last  assumption  only  in  this  case,  for  in  IV.  27  he 

rejects  as  impossible  the  equation  8&3  —  #2  +  8cc—  1  =  y*, 
because  the  assumption  y  =  2#—l  gives  a  negative  value 
x  =  —  T\,  whereas  either  of  the  above  assumptions  gives 
a  rational  value. 

(2)  Double  equations. 

Here  one  expression  has  to  be  made  a  square  and  another 
a  cube.     The  cases  are  mostly  very  simple,  e.g.  (VI.  19) 

thus  y3  =  2z\  and  z  =  2. 
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More  complicated  is  the  case  in  VI.  21 : 

Diophantus  assumes  y  =  mx,  whence  x  =  2/(m2  — 2),  and 

2     \3     _/     2     \a          2 /     2     \3        /     2     \ I  __  14-91  ___  1 

W-  2/  ̂    Vm2-  2/ 

m2-  2  ""  "  ' 2m4  „ 
or  -  =  2 

(m*-2)3 

We  have  only  to  make  2m4,  or  2m,  a  cube. 

II.     Method  of  Limits. 

As  Diophantus  often  has  to  find  a  series  of  numbers  in 
order  of  magnitude,  and  as  he  does  not  admit  negative 
solutions,  it  is  often  necessary  for  him  to  reject  a  solution 
found  in  the  usual  course  because  it  does  not  satisfy  the 
necessary  conditions;  he  is  then  obliged,  in  many  cases,  to 
find  solutions  lying  within  certain  limits  in  place  of  those 
rejected.  For  example  : 

1  .  It  is  required  to  find  a  value  of  x  such  that  some  power  of 

it,  xn,  shall  lie  between  two  given  numbers,  say  a  and  b. 

Diophantus  multiplies  both  a  and  b  by  2W,  3W,  and  so  on, 
successively,  until  some  7^th  power  is  seen  which  lies  between 

the  two  products.  Suppose  that  cn  lies  between  apu  and  bpu  ; 
then  we  can  put  x  =  c/p,  for  (c/p)n  lies  between  a  and  b. 

Ex.  To  find  a  square  between  l£  and  2.  Diophantus 
multiplies  by  a  square  64;  this  gives  80  and  128,  between 

which  lies  100.  Therefore  (^)2  or  f|  solves  the  problem 
(IV.  31  (2)). 

To  find  a  sixth  power  between  8  and  16.  The  sixth  powers 
of  1,  2,  3,  4  are  1,  64,  729,  4096.  Multiply  8  and  16  by  64 

and  we  have  512  and  1024,  between  which  729  lies;  -7^9  is 
therefore  a  solution  (VI.  21). 

2.  Sometimes  a  value  of  x  has  to  be  found  which  will  give 
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some  function  of  x  a  value  intermediate  between  the  values 
of  two  other  functions  of  x. 

Ex.  1.  In  IV.  25  a  value  of  x  is  required  such  that  8/(#2  +  x) 
shall  lie  between  x  and  x+  1. 

One  part  of  the  condition  gives  8  >  x*  +  x2.  Diophantus 
accordingly  assumes  8  =  (#  +  £):i  =  X'}  +  x2  +  ̂x  +  -£f,  which  is 
>  a?3  +  x2.  Thus  x  +  £  =  2  or  05  =  f  satisfies  one  part  of 
the  condition.  Incidentally  it  satisfies  the  other,  namely 

8/(x2  +  x)  <  x+l.  This  is  a  piece  of  luck,  and  Diophantus 
is  satisfied  with  it,  saying  nothing  more. 

Ex.  2.  We  have  seen  how  Diophantus  concludes  that,  if 

then  x  is  not  less  than  11  and  not  greater  than  12  (V.  30). 

The  problem  further  requires  that  x2  —  60  shall  be  a  square. 
Assuming  #2  —  60  =  (as—  m)2,  we  find  x  =  (m2  +  60)/2m. 

Since  x  >  11  and  <  12,  says  Diophantus,  it  follows  that 

24m  >  m2  +  60  >  22  TO  ; 

from   which   lie  concludes  that  m  lies  between  19  and  21. 

Putting  m  =  20,  he  finds  x  =  11^. 

III.     Method  of  approximation  to  Limits. 

Here  we  have  a  very  distinctive  method  called  by  Diophantus 

TTapi<roTr]$  or  Tra/Ho-orrjToy  dya>yrj.  The  object  is  to  solve  such 
problems  as  that  of  finding  two  or  three  square  numbers  the 
sum  of  which  is  a  given  number,  while  each  of  them  either 
approximates  to  one  and  the  same  number,  or  is  subject  to 
limits  which  may  be  the  same  or  different. 

Two  examples  will  best  show  the  method. 

Ex.  1.  Divide  13  into  two  squares  each  of  which  >  6  (V.  9). 

Take  half  of  13,  i.e.  6^,  and  find  what  small  fraction  1  /x1 
added  to  it  will  give  a  square  ; 

thus  6  1  H  —  55  or  26  +  —  ̂   >  must  be  a  square. x~  y 
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Diophantus  assumes 

whence 

T/  =  10,  and  1/7/  =  Tfof  i.e. 

[The  assumption  of  5  +     as  the  side  is  not  haphazard  :  5  is 

chosen  because  it  is  the  most  suitable  as  giving  the  largest 
rational  value  for  yJ] 

We  have  now,  says  Diophantus,  to  divide  13  into  two 

squares  each  of  which  is  as  nearly  as  possible  equal  to  (f  £)2. 
Now  13  =r  32  -f  22  [it  is  necessary  that  the  original  number 

shall  be  capable  of  being  expressed  as  the  sum  of  two  squares]  ; 

and  3  >f£by^, 

while  2  <  f£  by  £J. 

But  if  we  took  3—-^,  2+-|£  as  the  sides  of  two  squares, 

their  sum  would  be  2(f  J)2  =  -5,%%2-,  which  is  >  13. 
Accordingly  we  assume  3  —  9#,  2  +  11  x  as  the  sides  of  the 

required  squares  (so  that  x  is  not  exactly  ̂   but  near  it). 

Thus  (3-9#)2  +  (2  +  llx)2  =  13, 

and  we  find    x  =  T£T. 

The  sides  of  the  required  squares  arc  f  -§£,  f  ̂f  . 

Ex.  2.  Divide  10  into  three  squares  each  of  which  >  3 

(V.ll). 

[The  original  number,  here  1  0,  must  of  course  be  expressible 
as  the  sum  of  three  squares.] 

Take  one-third  of  10,  i.e.  3^,  and  find  what  small  fraction 

1/aj2  added  to  it  will  make  a  square;  i.e.  we  have  to  make 
19  1 

33+  -£  a  square,  i.e.  30-h  73-  must  be  a  square,  or  30+  —  ̂  xx  y 

=  a  square,  where  3  /x  =  1  /y. 
Diophantus  assumes 

the  coefficient  of  y>  i.e.  5,  being  so  chosen  as  to  make  1  /y  as 
small  as  possible  ; 
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therefore  y  =  2,  and  1  /x*  =  ̂ ;  and  3^  +  sV  =  -J^1-,  a  square. 

We  have  now,  says  Diophantus,  to  divide   10  into  three 

squares  with  sides  as  near  as  may  be  to  -1/. 

Now  10  =  9  +  1  =  32  +  (|-)2  +  (f)2. 

Bringing  3,  f  ,  f  and  ~y-  to  a  common  denominator,  we  have 
90      18      24    orul    55 
•          tf*  "Sis  ana  So  > 

and  3  >|gby§§, 
3    ̂     55    lv«7    37 
T  <   3^    by  50  > 

fs    55   Vvrr   31 <  w  °y  3o- 

If  now  we  took  3  —  f  §  ,  f  +  f  £  ,  £  +  f  ̂  as  the  sides  of  squares, 

the  sum  of  .the  squares  would  be  3  (V")2  or  ̂ V~>  which  is  >  10. 
Accordingly  we  assume  as  the  sides  3  —  35  x,  f  +  37  x,  f  +  3  1  x, 

where  x  must  therefore  be  not  exactly  ̂   ̂u^  near  ̂ . 

Solving     (3-35j-)a  +  (|  +  37ar)2  +  (|  +  Slaj)s=  10, 

or  10-116^-f  3555./;2=  10, 

we  find    x  =  ̂ 5%  5 

thus  the  sides  of  the  required  squares  are  VrVs  -VW">  VT^! 
thf*  QniiaroQ  fliarnaoKr^e  nva   1745041      1651225      1658944 
tne  squares  tiiemseives  aie  -^^23;-,  T^"S^^T"»  "^O^F^T"' 

Other  instances  of  the  application  of  the  method  will  be 
found  in  V.  10,  12,  13,  14. 

Porisms  and  propositions  in  the  Theory  of  Numbers. 

I.  Three  propositions  are  quoted  as  occurring  in  the  Porisms 

('  We  have  it  in  the  Porisms  that  ...');  and  some  other  pro- 
positions assumed  without  proof  may  very  likely  have  come 

from  the  same  collection.  The  three  propositions  from  the 
Porisms  are  to  the  following  effect. 

1  .  If  a  is  a  given  number  and  x,  y  numbers  such  that 

x  +  a  =  m2,  y  4-  a  =  ?i2,  then,  if  xy  4-  a  is  also  a  square,  m  and  n 
differ  by  unity  (V.  3). 

[From  the  first  two  equations  we  obtain  easily 

xy  +  a  =  w27i2  -  a  (m2  +  n2  —  1)  +  a2, 

and  this  is  obviously  a  square  if  m2  +  ?i2—  1  =  2mn,  or 
m  —  n  =  ±1.] 
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2.  If  m2,  (m  +  I)2  be  consecutive  squares  and  a  third  number 
be  taken  equal  to  2{w2  +  (m  +  I)2}  +  2,  or  4(m2  +  m+  1),  the 
three  numbers  have  the  property  that  the  product  of  any  two 
plus  either  the  sum  of  those  two  or  the  remaining  number 
gives  a  square  (V.  5). 

[In  fact,  if  X,  Y,  Z  denote  the  numbers  respectively, 

XY+%  =  ( 

3)2,     YZ+X  =  (2m2  +  3m+2)2, 

,       ZX  +  Y  =  (2ma  +  m+  I)2.] 

3.  The  difference  of  any  two  cubes  is  also  the  sum  of  two 
cubes,  i.e.  can  be  transformed  into  the  sum  of  two  cubes 

(V.  16). 

[Diophantus  merely  states  this  without  proving  it  or  show- 
ing how  to  make  the  transformation.  The  subject  of  the 

transformation  of  sums  and  differences  of  cubes  was  investi- 

gated by  Vieta,  Bachet  and  Fermat.] 

II.  Of  the  many  other  propositions  assumed  or  implied  by 
Diophantus  which  are  not  referred  to  the  Porisms  we  may 
distinguish  two  classes. 

1.  The  first  class  are  of  two  sorts;  some  are  more  or  less 
of  the  nature  of  identical  formulae,  e.g.  the  facts  that  the 

expressions  {^(a  +  ft)}2  —  a6  and  a2(a-h  l)2  +  a2-f  (&+  I)2  are 
respectively  squares,  that  a  (a2  —  a)  +  a  +  (a2  —  a)  is  always  a 
cube,  and  that  8  times  a  triangular  number  plus  1  gives 

a  square,  i.e.  8.%x(x+l)  +  1  =  (2x+  I)2.  Others  are  of  the 
same  kind  as  the  first  two  propositions  quoted  from  the 
Porisms,  e.g. 

(1)  If  Z=a2#  +  2tt,  7=(c6+l)20+2(a+l)  or,  in  other 
words,  if  xX+  1  =  (ax+  I)2  and  xY+  1  =  {(a+  !)#+!)*, 
then  XY+  1  is  a  square  (IV.  20).  In  fact 

X7+1  =  [a 

(2)  If  JT±a  =  m2,  Y±a=  (m+l)2,and  Z  = 

then       YZ±a,  ZX±a,  XY±a  are  all  squares  (V.  3,  4). 
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In  fact         YZ±a  =  {(m  +  1)  (2m  +  l)  +  2a}2, 

ZX+a,  =  {m(2m+  l)  +  2a}2, 

(3)  If 

X  =  m*  +  2,  F 

then  the  six  expressions 

YZ-X,  ZX-Y,  XY-Z 

are  all  squares  (V.  6). 
In  fact 2,  &c. 

2.  The  second  class  is  much  more  important,  consisting  of 
propositions  in  the  Theory  of  Numbers  which  we  find  first 
stated  or  assumed  in  the  Arithmetica.  It  was  in  explana- 

tion or  extension  of  these  that  Fermat's  most  famous  notes 
were  written.  How  far  Diophantus  possessed  scientific  proofs 
of  the  theorems  which  he  assumes  must  remain  largely  a 
matter  of  speculation. 

(a)  Theorems  on  the  composition  of  numbers  as  the 

of  two  squares. 

(1)  Any  square  number  can  be  resolved  into  two  squares  in 
any  number  of  ways  (II.  8). 

(2)  Any  number  which  is  the  sum  of  two  squares  can  be 
resolved  into  two  other  squares  in  any  number  of  ways  (II.  9). 

(It  is  implied  throughout  that  the  squares  may  be  fractional 
as  well  as  integral.) 

(3)  If  there  are  two  whole  numbers  each  of  which  is  the 
sum   of   two   squares,  the  product   of   the   numbers   can  be 
resolved  into  the  sum  of  two  squares  in  two  ways. 

In  fact    (a2  +  t2)  (c2  +  d2)  ==  (ac  ±  bdf  +  (ad  T  6c)2. 
This  proposition  is  used  in  III.  19,  where  the  problem  is 

to  find  four  rational  right-angled  triangles   with  the   same 
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hypotenuse.  The  method  is  this.  Form  two  right-angled 
triangles  from  (a,  b)  and  (c,  d)  respectively,  by  which  Dio- 
phantus  means,  form  the  right-angled  triangles 

(a2  +  i2,  a2-&2,  2ab)  and  (c2  +  cZ2,  ca-d2,  2cd). 

Multiply  all  the  sides  in  each  triangle  by  the  hypotenuse  of 
the  other;  we  have  then  two  rational  right-angled  triangles 

with  the  same  hypotenuse  (a2  +  ft2)  (c2  +  cZ2). 
Two  others  are  furnished  by  the  formula  above;  for  we 

have  only  to  '  form  two  right-angled  triangles '  from  (ac  +  Id, 
ad— be)  and  from  (ac  —  bd,  ad  +  bc)  respectively.  The  method 
fails  if  certain  relations  hold  between  a,  6,  c,  d.  They  must 
not  be  such  that  one  number  of  either  pair  vanishes,  i.e.  such 
that  ad  =  be  or  ac  =  bd,  or  such  that  the  numbers  in  either 
pair  are  equal  to  one  another,  for  then  the  triangles  are 
illusory. 

In  the  case  taken  by  Diophantus  a'2  +  62  =  22  + 12  =  5, 
c2  +  d2  =  32  +  22  =  1 3,  and  the  four  right-angled  triangles  are 

(65,  52,  39),  (65,  60,  25),  (65,  63,  16)  and  (65,  56,  33). 

On  this  proposition  Format  has  a  long  and  interesting  note 
as  to  the  number  of  ways  in  which  a  prime  number  of  the 
form  4n+l  and  its  powers  can  be  (a)  the  hypotenuse  of 

a  rational  right-angled  triangle,  (6)  the  sum  of  two  squares. 

He  also  extends  theorem  (3)  above :  '  If  a  prime  number  which 
is  the  sum  of  two  squares  be  multiplied  by  another  prime 
number  which  is  also  the  sum  of  two  squares,  the  product 
will  be  the  sum  of  two  squares  in  two  ways ;  if  the  first  prime 
be  multiplied  by  the  square  of  the  second,  the  product  will  be 
the  sum  of  two  squares  in  three  ways ;  the  product  of  the  first 
and  the  cube  of  the  second  will  be  the  sum  of  two  squares 

in  four  ways,  and  so  on  ad  iufinitum.9 
Although  the  hypotenuses  selected  by  Diophaiitus,  5  and  1 3, 

are  prime  numbers  of  the  form  4?i+  1,  it  is  unlikely  that  he 
was  aware  that  prime  numbers  of  the  form  4  n  + 1  and 
numbers  arising  from  the  multiplication  of  such  numbers  are 
the  only  clesses  of  numbers  which  are  always  the  sum  of  two 

squares ;  this  was  first  proved  by  Euler.  • 
(4)  More  remarkable  is  a  condition  of  possibility  of  solution 

prefixed  to  V.  9,  'To  divide  1  into  two  parts  such  that,  if 



NUMBERS  AS  THE  SUMS  OF  SQUARES        483 

a  given  number  is  added  to  either  part,  the  result  will  be  a 
square/  The  condition  is  in  two  parts.  There  is  no  doubt  as 

to  the  first,  'The  given  number  must  not  be  odd'  [i.e.  no 
number  of  the  form  4n  +  3  or  4^—1  can  be  the  sum  of  two 

squares]  ;  the  text  of  the  second  part  is  corrupt,  but  the  words 
actually  found  in  the  text  make  it  quite  likely  that  corrections 
made  by  Hankel  and  Tannery  give  the  real  meaning  of  the 

original,  '  nor  must  the  double  of  the  given  number  plus  1  be 
measured  by  any  prime  number  which  is  less  by  1  than  a 

multiple  of  4 '.  This  is  tolerably  near  the  true  condition 
stated  by  Fermat,  '  The  given  number  must  not  be  odd,  and 
the  double  of  it  increased  by  1 ,  when  divided  by  the  greatest 
square  which  measures  it,  must  not  be  divisible  by  a  prime 
number  of  the  form  4 n—  I/ 

(/8)  On  numbers  which  are  tJie  sum  of  three  squares. 

In  V.  11  the  number  3ti  +  l  has  to  be  divisible  into  three 

squares.  Diophantus  says  that  a  'must  not  be  2  or  any 
multiple  of  8  increased  by  2 '.  That  is,  '  a  number  of  the 
form  24n+7  cannot  be  the  sum  of  three  squares '.  As  a  matter 
of  fact,  the  factor  3  in  the  24  is  irrelevant  here,  and  Diophantus 
might  have  said  that  a  number  of  the  form  8  n  + 1  cannot  be 
the  sum  of  three  squares.  The  latter  condition  is  true,  but 
does  not  include  all  the  numbers  which  cannot  be  the  sum  of 

three  squares.  Fermat  gives' the  conditions  to  which  a  must  l>e 
subject,  proving  that  3  a  + 1  cannot  be  of  the  form  4"  (24  k  +  7) 
or  4w(8fc+  7),  where  k  =  0  or  any  integer. 

(y)  Composition  of  numbers  as  the  sum  of  four  squares. 

There  arc  three  problems,  IV.  29,  30  and  V.  14,  in  which  it 
is  required  to  divide  a  number  into  four  squares.  Diophantus 
states  no  necessary  condition  in  this  case,  as  he  does  when 
it  is  a  question  of  dividing  a  number  into  three  or  luv  squares. 
Now  every  number  is  eitfier  a  square  or  the  sum  of  two,  three 
or  four  squares  (a  theorem  enunciated  by  Fermat  and  proved 
by  Lagrange  who  followed  up  results  obtained  by  Euler),  and 
this  shows  that  any  number  can  be  divided  into  four  squares 
(admitting  fractional  as  well  as  integral. squares),  since  any 
square  number  can  be  divided  into  two  other  squares,  integral 
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or  fractional.  It  is  possible,  therefore,  that  Diophantus  was 
empirically  aware  of  the  truth  of  the  theorem  of  Fermat,  but 
we  cannot  be  sure  of  this. 

Conspectus  of  the  Aritlimetica,  with  typical  solutions. 

There  seems  to  be  no  means  of  conveying  an  idea  of  the 
extent  of  the  problems  solved  by  Diophantus  except  by  giving 
a  conspectus  of  the  whole  of  the  six  Books.  Fortunately  this 
can  be  done  by  the  help  of  modern  notation  without  occupying 
too  many  pages. 

It  will  be  best  to  classify  the  propositions  according  to  their 

character  rather  than  to  give  them  in  Diophantus's  order.  It 
should  be  premised  that  x,  y,  z  . . .  indicating  the  first,  second 
and  third  . . .  numbers  required  do  not  mean  that  Diophantus 

indicates, any  of  them  by  his  unknown  (?) ;  he  gives  his  un- 
known in  each  case  the  signification  which  is  most  convenient, 

his  object  being  to  express  all  his  required  numbers  at  once  in 
terms  of  the  one  unknown  (where  possible), thereby  avoiding  the 
necessity  for  eliminations.  Where  I  have  occasion  to  specify 

Diophantus's  unknown,  I  shall  as  a  rule  call  it  £,  except  when 
a  problem  includes  a  subsidiary  problem  and  it  is  convenient 
to  use  different  letters  for  the  unknown  in  the  original  and 
subsidiary  problems  respectively,  in  order  to  mark  clearly  the 
distinction  between  them.  When  in  the  equations  expressions 

are  said  to  be  =  u2,  */2,  ic;2,  t* ...  this  means  simply  that  they 
are  to  be  made  squares.  Given  numbers  will  be  indicated  by 

a,  6,  c  . . .  m,  -ii . . .  and  will  take  the  place  of  the  numbers  used 
by  Diophantus,  which  are  always  specific  numbers. 

Where  the  solutions,  or  particular  devices  employed,  arc 
specially  ingenious  or  interesting,  the  methods  of  solution  will 
be  shortly  indicated.  The  character  of  the  book  will  bo  best 
appreciated  by  means  of  such  illustrations. 

[The  problems  marked  with  an  asterisk  are  probably 
spurious.] 

(i)  Equations  of  the  first  degree  with  one  unknown. 

I.  7.  #  — a  =  m(x  —  b). 

I.  8.  x  +  a  =  m(x  +  b). 
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I.  9.  a—  x  =  m  (&—&•). 

I.  10.  x  +  b  =  m(a—  #). 

I.  11.  x  +  b  =  m(#  —  a). 

I.  39.  (a  +  x)b  +  (h  +  x}a  =  2(a  +  &)#,  \ 

or  (a  +  6)  a;  +  (6  +  #)a  =  2  (a  +  x)  6,  L  (a  >  6) 

or  (a  +  6)x+(a  +  a;)6  =  2(6  +  #)a.  ) 

Diophantus  states  this  problem  in  this  form,  'Given 
two  numbers  (a,  6),  to  find  a  third  number  (x)  such  that 
the  numbers 

(a  +  x)b,  (b  +  x)a,  (a  +  b)x 

are  in  arithmetical  progression/ 
The  result  is  of  course  different  according  to  the  order 

of  magnitude  of  the  three  expressions.  If  a>b  (5  and  3 
are  the  numbers  in  Diophantus),  then  (a  +  x)b  <  (b  +  x)a\ 
there  are  consequently  three  alternatives,  since  (a  +  x)b 
must  be  either  the  least  or  the  middle,  and  (b  +  x)a  either 
the  middle  or  the  greatest  of  the  three  products.  We  may 
have 

((  /  -f  x)  b  <  (d  +  b)x  <  (b  +  ,r)  a, 

or      (a  +  b)  x  <  (a  +  x)  b  <  (b  +  x)  a, 

or      (a  +  x)  b  <  (b  -f  x)a  <  (a  -f  b)x, 

and  the  corresponding  equations  are  as  set  out  above. 

(ii)  Determinate  systems  of  equations  of  the  first  degree. 

I.    1.  x  +  y  =  a,  x—  y  =  b. 

I.    2.  aj-f  y  =  a,  x  =  my, 

I.    4.  ̂ —  y  =  a,  x  =  my. 

1.    3.  #  +  2/  =  a,  x  =  my  +  6. 

I.    5.  a;  +  y  =  a,  —  #  +  -  y  =  &,  subject  to  necessary  condition. *  m        n 

1         1        . 
I.    6.  oj  +  y  =  a,  —  x  --  7/=6, 
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(I.  12.  xl  +  x%—i 

.  13.  Xi  +  x^  —  i 

I.  15.  #  +  a  =  m(y—  a),  y  +  b  =  n(#—  6). 

[Diophantus  puts  y  =  £  +  a,  where  £  is  his  unknown.] 

I.  16.  y  +  0  =  a,  s  +  #  =  6,  #  +  y  =  r.  [Dioph.  puts  £=a:  +  y  +  3.] 

I.  17.  y  +  z  +  tv  =  a,  2  +  10  -f  #  =  6,  w  +  x  +  y  =  c,  x  +  y  +  z  =  ri. 

1.  18.  T/  +  0—  «  =  a, 

[Dioph.  puts  2  ̂  =  #  +  y  4-  z. 
I.  19. 

1.20.  aj  +  y  +  z  =  a,  x  +  y  =  mz,  y  +  z  =  TIOJ. 

I.  21.  x  =  y+  —  0,  y  =  s+  ~#,  3  =  a  +  -  y  (where  05  >y>0), 
??7/  *y  t/  ^f) 

with  necessary  condition. 

II.  18*.  a?-(  — 
\m 

/ 
[Solution  wanting.] 

(iii)  Determinate  systems  of  equations  reducible  to  the 
first  degree. 

I.  26.  ax  =  a2^  fa  =  a. 

I.  29.  x  +  y  =  a,  a?2— y2  =  6.     [Dioph.  puts  2£  =  #-y.J 
I.  31.  x  =  my, 

I.  32.  x  =  my, 
I.  33.  x  = 

I.  34.  x  = 

I.  34.  Cor.  1.  x  =  my,  #y  =  n(x  +  y). 

k  Cor.  2.  aj  =  my,  #y  =  71(03— y). 
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(I.  35.  x  =  my,  y2  =  nx. 

I.  36.  x  =  my,  y2  =  My. 

I.  37.  a;  =  my,  y2  =  n(x  +  y). 

I.  38.  x  =  my,  y2  =  7i(x— y). 

I.  38.  Cor.  a;  =  my,  x2  =  tiy. 

„     a;  =  my,  #2  =  nx. 

„     .!•  =  my,  x*  =  n(x  +  y). 

„     a  =  my,  x1  =  ̂ i(x~y). 

II.  G*.  «-»y  =  a,  x2—y2  =  x  —  y  +  b. 

IV.  36.     z  = 

[Solved  by  means  of  Lemma :  see  under  (vi)  Inde- 
terminate equations  of  the  first  degree.] 

(iv)  Determinate  systems  rfeducible  to  equations  of 
second  degree. 

I.  27.  x  +  y  =  a,  xy  =  I. 

[Dioph.  states  the  necessary  condition,  namely  that 

£ci2  —  6  must  be  a  square,  with  the  words  €<rri  8k  TOVTO 
irXaorfjLaTtKov,  which  no  doubt  means  'this  is  of  the 
nature  of  a  formula  (easily  obtained)'.  He  puts 

I.  30.  x  —  y  =  a,  xy  =  6. 

[Necessary  condition  (with  the  same  words)  46  +  a2  = 
a  square,  x  +  y  is  put  =  2  £.] 

I.  28.  x  +  y  =  a,  #2  +  y2  =  6. 

[Necessary  condition  2  b  —  a2 = a  square,     x  —  y  =  2  £.] 

[Dioph.  puts  x  —  y=2£,  whence  #=^&  +  £,  y  =  ̂ 6  —  £. 
The  numbers  a,  />  are  so  chosen  that  (a  —  ̂ 63)/36  is 
a  square.] 

IV.    2.  a3-  y'*  =  a,  x—y  =  ft. 
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IV.  15.  (y  +  z)x  =  a,  (z  +  x)y  =  6,  (x  +  y)z  =  c. 

[Dioph.  takes  the  third  number  z  as  his  unknown  ; 

thus  #  +  2/  =  rt/2. 

Assume  x  =  p/z,  y  =  <//£.    Then 

These  equations  are  inconsistent  unless  p  —  q^a  —  l). 
We  have  therefore  to  determine  p,  q  by  dividing  c  into 
two  parts  such  that  their  difference  =  a  —  6  (cf.  I.  1). 

A  very  interesting  use  of  the  c  false  hypothesis' 
(Diophantus  first  takes  two  arbitrary  numbers  for  p,  q 

such  that  p  +  q  =•  c>  and  finds  that  the  values  'taken  have 
to  be  corrected). 

'on 

The  final  
equation  

beiii"1  
--|  +p  =  <t,  where  

p,  q  are 

z* 

determined  in  the  way  described,  z1  =  pq/(a>  —  p)  or 
pq/  (b  —  q),  and  the  numbers  a,  ft,  c  have  to  be  such  that 
cither  of  these  expressions  gives  a  square.] 

IV.  34.     s 

[Dioph.  states  as  the  necessary  condition  for  a  rational 
solution  that  each  of  the  three  constants  to  which  the 

three  expressions  are  to  be  equal  must  be  some  square 

diminished  by  1.  x  The  true  condition  is  seen  in  our 
notation  by  transforming  the  equations  yz 

=y  into 
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whence 

and  it  is  only  necessary  that  (a  +  1)  (jS  +  1)  (y  +  1)  should 

be  a  square,  not  that  each  of  the  expressions  a  +  1,  £+  1, 
y  -f  1  should  be  a  square. 

Dioph.  finds  in  a  Lemma  (see  under  (vi)  below)  a  solu- 
tion   kv    dopto-TM    (indeterminately)   of    acy  +  ( 

which  practically  means  finding  y  in  terms  of  #.] 

IV.  35.     z- 

[The  remarks  on  the  last  proposition  apply  mutatis 
mutandis.  The  lemma  in  this  case  is  the  indeterminate 

solution  of  xy  —  (x  +  y)  =  &.] 

IV.  37.  yz  =  a(v  +  y  +  s),  cs  =  b(.r,+y  +  z),  xy  =  c( 

[Another  interesting  case  of  c  false  hypothesis  '.  Dioph. 
first  gives  x  +  y  +  z  an  arbitrary  value,  then  finds  that 
the  result  is  not  rational,  and  proceeds  to  solve  the  new 

problem  of  finding  a  value  of  x  +  y  +  zto  take  the  place  of 
the  first  value. 

If  w  =  x  +y  +  z,  we  have  x  =  civ/y>  z  =  <iw/y,  so  that 
(LC> 

zx  =  acw^/y1  =  bw  by  hypothesis;  therefore  y2  =  -^-w. 

For  a  rational  solution  this  last  expression  must  be 
etc 

:i  square.    Suppose,  therefore,  that  w  =  -y-  £2,  and  we  have 

ac  .t>  ac  .  . 

Eliminating  a?,  jy,  0,  we  obtain   £  =  (bc  +  ca  +  ab)/ac, 
and 

#  =  (/>c  +  ca  +  ab)/a,  y  =  (fa  +  ca  -f  ab)/b, 

z  =  (bc  +  ca  +  ab)/e.] 

Lemma  to  V.  8.  yz  =  a2,  c.r  =  />2,  xy  =  c2. 
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(v)  Systems  of  equations  apparently  indeterminate  but 

really  reduced,  by  arbitrary  assumptions,  to  deter- 
minate equations  of  the  first  degree. 

I.  14.  xy  =  m(x  +  y).     [Value  of  y  arbitrarily  assumed.] 

II.  3*.  xy  =  m(x  +  y),  and  acy  = 

II.  1*.  (cf.  I.  31).     x*  +  y2  = 

II.  2*.  (cf.  I.  34).     x2  —  7/2  =  m(x  —  y).          >  [x  assumed  =  2  y.] 

II.  4*.  (cf.  I.  32).     x*  +  y*  =m(x-y).         \ 

II.  5*.  (cf.  I.  33).     aj2~2/2  =  m(#  +  2/).         j 

II.  7*.  x2—y2  =  m(#  —  2/)  +  ̂-     [Diopb.  assumes  #  —  ?/  =  2.] 
T      ™ 

1.  22.  #  --  cc+-0  =  2/  --  2/H  --  a?  =  0  --  z+  -y. 
m        p  n        m  p        'Yiu 

[Value  of  y  assumed.] 

T  A«  1          1  11  11 
1.23.  x  ---  x  4-  -  w  =  y  --  y  H  ---  x  =  0  --  0  H  —  ?/ 

r^         g  7i         7}i  p        n  J 

=  w  --  w+   -0.     [Value  of  y  assumed.] 

<I         p        l  J  J 

1.24.  x+  —(y  +  z)  =  y+-(s  + 7/6  Iv 

[Value  of  y  +  z  assumed.] 

I.  25.   X+  — 

=  z  +  -  (w  +  x  +  y)  =  w+  -(x  +  y+z). 

[Value  of  y  +  z  +  w  assumed.] 

II.  17*.  (cf.  I.  22).     x-l-i v  '  \m 

=  y- 
[Ratio  of  x  to  ?/  assumed.] 



INDETERMINATE  ANALYSIS  491 

IV.  33.  x+  -y  —  m  (y  —  -y) ,    y  +  -  x  =  n(x—  -x)  • Z  '  \  Z     *  *^  \  »•/     / • 

[Dioph.  assumes ^y  =1.] 

(vi)  Indeterminate  equations  of  the  first  degree. 

Lemma  to  IV.  34.  xy  +  (x  +  y)  =  a.^  [Solutions  >^0,r< 

„  IV.  36.  xy  =  m(x  +  y).    J 
y  practically  found in  terms  of  #.] 

(vii)  Indeterminate  analysis  of  the  second  degree. 

II.    8.  ,/:2  +  2/2  =  a2. 

[2/2  =  a2 —  a;2  must  be  a  square  =  (mx  —  a)2,  say.] 
T  T        o         ''   i       2  *'        7  2         F 13    4-  £  >        7   1 

II.  10.  x2-2/2  =  a. 

[Put  x  =  7/  +  wi,  choosing  m  such  that  m2  <  a.] 

(II.  11.  <w  +  a  =  u2,     ;/'  -f-  ft  =  v*. 
J  Tl       1  9  —          ̂   /  '  »         •!>- 

111.  13.  a;  — a  =  u2,     .r-6  =  v2. 

[Dioph.  solves  11.  11  and  13,  (1)  by  means  of  the 

4  double  equation '  (see  p.  469  above),  (2)  without  a  double 
equation  by  putting  x  =  £2  +  a  and  equating  (£2  +  a)  +  6 
to  (£  — m)2.  In  II.  12  he  puts  a;  =  a  —  £2.] 

II.  14  =  III.  21.  tf  +  y  =  a,  x  +  z*  =  u2,  y  +  «2  =  ̂ '2. 
[Diophantus    takes    0    as    the    unknown,    and    puts 

u2  =  te  +  m)2    v2  =z  (z+  ii)2.     Therefore    x  =  2mz  +  wi2, \         /  '  \         r  ' 

y  =  2nz  +  n*,  and  0  is  found,  by  substitution  in  the  first 

equation,  to  be  — 7   .—  •     In  order  that  the  solution 1  2(m  +  n) 
may  be  rational,  m,  n  must  satisfy  a  certain  condition. 

Dioph.  takes  them  such  that  m2  +  n2  <  a,  but  it  is  suffi- 
cient, if  m  >  n,  that  a  +  mn  should  be  >  7i2.] 

II.  15  =  III.  20.  x  +  y  =  a,  z*-x  =  u2,  02-y  =  ̂2- 
[The  solution  is  similar,  and  a  similar  remark  applies 

to  Diophantus's  implied  condition.] 
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II.  16.  x  =  mj/,  a?  +  x  =  u2,  a>2-}-2/  =  ̂ 2. 

II.  19.  #2— 7/2  =  mfv2  —  s2). 

[Assume  ?/  ==  2mo;  +  m2,  and  one  condition  is  satisfied.] 

[Assume  x  =  £  +  m,  y  =  2m£  +  m2,  and  one  condition 
i         is  satisfied.] 

/II.  22.  x2  +  (x  +  y)  - 

1[Pu
t  #  + 

 ?/  = 
II.  23.  x*  —  (x  +  y)  =  u2, 

II.  24.  (#  +  7/)2  +  #  =  u2, 

[Assume  02  =  (m2— 1)£2,  y  =  (>//2— 1)|2,  x  +  y  =  £.] 

II.  25.  (^  +  2/)2— •  #  =  ̂ 2;  (^  +  ?y)2~~2/ ==  v"- 

II.  26.  xy  +  x  =  tt2,  xy  +  y  =  v*,  u  +  v  =  c/. 

[Put  y  =  ̂ 2aj-l.] 
ITT      rtiw                                                o                                              »> 

II        V7        ̂ /"J/  —  Of*    •••"    <J/  ̂        <^K1/3/  — —  O/    •-"•    fl)^       'J/      I     <j«    — —    /•/ 
J.J..     ̂ J  I   .      t/X  (^     tA;     —      M/     ,       •<    ff       '/     —      U     ,        CC'   ̂     t,7           I*. 

ill        9  Q         S]j*£ni&  „_ .  /V»^    —    /ll  «        /y>«i/i.J  ̂ /^    — —    /J}^ 
\-LJ-.    6i*J»     vU     li     ̂ ^  \JU      — —    tl/    ,     i>lv     f 7     ̂ ~~  f /       —    U   » 

II.  30.  a?2/  +  ( 

[Since  m2  +  Tfc2  +  2  m?i  is  a  sc^uare,  assume 

py  =  (m2  -f  7i2)  ̂2  and  aj  -f  y  =  2  mn  ̂ 2 ; 

put  05  =  £>£,  y  =  qg,  where  jpg  =  m2  +  ̂ 2;  then 

II.  31.  o^  +  ̂   +  Z/)  =  u2,  xy-(x  +  y)  =  v2, 

[Suppose  w2  =  2  .  2  m  .  m,  which  is  a  square,  and  use 
formula  (2m)2  +  m2  +  2.2m.m  =  a  square.] 

II
I.
  

32. 
 2 

TT  
 
3  ̂     9/2   ^   47  ̂     ̂ 2   /•/»     

 
'^    

 
>2    

     
    

  
^ 
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11.34.  x* 

[Since  {-|(m—  n)  }2  +  mn  is  a  square,  take  any  number 
separable  into  two  factors  (m,  n)  in  three  ways.  This 
gives  three  values,  say,  p,  q,  r  for  ̂ (m  —  n).  Put 

x  =  P&>  y  =  d?£>  z  =  r£>  ancl  *  +  V  +  2  =  w&7i£2  >  therefore 
(2>  +  <7  +  r)£  =  mr<,£2,  and  £  is  found.] 

II.  35.  x*- 

[Use  the  formula  {4(m  +  7i)j2  —  m^  =  a  square  and 
proceed  similarly.] 

III.  1*    (aj  +  2y  +  s)-^  =  u2,  (M!  +  y  +  o)-^  =  t;2, 

(a  +  y  +  s)  —  c2  =  t(;2. 
III.  2*. 

III.  3* 

III.  l*.  a- 

III.  5.  ̂'  +  2 

[Tlie  first  solution  of  this  problem  assumes 

whence  x,  y,  z  are  found  in  terms  of  £,  and  z  +  x  —  y 
is  then  made  a  square. 

The  alternative  solution,  however,  is  much  more  ele- 
gant, and  can  be  generalized  thus. 

We  have  to  find  x,  y,  z  so  that 

—  x  +  y  +  z  =  a  square 

x  —  y  +  z  =  a  square 

x  +  y  —  z  =  a  square 

x  +  y  +  z  =  B>  square 

Equate  the  first  three  expressions  to  a2,  62,  c2,  being 
squares  such  that  their  sum  is  also  a  square  =  &2,  say. 
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Then,  since  the  sum  of  the  first  three  expressions  is 
itself  equal  to  x  +  y  +  z,  we  have 

#  =  £(&2  +  c2),  y  — 

III.    6.  x  +  y  +  z  =  £2, 

III.    7.  x-y  =  y-z, 

(III.    8.  x  +  y  +  z  +  a  =  £2,  2/  +  2  +  C&  =  w2> 

III.    9.  x  +  y  +  z  — a  =  £2,  y  +  z  —  a  -  ii2,  z  +  x  —  a  =  v2, 

#  -f  2/  —  a  =  w2. 

III.  10.  7/^  +  tt  =  U?,  zx  +  a  =  v2,  ay-f  a  =  ̂ 2. 

[Suppose  1/2;  +  a  =  m2,  and  let  ?/  =  (m2  —  a)^,  z  =  l/£: 
also  let  z#  +  a  =  ii2;  therefore  a;  =  (/t2  —  a)^. 
We  have  therefore  to  make 

(m2  —  a)  (n2  —  a)  £2  +  a  a  square. 

Diopliantus  takes  m2  =  25,  a  =  12,  n2  =16,  and 
arrives  at  52^2+12,  which  is  to  be  made  a  square. 

Although  52  .  lf-+  12  is  a  square,  and  it  Follows  that  any 
number  of  other  solutions  giving  a  square  are  possible 
by  substituting  1  +  77  for  £  in  the  expression,  and  so  on, 
Diopliantus  says  that  the  equation  could  easily  be  solved 
if  52  was  a  square,  and  proceeds  to  solve  the  problem  of 
finding  two  squares  such  that  each  increased  by  12  will 
give  a  square,  in  which  case  their  product  also  will  be 

a  square.  In  other  words,  we  have  to  find  m2  and  u2 
such  that  m2  — a,  n2  —  a  are  both  squares,  which,  as  he 
says,  is  easy.  We  have  to  find  two  pairs  of  squares 
differing  by  a.  If 

and 

let,  then,    m2  = 

III.  11.  yz  —  a  =  u2,  3#  —  a  =  v2,  xy  —  a  =  it;2. 
[The  solution  is  like  that  of  III.  1 0  mutatis  mutwridis.] 

(III.  12.  yz  +  x  =  u2,  0#  +  ?/  =  ̂ 2j  ®y  +  z  =  ̂ i2- 
(HI.  13.  yz—x=  u2,  zx  —  y  =  v2,  xy  —  z  =  w2. 
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111.  14.  yz  +  x*  =  u2,  zx  +  y*  =  v2,  xy  +  z*  =  w2. 

[Lemma.  If  a,  a+1  be  two  consecutive  numbers, 

a2  (a  +  1  )2  +  a2  +  (a  +  1  )2  is  a  square.  Let 

2/  =  wa,  s  =  (m+1)2. 

Therefore       (m2  +  2  m  +  2)  aj  -f  (m  +  1 ) 2 

and  (m'2  +  l)#  +  m2 

have  to  be  made  squares.     This  is  solved  as  a  double- 

equation;  in  Diophantus's  problem  m  =  2. 
Second  solution.  Let  x  be  the  first  number,  m  the 

second;  then  (m+l)#  +  m  is  a  square  =  u2,  say;  there- 
fore x  =  (M2—  m)/ (771+  1),  while  2/  =  w.  We  have  then 

(m  +  \)z  +  m  =  a  square 

.  /™2  + 1\     ,  ?i2-m and  (  )£+   =  a  square 
V  m  -f  1  /         m+1  j 

Diophantus  has  m  =  3,  H  =  5,  so  that  the  expressions 
to  be  made  squares  are  with  him 

42  +  3    ) 

This  is  not  possible  because,  of  the  corresponding  coeffi- 
cients, neither  pair  are  in  the  ratio  of  squares.  In  order  to 

substitute,  for  6£,  4,  coefficients  which  are  in  the  ratio 
of  a  square  to  a  square  he  then  finds  two  numbers,  say, 
^>,  q  to  replace  5^,  3  such  that  2)(1+P  +  (1  =  a  square,  and 
(/>+!)/(</+  1)  =  a  square.  He  assumes  £  and  4  £  +  3, 
which  satisfies  the  second  condition,  and  then  solves  for  £, 
which  must  satisfy 

4  £2  +  8  £  +  3  =  a  square  =  (2  £  -  3)2,  say, 

which  gives  £  =  /Q,  4£  +  3  =-•  4|. 

He  then  solves,  for  0,  the  third  number,  the  double- 

equation 

=  square] 
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after  multiplying  by  25  and  100  respectively,  making 
expressions 

130.T+    30 

In  the  above  equations  we  should  only  have  to  make 

>i2  +  1  a  square,  and  then  multiply  the  first  by  7i2  +  1  and 
the  second  by  (m+  I)2. 

Diophantus,  with  his  notation,  was  hardly  in  a  position 
to  solve,  as  we  should,  by  writing 

which  gives    x+1  =-/{(&*+  1)  (c-  +  l)/(aa  +  1)  },  &c.] 

III.  1  6.  yz  —  (y  +  z)  =  u\  zx—(z  +  x)  =  v2,  xy-(x  +  y)  =  ?'/2. 

[The  method  is  the  same  mutatis  mutandis  as  the 
second  of  the  above  solutions.] 

III.  17.  xy  +  (x  +  y)  =  u'2,  a 
III.  18.  x- 

III.  19.  (^1  +  a:a  +  ii;a  +  aj4)S8  +  aj1  = 

^  fu2 4)-  ±  aa  =  -    ,„ ~ 

I/8 

f +  ̂ =  j 

/2 

[Diophantus  finds,  in  the  way  we  have  seen  (p.  482), 
four  different  rational  right-angled  triangles  with  the 
same  hypotenuse,  namely  (65,  52,  39),  (65,  60,  25),  (65, 
56,  33),  (65,  63,  16),  or,  what  is  the  same  thing,  a  square 
which  is  divisible  into  two  squares  in  four  different  ways  ; 
this  will  solve  the  problem,  since,  if  h,  p,  b  be  the  three 

sides  of  a  right-angled  triangle,  h2  ±2pb  are  both  squares. 
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Put  therefore     xl  +  x2  +  x%  +  x±  =  6  5  £. 

and  #!  =  2.  39.  52  f2,  o?2  =  2.  25.  60  £2,  #3=  2  .  33  .  56£2, 

#4  =  2.16.63£2; 

this  gives     127G8f2  =  G5£,  and  £  = 

|  IV.    4. 
lIV.    5. 

IV.  13.  x+  1  =  i2,  y+  1  =  u2,  #  +  ?/+  1  =  t;2,  y-x  +  I  =  w2. 

[Put  x  =  (m^  +  I)2—  1  =  7?i2f2  4-  2m£  ;  the  second  and 
third  conditions  require  us  to  find  two  squares  with  x  as 

difference.  The  difference  m'2£2  +  2m£  is  separate^!  into 
the  factors  w'2£-f  2m,  £;  the  square  of  half  the  differ- 

ence =  (£(m2—  l)£  +  mj-.  Put  this  equal  to  ?/+!,  so 
that  y  =  J(m--l)a£*  +  m(ma-l)£  +  ma-l,  and  the 
first  three  conditions  are  satisfied.  The  fourth  gives 

£  (??i4  —  6  m~  +  1  )  |2  +  (m3  —  3  m)  £  +  ?7i'2  =  a  square,  which 
we  can  equate  to  (n£  —  m)2.] 

IV.  1  4.  x2  +  y*  +  z~  =  (,(;-  -  ya)  +  (//•*  -  «2)  +  (x2  -  s2).    (^  >  y  >  z.) 
IV.  16. 

[Put  47?i^  for  y,  and  l>y  means  of  the  factors  2mg,  2 
we  can  satisfy  the  second  condition  by  making  x  equal 

to  half  the  difference,  or  m£—  1.  The  third  condition 
is  satisfied  by  subtracting  (4m£)2  from  some  square,  say 
(4m£+l)2;  therefore  s  =  8in£+l.  By  the  first  con- 

dition 13  mg  must  be  a  square.  Let  it  be  169ij2;  the 
numbers  are  therefore  1  3  ?/2  —  1  ,  5  2  ?/2,  1  04  ij2  +  1  ,  and 
the  last  condition  gives  10816?/44-  22  1?/2  =  a  square, 
i.e.  10816?;2-f  221  =  a  square  =  (104ij  +  I)2,  say.  This 
gives  the  value  of  17,.  and  solves  the  problem.] 

IV.  17.  x  +    +  z  =  J2,  x*-     =  u\  tf-z  =  v2,  z2-x  =  w2. 

IV.  19.  ?/0+  1  =  u2 

[We  are  asked  to  solve  this  indeterminately  (€i>  ro> 

dopbmp).  Put  for  y0  some  square  minus  1,  say  m2^2 
+  2m£;  one  condition  is  now  satisfied.  Put  z  =  £,  so 

that  y  =  ?7i2^  +  2m. 
1523.2  K  k 
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Similarly  we  satisfy  the  second  condition  by  assuming 

zx  =  ?i2£2  +  2  Tig  ;  therefore  x  =  7i2£  +  2n.  To  satisfy  the 
third  condition,  we  must  have 

(m2  n2£2  +  2mn  .m  +  ng  +  4  WTI)  +  1  a  square. 
We  must  therefore  have  4mn+  1  a  square  and  also 

mn  (m  +  n)  =  mw  \/  (4  mri  +  1  )  .  The  first  condition  is 
satisfied  by  n  =  m  +  1  ,  which  incidentally  satisfies  the 

second  condition  also.  We  put  therefore  yz=  (m£  +  I)2  —  1 
and  0#=  {  (m+  l)£  +  1  }2  —  1,  and  assume  that  £  =  £,  so  that 
2/  =  m2£+2m,  #  =  (m+  l)2£  +  2(m+l),  and  we  have 
shown  that  the  third  condition  is  also  satisfied.  Thus  we 

have  a  solution  in  terms  of  the  undetermined  unknown  £. 
The  above  is  only  slightly  generalized  from  Diophantus.] 

IV.  20.  xx+l  =  r2,  ffO   +  1  =  s2,       a+1  =  f2, 

=  u2, 

[This  proposition  depends  on  the  last,  x},  ;/'2,  aJ3  being 
determined  as  in  that  proposition.  If  x3  corresponds  to  z 

in  that  proposition,  we  satisfy  the  condition  #3#4-f  1  =  w- 
by  putting  #3#4  =  |(m  +  2)£  +  I}2—  1,  and  so  find  x4  in 
terms  of  £,  after  which  we  have  only  two  conditions  more 
to  satisfy.  The  condition  x^+  1  =  square  is  auto- 

matically satisfied,  since 

is  a  square,  and  it  only  remains  to  satisfy  x2x^  +  1  =  square 
That  is, 

t=  m2(m+  2)2^2  +  2  m(m  +  2)  (2m  +  2)£  +  4m(m  +  2)  +  1 
has  to  be  made  a  square,  which  is  easy,  since  the  coefficient 

of  £2  is  a  square. 
With  Diophantus  m  =  1,  so  that  xl  =  4£  +  4,  #2  =  £  +  2 

aj;j  =  ̂   ̂4  =  9^6»  and  9£2  +  24^+13  has  to  be  mad< 
a  square.  He  equates  this  to  (3£—  4)2,  giving  £  =  T^.] 

IV.  21.  xz  =  y2,  x  —  y  =  u29  x  —  z  =  v*,  y—z  —  w*.    (x>y>z 

|IV.  22.  xyz  +  x  =  u2,  xyz  +  y  =  v2,  xyz  +  z  =  w2. 

lIV.  23.  xyz  —  x  =  u2,  xyz—y  =  v2,  xyz  —  z  =  w2. 
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IV.  29.  x2  +  y2  +  z2  +  iv2  +  x  +  y  +  z  +  iv  —  a. 

[Since  x2  +  x  +  %  is  a  square, 

(x2  +  x)  +  (y2  +  y)  +  (z2  +  z)  +  (w2  +  w)  +  1 
is  the  sum  of  four  squares,  and  we  only  have  to  separate 
a  +  1  into  four  squares.] 

IV.  31.  x  +  y  =  1,  (x  +  a)  (y  +  b)  =  u2. 

IV.  32.  x  +  y  +  z  =  a, 

IV.  39.  x-y  =  m(y- 

IV.  40.  x~  —  y2  =  m(y 
'    \T        1         »         _       2        i  .—       2  __      2  ___        *' 

V.    2.  #2  =  ?/2,  #  +  a  =  t&2,  y  +  a  =.  v2,  z  +  d  =  iu~. 
V_  l>  O 

 .  ,1 
V  »«      I     //     — —    /Ji«<        /}/     I.,  //     —     o«-         r*      I     //     —     /^ 

*          V .      tV    j^  » v    — —     /      ,       r I   ̂ ^  \M    —    O    ,      <V      |^  Lv    ~~~    \J    , 

7/0  +  a  =  u2,  2#  4-  (6  =  v2,  #y  4-  (6  =  ̂ y2. 
V.  »/  «>  .  i> 
.  A  .       i/y  ~~~  C6    — —      *       )       '/   ~"^  ( v     •""•    O     ,       ̂   ~~"  LV     «"~     6     , 

2/5  —  a  =  u2,  zx  —  a  =  v2,  xy  —  a  =  w2. 

[Solved  by  means  of  the  2Jorisnis  that,  if  a  be  the 
given  number,  the  numbers  m2  — a,  (m+1)2  — a  satisfy 
the  conditions  of  V.  3,  and  the  numbers  m2  +  «, 
(m  +  I)2  +  «  the  conditions  of  V.  4  (see  p.  479  above).  The 
third  number  is  taken  to  be  2  (m2  +  a  +  (m+  l)2  +  a}  —  1, 
and  the  three  numbers  automatically  satisfy  two  more 
conditions  (sec  p.  480  above).  It  only  remains  to  make 

2  {m2  +  a  +  (m  +  I)2 T a]  —  1  +  a  a  square, 

or  4  m2  +  4  ?*i  +  3  a  +  1  =  a  square, 

which  is  easily  solved. 
With  Diophantus  £  +  3  takes  the  place  of  m  in  V.  3 

and  |  takes  its  place  in  V.  4,  while  a  is  6  in  V.  3  and  6 
in  V.  4.] 

Vc         '^    2    i       2  2        22i2  2         ')     o    ,       *>  «o 
•          O.      X/     Z      "|     iA?       «—    y      ,      *j     vi/     "y*  Yy       —    O    ,      *A^     tf        i*  *f       •—•    v    , 

[Solved  by  means  of  the  Porism  numbered  2  on  p.  480. 
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V.    6.  x-2  =  r2,  T/-2  =  s2,  z-2  =  J2, 

yz—y—z  =  V?,  2#—  z—  x  =  ̂ 2>  xy—x—y  =  w'2> 
yz  —  x  =  u'2,  zx—y  =  v'2,  xy  —  z  =  it/2. 

[Solved  by  means  of  the  proposition  numbered  (3)  on 
p.  481.] 

Lemma*!  to  V.  7. 

(u 

V.    7. 

[Solved  by  means  of  the  subsidiary  problem  (Lemma  2) 
of  finding  three  rational  right-angled  triangles  with 
equal  area.  If  m,  n  satisfy  the  condition  in  Lemma  1, 

i.e.  if  mn  +  m2  -f  n2  =  p*,  the  triangles  are  '  formed  '  from 
the  pairs  of  numbers  (p,  m),  (p,  ri),  (p>  m  +  7i)  respec- 

tively. Diophantus  assumes  this,  but  it  is  easy  to  prove. 
In  his  case  m  =  3,  n  =  5,  so  that  p  =  7.  Now,  in 

a  right-angled  triangle,  (hypotenuse)2  +  four  times  area 
is  a  square.  We  equate,  therefore,  x  +  y  +  z  to  four 

times  the  common  area  multiplied  by  £2,  and  the  several 
numbers  x>  y,  z  to  the  three  hypotenuses  multiplied  by  £, 

and  equate  the  two  values.  In  Diophantus's  case  the 
triangles  are  (40,  42,  58),  (24,  70,  74)  and  (15,  112,  113), 

and  245£  =  3360£2.] 

V.    8.  yz±(x  +  y  +  z)  = 

[Solved  by  means  of  the  same  three  rational  right- 
angled  triangles  found  in  the  Lemma  to  V.  7,  together 

with  the  Lemma  that  we  can  solve  the  equations  7/0=  a2, 
zx  =  62,  xy  =  c2.] 

9.  (Of. 

11. 

[These    are    the    problems    of 
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described  above  (pp.  477-9).  The  problem  is  '  to  divide 
unity  into  two  (or  three)  parts  such  that,  if  one  and  the 

same  given  number  be  added  to  each  part,  the  results  are 

all  squares  '.]  % 

(V.  10.  x  +  y  =  1,  x  +  a  =  uz 

lV.  12.  x+y+z=  1,  x  +  a 

[These  problems  are  like  the  preceding  except  that 

different  given  numbers  are  added.  The  second  of  the 

two  problems  is  not  worked  out,  but  the  first  is  worth 

reproducing.  We  must  take  the  particular  figures  used 

by  Diophantus,  namely  a  =  2,  b  =  6.  We  have  then  to 

divide  9  into  two  squares  such  that  one  of  them  lies 
between  2  and  3.  Take  two  squares  lying  between  2 

and  3,  say  ff  f  ,  ff£.  We  have  then  to  find  a  square  £2 
lying  between  them  ;  if  we  can  do  this,  we  can  make 

9  —  J2  a  square,  and  so  solve  the  problem. 

Put  9-£2  =  (3-m£)2,  say,  so  that  £  =  6m/(m2+  1); 
and  m  has  to  be  determined  so  that  £  lies  between 
17    o,,/|    19 

1  2  
" 17         6m          19 

Therefore  t  ,  <  — — -  <  ,-5  • 
1  £         7)1~  T~  I  1  & 

Diophantus,  as  we  have  seen,  finds  afortioi4  integral 

limits  for  m  by  solving  these  inequalities,  making  m  not 

greater  than  f  £  and  not  less  than  f  f  (see  pp.  463-5  above). 

He  then  takes  m  =  3£  and  puts  9-£2  =  (3-3j£)a, 
which  gives  £  =  f  f .] 

( V.  13.  ;<j  +  2/  +  £  =  c&,  2/  +  £  =  u2,  2  +  a/  = 

V.  14.  a;  +gf  +  2  +  w  =  «,  x1 4- y  +  *  =  s2, 

[The  method  is  the  same.] 

V.  21.  aY2 

V.  22.  ory2 

V.  23.  x*-x*y*z2  =  u2,  y2-x*y*z*  =  v2,  z*-x2y***  =  ™2- 

[Solved  by  means  of  right-angled  triangles  in  rational 
numbers.] 
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V.  24.  2/V+  1  =  u\  z*x*+l  =  v*}  x*y*+l  =  w*. 

V.  25.  2/2s2-  1  =  u2,  z*x2-  1  =  v2,  a?V-  1  =  i(;2. 

V.  26.  1  -y2*2  =  u2,  1  -'02x2  =  v2,  1  -a2?/2  =  it;2. 

[These  reduce  to  the  preceding  set  of  three  problems.] 

V.  27.  2/2  +  s2  +  a  =  i62,  s2  +  a>2  +  tt  =  v2,  a2  +  ?/  +  a  =  ™2. 

V.  28.  2/2  +  s2-a  =  u2, 

V.  30.  mx  +  ny  =  u2, 

[This  problem  is  enunciated  thus.  'A  rnan  buys  a 
certain  number  of  measures  of  wine,  some  at  8  drachmas, 
some  at  5  drachmas  each.  He  pays  for  them  a  square 
number  of  drachmas  ;  and  if  60  is  added  to  this  number, 
the  result  is  a  square,  the  side  of  which  is  equal  to  the 
whole  number  of  measures.  Find  the  number  bought  at 

each  price.' 
Let  £  =  the  whole  number  of  measures  ;  therefore 

£2  —  60  was  the  number  of  drachmas  paid,  and  £2  —  60 
=  a  square,  say  (£  —  m)2;  hence  £  =  (m2  +  60)/2m. 
Now  %  of  the  price  of  the  five-drachma  measures  +  £ 

of  that  of  the  eight-drachma  measures  =  £  ;  therefore 

£2  —  60,  the  total  price,  has  to  be  divided  into  two  parts 
such  that  -|  of  one  -f  |  of  the  other  =  £. 

We  cannot  have  a  real  solution  of  this  unless 

*>i-(f-60)  and   <i(£2 

therefore  5£  <  £2~60  <  8£. 

Diophantus  concludes,  as  we  have  seen  (p.  464  above), 
that  £  is  not  less  than  11  and  not  greater  than  12. 

Therefore,  from  above,  since  £  =  (w2  +  60)/2m, 

22m  <  m2  +  60  <  24m; 

and  Diophantus  concludes  that  m  is  not  less  than  19  and 
not  greater  than  21.  He  therefore  puts  m  =  20. 

Therefore  £  =  (m2  +  60)/2m  =  ll£,  £2  =  132|,  and 
£2_60  =  72J. 

We  have  now  to  divide  72|;  into  two  parts  such  that 
|  of  one  part  +  1  of  the  other  =  1  \\. 
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Let  the  first  part  =  62;   therefore   J  (second  part) 

=  11^  —  0,  or  second  part  =  92  — Sz. 

Therefore     5z  +  92  -  8z  =  72%,  and  z  =  £f  5 

therefore  the  number  of  five-drachma  measures  is  f  f  and 
the  number  of  eight-drachma  measures  ff .] 

Lemma  2  to  VI.  1 2.  ax2  +  b  =  u2  (where  a  +  b  =  c2).  \  (see  p  467 
Lemma  to  VI.  1 5.  «o* -  &=u2  (where  ad2  -  6  =  c2).)        above.) 

f [III.  15].    xy+'x  +  y  =  u*,    x+l  = \  i 

\  v 

[III.  16].  iry-(x  +  y)  =  u*,  0-1  = 

(viii)  Indeterminate  analysis  of  the  third  degree. 

IV.    3.  x*y  =  u,  xy  =  u3. 
T    \r  n  O  <>  O  .>  .>  » 

I IV.    7.  or  +  2/2  =  u2,  z2  -I-  j/2  =  v\ 

|1V.    8. IV.    9. 

(really  reducible 

!1V.  10.  oj3  +  2/3  =  x  +  y.  \      to  the  second 

IV  11   T*-,fl-v-,n  !      degree>) A    f    .     JL   J.  .      «,(/  f 7        •—    i</  ̂ ~~   tl .  I  I 

^  the  same  problem. 
IV.  12.  x:i  +  2/  =  2/3  +  ffJ  I 

[We  may  give  as  examples  the  solutions  of  IV.  7,, 
IV.  8,  IV.  11. 

IV.  7.  Since  32  +  7/~  =  a  cube,  suppose 
To  make  x*  +  y*  a  square,  put  x3  =  a2 
which  also  satisfies  #3  —  jy2  =  £2.  We  have  then  to  make 
2  a&  a  square.  Let  a  =  £,  6=2^;  therefore  a2  -f  62  =  5  ̂2, 
2ab  =  4^2,  y  =  2£,  z  =  g,  and  we  have  only  to  make 
5£2  a  cube.  £  =  5,  and  #3  =  125,  2/2  =  100,  e2  =  25. 
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IV.  8.  Suppose  x  =  £,  y*  =  m3  £3  ;  therefore  u  =  (m  +  1  )  £ 
must  be  the  side  of  the  cube  m3£3  +  £,  and 

To  solve  this,  we  must  have  3m2  +  3m  +  1  (the  difference 
between  consecutive  cubes)  a  square.     Put 

3m2  +  3m  +1  =  (l-?irn)2,  and  m  =  (3  +  2n)/(n*-3). 

IV.  11.  Assume  x  =  (m-f  1)£,  y  =  m£,  and  we  have 
to  make  (3m3+3m2+  1)£2  equal  to  1,  i.e.  we  have 
only  to  make  3m2  +  3rn+  1  a  square.]  * 

IV.  18.  x*  +  y  -  u*,  y2  +  x  =  v\ 

IV.  24.  x  +  y  =  a,  xy*~  u?  —  u. 

[y  =  a  —  xm,  therefore  ax  —  x2  has  to  be  made  a  cube 
minus  its  side,  say  (mx—  I)3—  (mx  —  1). 

Therefore  ax  —  x2  =  m3  z*  —  3  m2  ,/j2  -f  2  m#. 

•» 

To  reduce  this  to  a  simple  equation,  we  have  only  to 
put  m  =  %aJ\ 

IV.  25.  x  +  y  +  z  =  a,  ,/:?/£  =  {  (x-y)  +  (x-z)  +  (?y-^)}:i- 
(,/•  >  T/  >  s) 

[The  cube  =  B(x  —  zf.  Let  cc  =  (m+  1)£,  0  =  m£,  so 
that  2/  =  8  £/  (m2  +  m),  and  we  have  only  to  contrive  that 
8/(m2  +  m)  lies  between  m  and  m/  +  1.  Dioph.  takes  the 

first  limit  8  >  mf'J  +  m2,  and  puts 

8  =  (m-f  £):5  or 

whence  m/  =  f  ;  therefore  #  =  §£,  £/  =  !£,  2  =  |£.    Or, 
multiplying  by  15,  we  have  x  =  40  £,  ?/  =  27  £,  s  =  25  £. 
The  first  equation  then  gives  £.] 

t 

(TV.  26.  CCT/  +  CC  =  u3,  xy  +  y  -=  v*. 

UV.  27.  a^—oj  =  u3,  xy—y  =  v3. 

IV.  28.  xy  +  (x  +  y)  =  u3,  xy~(x  +  y)  =  v3. 

[05  +  j/  =  ̂   (u3  —  v3),  xy  =  ̂   (u3  +  v3)  ;  therefore 

which   latter   expression   has   to    be    made    a    square. 
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Diophantus  assumes  u  =  £  +  1,  v  =  £—  1,  whence 

must  be  a*  square,  or 

therefore  32£3  =  36£2,  and  £  =  f  .  Thus  u,  v  are  found, 
and  then  x,  y. 

The  second  (alternative)  solution  uses  the  formula  that 

t(?-t)  +  (?-&  +  £  =  a  cube.  Put  x  =  £  y  =  £2-£ 
and  one  condition  is  satisfied.  We  then  only  have  to 

make  £(£*_£)  -£-(^-£)  or  £3-2g2  a  cube  (less  than 

IV.  38.  ( 

(«  +  2/  +  s)  5  =  w3,  [#  +  y  +  s  = 

[Suppose  a?  +  2/  +  z  =  52  5 

—      ^-^     ,  —  ,      —  --  ; 

therefore  £4  =  -J-u(i6  +  1)  +  v~  +  w:l. 

Diopliantus  puts  8  for  up,  but  we  may  take  any  cube,  as 

m3;  and  he  assumes  t/2  =  (^2—  I)'2,  for  which  we  might 
substitute  (£'2  —  w2)'2.  We  then  have  the  triangular 
number  %u(u+  1)  =  2?i2£2  —  u*  —  m3.  Since  8  times  a 
triangular  number  plus  1  gives  a  square, 

16/t2£2  —  8?i4-8m3  +  l  =  a  square  =  (4??£  -A;)'2,  say, 

and  the  problem  is  solved.] 

V.  15. 

[Let  x  +  y  +  z  =  ̂ ,  u3  =  m3£n,  ̂ a  =  n3^3,  w3  =  p3^3; 

therefore     £  =  {  (m3-  1)  +  (7i3-  1)  +  (y>3-  1)  }  £3  ; 

and  we  have  to  find  three  cubes  m<{,  7i3,  p*  such  that 
7^3  +  7i3+^3—  3  =  a  square.  Diophantus  assumes  as 
the  sides  of  the  cubes  (k+l),  (2  —  fc),  2;  this  gives 
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—  9k+  14  =  a  square  =  (3&—  Z)2,  say  ;  and  k  is  found. 
Retracing  our  steps,  we  find  £  and  therefore  x,  y,  z.] 

V.  16. 

V.  17.  x- 

V.  18. 

):J  -f  z  = 

[Put 
5  =  (r2-l)gfl,  whence  £2  =  (p2-!  +r/2-l  +ra-l)£°,  so 
that  p*  —  1  +  q2  —  1  +  T*  —  1  must  be  made  a  fourth 
power.  Diophantus  assumes  ^>2  =  (m2  —  1  )2,  q2  =  (m  +  1  )2, 
r2  =  (7>i—  I)2,  since  m4  —  2m2  +  m2  +  2m  +  m2  —  2m=m4.] 

V.  19. 

V.  I9a.  a;  +  2/  +  0  =  i2,  ̂ - 

V.  19.  1),  c.  x  +  y  +  z  =  a,  (a  +  y  +  $f  ±  #  = 

(./•  +  ?y  +  0)3  +  y  =  w2,  (,T 

V.  20. 

[IV.  8].  a;~?y  =  1,  a:i-?/3= 

[IV.  9,  10].  B8  +  7/«£( 

^2 

[IV.  11].  «>_»•  =  ̂>-2/). 

[V.  15].  cc3  +  2/3  +  s3-3  =u2. 

[V.  1  6].  3  -  (*3  +  y3  +  z3)  =  u2. 

[V.  17].  « 
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(ix)  Indeterminate  analysis  of  the  fourth  degree. 

V.  29.  o 

['  Why  ',  says  Format,  '  did  not  Diophantus  seek  tivo 
fourth  powers  such  that  their  sum  is  a  square.  This 
problem  is,  in  fact,  impossible,  as  by  my  method  I  am 

able  to  prove  with  all  rigour.'  No  doubt  Diophantus 
knew  this  truth  empirically.  Let  x*  =  £2,  2/2  =  p*, 
z*  =  q*.  Therefore  £4  +  p*  +  (f  =  a  square  =  (£2  —  r)2,  say  ; 
therefore  g  2  =  (r2  —  p*  —  q*)/Zr,  and  we  have  to  make 
this  expression  a  square. 

Diophantus  puts  r  =  p2  +  4,  q*  =  4,  so  that  the  expres- 
sion reduces  to  Sp^/(2jr  +  8)  or  *p*/(fP  +  4).  To  make 

tliis  a  square,  let  .//-  +  4  =  (jj  +  I)2,  say  ;  therefore  p  =  l£, 
and  p*  =  2i,  g2  =  4,  r=6£;  or  (multiplying  by  4) 
jp2  =  9,  j2  =  16,  r  =  25,  which  solves  the  problem.] 

[V.  18]. 

(See  above  under  V.  18.) 

(x)  Problems  of  constructing  right-angled  triangles  witli 
sides  in  rational  numbers  and  satisfying  various 

other  conditions. 

[I  shall  in  all  cases  call  the  hypotenuse  z,  and  the 

other  two  sides  a1,  yy  so  that  the  condition  a?2  +  y*  =  £2 
applies  in  all  cases,  in  addition  to  the  other  conditions 
specified.] 

[Lemma  to  V.  7].     xy  =  ayj^  =  #2?/2. 

VI.  1.  z-x  =  u*>  z-y  =  v\ 

[Form  a  right-angled  triangle  from  g,  m,  so  that 

z  =  £2  +  w2,  x  =  2m£,  ?/  =  £2  —  w2;  thus  z  —  y  =  2m2, 
and,  as  this  must  be  a  cube,  we  put  in  =  2 ;  therefore 

0— #  =  £*—  4£  +  4  must  be  a  cube,  or  £  —  2=a  cube, 

say  /t:J,  and  £  =  W  +  2.] 

I.  2. 
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VI.  3. 

[Suppose  the  required  triangle  to  be  hg,pg,bg;  there- 

fore %pbg*  4-  a  =  a  square  =  ™2£2,  say,  and  the  ratio  of  a 
to  ?i2  —  %pb  must  be  the  ratio  of  a  square  to  a  square. 

To  find  n,  p,  b  so  as  to  satisfy  this  condition,  form 

a  right-angled  triangle  from  m,  —  > 

1  /         2a\- therefore  -J«6  =  m2   5  •      Assume  n-  =  ( m+  - f))l,~  \  • 

therefore  n%  —  %vb  =  4  a  +         .,     ;  and  (  4  < t  + ')U-  \ 

or  4a2+  -     ao — -9    has  to  be  made  a  square.      Put 

m2 

4a2'm2  +  a(4a2  + 1)  =  (2am  +  fc)2,  and  we  have  a  solution. 
Diophantus  has  a  =  5,  leading  to  100m2  +  505  =  a  square 
=  (10m  +  5)2,  say,  which  gives  m  =  2/-  and  n  =  ̂03-. 
/*,  y,  6  are  thus  determined  in  such  a  way  that 

%pbg*  +  a  =  ̂ 2£2  gives  a  rational  solution.] 
VI.  4. 

VI.  5.  tt-i#2/  =  <M2. 

VI.  6.  %xy  +  x  =  a. 

[Assume  the   triangle    to    be   &£,    y>£,   />^,    so    that 
=  a>  and  for  a  rational  solution  of  this  equa- 

tion we  must  Rave  (%p)2  +  a(%pty  a  square.  Diophantus 
assumes  p  =  1,  ?>  =  m,  whence  ^am  +  £  or  2am-fl 
=  a  square. 

But,  since  the  triangle  is  rational,tow2  +  I  =  a  square. 
That  is,  we  have  a  double  equation.  Difference 

=  m2  —  2am  =  m(m  —  2a).  Put 

2am  +  1  =  {i(m-m~2a)  }2  =  a2,  and>i  =  (a2-  l)/2a. 
The  sides  of  the  auxiliary  triangle  are  thus  determined 
in  such  a  way  that  the  original  equation  in  £  is  solved 
rationally.] 

VI.  7.  \m-x  =  a. 
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rVI.  8. 

I  VI.  9.  %xy-(x  +  y)  -a. 
[With  the  same  assumptions  we  have  in  these  cases 

to  make  {%('p  +  fy}*  +  a(%pb)  a  square.  Diophantus 
assumes  as  before  1  ,  m  for  the  values  of  p,  b,  and  obtains 
the  double  equation 

i  (m  +  1  )2  +  Jam  =  square] r  ? 
m2  +  l  =  square) 

m2  +  (2  a  +  2)  m  +  1  =  square) or  f  9 
m2  +  1  =  square) 

solving  in  the  usual  way.] 

{VI
.  10. VI. 

 
11. 

[In  these  cases  the  auxiliary  right-angled  triangle  has 
to  be  found  such  that 

=  a  square. 

Diophantus  assumes  it  formed  from  1,  m  +  1  ;  thus 

J(fc+p)2  =  i  [ma  +  2m  +  2  +  m2  +  2m}2  =  (m<2+  2m  +  I)2, 

and  a  (£  ̂>&)  =  a  (m  +  1  )  (?>i2  +  2  ??i)  . 
therefore 

w4  +  (a  +  4)m3  +  (See  +  6)m2  +  (2a  +  4)m  +  1 
=  a  square 

and  7?i  is  found.] 

Lemma  1  to  VI.  12.  x  = 

r  VI.  12.  %xy  +  x  =  u* 

I  VI.  13.  %xy—x  =  tt2,  %xy—y  =  v2. 

[These  problems  and  the  two  following  are  interesting, 
but  their  solutions  run  to  some  length;  therefore  only 
one  case  can  here  be  given.  We  will  take  VI.  1  2  with 
its  Lemma  1  . 
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Lemma  1.  If  a  rational  right-angled  triangle  be  formed 

from  m,  n,  the  perpendicular  sides  are  2mu,  m2  —  n2. 
We  will  suppose  the  greater  of  the  two  to  be  2mn. 
The  first  two  relations  are  satisfied  by  making  m  =  2  n. 
Form,  therefore,  a  triangle  from  £,  2£.  The  third  con- 

dition then  gives  6  £4  +  3  £2  =  a  square  or  6  £2  +  3  =  a 
square.  One  solution  is  £  =  1  (and  there  are  an  infinite 
number  of  others  to  be  found  by  means  of  it).  If  £  =  1, 
the  triangle  is  formed  from  1,2. 

VI.  12.  Suppose  the  triangle  to  be  (&£,  b£,p£).  Then 

(%pb)¥+p£  =  &  square  =  (A;  £)2,  say,  and  g=p/(l<?-%pty. 
This  value  must  be  such  as  to  make  (^  pfyg*  +  ̂£  a  square 
also.  By  substitution  of  the  value  of  £  we  get 

so  that  bf)k?  +  ̂p*l>(p-'l))  must  be  a  square;  or,  if  p, 
the  greater  perpendicular,  is  made  a  square  number, 

hk*  +  %pl)(p  —  b)  has  to  be  made  a  square.  This  by 
Lemma  2  (see  p.  467  above)  can  be  made  a  square  if 

b  +  %  pb(p-b)  is  a  square.  How  to  solve  these  problems, 
says  Diophantus,  is  shown  in  the  Lemmas.  It  is  not 
clear  how  they  were  applied,  but,  in  fact,  his  solution 

is  such  as  to  make  p,  JM  —  &,  and  b  +  ̂ pb  all  squares, 
namely  b  =  3,  p  =  4,  h  =  5. 
Accordingly,  putting  for  the  original  triangle  3£,  4£,  5£, 
we  have 

6  £2  +  4  1  =  a  square  j 

6£2+  3£  =  a  square) 

Assuming  6£2  +  4£  =  m2£2,  we  have  £  =  4/(m2  —  6),  and 
the  second  condition  gives 

96  12 
—T  —  r^  —  o  —  ̂ 7;  H  ---  o  —  ;.  =  a  square, 
m4—  12m2  +  36      m2  —  6  1        ' 

or  1  2  m2  +  2  4  =  a  square. 

This  can  be  solved,  since  m  =  1  satisfies  it  (Lemma  2). 

A  solution  is  m2  =  25,  whence  £  =  T4§.] 

(VI.  14.  %xy-z  =  u2, 

I  VI.  15.  %xy  +  z  =  u2, 
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[The  auxiliary  right-angled  triangle  in  this  case  must 
be  such  that 

m2/ijp  —  %pb.p(h  —  p)  is  a  square. 

If,  says  Diophantus  (VI.  14),  we  form  a  triangle  from 
the  numbers  X19  X%  and  suppose  that  p  =  2  Xl  X2,  and  if 

we  then  divide  out  by  (Xl  —  X2)2,  which  is  equal  to  h—  p, 
we  must  find  a  square  /o2  [=  m*/(Xl  —  X2)2]  such  that 
Whp  —  %pb  .  p  is  a  square. 

The  problem,  says  Diophantus,  can  be  solved  if  Xlt  X2 

m'
2 

are  '  similar  plane  numbers  '  (numbers  such  as  aft,  —  -  aft). 

This  is  stated  without  proof,  but  it  can  easily  be  verified 

that,  if  A;2  =  Xl  X<2  ,  the  expression  is  a  square.  Dioph. 
takes  4,  1  as  the  numbers,  so  that  &2  =  4.  The  equation 
for  m  becomes 

8  .  1  7m2  —  4  .  1  5  .  8  .  9  =  a  square, 

or  136m2  -4  320  =  a  square. 

The  solution  m2  =  36  (derived  from  the  fact  that 

P  -  m2/(^i-  Ar2)2,  or  4  =  m<2/32) 
satisfies  the  condition  that 

m*kp  —  %pb  .  p(h—p)  is  a  square.] 

VI.  16.      +  ri  =  x 

(To  find  a  rational  right-angled  triangle  such  that  the 
number  representing  the  (portion  intercepted  within 
the  triangle  of  the)  bisector  of  an  acute  angle  is  rational. 

Let  the  bisector  be  5£,  the  segment  BD  of  the  base  3£, 
so  that  the  perpendicular  is  4£. 

Let        GB  =  3  n.     Then  AC  :  AB  =  CD  :  DB, 
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so  that    AC  =  4  (n  -  £).    Therefore  (Eucl.  I.  47) 

so  that   £  =  7  ft2/  32  u  =  ̂ \?i.    [Dioph.  has  n  =  1.] 

•  VI.  17. 

[Let  £  be  the  area  £#2/,  and  let  0  =  &2  —  £.  Since 
a'^/  =  2£,  suppose  a?  =  2,  T/  =  £.  Therefore  2  +  fc2  must 
be  a  cube.  As  we  have  seen  (p.  475),  Diophantus 

takes  (m—  I)3  for  the  cube  and  (m-h  I)2  for  &2,  giving 
m8—  3m2  +  3m—  l=m2  +  2m  +  3,  whence  m=4.  There- 

fore k  =  5,  and  we  assume  %xy  =  ̂ ,  s;  =  25  —  £,  with 
,r  =  2,  ?/  =  I  as  before.  Then  we  have  to  make 

.  VI.  18.  %wj  +  z  =  w\  x  +  y  +  z  =  v*. 

VI.  19.  %xy  +  x  =  u2, 

[Here  a  right-angled  triangle  is  formed  from  one  odd 
number,  say  2£  +  l,  according  to  the  Pythagorean  for- 

mula m2+  {|(7>i2—  I)}2  =  {^(wi2  +  l)}2,  where  m  is  an 
odd  number.  The  sides  are  therefore  2£+l,  2£2+2£, 
2£2  +  2£  +  1  .     Since  the  perimeter  =  a  cube, 

%. 

l    =  a  cube. 

Or,  if  we  divide  the  sides  by  £+1,  4£  +  2  has  to  be 
made  a  cube. 

Again  \xy  +  x  =  -^—2 — ^      s  +   -f       =  a  sijuarc, 

which  reduces  to  2£  +  1  =  a  square. 
But  4£  +  2  is  a  cube.    We  therefore  put  8  for  the  cube, 

and  £=1*.] 

VI.  20.  %xy  +  x  —  us,  x+y  +  z  =  v2. 

VI.  21. 

[Form  a  right-angled  triangle  from  £,  1,  i.e.  (2£,  £2—  1, 
+  1).    Then  2^2  +  2£  must  be  a  square,  and  £3  +  2 
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a  cube.     Put  2£2  +  2£  =  m2£2,  so  that  £  =  2/(m2~2), and  we  have  to  make 

8  8  2  2m,4 

Make     2m    a    cube  =  ?&3,     so    that    2m4  =  m37«,3,    and 
g 

mzr^w3;     therefore   £  =    -  --    *   and  £  must  be  made n  —  8 

greater  than  1,  in  order  that  £2  —  1  may  be  positive. 

Therefore  8  <  ™°  <  16  ; 

this  is  satisfied  by  M°  =  3ffi  or  wj  =  %7-,  and  m  =  |£.] 

VI.  22. 

[(1)  First  seek  a  rational  right-angled  triangle  such 
that  its  perimeter  and  its  area  are  given  numbers, 

say  p,  m. 

Let  the  perpendiculars  be  --,  2???^;  therefore  the  hypo- 

tenuse =  p—    -  —  3mf,  and  (Eucl.  I.  47) 

or 

-         -  =       +  4m- 

j»2  +  4  m  =  4  mpg  +  -~  » 

that  is,  (  />2  -f  4  771)  ̂   =  4  r>^>  ̂ 2  +•  2^. 

(2)  In  order  that  this  may  have  a  rational  solution, 

(  \  (if  +  4  m)  ]  2  —  8p2  7>i  must  be  a  square, 

i.e.  4  m2  —  6  £>2  m  +  £  jp4  =  a  square, 

or  m2  —  f  p'2m  +  T^p4  =  a  square^ 
Also,  by  the  second  condition,  m+p  =  a  square) 

To  solve  this,  we  must  take  for  p  some  number  which 
is  both  a  square  and  a  cube  (in  order  that  it  may  be 
possible,  by  multiplying  the  second  equation  by  some 
square,  to  make  the  constant  term  equal  to  the  constant 
1583.2  L  1 
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term  in  thq  first).  Diophantus  takes  p  =  64,  making 
the  equations 

m2—  6  144m  +  1048576  =  a  square] 

m  +  64  =  a  square) 

Multiplying  the  second  by  16384,  and  subtracting  the  two 

expressions,  we  have  as  the  difference  m2  —  22528m. 
Diophantus  observes  that,  if  we  take  m,  m  —  22528  as 

the  factors,  we  obtain  m  =  7680,  an  impossible  value  for 

the  area  of  a  right-angled  triangle  of  perimeter  p  =  64. 
We  therefore  take  as  factors  llm,  -j^m  —  2048,  and, 

equating  the  square  of  half  the  difference  (  =  f  f  m  +  1024) 

to  16384m  +  1048576,  we  have  ?>i  =  a|j|4. 

(3)  Returning  to  the  original  problem,  we  have  to 
substitute  this  value  for  m  in 

» 

and  we  obtain 
=  0, 

the  solution  of  which  is  rational,  namely  £  =  -fife  (or 
Diophantus  naturally  takes  the  first  value,  though  the 
second  gives  the  same  triangle.] 

VI.  23.  02  = 

VI.  24.  z  =  u*  +  u,  x  —  v*  —  v,  y  =  iu\ 

[VI.  6,  7].  ($x 

[VI.  8,  9].  {$( 

[VI.  10,  11].  { 

[VI.  12.]  y  +  (a-y)  .  %xy  =  u2,  x  =  v*.     (x  >  y.) 

[VI.  14,  16].  u*zx-%ay  .x(z-x)  =  v2.     (u2  <  or  > 

^  treatise  on  Polygonal  Numbers. 

The  subject  of  Polygonal  Numbers  on  which  Diophantus 
also  wrote  is,  as  we  have  seen,  an  old  one,  going  back  to  the 
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Pythagoreans,  while  Philippus  of  Opus  and  Speusippus  carried 
on  the  tradition.  Hypsicles  (about  170  B.C.)  is  twice  men- 

tioned by  Diophantus  as  the  author  of  a  '  definition  '  of 
a  polygonal  number  which,  although  it  does  not  in  terms 
mention  any  polygonal  number  beyond  the  pentagonal, 
amounts  to  saying  that  the  nth  a-gon  (1  counting  as  the 
tirst)  is 

£M{2  +  (n-l)(a-.2)j. 

Theon  of  Smyrna,  Nicomachus  and  lamblichus  all  devote 
some  space  to  polygonal  numbers.  Nicomachus  in  particular 
gives  various  rules  for  transforming  triangles  into  squares, 
squares  into  pentagons,  &c. 

1.  If  we  put  two  consecutive  triangles  together,  we  get  a  square. 
In  fact 

2.  A  pentagon  is  obtained  from  a  square  by  adding  to  it 
a  triangle  the  side  of  which  is  1  less  than  that  of  the  square  ; 
similarly  a  hexagon  from  a  pentagon  by  adding  a  triangle 
the  side  of  which  is  1  loss  than  that  of  the  pentagon,  and  so  on. 

In  fact 

3.  Nicomachus  sets  out  the  first  triangles,  squares,  pentagons, 
hexagons  and  heptagons  in  a  diagram  thus  : 

Triangles  13  6  10  15  21  28  36  15  55, 

Squares  I      4  1)  16  25  36  19  64  81  100, 

Pentagons  1      5  12  22  35  51  70  92  117  145, 

Hexagons  1      G  15  28  45  66  91  120  153  190, 

Heptagons  1      7  18  34  55  81  112  148  189  235, 

and  observes  that  : 

Each  polygon  is  equal  to  the  polygon  immediately  above  it 
in  the  diagram  plus  the  triangle  with  1  less  in  its  side,  i.  e.  the 
triangle  in  the  preceding  column. 

Ll2 
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4.  The  vertical  columns  are  in  arithmetical  progression,  the 
common  difference  being  the  triangle  in  the  preceding  column. 

Plutarch,  a  contemporary  of  Nicomachus,  mentions  another 
method  of  transforming  triangles  into  squares.  Every  tri- 

angular number  taken  eight  times  and  then  increased  by  1 
gives  a  square. 

In  fact,  8.%n(n+l)  +  l  =  (2w+l)a. 

<• 

Only  a  fragment  of  Diophantus's  treatise  On  Polygonal 
Numbers  survives.  Its  character  is  entirely  different  from 
that  of  the  Arithmetica.  The  method  of  proof  is  strictly 
geometrical,  and  has  the  disadvantage,  therefore,  of  being  long 
and  involved.  He  begins  with  some  preliminary  propositions 
of  which  two  may  be  mentioned.  Prop.  3  proves  that,  if  a  be 
the  first  and  I  the  last  term  in  an  arithmetical  progression 
of  n  terms,  and  if  s  is  the  sum  of  the  terms,  2s  =  n(l  +  a). 
Prop.  4  proves  that,  if  1,  1+6,  1  +  26,  ...  1  +(71—  1)6  be  an 
A.  P.,  and  s  the  sum  of  the  terms, 

The  main  result  obtained  in  the  fragment  as  we  have  it 

is  a  generalization  of  the  formula  8  .  %n(n  +  1)  +  1  =  (2  n  +  1  )2. 

Prop.  5  proves  the  fact  stated  in  Hypsicles's  definition  and  also 
(the  generalization  referred  to)  that 

8  P  (a  —  2)  +  (a  —  4)2  =  a  square, 

where  P  is  any  polygonal  number  with  a  angles. 
It  is  also  proved  that,  if  P  be  the  nth  a-gonal  number 

(1  being  the  first), 

Diophantus  deduces  rules  as  follows. 

1.  To  find  the  number  from  its  side. 

{2  +  (2?t~l)(c6-2)}2 
8(a-2) 

2.  To  find  the  side  from  the  number. 
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The  last  proposition,  which  breaks  off  in  the  middle,  is  : 

Given  a  number,  to  find  in  how  many  ways  it  can  be 
polygonal. 

The    proposition   begins   in   a   way    which   suggests  that 
Diophantus  first  proved  geometrically  that,  if 

-4)2=  {2  +  (2n-  1)  (a-2)]2, 

then  2P  =  n{2+  (n-l)(a-2)}. 

Wertheim  (in  his  edition  of  Diophantus)  has  suggested  a 
restoration  of  the  complete  proof  of  this  proposition,  and 
I  have  shown  (in  my  edition)  how  the  proof  can  be  made 
shorter.  Wertheim  adds  an  investigation  of  the  main  pro- 

blem, but  no  doubt  opinions  will  continue  to  differ  as  to 
whether  Diophantus  actually  solved  it. 



XXI 

COMMENTATORS    AND    BYZANTINES 

WE  have  come  to  the  last  stage  of  Greek  mathematics ;  it 
only  remains  to  include  in  a  last  chapter  references  to  com- 

mentators of  more  or  less  note  who  contributed  nothing 
original  but  have  preserved,  among  observations  and  explana- 

tions obvious  or  trivial  from  a  mathematical  point  of  view, 
valuable  extracts  from  works  which  have  perished,  or 
historical  allusions  which,  in  the  absence  of  original  docu- 

ments, are  precious  in  proportion  to  their  rarity.  Nor  must 
it  be  forgotten  that  in  several  cases  we  probably  owe  to  the 
commentators  the  fact  that  the  masterpieces  of  the  great 
mathematicians  t  have  survived,  wholly  or  partly,  in  the 
original  Greek  or  at  all.  This  may  have  been  the  case  even 
with  the  works  of  Archimedes  on  which  Eutocius  wrote  com- 

mentaries. It  was  no  doubt  these  commentaries  which 

aroused  in  the  school  of  Isidorus  of  Miletus  (the  colleague 
of  Anthemius  as  architect  of  Saint  Sophia  at  Constantinople) 
a  new  interest  in  the  works  of  Archimedes  and  caused  them 
to  be  sought  out  in  the  various  libraries  or  wherever  they  had 
lain  hid.  This  revived  interest  apparently  had  the  effect  of 
evoking  new  versions  of  the  famous  works  commented  upon 
in  a  form  more  convenient  for  the  student,  with  the  Doric 
dialect  of  the  original  eliminated;  this  translation  of  the 
Doric  into]  the  more  familiar  dialect  was  systematically 
carried  out  in  those  books  only  which  Eutocius  commented 
on,  and  it  is  these  versions  which  alone  survive.  Again, 

Eutocius's  commentary  on  Apollonius's  Conies  is  extant  for 
the  first  four  Books,  and  it  is  probably  owing  to  their  having 
been  commented  on  by  Eutocius,  as  well  as  to  their  being 
more  elementary  than  the  rest,  that  these  four  Books  alone 
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survive  in  Greek.  Tannery,  as  we  have  seen,  conjectured 
that,  in  like  manner,  the  first  six  of  the  thirteen  Books  of 

Diophantus's  Arithmetica  survive  because  Hypatia  wrote 
commentaries  on  these  Books  only  and  did  not  reach  the 
others. 

The  first  writer  who  calls  for  notice  in  this  chapter  is  one 
who  was  rather  more  than  a  commentator  in  so  far  as  he 

wrote  a  couple  of  treatises  to  supplement  the  Conies  of 
Apollonius,  I  mean  SERENUS.  Serenus  came  from  Antinoeia 
or  Antinoupolis,  a  city  in  Egypt  founded  by  Hadrian  (A.  D. 
117-38).  His  date  is  uncertain,  but  he  most  probably  be- 

longed to  the  fourth  century  A.D.,  and  came  between  Pappus 
and  Theon  of  Alexandria.  He  tells  us  himself  that  he  wrote 

a  commentary  on  the  Conies  of  Apollonius.1  This  has 
perished  and,  apart  from  a  certain  proposition  'of  Serenus 

the  philosopher,  from  the  Lemmas '  preserved  in  certain  manu- 
scripts of  Theon  of  Smyrna  (to  the  effect  that,  if  a  number  of 

rectilineal  angles  be  subtended  at  a  point  on  a  diameter  of  a 
circle  which  is  not  the  centre,  by  equal  arcs  of  that  circle,  the 
angle  nearer  to  the  centre  is  always  less  than  the  angle  more 
remote),  we  have  only  the  two  small  treatises  by  him  entitled 
On  the  Section  of  a  Cylinder  and  On  the  Section  of  a  Cone. 
These  works  came  to  be  connected,  from  the  seventh  century 
onwards,  with  the  Conies  of  Apollonius,  on  account  of  the 
affinity  of  the  subjects,  and  this  no  doubt  accounts  for  their 
survival.  They  were  translated  into  Latin  by  Commandinus 

in  1566  ;  the  first  Greek  text  was  brought'out  by  Halley  along 
with  his  Apollonius  (Oxford  1710),  and  we  now  have  the 
definitive  text  edited  by  Heiberg  (Teubner  1896). 

(a)  On  the  Section  of  a  Cylinder. 

The  occasion  and  the  object  of  the  tract  On  the  Section  of 
a  Cylinder  are  stated  in  the  preface.  Serenus  observes  that 
many  persons  who  were  students  of  geometry  were  under  the 
srroneous  impression  that  the  oblique  section  of  a  cylinder 
was  different  from  the  oblique  section  of  a  cone  known  as  an 
ellipse,  whereas  it  is  of  course  the  same  curve.  Hence  he 
thinks  it  necessary  to  establish,  by  a  regular  geometrical 

1  Serenus,  Opitscula,  ed.  Heiberg,  p.  52.  25-6. 
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proof,  that  the  said  oblique  sections  cutting  all  the  generators 
are  equally  ellipses  whether  they  are  sections  of  a  cylinder  or 

of  a  cone.  He  begins  with  '  a  more  general  definition  '  of  a 
cylinder  to  include  any  oblique  circular  cylinder.  '  If  in  two 
equal  and  parallel  circles  which  remain  fixed  the  diameters, 
while  remaining  parallel  to  one  another  throughout,  are  moved 
round  in  the  planes  of  the  circles  about  the  centres,  which 
remain  fixed,  and  if  they  carry  round  with  them  the  straight  line 
joining  their  extremities  on  the  same  side  until  they  bring  it 
back  again  to  the  same  place,  let  the  surface  described  by  the 
straight  line  so  carried  round  be  called  a  cylindrical  surface! 
The  cylinder  is  the  figure  contained  by  the  parallel  circles  and 
the  cylindrical  surface  intercepted  by  them;  the  parallel 
circles  are  the  bases,  the  axis  .  is  the  straight  line  drawn 
through  their  centres;  the  generating  straight  line  in  any 

position  is  a  side.  Thirty-three  propositions  follow.  Of  these 
Prop.  6  proves  the  existence  in  an  oblique  cylinder  of  the 
parallel  circular  sections  subcontrary  to  the  series  of  which 
the  bases  are  two,  Prop.  9  that  the  section  by  any  plane  not 
parallel  to  that  of  the  bases  or  of  one  of  the  subcontrary 
sections  but  cutting  all  the  generators  is  not  a  circle  ;  the 
next  propositions  lead  up  to  the  main  results,  namely  those  in 
Props.  14  and  16,  where  the  said  section  is  proved  to  have  the 
property  of  the  ellipse  which  we  write  in  the  form 

and  in  Prop.  17,  where  the  property  is  put  in  the  Apollonian 

form  involving  the  latus  rectum,  QV2  =  PV  .  VR  (see  figure 
on  p.  137  above),  which  is  expressed  by  saying  that  the  square 

on  the  semi-ordinate  is  equal  to  the  rectangle  applied  to  the 
latus  rectum  PL,  having  the  abscissa  PFas  breadth  and  falling 
short  by  a  rectangle  similar  to  the  rectangle  contained  by  the 

diameter  PP'  and  the  latus  rectum  PL  (which  is  determined 
by  the  condition  PL  .  PP'=  DIY*  and  is  drawn  at  right  angles 
to  PF).  Prop.  18  proves  the  corresponding  property  with 

reference  to  the  conjugate  diameter  DD'  and  the  correspond- 
ing latus  rectum,  and  Prop.  19  gives  the  main  property  in  the 

form  QF2  :  PF  .  P/F  =  Q'F'2  :  PF7.  P*V.  Then  comes  the 
proposition  that  '  it  is  possible  to  exhibit  a  cone  and  a  cylinder 
which  are  alike  cut  in  one  and  the  same  ellipse  '  (Prop.  20). 
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Serenus  then  solves  such  problems  as  these:  Given  a  cone 
(or  cylinder)  and  an  ellipse  on  it,  to  find  the  cylinder  (cone) 
which  is  cut  in  the  same  ellipse  as  the  cone  (cylinder) 
(Props.  21,  22);  given  a  cone  (cylinder),  to  find  a  cylinder 
(cone)  and  to  cut  both  by  one  and  the  same  plane  so  that  the 
sections  thus  made  shall  be  similar  ellipses  (Props.  23,  24). 
Props.  27,  28  deal  with  similar  elliptic  sections  of  a  scalene 
cylinder  and  cone  ;  there  are  two  pairs  of  infinite  sets  of  these 
similar  to  any  one  given  section,  the  first  pair  being  those 
which  are  parallel  and  subcontrary  respectively  to  the  given 
section,  the  other  pair  subcontrary  to  one  another  but  not  to 
either  of  the  other  sets  and  having  the  conjugate  diameter 
occupying  the  corresponding  place  to  the  transverse  in  the 
other  sets,  and  vice  versa. 

In  the  propositions  (29-33)  from  this  point  to  the  end  of 
the  book  Serenus  deals  with  what  is  really  an  optical  pro- 

blem. It  is  introduced  by  a  remark  about  a  certain  geometer, 
Peithon  by  name,  who  wrote  a  tract  on  the  subject  of 

parallels.  Peithon,  not  being  satisfied  with  Euclid's  treat- 
ment of  parallels,  thought  to  define  parallels  by  means  of  an 

illustration,  observing  that  parallels  are  such  lines  as  are 
shown  on  a  wall  or  a  roof  by  the  shadow  of  a  pillar  with 
a  light  behind  it.  This  definition,  it  appears,  was  generally 
ridiculed ;  and  Serenus  seeks  to  rehabilitate  Peithon,  who 
was  his  friend,  by  showing  that  his  statement  is  after  all 
mathematically  sound.  He  therefore  proves,  with  regard  to 
the  cylinder,  that,  if  any  number  of  rays  from  a  point  outside 
the  cylinder  are  drawn  touching  it  on  both  sides,  all  the  rays 
pass  through  the  sides  of  a  parallelogram  (a  section  of  the 

cylinder  parallel  to  the  axis) — Prop.  29 — and  if  they  are 
produced  farther  to  meet  any  other  plane  parallel  to  that 
of  the  parallelogram  the  points  in  which  they  meet  the  plane 
will  lie  on  two  parallel  lines  (Prop.  30) ;  he  adds  that  the  lines 

will  not  seem  parallel  (vide  Euclid's  Optics,  Prop.  6).  The 
problem  about  the  rays  touching  the  surface  of  a  cylinder 
suggests  the  similar  one  about  any  number  of  rays  from  an 
external  point  touching  the  surface  of  a  cone ;  these  meet  the 
surface  in  points  on  a  triangular  section  of  the  cone  (Prop.  32) 
and,  if  produced  to  meet  a  plane  parallel  to  that  of  the 
triangle,  meet  that  plane  in  points  forming  a  similar  triangle 
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(Prop.  33).  Prop.  31  preceding  these  propositions  is  a  par- 
ticular case  of  the  constancy  of  the  anharmonic  ratio  of  a 

pencil  of  four  rays.  If  two  sides  AB,  AC  of  a  triangle  meet 
a  transversal  through  D,  an  external  point,  in  E,  .Fantl  another 
ray  AG  between  AB  and  AC  cuts  DEF  in  a  point  G  such 
that  ED :  DF  =  EG :  GF,  then  any  other  transversal  through 
1)  meeting  AB,  AG,  AC  in  K,  L,  M  is  also  divided  harmoni- 

cally, i.e.  KD :  DM  =  KL :  LM.  To  prove  the  succeeding  pro- 
positions, 32  and  33,  Serenus  uses  this  proposition  and  a 

reciprocal  of  it  combined  with  the  harmonic  property  of  the 
pole  and  polar  with  reference  to  an  ellipse. 

(/3)  On  the  Section  of  a  Gone. 

The  treatise  On  the  Section  of  a  Cone  is  even  less  important, 
although  Serenus  claims  originality  for  it.  It  deals  mainly 
with  the  areas  of  triangular  sections  of  right  or  scalene  cones 
made  by  planes  passing  through  the  vertex  and  either  through 
the  axis  or  not  through  the  axis,  showing  when  the  area  of 
a  certain  triangle  of  a  particular  class  is  a  maximum,  under 
what  conditions  two  triangles  of  a  class  may  be  equal  in  area, 
and  so  on,  and  solving  in  some  easy  cases  the  problem  of 

finding  triangular  sections  of  given  area.  This  sort  of  investi- 
gation occupies  Props.  1-57  of  the  work,  these  propositions 

including  various  lemmas  required  for  the  proofs  of  the 

substantive  theorems.  Props.  58-69  constitute  a  separate 
section  of  the  book  dealing  with  the  volumes  of  right  cones 
in  relation  to  their  heights,  their  bases  and  the  areas  of  the 
triangular  sections  through  the  axis. 

The  essence  of  the  first  portion  of  the  book  up  to  Prop.  57 
is  best  shown  by  means  of  modern  notation.  We  will  call  h 
the  height  of  a  right  cone,  r  the  radius  of  the  base ;  in  the 
case  of  an  oblique  cone,  let  p  be  the  perpendicular  from  the 
vertex  to  the  plane  of  the  base,  d  the  distance  of  the  foot  of 
this  perpendicular  from  the  centre  of  the  base,  r  the  radius 
of  the  base. 

Consider  first  the  right  cone,  and  let  2x  be  the  base  of  any 
triangular  section  through  the  vertex,  while  of  course  2r  is 
the  base  of  the  triangular  section  through  the  axis.  Then,  if 
A  be  the  area  of  the  triangular  section  with  base  2x, 
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Observing  that  the  sum  of  x*  and  ra  —  x2  +  IP  is  constant,  we 
see  that  A2,  and  therefore  A,  is  a  maximum  when 

0«  =  r*-a;»  +  A*,     or    a*  =  £  (r8  +  A8)  ; 

and,  since  a?  is  not  greater  than  r,  it  follows  that,  for  a  real 

value  of  x  (other  than  r),  h  is  less  than  r,  or  the  cone  is  obtuse- 
angled.  When  h  is  not  less  than  r,  the  maximum  triangle  is 
the  triangle  through  the  axis  and  vice  versa  (Props.  5,  8)  ; 
when  h  =  r,  the  maximum  triangle  is  also  right-angled 
(Prop.  13). 

If  the  triangle  with  base  2  c  is  equal  to  the  triangle  through 

the  axis,  Aar*  =  c2  (ra-c8  +  Aa),  or  (ra-c2)  (c2-/*2)  =  0,  and, 
since  c<r,  A  =c,  so  that  h<r  (Prop.  10).  If  x  lies  between  7* 
and  c  in  this  case,  (r2  -  x1)  (a8  -  h*)  >  0  or  *2  (r2  -  jp  +  A2)  >  A2r2, 
and  the  triangle  with  base  2x  is  greater  than  either  of  the 
equal  triangles  with  bases  2r,  2c,  or  2h  (Prop.  11). 

In  the  case  of  the  scalene  cone  Sereiius  compares  individual 
triangular  sections  belonging  to  one  of  three  classes  with  other 
sections  of  the  same  class  as  regards  their  area.  The  classes 
are  : 

(1)  axial  triangles,  including  all  sections  through  the  axis; 

(2)  isosceles  sections,  i.e.  the  sections  the  bases  of  which  are 
perpendicular  to  the  projection  of  the  axis  of  the  cone  on  the 
plane  of  the  base  ; 

(3)  a  set  of  triangular  sections  the  bases  of  which  are  (a)  the 
diameter  of  the  circular  base  which  passes  through  the  foot  of 
the  perpendicular  from  the  vertex  to  the  plane  of  the  base,  and 
(b)  the  chords  of  the  circular  base  parallel  to  that  diameter. 

After  two  preliminary  propositions  (15,  16)  and  some 
lemmas,  Serenus  compares  the  areas  of  the  first  class  of 
triangles  through  the  axis.  If,  as  we  said,  p  is  the  perpen- 

dicular from  the  vertex  to  the  plane  of  the  base,  d  the  distance 
of  the  foot  of  this  perpendicular  from  the  centre  of  the  base, 
and  0  the  angle  which  the  base  of  any  axial  triangle  with  area 
A  makes  with  the  base  of  the  axial  triangle  passing  through 
p  the  perpendicular, 

A  = 
This  area  is  a  minimum  when  6  =  0,  and  increases  with  0 
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until  6  =  f  TT  when  it  is  a  maximum,  the  triangle  being  then 
isosceles  (Prop.  24). 

In  Prop.  29  Serenus  takes  up  the  third  class  of  sections  with 
bases  parallel  to  d.    If  the  base  of  such  a  section  is  2x, 

A  =  aVr2- • 
and,  as  in  the  case  of  the  right  cone,  we  must  have  for  a  real 
maximum  value 

oj2  =  ̂   (r2  +p*),  while  x  <  r, 

so  that,  for  a  real  value  of  x  other  than  r,  p  must  be  less  than 
r,  and,  if  p  is  not  less  than  r,  the  maximum  triangle  is  that 
which  is  perpendicular  to  the  base  of  the  cone  and  has  2r  for 
its  base  (Prop.  29).  If  p<r,  the  triangle  in  question  is  not 
the  maximum  of  the  set  of  triangles  (Prop.  30). 

Coming  now  to  the  isosceles  sections  (2),  we  may  suppose 
2  0  to  be  the  angle  subtended  at  the  centre  of  the  base  by\the 
base  of  the  section  in  the  direction  away  from  the  projection 
of  the  vertex.  Then 

A  =  r  sin  0V  {p*  +  (d  +  r  cos  0)2}  . 
If  A0  be  the  area  of  the  isosceles  triangle  through  the  axis, 

we  have 

If  A  =  <A0,  we  must  have  for  triangles  on  the  side  of  the 
centre  of  the  base  of  the  cone  towards  the  vertex  of  the  cone 

(since  cos  6  is  negative  for  such  triangles) 

2>2  +  <22<r2  sin20,  and  a  fortiori  jpa  +  da<ra  (Prop.  35). 

If  £>2  +  d2i£r2,  A0  is  always  greater  than  A,  so  that  A0  is  the 
maximum  isosceles  triangle  of  the  set  (Props.  31,  32). 

If  A  is  the  area  of  any  one  of  the  isosceles  triangles  with 
bases  on  the  side  of  the  centre  of  the  base  of  the  cone  away 
from  the  projection  of  the  vertex,  cos  0  is  positive  and  A^  is 
proved  to  be  neither  the  minimum  nor  the  maximum  triangle 
of  this  set  of  triangles  (Props.  36,  40-4). 

In  Prop.  45  Serenus  returns  to  the  set  of  triangular  sections 
through  the  axis,  proving  that  the  feet  of  the  perpendiculars 
from  the  vertex  of  the  cone  on  their  ,  bases  all  lie  on  a  circle 

the  diameter  of  which  is  the  straight  line  joining  the  centre  of 
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the  base  of  the  cone  to  the  projection  of  the  vertex  on  its 

plane ;  the  areas  of  the  axial  triangles  are  therefore  propor- 
tional to  the  generators  of  the  cone  with  the  said  circle  as 

base  and  the  same  vertex  as  the  original  cone.  Prop.  50  is  to 
the  effect  that,  if  the  axis  of  the  cone  is  equal  to  the  radius  of 
the  base,  the  least  axial  triangle  is  a  mean  proportional 
between  the  greatest  axial  triangle  and  the  isosceles  triangular 

section  perpendicular  to  the  base ;  that  is,  with  the  above  nota- 

tion, if  r  =  V(p*  +  tV),  then  r  V(f  +  d2)  :rp  =  rp:p  </(r* - d3), 
which  is  indeed  obvious. 

Prop.  57  is  interesting  because  of  the  lemmas  leading  to  it. 
It  proves  that  the  greater  axial  triangle  in  a  scalene  cone  has 
the  greater  perimeter,  and  conversely.  This  is  proved  by 
means  of  the  lemma  (Prop.  54),  applied  to  the  variable  sides 

of  axial  triangles,  that  if  ti2  +  d?  =  62 -f  c2  and  a > b ̂  c> rf, 
then  a  +  d<  b  +  c  (a,  d  are  the  sides  other  than  the  base  of  one 

axial  triangle,  and  6,  c  those  of  the  other  axial  triangle  com- 
pared with  it;  and  if  ABC,  ADEbe  two  axial  triangles  and 

0  the  centre  of  the  base,  BA*  +  AC*=  DA2  +  AE*  because  each 

of  these  sums  is  equal  to  2  A  O2  +  2  BO2,  Prop.  1 7).  This  proposi- 
tion again  depends  on  the  lemma  (Props.  52,  53)  that,  if 

straight  lines  bo  'inflected'  from  the  ends  of  the  base  of 
a  segment  of  a  circle  to  the  curve  (i.  e.  if  we  join  the  ends 
of  the  base  to  any  point  on  the  curve)  the  lino  (i.e.  the  sum  of 
the  chords)  is  greatest  when  the  point  taken  is  the  middle 
point  of  the  arc,  and  diminishes  as  the  point  is  taken  farther 
and  farther  from  that  point. 

Let  B  be  the  middle  point  of  the 
arc  of  the  segment  ABC,  7),  E  any 
other  points  on  the  curve  towards 
(7;  I  say  that 

BC>AD+I)C>AE+EC. 

With  B  as  centre  and  BA  as  radius 

describe  a  circle,  and  produce  AB, 
AD,  AE  to  meet  this  circle  in  F,  G, 
H.  JoinFC,GC,HC. 

Since  AB  =  EG  =  BF,  we  have  AF  =  AB  +  BC.  Also  the 

angles  BFC,  BCF  arc  equal,  and  each  of  them  is  half  of 
the  angle  ABC. 
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Again          LAGG  =  LAFG  =  \LAEG  =  \LADG\ 

therefore  the  angles  DOC,  DOG  are  equal  and  DG  = 

therefore  AG  =  AD  +  DC. 

Similarly          EH  =  KG  and  ̂ 7/  =  AE+  EC. 

But,  by  Eucl.  III.  7  or  15,  AF>AG>AIf,  and  so  on  ; 

therefore      AB  +  BC  >  A D  +  DC  >  AE  +  EC,  and  so  on. 

In  the  particular  case  where  the  segment  ABC  is  a  semi- 
circle AB*  +  BC2  =  AG*  =  AD*  +  DC*,  &c.,  and  the  result  of 

Prop.  57  follows. 

Props.  58-69  are  propositions  of  this  sort :  In  equal  right 
cones  the  triangular  sections  through  th$  axis  are  reciprocally 
proportional  to  their  bases  and  conversely  (Props.  58,  59) ; 
right  cones  of  equal  height  have  to  one  another  the  ratio 
duplicate  of  that  of  their  axial  triangles  (Prop.  62);  right 
cones  which  are  reciprocally  proportional  to  their  bases  have 
axial  triangles  which  are  to  one  another  reciprocally  in  the 
triplicate  ratio  of  their  bases  and  conversely  (Props.  66,  67); 
and  so  on. 

THEON  OF  ALEXANDRIA  lived  towards  the  end  of  the  fourth 

century  A.D.  Suidas  places  him  in  the  reign  of  Theodosius  I 

(379-95);  he  tells  us  himself  that  he  observed  a  solar  eclipse 
at  Alexandria  in  the  year  365,  and  his  notes  on  the  chrono- 

logical tables  of  Ptolemy  extend  down  to  372. 

Commentary  on  the  Syntaxis. 

We  have  already  seen  him  as  the  author  of  a  commentary 

on  Ptolemy's  Syntaxis  in  eleven  Books.  This  commentary  is 
not  calculated  to  give  us  a  very  high  opinion  of  Theon's 
mathematical  calibre,  but  it  is  valuable  for  several  historical 
notices  that  it  gives,  and  we  are  indebted  to  it  for  a  useful 
account  of  the  Greek  method  of  operating  with  sexagesimal 
fractions,  which  is  illustrated  by  examples  of  multiplication, 
division,  .and  the  extraction  of  the  square  root  of  a  non-square 
number  by  way  of  approximation.  These  illustrations  of 
numerical  calculation  have  already  been  given  above  (vol.  i, 
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pp.  58-63).  Of  the  historical  notices  we  may  mention  the 
following.  (1)  Theon  mentions  the  treatise  of  Menelaus  On 

Chords  in  a  Circle,  i.e.  Menelau&'s  Table  of  Chords,  which  came 
between  the  similar  Tables  of  Hipparchus  and  Ptolemy.  (2)  A 
quotation  from  Diophantus  f uriiishes  incidentally  a  lower  limit 
for  the  date  of  the  Arithmetica.  (3)  It  is  in  the  commentary 
on  Ptolemy  that  Thcon  tells  UH  that  the  second  part  of  Euclid 

VI.  33  relating  to  sectors  in  equal  circles  was  inserted  by  him- 
self in  his  edition  of  the  Elements,  a  notice  which  is  of  capital 

importance  in  that  it  enables  the  Theonine  manuscripts  of 

Euclid  to  be  distinguished  from  the  ante-Theonine,  and  is 
therefore  the  key  to  the  question  how  far  the  genuine  text 

of  Euclid  was  altered  in  Theon's  edition.  (4)  As  we  have 
seen  (pp.  207  sq.),  Theon,  &  propos  of  an  allusion  of  Ptolemy 
to  the  theory  of  isoperimetric  figures,  has  preserved  for  us 
several  propositions  from  the  treatise  by  Zenodorus  on  that 
subject. 

Theon's  edition  of  Euclid's  Elements. 

Wo  are  able  to  judge  of  the  character  of  Theon's  edition  of 
Euclid  by  a  comparison  between  the  Theonine  manuscripts 
and  the  famous  Vatican  MS.  190,  which  contains  an  earlier 

edition  than  Theon's,  together  with  certain  fragments  of 
ancient  papyri.  It  appears  that,  while  Theon  took  some 
trouble  to  follow  older  manuscripts,  it  was  not  so  much  his 
object  to  get  the  most  authoritative  text  as  to  make  what  he 
considered  improvements  of  one  sort  or  other,  (l)  He  made 
alterations  where  he  found,  or  thought  he  found,  mistakes  in 
the  original;  while  he  tried  to  remove  some  real  blots,  he 
altered  other  passages  too  hastily  when  a  little  more  considera- 

tion would  have  shown  that  Euclid's  words  are  right  or  could 
be  excused,  and  offer  no  difficulty  to  an  intelligent  reader. 
(2)  He  made  emendations  intended  to  improve  the  form  or 
diction  of  Euclid  ;  in  general  they  were  prompted  by  a  desire 
to  eliminate  anything  which  was  out  of  the  common  in  expres- 

sion or  in  form,  in  order  to  reduce  the  language  to  one  and  the 
same  standard  or  norm.  (3)  He  bestowed,  however,  most 
attention  upon  additions  designed  to  supplement  or  explain 
the  original ;  (a)  he  interpolated  whole  propositions  where  he 
thought  them  necessary  or  useful,  e.g.  the  addition  to  VI.  33 
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already  referred  to,  a  second  case  to  VI.  27,  a  porism  or  corollary 
to  II.  4,  a  second  porism  to  III.  16,  the  proposition  VII.  22, 
a  lemma  after  X.  12,  besides  alternative  proofs  here  and  there ; 
(6)  he  added  words  for  the  purpose  of  making  smoother  and 
clearer,  or  more  precise,  things  which  Euclid  had  expressed 
with  unusual  brevity,  harshness,  or  carelessness ;  (c)  he  sup- 

plied intermediate  steps  where  Euclid's  argument  seemed  too 
difficult  to  follow.  In  short,  while  making  only  inconsider- 

able additions  to  the  content  of  the  Elements,  he  endeavoured 

to  remove  difficulties  that  might  be  felt  by  learners  in  study- 
ing the  book,  as  a  modern  editor  might  do  in  editing  a  classical 

text-book  for  use  in  schools ;  and  there  is  no  doubt  that  his 
edition  was  approved  by  his  pupils  at  Alexandria  for  whom  it 
was  written,  as  well  as  by  later  Greeks,  who  used  it  almost 
exclusively,  with  the  result  that  the  more  ancient  text  is  only 
preserved  complete  in  one  manuscript. 

Edition  of  the  Optics  of  Euclid. 

In  addition  to  the  Elements,  Theon  edited  the  Optics  of 

Euclid;  Theon's  recension  as  well  as  the  genuine  work  is 
included  by  Heiberg  in  his  edition.  It  is  possible  that  the 
Catoptrica  included  by  Heiberg  in  the  same  volume  is  also  by 
Theon. 

4 

Next  to  Theon  should  be  mentioned  his  daughter  HYPATIA, 
who  is  mentioned  by  Theon  himself  as  having  assisted  in  the 
revision  of  the  commentary  on  Ptolemy.  This  learned  lady 
is  said  to  have  been  mistress  of  the  whole  of  pagan  science, 
especially  of  philosophy  and  medicine,  and  by  her  eloquence 
and  authority  to  have  attained  such  influence  that  Christianity 
considered  itself  threatened,  and  she  was  put  to  death  by 
a  fanatical  mob  in  March  415.  According  to  Suidas  she  wrote 
commentaries  on  Diopharitus,  on  the  Astronomical  Canon  (of 

Ptolemy)  and  on  the  Conies  of  'Apollonius.  These  works 
have  not  survived,  but  it  has  been  conjectured  (by  Tannery) 
that  the  remarks  of  Psellus  (eleventh  century)  at  the  begin- 

ning of  his  letter  about  Diophantus,  Anatolius,  and  the 
Egyptian  method  of  arithmetical  reckoning  were  taken  bodily 
from  some  manuscript  of  Diophantus  containing  an  ancient 
and  systematic  commentary  which  may  very  well  have  been 
that  of  Hypatia.  Possibly  her  commentary  may  have  extended 
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only  to  the  first  six  Books,  in  which  case  the  fact  that  Hypatia 
wrote  a  commentary  on  them  may  account  for  the  survival  of 
these  Books  while  the  rest  of  the  thirteen  were  first  forgotten 
and  .then  lost. 

It  will  be  convenient  to  take  next  the  series  of  Neo- 
Platonist  commentators.  It  does  not  appear  that  Ammonius 

Saccas  (about  A.D.  175-250),  the  founder  of  Neo-Platonism,  or 
his  pupil  Plotinus  (A.D.  204-69),  who  first  expounded  the 
doctrines  in  systematic  form,  had  any  special  connexion  with 
mathematics,  but  PORPHYRY  (about  232-304),  the  disciple  of 
Plotinus  and  the  reviser  and  editor  of  his  works,  appears  to 
have  written  a  commentary  on  the  Elements.  This  we  gather 
from  Proclus,  who  quotes  from  Porphyry  comments  on  Eucl. 
I.  14  and  26  and  alternative  proofs  of  I.  18,  20.  It  is  possible 

that  Porphyry's  work  may  have  been  used  later  by  Pappus  in 
writing  his  own  commentary,  and  Proclus  may  have  got  his 

references  from  Pappus,  but  the  form  of  these  references  sug- 
gests that  he  had  direct  access  to  the  original  commentary  of 

Porphyry. 

IAMBLICHUS  (died  about  A.D.  330)  was  the  author  of  a  com- 
mentary on  the  Introductio  arithmetica  of  Nicomachus,  and 

of  other  works  which  have  already  been  mentioned.  He  was 

a  pupil  of  Porphyry  as  well  as  of  Anatolius,  also  a  disciple  of 
Porphyry. 

But  the  most  important  of  the  Neo-Platonists  to  the  his- 
torian of  mathematics  is  PROCLUS  (A.D.  410-85).  Proclus 

received  his  early  training  at  Alexandria,  where  Olympio- 
dorus  was  his  instructor  in  the  works  of  Aristotle,  and 

mathematics  was  taught  him  by  one  Heron  (of  course  a 

different  Heron  from  the  ' mechauicus  Hero'  of  the  Metrica, 
&c.).  He  afterwards  went  to  Athens,  where  he  learnt  the 

Neo-Platonic  philosophy  from  Plutarch,  the  grandson  of  Nes- 
torius,  and  from  his  pupil  Syrianus,  and  became  one  of  its 

most  prominent  exponents.  He  speaks  everywhere  with  the 

highest  respect  of  his  masters,  and  was  in  turn  regarded  with 

extravagant  veneration  by  his  contemporaries,  as  we  learn 

from  Marinus,  his  pupil  and  biographer.  On  the  death  of 

Syrianus  he  was  put  at  the  head  of  the  Neo-Platonic  school. 
He  was  a  man  of  untiring  industry,  as  is  shown  by  the 
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number  of  books  which  he  wrote,  including  a  large  number  of 
commentaries,  mostly  on  the  dialogues  of  Plato  (e.g.  the 
Timaeus,  the  Republic,  the  Parme  aides,  the  Gratylus).  He 

was  an  acute  dialectician  and  pre-eminent  among  his  contem- 
poraries in  the  range  of  his  learning;  he  was  a  competent 

mathematician ;  he  was  even  a  poet.  At  the  same  time  he 
was  a  believer  in  all  sorts  of  myths  and  mysteries,  and 
a  devout  worshipper  of  .divinities  both  Greek  and  Oriental. 
He  was  much  more  a  philosopher  than  a  mathematician.  In 

his  commentary  on  the  Timaeus,  when  referring  to  the  ques- 
tion whether  the  sun  occupies  a  middle  place  among  the 

planets,  he  speaks  as  no  real  mathematician  could  have 
spoken,  rejecting  the  view  of  Hipparchus  and  Ptolemy  because 
6  Qtovpyos  (sc.  the  Chaldean,  says  Zeller)  thinks  otherwise, 

c  whom  it  is  not  lawful  to  disbelieve '.  Martin  observes  too, 
rather  neatly,  that '  for  Proclus  the  Elements  of  Euclid  had 
the  good  fortune  not  to  be  contradicted  either  by  the  Chaldean 

Oracles  or  by  the  speculations  of  Pythagoreans  old  and  new '. 

Commentary  on  Euclid,  Book  I. 

For  us  the  most  important  work  of  Proclus  is  his  commen- 
tary on  Euclid,  Book  I,  because  it  is  one  of  the  main  sources 

of  our  information  as  to  the  history  of  elementary  geometry. 
Its  great  value  arises  mainly  from  the  fact  that  Proclus  had 
access  to  a  number  of  historical  and  critical  works  which  are 

now  lost  except  for  fragments  preserved  by  Proclus  and 
others. 

(a)  Sources  of  the  Commentary. 

The  historical  work  the  loss  of  which  is  most  deeply  to  be 
deplored  is  the  History  of  Geometry  by  Eudemus.  There 
appears  to  be  no  reason  to  doubt  that  the  work  of  Eudemus 
was  accessible  to  Proclus  at  first  hand.  For  the  later  writers 

Simplicius  and  Eutocius  refer  to  it  in  terms  such  as  leave  no 
doubt  that  they  had  it  before  them.  Simplicius,  quoting 

Eudemus  as  the  best  authority  on  Hippocrates's  quadratures 
of  lunes,  says  he  will  set  out  what  Eudemus  says  '  word  for 

word ',  adding  only  a  little  explanation  in  the  shape  of  refer- 
ences to  Euclid's  Elements  'owing  to  the  memorandum-like 

style  of  Eudemus,  who  sets  out  his  explanations  in  the  abbre- 
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viated  form  usual  with  ancient  writers.  Now  in  the  second 

book  of  the  history  of  geometry  he  writes  as  follows  '.*  In 
like  manner  Eutocius  speaks  of  the  paralogisms  handed  down 
in  connexion  with  the  attempts  of  Hippocrates  and  Antiphon 

to  square  the  circle,  'with  which  I  imagine  that  all  persons 
are  accurately  acquainted  who  have  examined  (€7reovc€/i/*€j>ouy) 
the  geometrical  history  of  Eudemus  and  know  the  Geria 

Aristotelica  '.2 
The  references  by  Proclus  to  Eudemus  by  name  are  not 

indeed  numerous ;  they  are  five  in  number  ;  but  on  the  other 
hand  he  gives  at  least  as  many  other  historical  data  which  can 
with  great  probability  be  attributed  to  Eudemus. 

Proclus  was  even  more  indebted  to  Geminus,  from  whom 

he  borrows  long  extracts,  often  mentioning  him  by  name — 
there  are  some  eighteen  such  references — but  often  omitting 
to  do  so.  We  are  able  to  form  a  tolerably  certain  judge- 

ment as  to  the  origin  of  the  latter  class  of  passages  on  the 
strength  of  the  similarity  of  the  subjects  treated  and  the  views 
expressed  to  those  found  in  the  acknowledged  extracts.  As 
we  have  seen,  the  work  of  Geminus  mainly  cited  seems  to 
have  borne  the  title  The  Doctrine  or  Theory  of  the  Mathematics, 
which  was  a  very  comprehensive  work  dealing,  in  a  portion  of 

it,  with  the  *  classification  of  mathematics '. 
We  have  already  discussed  the  question  of  the  authorship 

of  the  famous  historical  summary  given  by  Proclus.  It  is 
divided,  as  every  one  knows,  into  two  distinct  parts  between 

which  comes  the  remark,  '  Those  who  compiled  histories 
bring  the  development  of  this  science  up  to  this  point.  Not 

much  younger  than  these  is  Euclid,  who ',  &c.  The  ultimate 
source  at  any  rate  of  the  early  part  of  the  summary  must 
presumably  have  been  the  great  work  of  Eudemus  above 
mentioned. 

It  is  evident  that  Proclus  had  before  him  the  original  works 
of  Plato,  Aristotle,  Archimedes  and  Plotinus,  the  SvfipiKTa  of 
Porphyry  and  the  works  of  his  master  Syrianus,  as  well  as  a 
group  of  works  representing  the  Pythagorean  tradition  on  its 
mystic,  as  distinct  from  its  mathematical,  side,  from  Philo- 
laus  downwards,  and  comprising  the  more  or  less  apocryphal 

1  Simplicius  on  Arist.  Phys.,  p.  60.  28,  Diels. 
2  Archimedes,  ed.  Heib.,  vol.  iii,  p.  228.  17-19. 
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Xoyoy   of  Pythagoras,  the  Oracles  (\6yia)  and  Orphic 
verses. 

The  following  will  be  a  convenient  summary  of  the  other 
works  used  by  Proclus,  and  will  at  the  same  time  give  an 
indication  of  the  historical  value  of  his  commentary  on 
Euclid,  Book  I  : 

Eudemus  :  History  of  Geometry. 

Geminus  :  The  Theory  of  the  Mathematical  Sciences. 

Heron:  Commentary  on  the  Elements  of  Euclid. 

Porphyry: 

Pappus: 
Apollonius   of   Perga  :   A   work   relating   to  elementary 

geometry. 

Ptolemy  :  On  the  'parallel-postulate. 
Posidonius  :  A  book  controverting  Zeno  of  Sidon. 

Carpus:  Astronomy. 

Syrianus:  A  discussion  on  the  angle. 

(ft)  Character  of  the  Commentary. 

We  know  that  in  the  Neo-Platonic  school  the  pupils  learnt 
mathematics  ;  and  it  is  clear  that  Proclus  taught  this  subject, 
and  that  this  was  the  origin  of  his  commentary.  Many 
passages  show  him  as  a  master  speaking  to  scholars  ;  in  one 

place  he  speaks  of  '  my  hearers  *.1  Further,  the  pupils  whom 
he  was  addressing  were  beginners  in  mathematics  ;  thus  in  one 

passage  he  says  that  he  omits  '  for  the  present  '  to  speak  of  the 
discoveries  of  those  who  employed  the  curves  of  Nicomedes 
and  Hippias  for  trisecting  an  angle,  and  of  those  who  used  the 
Archimedean  spiral  for  dividing  an  angle  in  a  given  ratio, 

because  these  things  would  be  '  too  difficult  for  beginners  '.2 
But  there  are  signs  that  the  cpmmentary  was  revised  and 
re-edited  for  a  larger  public;  he  speaks  for  instance  in  one 

place  of  '  those  who  will  corne  across  his  work  \3  There  are 
also  passages,  e.g.  passages  about  the  cylindrical  helix,  con- 

choids and  cissoids,  which  would  not  have  been  understood  by 
the  beginners  to  whom  he  lectured. 

1  Proclus  on  Eucl.  I,  p.  210.  19.  2  /&.,  p.  272.  12. 
3  Ib.,  p.  84.  9. 
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The  commentary  opens  with  two  Prologues.  The  first  is 
on  mathematics  in  general  and  its  relation  to,  and  use  in, 
philosophy,  from  which  Proclus  passes  to  the  classification  of 
mathematics.  Prologue  II  deals  with  geometry  generally  and 
its  subject-matter  according  to  Plato,  Aristotle  and  others. 
After  this  section  comes  the  famous  summary  (pp.  64-8) 
ending  with  a  eulogium  of  Euclid,  witli  particular  reference 
to  the  admirable  discretion  shown  in  the  selection  of  the  pro- 

positions which  should  constitute  the  Elements  of  geometry, 

the  ordering  of  the  whole  subject-matter,  the  exactness  and 
the  collusiveness  of  the  demonstrations,  and  the  power  with 
which  every  question  is  handled.  Generalities  follow,  such  as 
the  discussion  of  the  nature  of  elements,  the  distinction  between 
theorems  and  problems  according  to  different  authorities,  and 
finally  a  division  of  Book  I  into  three  main  sections,  (1)  the 
construction  and  properties  of  triangles  and  their  parts  and 
the  comparison  between  triangles  in  respect  of  their  angles 
and  sides,  (2)  the  properties  of  parallels  and  parallelograms 
and  their  construction  from  certain  data,  and  (3)  the  bringing 
of  triangles  and  parallelograms  into  relation  as  regards  area. 

Coming  to  the  Book  itself,  Proclus  deals  historically  and 
critically  with  all  the  definitions,  postulates  and  axioms  in 
order.  The  notes  on  the  postulates  and  axioms  are  preceded 

by  a  general  discussion  of  the-  principles  of  geometry,  hypo- 
theses, postulates  and  axioms,  and  their  relation  to  one 

another ;  here  as  usual  Proclus  quotes  the  opinions  of  all  the 
important  authorities.  Again,  when  he  comes  to  Prop.  1,  he 
discusses  once  more  the  difference  between  theorems  and 

problems,  then  sets  out  and  explains  the  formal  divisions  of 

a  proposition,  the  enunciation  (Trporatny),  the  settiny-out 
(cAcflecny),  the  definition  or  specification  (Siopurpos),  the  con- 

sti*uction  (KaraaKtvri),  the  proof  (a7ro#e*£ty),  the  conclusion 
(crvfjLTTtpao-jjLa),  and  finally  a  number  of  other  technical  terms, 
e.g.  things  said  to  be  given,  in  the  various  senses  of  this  term, 
the  lemma,  the  case,  the  porism  in  its  two  senses,  the  objection 
(ci/<rra<ns),  the  reduction  of  a  problem,  reductio  ad  absurdum, 
analy&is  and  synthesis. 

In  his  comments  on  the  separate  propositions  Proclus 
generally  proceeds  in  this  way :  first  he  gives  explanations 

regarding  Euclid's  proofs,  secondly  he  gives  a  few  different 
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cases,  mainly  for  the  sake  of  practice,  and  thirdly  he  addresses 
himself  to  refuting  objections  which  cavillers  had  taken  or 
might  take  to  particular  propositions  or  arguments.  He  does 
not  seem  to  have  had  any  notion  of  correcting  or  improving 
Euclid;  only  in  one  place  does  he  propose  anything  of  his 
own  to  get  over  a  difficulty  which  he  finds  in  Euclid ;  this  is 

where  he  tries  to  prove  the  parallel-postulate,  after  giving 

Ptolemy's  attempt  to  prove  it  and  pointing  out  objections  to 
Ptolemy's  proof. 

The  book  is  evidently  almost  entirely  a  compilation,  though 

a  compilation  '  in  the  better  sense  of  the  term '.  The  onus 
probandi  is  on  any  one  who  shall  assert  that  anything  in  it  is 

Proclus's  own ;  very  few  things  can  with  certainty  be  said  to 
be  so.  Instances  are  (1)  remarks  on  certain  things  which  he 

quotes  from  Pappus,  since  Pappus  was  the  last  of  the  com- 
mentators whose  works  he  seems  to  have  used,  (2)  a  defence 

of  Geminus  against  Carpus,  who  criticized  Geminus's  view  of 
the  difference  between  theorems  and  problems,  and  perhaps 
(3)  criticisms  of  certain  attempts  by  Apollonius  to  improve  on 

Euclid's  proofs  and  constructions ;  but  the  only  substantial 
example  is  (4)  the  attempted  proof  of  the  parallel-postulate, 

based  on  an  *  axiom '  to  the  effect  that,  *  if  from  one  point  two 
straight  lines  forming  an  angle  be  produced  ad  injinitum,  the 
distance  between  them  when  so  produced  ad  infiuitum  exceeds 

any  finite  magnitude  (i.  e.  length) ',  an  assumption  which 
purports  to  be  the  equivalent  of  a  statement  in  Aristotle.1 
Philoponus  says  that  Proclus  as  well  as  Ptolemy  wrote  a  whole 

book  on  the  parallel-postulate.2 
It  is  still  not  quite  certain  whether  Proclus  continued  his 

commentaries  beyond  Book  I.  He  certainly  intended  to  do  so, 
for,  speaking  of  the  trisection  of  an  angle  by  means  of  certain 

curves,  he  says,  c  we  may  perhaps  more  appropriately  examine 
these  things  on  the  third  Book,  where  the  writer  of  the 

Elements  bisects  a  given  circumference',  and  again,  after 
saying  that  of  all  parallelograms  which  have  the  same  peri- 

meter the  square  is  the  greatest '  and  the  rhomboid  least  of 

all ',  he  adds,  '  But  this  we  will  prove  in  another  place,  for  it 
is  more  appropriate  to  the  discussion  of  the  hypotheses  of  the 

1  De  caelo,  i.  5,  271  b  28-30. 
2  Philoponus  on  Anal.  Post.  i.  10,  p.  214  a  9-12,  Brandis. 
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second  Book3.  But  at  the  time  when  the  commentary  on 
Book  I  was  written  he  was  evidently  uncertain  whether  he 

would  be  able  to  continue  it,  for  at  the  end  he  says, '  For  my 
part,  if  I  should  be  able  to  discuss  the  other  Books  in  the 

'same  way,  I  should  give  thanks  to  the  gods;  but,  if  other 
cares  should  draw  me  away,  1  beg  those  who  are  attracted  by 

this  subject  to  complete  the  exposition  of  the  other  Books  as 
well,  following  the  same  method  and  addressing  themselves 

throughout  to  the  deeper  and  more  sharply  defined  questions 

involved  '.l  Wachsmuth,  finding  a  Vatican  manuscript  contain- 
ing a  collection  of  scholia  on  Books  I,  II,  V,  VI,  X,  headed  Eh  ra 

TOi\€Ta  Trpo\afjif$av6p.€va  €K  T&V  HpoK\ov  criTopdSvjv 

Kar*  tTriTOfjLrjis,  and  seeing  that  the  scholia  on  Book  I  were 
extracts  from  the  extant  commentary  of  Proclus,  concluded 
that  those  on  the  other  Books  were  also  from  Proclus;  but 

the  TT/DO-  in  7r/>oXa/i/Jai>6/z€j>a  rather  suggests  that  only  the 
scholia  to  Book  I  are  from  Proclus.  Heiberg  found  and 

published  in  1903  a  scholium  to  X.  9,  in  which  Proclus  is 

expressly  quoted  as  the  authority,  but  he  does  not  regard 
this  circumstance  as  conclusive.  On  the  other  hand,  Heiberg 
has  noted  two  facts  which  go  against  the  view  that  Proclus 

wrote  on  the  later  Books:  (1)  the  scholiast's  copy  of 
Proclus  was  not  much  better  than  our  manuscripts ;  in 

particular,  it  had  the  same  lacunae  in  the  notes  to  I.  36, 

37,  and  I.  41-3;  this  makes  it  improbable  that  the  scholiast 
had  further  commentaries  of  Proclus  which  have  vanished 

for  us ;  (2)  there  is  no  trace  in  the  scholia  of  the  notes 
which  Proclus  promised  in  the  passages  already  referred  to. 
All,  therefore,  that  we  can  say  is  that,  while  the  Wachsmuth 
scholia  may  be  extracts  from  Proclus,  it  is  on  the  whole 

improbable. 

Hypotyposis  of  Astronomical  Hypotheses 

Another  extant  work  of  Proclus  which  should  be  referred 

to  is  his  Hypotyposis  of  Astronomical  Hypotheses,  a  sort  of 
readable  and  easy  introduction  to  the  astronomical  system 

of  Hipparchus  and  Ptolemy.  It  has  been  well  edited  by 
Munitius  (Teubner,  1909).  Three  things  may  be  noted  as 

1  Proclus  on  Eucl.  I,  p.  432.  9-15. 
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regards  this  work.  It  contains1  a  description  of  the  method 

of  measuring  the  sun's  apparent  diameter  by  means  of 
Heron's  water-clock,  which,  by  comparison  with  the  corre- 

sponding description  in  Theon's  commentary  to  the  Syntaxis 
of  Ptolemy,  is  seen  to  have  a  common  source  with  it.  That 

source  is  Pappus,  and,  inasmuch  as  Proclus  has  a  figure  (repro- 
duced by  Manitius  in  his  text  from  one  set  of  manuscripts) 

corresponding  to  the  description,  while  the  text  of  Theon  has 
no  figure,  it  is  clear  that  Proclus  drew  directly  on  Pappus, 
who  doubtless  gave,  in  his  account  of  the  procedure,  a  figure 

taken  from  Heron's  own  work  on  water-clocks.  A  simple 
proof  of  the  equivalence  of  the  epicycle  and  eccentric  hypo- 

theses is  quoted  by  Proclus  from  one  Hilarius  of  Antioch.2 
An  interesting  passage  is  that  in  chap.  4  (p.  130,  18)  where 
Sosigenes  the  Peripatetic  is  said  to  have  recorded  in  his  work 

'on  reacting  spheres'  that  an  annular  eclipse  of  the  sun  is 
sometimes  observed  at  times  of  perigee;  this  is,  so  far  as 
I  know,  the  only  allusion  in  ancient  times  to  annular  eclipses, 

and  Proclus  himself  questions  the  correctness  of  Sosigenes's statement. 

Commentary  on  the  Republic. 

The  commentary  of  Proclus  on  the  Republic  contains  some 
passages  of  great  interest  to  the  historian  of  mathematics. 

The  most  important  is  that3  in  which  Proclus  indicates  that 
Props.  9,  10  of  Euclid,  Book  II,  are  Pythagorean  proposi- 

tions invented  for  the  purpose  of  proving  geometrically  the 

fundamental  property  of  the  series  of  €  side-'  and  '  diameter-' 
numbers,  giving  successive  approximations  to  the  value  of 

\/2  (see  vol.  i,  p.  93).  The  explanation4  of  the  passage  in 
Plato  about  the  Geometrical  Number  is  defective  and  dis- 

appointing, but  it  contains  an  interesting  reference  to  one 
Paterius,  of  date  presumably  intermediate  betwefen  Nestorius 
and  Proclus.  Paterius  is  said  to  have  made  a  calculation,  in 
units  and  submultiples,  of  the  lengths  of  different  segments  of 

1  Proclus,  Hypotyposis,  c.  4,  pp.  120-22. 
8  Ib.,  c.  3,  pp.  76,  17  sq. 
8  Prodi  Diadochi    in  Platonis  EempuUicam   Commentarii,   ed.  Kroll, vol.  ii,  p.  27. 
«  Ib.,  vol.  ii,  pp.  36-42. 
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straight  lines  in  a  figure  formed  by  taking  a  triangle  with 
sides  3,  4,  6  as  ABC,  then  drawing 
BD  from  the  right  angle  B  perpen- 

dicular to  AC,  and    lastly  drawing 
perpendiculars  DE,  DF  to  AB,  BC. 
A  diagram    in    the    text   with    the 

lengths  of  the  segments  shown  along- 
side   them    in  the    usual    numerical 

notation  shows  that  Paterius  obtained  from  the  data  AB  =  3, 

BC  =  4,  CA  =  5  the  following  : 

=  -ye'=  3> 

This  is  an  example  of  the  Egyptian  method  of  stating  frac- 
tions preceding  by  some  three  or  four  centuries  the  exposition 

of  the  same  method  in  the  papyrus  of  Akhmlm. 

MARINUS  of  Neapolis,  the  pupil  and  biographer  of  Proclus, 
wrote  a  commentary  or  rather  introduction  to  the  Data  of 

Euclid.1  It  is  mainly  taken  up  with  a  discussion  of  the 
question  ri  TO  5c5o/ici/o^,  what  is  meant  by  given  1  There 
were  apparently  many  different  definitions  of  the  term  given 
by  earlier  and  later  authorities.  Of  those  who  tried  to  define 
it  in  the  simplest  way  by  means  of  a  single  differentia,  three 
are  mentioned  by  name.  Apollonius  in  his  work  on  i/eu<reiy 

and  his  'general  treatise'  (presumably  that  on  elementary 
geometry)  described  the  given  as  assigned  or  fixed  (reray- 
/xo/oj/),  Diodorus  called  it  known  (yvtopipov)]  others  regarded 
it  as  rational  (faroy)  and  Ptolemy  is  classed  with  these,  rather 

oddly,  because  '  he  called  those  things  given  the  measure  of 

which  is  given  either  exactly  or  approximately*.  Others 

1  See  Heiberg  and  Menge's  Euclid,  vol.  vi,  pp.  234-56. 
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combined  two  of  these  ideas  and  called  it  assigned  OY  fixed 
and  procurable  or  capable  of  being  found  (rr6pip.oi>)\  others 

c  fixed  and  known ',  and  a  third  class  *  known  and  procurable  '• 
These  various  views  are  then  discussed  at  length. 

DOMNINUS  of  Larissa,  a  pupil  of  Syrianus  at  the  same  time 

as.  Proclus,  wrote  a  Manual  of  Introductory  Arithmetic  eyxei- 

pi'Stov  dpiQftrjTiKfjs  €/o-aya>y^y,  which  was  edited  by  Boissonade1 
and  is  the  subject  of  two  articles  by  Tannery,2  who  also  left 
a  translation  of  it,  with  prolegomena,  which  has  since  been 

published.3  It  is  a  sketch  of  the  elements  of  the  theory  of 
numbers,  very  concise  and  well  arranged,  and -is  interesting 
because  it  indicates  a  serious  attempt  at  a  reaction  against  the 
Introductio  arithmetica  of  Nicomachus  and  $  return  to  the 
doctrine  of  Euclid.  Besides  Euclid,  Nicomachus  and  Theon 
of  Smyrna,  Domninus  seems  to  have  used  another  sourco, 
now  lost,  which  was  also  drawn  upon  by  lamblichus.  At  the 
end  of  this  work  Domninus  foreshadows  a  more  complete 
treatise  on  the  theory  of  numbers  under  the.  title  Elements  of 
Arithmetic  (apiQ^riK^  oTcux^oxny),  but  whether  this  was 
ever  written  or  not  we  do  not  know.  Another  tract 

attributed  to  Domninus  7ro>9  GCTTI  \6yov  £K  \6yov  a0eAea> 
(how  a  ratio  can  be  taken  out  of  a  ratio)  has  been  published 

with  a  translation  by  Ruelle 4 ;  if  it  is  not  by  Domninus,  it 
probably  belongs  to  the  same  period. 

A  most  honourable  place  in  our  history  must  be  reserved 

for  SIMPLICIUS,  who  has  been  rightly  called  'the  excellent 
Siinplicius,  the  Aristotle-commentator,  to  whom  the  world  can 
never  be  grateful  enough  for  the  preservation  of  the  frag- 

ments of  Parmenides,  Empedocles,  Anaxagoras,  Melissus, 

Theophrastus  and  others'  (v.  Wilamowitz-Mollendortt).  He 
lived  in  the  first  half  of  the  sixth  century  and  was  a  pupil, 
first  of  Ammonius  of  Alexandria,  and  then  of  Damascius, 
the  last  head  of  the  Platonic  school  at  Athens.  When  in  the 

year  529  the  Emperor  Justinian,  in  his  zeal  to  eradicate 

paganism,  issued  an  edict  forbidding  the  teaching  of  philo- 

1  Anecdota  Graeca,  vol.  iv,  pp.  413-29. 
2  Mtmoires  scientifiques,  vol.  ii,  nos.  35,  40. 
8  Revue  des  Mudes  yrecques,  1906,  pp.  359-  82 ;    Mtmoires 

vol.  iii,  pp.  256-81. 
4  Revue  de  Philoloyie,  1883,  p.  83  sq. 
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sophy  at  Athens,  the  last  members  of  the  school,  including 
Damascius  and  Simplicius,  migrated  to  Persia,  but  returned 
about  533  to  Athens,  where  Simplicius  continued  to  teach  for 
some  time  though  the  school  remained  closed. 

Extracts  from  Eudemus. 

To  Simplicius  we  owe  two  long  extracts  of  capital  impor- 
tance for  the  history  of  mathematics  and  astronomy.  The 

first  is  his  account,  based  upon  and  to  a  large  extent  quoted 

textually  from  Eudemus's  History  of  Geometry,  of  the  attempt 
by  Antiphon  to  square. the  circle  and  of  the  quadratures  of 

lunes  by  Hippocrates  of  Chios.  It  is  contained  in  Simplicity's 
commentary  on  Aristotle's  Physics,1  and  has  been  the  subject 
of  a  considerable  literature  extending  from  1870,  the  date 
when  Bretsclmeider  first  called  attention  to  it,  to  the  latest 
critical  edition  with  translation  and  notes  by  Rudio  (Teubner, 

1907).  It  has  already  been  discussed  (vol.  i,  pp.  183-99). 
The  second,  and  not  less  important,  of  the  two  passages  is 

that  containing  the  elaborate  and  detailed  account  of  the 
system  of  concentric  spheres,  as  first  invented  by  Eudoxus  for 
explaining  the  apparent  motion  of  the  sun,  moon,  and  planets, 
and  of  the  modifications  made  by  Callippus  and  Aristotle.  It 

is  contained  in  the  commentary  on  Aristotle's  De  caelo*\ 
Simplicius  quotes  largely  from  Sosigenes  the  Peripatetic 
(second  century  A.D.),  observing  that  he  in  his  turn  drew 
from  Eudemus,  who  dealt  with  the  subject  in  the  second 
book  of  his  History  of  Astronomy.  It  is  this  passage  of 

Simplicius  which,  along  with  a  passage  in  Aristotle's  Meta- 
physics,'*  enabled  Schiaparelli  to  reconstruct  Eudoxus's  system 
(bee  vol.  i,  pp.  329-34).  Nor  must  it  be  forgotten  that  it  is  in 

Simplicius's  commentary  on  the  Physics*  that  the  extract 
from  Geminus's  summary  of  the  Meteorologica  of  Posidonius 
occurs  which  was  used  by  Schiaparelli  to  support  his  view 
that  it  was  Heraclides  of  Pontus,  not  Aristarchus  of  Samos, 

who  first  propounded  the  heliocentric  hypothesis. 

Simplicius  also  wrote  a  commentary  on  Euclid's  Elements, 
Book  I,  from  which  an-Nairizi,  the  Arabian  commentator, 

1  Simpl.  in  Phys.,  pp.  54-69,  ed.  Diels. 
2  Simpl.  on  Arist.  De  c«eio,  p.  488.  18-24  and  pp.  493-506,  ed.  Heiberg. 
3  JUetaph.  A.  8,  1073  b  17-1074  a  14. 
4  Simpl.  in  Phys.,  pp.  291-2,  ed.  Diels. 
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made  valuable  extracts,  including  the  account  of  the  attempt  of 

'  Aganis'  to  prove  the  parallel -postulate  (see  pp.  228-  30  above). 

Contemporary  with  Simplicius,  or  somewhat  earlier,  was 
EUTOCIUS,  the  commentator  on  Archimedes  and  Apollonius, 
As  he  dedicated  the  commentary  on  Book  I  On  the  Sphere 
and  Cylinder  to  Ammonius  (a  pupil  of  Proclus  and  teacher 
of  Simplicius),  who  can  hardly  have  been  alive  after  A.D.  510, 
Eutocius  was  probably  born  about  A.D.  480.  His  date  used 
to  be  put  some  fifty  years  later  because,  at  the  end  of  the  com- 

mentaries on  Book  II  On  the  Sphere  and  Cylinder  and  on 

the  Measurement  of  a  Circle,  there  is  a  note  to  the  eft'ect  that 
*  the  edition  was  revised  by  Isidorus  of  Miletus,  the  mechanical 
engineer,  our  teacher9.  But,  in  view  of  the  relation  to  Ammo- 

nius, it  is  impossible  that  Eutocius  can  have  been  a  pupil  of 
Isidorus,  who  was  younger  than  Anthemius  of  Tralles,  the 
architect  of  Saint  Sophia  at  Constantinople  in  532,  whose 

work  was  continued  by  Isidorus  after  Anthemius's  death 
about  A.D.  534.  Moreover,  it  was  to  Anthemius  that  Eutocius 

dedicated,  separately,  the  commentaries  on  the  first  four 

Books  of  Apollonius's  Conies,  addressing  Anthemius  as  '  my 
dear  friend '.  Hence  we  conclude  that  Eutocius  was  an  elder 
contemporary  of  Anthemius,  and  that  the  reference  to  Isidoras 

is  by  an  editor  of  Eutocius's  commentaries  who  was  a  pupil  of 
Isidorus.  For  a  like  reason,  the  reference  in  the  commentary 

on  Book  II  OH  the  Sphere  and  Cylinder1  to  a  SiaprjTrjs 

invented  by  Isidorus  '  our  teacher '  for  drawing  a  parabola 
must  be  considered  to  be  an  interpolation  by  the  same  editor. 

Eutocius's  commentaries  on  Archimedes  apparently  ex- 
tended only  to  the  three  works,  On  the  Spttere  and  Cylinder, 

Measurement  of  a  Circle  and  Plane  Equilibriums,  and  those 
on  the  Conies  of  Apollonius  to  the  first  four  Books  only. 
We  are  indebted  to  these  commentaries  for  many  valuable 
historical  notes.  Those  deserving  special  mention  here  are 
(1)  the  account  of  the  solutions  of  the  problem  of  the  duplica- 

tion of  the  cube,  or  the  finding  of  two  mean  proportionals, 

by  'Plato',  Heron,  Philon,  Apollonius,  Diocles,  Pappus, 
Sporus,  Menaechmus,  Archytas,  Eratosthenes,  Nicomedes,  (2) 
the  fragment  discovered  by  Eutocius  himself  containing  the 

1  Archimedes,  ed.  Heiberg,  vol.  iii,  p.  84.  8-11. 
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missing  solution,  promised  by  Archimedes  in  On  the  Sphere 
and  Cylinder,  II.  4,  of  the  auxiliary  problem  amounting 
to  the  solution  by  means  of  conies  of  the  cubic  equation 

(a—x)x2  =  fcc2,  (3)  the  solutions  (a)  by  Diocles  of  the  original 
problem  of  II.  4  without  bringing  in  the  cubic,  (b)  by  Diony- 
sodorus  of  the  auxiliary  cubic  equation. 

ANTHEMIUS  of  Tralles,  the  architect,  mentioned  above,  was 
himself  an  able  mathematician,  as  is  seen  from  a  fragment  of 
a  work  of  his,  On  Burning-mirrors.  This  is  a  document  of 
considerable  importance  for  the  history  of  conic  sections. 
Originally  edited  by  L.  Dupuy  in  1777,  it  was  reprinted  in 

Westermann's  IlapaSogoypdQoi  (Scriptures  rerum  mirabilium 
Graeci),  1839,  pp.  149-58.  The  first  and  third  portions  of 
the  fragment  are  those  which  interest  us.1  The  first  gives 
a  solution  of  the  problem,  To  contrive  that  a  ray  of  the  sun 
(admitted  through  a  small  hole  or  window)  shall  fall  in  a 
given  spot,  without  moving  away  at  any  hour  and  season. 
This  is  contrived  by  constructing  an  elliptical  mirror  one  focus 
of  which  is  at  the  point  where  the  ray  of  the  sun  is  admitted 
while  the  other  is  at  the  point  to  which  the  ray  is  required 
to  be  reflected  at  all  times.  Let  B  be  the  hole,  A  the  point 
to  which  reflection  must  always  take  place,  BA  being  in  the 
meridian  and  parallel  to  the  horizon.  Let  BG  be  at  right 
angles  to  BA,  so  that  OB  is  an  equinoctial  ray ;  and  let  BD  be 
the  ray  at  the  summer  solstice,  BE  a  winter  ray. 

Take  F  at  a  convenient  distance  on  BE  and  measure  FQ 
equal  to  FA.  Draw  HFG  through  F  bisecting  the  angle 
A  FQ,  and  let  BG  be  the  straight  line  bisecting  the  angle  EBC 
between  the  winter  and  the  equinoctial  rays.  Then  clearly, 
since  FO  bisects  the  angle  QFA,  if  we  have  a  plane  mirror  in 
the  position  HFG,  the  ray  BFE  entering  at  B  will  be  reflected 
to  A. 

To  get  the  equinoctial  ray  similarly  reflected  to  A,  join  GAt 
and  with  G  as  centre  and  GA  as  radius  draw  a  circle  meeting 
BO  in  K.  Bisect  the  angle  KGA  by  the  straight  line  GLM 
meeting  BK  in  L  and  terminated  at  M,  a  point  on  the  bisector 
of  the  angle  OBJ}.  Then  LM  bisects  the  angle  K  LA  also,  and 
KL  =  LA,  and  KM  =  MA.  If  then  GLM  is  a  plane  mirror, 
the  ray  BL  will  be  reflected  to  A. 

1  See  Bibliotheca  matliematica,  vii3,  1907,  pp.  225-33. 
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By  taking  the  point  N  on  BD  such  that  M N  =  MA,  and 
bisecting  the  angle  NMA  by  the  straight  line  MOP  meeting 
BD  in  0,  we  find  that,  if  MOP  is  a  plane  mirror,  the  ray  BO 
is  reflected  to  A.  • 

Similarly,  by  continually  bisecting  angles  and  making  more 

mirrors,  we  can  get  any  number  of  other  points  of  impact.  Mak- 
ing the  mirrors  so  short  as  to  form  a  continuous  curve,  we  get 

the  curve  containing  all  points  such  that  the  sum  of  the  distances 
of  each  of  them  from  A  and  B  is  constant  and  equal  to  BQ,  BK, 

or  BN.  '  If  then ',  says  Anthemius, c  we  stretch  a  string  passed 

H 

round  the  points  A,  B,  and  through  the  first  point  taken  on  the 
rays  which  are  to  be  reflected,  the  said  curve  will  be  described, 

which  is  part  of  the  so-called  "  ellipse ",  with  reference  to 
which  (i.e.  by  the  revolution  of  which  round  BA)  the  surface 
of  impact  of  the  said  mirror  has  to  be  constructed/ 

We  have  here  apparently  the  first  mention  of  the  construc- 
tion of  an  ellipse  by  means  of  a  string  stretched  tight  round 

the  foci.  Anthemius's  construction  depends  upon  two  pro- 
positions proved  by  Apollonius  (1)  that  the  sum  of  the  focal 

distances  of  any  point  on  the  ellipse  is  constant,  (2)  that  the 
focal  distances  of  any  point  make  equal  angles  with  the 
tangent  at  that  point,  and  also  (3)  upon  a  proposition  not 
found  in  Apollonius,  namely  that  the  straight  line  joining 
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the  focus  to  the  intersection  of  two  tangents  bisects  the  angle 
between  the  straight  lines  joining  the  focus  to  the  two  points 
of  contact  respectively. 

In  the  third  portion  of  the  fragment  Anthemius  proves  that 

parallel  rays  can  be  reflected  to  one  single  point  from  a  para- 
bolic mirror  of  which  the  point  is  the  focus.  The  directrix  is 

used  in  the  construction,  which  follows,  mutatis  mutandis,  the 

same  course  as  the  above  construction  in  the  case  of  the  ellipse." 
As  to  the  supposition  of  Heiberg  that  Anthemius  may  also 

be  the  author  of  the  Fraymentum  mathematicum  Bobiense,  see 
above  (p.  203). 

The  Papyrus  of  Akhmim. 

Next  in  chronological  order  must  apparently  be  placed 
the  Papyrus  of  Akhmim,  a  manual  of  calculation  written 
in  Greek,  which  was  found  in  the  metropolis  of  Akhmim, 
the  ancient  Panopolis,  and  is  now  in  the  Mus^e  du 

Gizeh.  It  was  edited  by  J.  Baillet1  in  1892.  Accord- 
ing to  the  editor,  it  was  written  between  the  sixth  and 

ninth  centuries  by  a  Christian.  It  is  interesting  because 
it  preserves  the  Egyptian  method  of  reckoning,  with  proper 

fractions  written  as  the  sum  of  primary  fractions  or  sub- 
multiples,  a  method  which  survived  alongside  the  Greek  and 
was  employed,  and  even  exclusively  taught,  in  the  East.  The 

advantage  of  this  papyrus,  as  compared  with  Ahmes's,  is  that 
we  can  gather  the  formulae  used  for  the  decomposition  of 
ordinary  proper  fractions  into  sums  of  submultiples.  The 
formulae  for  decomposing  a  proper  fraction  into  the  sum  of 
two  submultiples  may  be  shown  thus : 

,-.     u  1  1 
i1; 

be           b  -f  c       7    b  +  c 
c.    —         b  .     — a                 a 

2         11 3          1    1 18          1    1 
Examples       —   -    -  * 11            O  DO 

llO  "~  70  773 
323        3438 

a               1                        1 
/0\ n                        • 
\") 

/><•          6  +  me      7    b  +  mc 
C/-) 

1 
•                    c/  . a                   a m 

1  Memoires  publics  par  les  membres  de  la  Mission  archto1ogiquefran$aise 
au  Caire,  vol.  ix,  part  1,  pp.  1-89. 



544        COMMENTATORS  AND  BYZANTINES 

Fx  -L  -  1  l  l    ,     3 
176       ,     /16  +  3.1K+        /16  +  3.1K  1       77^112 

-3.  11\  1 "7        /3 

and  again  --  =  
+    —TR-.y"j-\  

=  ™  ™ \  L  &  /lo  -r  £  •  7\  /lOTfl.f\l  «UoU 

7(        S        )        16("    3"~)2 
\  o  /  V  u  /   & 

(3)  cdf=     cd  +  df +    .  cd  +  df C     9          ~'  T     • 

a          J        a 

Example. 
O  Q  O  O 
<6O  <SO 

1320       10.12.11  120  +  132  120+  132       9099 
0.        -_ .        — 

The  object  is,  of  course,  to  choose  the  factors  of  the  denomi- 
nator, and  the  multiplier  w  in  (2),  in  such  a  way  as  to  make 

the  two  denominators  on  the  right-hand  side  integral. 
When  the  fraction  has  to  be  decomposed  into  a  sum  of  three 

or  more  submultiples,  we  take  out  an  obvious  submultiple 
first,  then  if  necessary  a  second,  until  one  of  the  formulae 
will  separate  what  remains  into  two  submultiples.  Or  we 
take  out  a  part  which  is  not  a  submultiple  but  which  can  be 
divided  into  two  submultiples  by  one  of  the  formulae. 

For  example,  to  decompose  ̂ Vfc •  The  factors  of  6 1 6  are  8.77 
or  7 . 88.  Take  out  ̂ ,  and  -/fa  =  -fa  •£&  =  ̂   -^  =  -fa  ̂   ̂  ; 
and  -^  =  -fa  fo  by  formula  ( 1),  so  that  ̂ F  =  ̂   TV  sV  sV 

Take  ££/$.  The  factors  of  6460  are  85.76  or  95.68.  Take 

out  e1^,  and  •$r/v  =  ̂   ̂VVo  •  Again  take  out  ̂ ,  and  we  have 
F^sV^tftf  or  sVsVsV  The  actual  problem  here  is  to  find 

3^-jrd  of  iH-sxV^ffj  which  latter  expression  reduces  to 

A  •  239. 
The  sort  of  problems  solved  in  the  book  are  (1)  the  division 

of  a  number  into  parts  in  the  proportion  of  certain  given 
numbers,  (2)  the  solution  of  simple  equations  such  as  this: 
From  a  certain  treasure  we  take  away  ̂ th,  then  from  the 
remainder  ^Tth  of  that  remainder,  and  we  find  150  units  left; 

what  was  the  treasure?    \<x   #—  rr(x   x\  —  ...|  =jR. 
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(3)  subtractions  such  as :  From  §  subtract  •£$  rr  yfr  tt  &  ̂ s 
&  n  TG  Tis-  KG  e*  TS  rr  TO  ?<s  5?  rita  TTS  •    Answer,  ̂   ̂  . 

The  book  ends  with  long  tables  of  results  obtained  (1)  by 
multiplying  successive  numbers,  tens,  hundreds  and  thousands 
up  to  10,000  by  |,  £,  |,  £,  $,  &c.,  up  to  TV,  (2)  by  multiplying 

all  the  successive  numbers  1,  2,  3..  .n  by  ->  where  w  is  succes- 

u  n 

sively  11,  12,  ...  and  20;  the  results  are  all  arranged  as  the 
sums  of  integers  and  submultiples. 

The  Geodaesia  of  a  Byzantine  author  formerly  called,  with- 

out any  authority,  '  Heron  the  Younger '  was  translated  into 
Latin  by  Barocius  in  1572,  and  the  Greek  text  was  published 

with  a  French  translation  by  Vincent.1  The  place  of  the 

author's  observations  was  the  hippodrome  at  Constantinople, 
and  the  date  apparently  about  938.  The  treatise  was  modelled 
on  Heron  of  Alexandria,  especially  the  Dioptra,  while  some 
measurements  of  areas  and  volumes  are  taken  from  the 
Metrica. 

MICHAEL  PSELLUS  lived  in  the  latter  part  of  the  eleventh 
century,  since  his  latest  work  bears  the  date  1092.  Though 

he  was  called  '  first  of  philosophers ',  it  cannot  be  said  that 
what  survives  of  his  mathematics  suits  this  title.  Xy lander 
edited  in  1556  the  Greek  text,  with  a  Latin  translation,  of 

a  book  purporting  to  be  by  Psellus  on  the  four  mathematical 
sciences,  arithmetic,  music,  geometry  and  astronomy,  but  it  is 

evident  that  it  cannot  be  entirely  Psellus's  own  work,  since 
the  astronomical  portion  is  dated  1008.  The  arithmetic  con- 

tains no  more  than  the  names  and  classification  of  numbers 

and  ratios.  The  geometry  has  the  extraordinary  remark  that, 
while  opinions  differed  as  to  how  to  find  the  area  of  a  circle, 
the  method  which  found  most  favour  was  to  take  the  area  as 

the  geometric  mean  between  the  inscribed  and  circumscribed 
squares;  this  gives  TT  =  VS  =  2-8284271  !  The  only  thing  of 
Psellus  which  has  any  value  for  us  is  the  letter  published  by 

Tannery  in  his  edition  of  Diophantus.2  In  this  letter  Psellus 
says  that  both  Diophantus  and  Anatolius  (Bishop  of  Laodicea 
about  A.  p.  280)  wrote  on  the  Egyptian  method  of  reckoning, 

1  Notices  et  extmits,  xix,  pt.  2,  Paris,  1858. 
a  Diophantus,  vol.  ii,  pp.  37-42. 

1528.2  N  n 
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and  that  Anatolius's  account,  which  was  different  and  more 
succinct,  was  dedicated  to  Diophantus  (this  enables  us  to 

determine  Diophantus's  date  approximately).  He  also  notes 
the  difference  between  the  Diophantine  and  Egyptian  names 
for  the  successive  powers  of  dpidftSs:  the  next  power  after 

the  fourth  (SwapoSfyapif  =  #4),  i.e.  x5,  the  Egyptians  called 
'  the  first  undescribed '  ((JfAoyoy  7rp<Sroy)  or  the  '  fifth  number ' ; 
the  sixth,  #6,  they  apparently  (like  Diophantus)  called  the 
cube-cube ;  but  with  them  the  seventh,  a.'7,  was  the  *  second 

undescribed '  or  the  c  seventh  number ',  the  eighth  (,rs)  was  the 
'quadruple  square'  (reTpairXij  Svvafus),  the  ninth  (x*)  the 
'  extended  cube  '  (KV{$O$  e^eAjtfroy).  Tannery  conjectures  that 
all  these  remarks  were  taken  direct  from  an  old  commentary 

on  Diophantus  now  lost,  probably  Hypatia's. 

GEORGIUS  PACJIYMKRKS  (1242-1310)  was  the  author  of  a 
work  on  the  Quadrivium  (Hvvrayna  rS>v  Ttvvdpw  fiadr)fidr(i)v 
or  TtTpdf$ip\ov).  The  arithmetical  portion  contains,  besides 

excerpts  from  Nicomachus  and  Euclid,  a  paraphrase  of  Dio- 
phantus, Book  I,  which  Tannery  published  in  his  edition  of 

Diophantus ];  the  musical  section  with  part  of  the  preface  was 
published  by  Vincent,2  and  some  fragments  from  Book  IV  by 
Martin  in  his  edition  of  the  Astronomy  of  Theon  of  Smyrna. 

MAXIMUS  PLANUDES,  a  monk  from  Nicomedia,  was  the 

envoy  of  the  Emperor  Andronicus  II  at  Venice  in  the  year 
1297,  and  lived  probably  from  about  1260  to  1310.  He 
wrote  scholia  on  the  first  two  Books  of  Diophantus,  which 

are  extant  and  are  included  in  Tannery's  edition  of  Dio- 
phantus.8 They  contain  nothing  of  particular  interest  except 

a  number  of  conspectuses  of  the  working-out  of  problems  of 

Diophantus  written  in  Diophantus's  own  notation  but  with 
steps  in  separate  lines,  and  with  abbreviations  on  the  left  of 
words  indicating  the  operations  (e.g.  ?K0.  =  e/c0€<ri9,  rerp.  = 
TGTpaywvKriJLos,  orvvO.  =  crtfpfccri?,  &c.);  the  result  is  to  make 
the  work  almost  as  easy  to  follow  as  it  is  in  our  notation. 

Another  work  of  Planudes  is  called  Wrj^o^opia  /car'  9Iv8ov$, 
or  Arithmetic  after  the  Indian  method,  and  was  edited  as  Das 

1  Diophantus,  vol.  ii,  pp.  78-122. 
2  Notices  et  extraits,  xvii,  1858,  pp.  362-533. 
8  Diophantus,  vol.  ii,  pp.  125-255. 
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Rechenbuch  des  Maximus  Planudes  in  Greek  by  Gerhardt 
(Halle,  18(55)  and  in  a  German  translation  by  H.  Waeschke 
(Halle,  1878).  There  was,  however,  an  earlier  book  under  the 

similar  title  'Apxy  rtjy  /zeyaAijr  KOL  'IvSiKrjs  ̂ (/u^opmy  (sic), 
written  in  1252,  which  is  extant  in  the  Paris  MS.  Suppl.  Gr. 
387 ;  and  Planudes  seems  to  have  raided  this  work.  He 
begins  with  an  account  of  the  symbols  which,  he  says,  were 

'  invented  by  certain  distinguished  astronomers  for  the  most 
convenient  and  accurate  expression  of  numbers.  There  are 
nine  of  these  symbols  (our  1,  2,  3,  4,  5,6,  7,  8,  9),  to  which  is 
added  another  called  Tzifra,  (cypher),  written  0  and  denoting 
aero.  The  nine  signs  as  well  as  this  one  are  Indian/ 

But  this  is,  of  course,  not  the  first  occurrence  of  the  Indian 
numerals;  they  were  known,  except  the  zero,  to  Gerbert 
(Pope  Sylvester  II)  in  the  tenth  century,  and  were  used  by 
Leonardo  of  Pisa  in  his  Liber  abaci  (written  in  1202  and 
rewritten  in  1228).  Planudes  used  the  Persian  form  of  the 
numerals,  differing  in  this  from  the  writer  of  the  treatise  of 
1252  referred  to,  who  used  the  form  then  current  in  Italy. 
It  scarcely  belongs  to  Greek  mathematics  to  give  an  account 

of  Planudes's  methods  of  subtraction,  multiplication,  &c. 

Extraction  of  tlie  square  root. 

As  regards  the  extraction  of  the  square  root,  he  claims  to 
have  invented  a  method  different  from  the  Indian  method 

and  from  that  of  Theon.  It  docs  not  appear,  however,  that 
there  was  anything  new  about  it.  Let  us  try  to  see  in  what 
the  supposed  new  method  consisted. 

Planudes  describes  fully  the  method  of  extracting  the 
square  root  of  a  number  with  several  digits,  a  method  which 
is  essentially  the  same  as  ours.  This  appears  to  be  what  he 

refers  to  later  on  as  '  the  Indian  method '.  Then  he  tells  us 
how  to  find  a  first  approximation  to  the  root  when  the  number 
is  not  a  complete  square. 

'Take  the  square  root  of  the  next  lower  actual  square 
number,  and  double  it :  then,  from  the  number  the  square  root 
of  whicli  is  required,  subtract  the  next  lower  square  number 
so  found,  and  to  the  remainder  (as  numerator)  give  as  de- 

nominator the  double  of  the  square  root  already  found.' 
N  n  2 
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The  example  given  is  </(18).    Since  42=16  is  the  next 
2 

2~4 

2 
lower  square,  the  approximate  square  root  is  4  +  —  or 

The  formula  used  is,  therefore,  \/(aa  +  6)  =  a  +  ̂   approxi- 
mately.    (An  example  in  larger  numbers  is 

^(1690196789)  =  41112  + gfff *  approximately.) 

Planudes  multiplies  4£  by  itself  and  obtains  18T^,  which 
shows  that  the  value  4  J  is  not  accurate.  He  adds  that  he  will 
explain  later  a  method  which  is  more  exact  and  nearer  the 

truth,  a  method  'jvhich  I  claim  as  a  discovery  made  by  rne 

with  the  help  of  God '.  Then,  coming  to  the  method  which  he 
claims  to  have  discovered,  Planudes  applies  it  to  A/6,  The 
object  is  to  develop  this  in  units  and  sexagesimal  fractions. 
Planudes  begins  by  multiplying  the  6  by  3600,  making  21600 
second-sixtieths,  and  finds  the  square  root  of  21600  to  lie 

between  146  and  147.  Writing  the  146'  as  2  26',  he  proceeds 
to  find  the  rest  of  the  approximate  square  root  (2  26'  58"  9"') 
by  the  same  procedure  as  that  used  by  Theon  in  extracting 

the  square  root  of  4500  and  2  28'  respectively.  The  differ- 
ence is  that  in  neither  of  the  latter  cases  does  Theon  multiply 

by  3600  so  as  to  reduce  the  units  to  second-sixtieths,  but  he 
begins  by  taking  the  approximate  square  root  of  2,  viz.  1,  just 
as  he  does  that  of  4500  (viz.  67).  It  is,  then,  the  multiplication 

by  3600,  or  the  reduction  to  second-sixtieths  to  start  with,  that 

constitutes  the  difference  from  Theon's  method,  and  this  must 
therefore  be  what  Planudes  takes  credit  for  as  a  new  dis- 

covery. In  such  a  case  as  V(2  28')  or  -v/3,  Theon's  method 
has  the  inconvenience  that  the  number  of  minutes  in  the 

second  term  (34'  in  the  one  case  and  43'  in  the  other)  cannot 
be  found  without  some  trouble,  a  difficulty  which  is  avoided 

by  Planudes's  expedient.  Therefore  the  method  of  Planudes 
had  its  advantage  in  such  a  case.  But  the  discovery  was  not 
new.  For  it  will  be  remembered  that  Ptolemy  (and  doubtless 
Hipparchus  before  him)  expressed  the  chord  in  a  circle  sub- 

tending an  angle  of  120°  at  the  centre  (in  terms  of  120th  parts 
of  the  diameter)  as  103P  55'  23",  which  indicates  that  the  first 
step  in  calculating  A/ 3  was  to  multiply  it  by  3600,  making 

10800,  the  nearest  square  below  which  is  1032  (=  10609).  In 
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the  scholia  to  Eucl.,  Book  X,  the  same  method  is  applied. 
Examples  have  been  given  above  (vol.  i,  p.  63).  The  supposed 
new  method  was  therefore  not  only  already  known  to  the 
scholiast,  but  goes  back,  in  all  probability,  to  Hipparchus. 

Two  problems. 

Two  problems  given  at  the  end  of  the  Manual  of  Planudes 
are  worth  mention.  The  first  is  stated  thus :  '  A  certain  man 

finding  himself  at  the  point  of  death  had  his  desk  or  safe 
brought  to  him  and  divided  his  money  among  his  sons  with 
the  following  words,  "  I  wish  to  divide  my  money  equally 
between  my  sons :  the  first  shall  have  one  piece  and  ̂ th  of  the 
rest,  the  second  2  and  £th  of  the  remainder,  the  third  3  and 

?th  of  the  remainder/'  At  this  point  the  father  died  without 
getting  to  the  end  either  of  his  money  or  the  enumeration  of 
his  sons.  I  wish  to  know  how  many  sons  he  had  and  how 

much  money.'  The  solution  is  given  as  (n—  I)2  for  the  number 
of  coins  to  be  divided  and  (n—1)  for  the  number  of  his  sons; 
or  rather  this  is  how  it  might  be  stated,  for  Planudes  takes 
n  =  7  arbitrarily.  Comparing  the  shares  of  the  first  two  we 
must  clearly  have 

l  +  -(a-l)  =  2  +  i{a-(l  +  —  +  2)}, n          '  n  l       N          n          ' 

which  gives  x  =  (n  —  1  )2 ;  therefore  each  of  (/i  —  1)  sons  received 
(71-1). 

The  other  problem  is  one  which  we  have  already  met  with, 
that  of  finding  two  rectangles  of  equal  perimeter  such  that 
the  area  of  one  of  them  is  a  given  multiple  of  the  area  of 
the  other.  If  n  is  the  given  multiple,  the  rectangles  are 

(>*2— 1,  ns  —  n,2)  andl('ft—l,  7&3  —  n)  respectively.  Planudes 
states  the  solution  correctly,  but  how  he  obtained  it  is  not  clear. 

We  find  also  in  the  Manual  of  Planudes  the  '  proof  by  nine ' 
(i.e.  by  casting  out  nines),  with  a  statement  that  it  was  dis- 

covered by  the  Indians  and  transmitted  to  us  through  the 
Arabs. 

MANUEL  MOSCHOPOULOS,  a  pupil  and  friend  of  Maximus 
Planudes,  lived  apparently  under  the  Emperor  Andronicus  II 

(1282-1328)  and  perhaps  under  his  predecessor  Michael  VIII 
(1261-82)  also.  A  man  of  wide  learning,  he  wrote  (at  the 
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instance  of  Nicolas  Rhabdas,  presently  to  be  mentioned)  a 
treatise  on  magic  squares ;  he  showed,  that  is,  how  the  num- 

bers 1,  2,  3  ...  7i2  could  be  placed  in  the  n2  compartments  of 
a  square,  divided  like  a  chess-board  into  n2  small  squares,  in  such 
a  way  that  the  sum  of  the  numbers  in  each  horizontal  and 
each  vertical  row  of  compartments,  as  well  as  in  the  rows 

forming  the  diagonals,  is  always  the  same,  namely  %n  (n2+  1). 
Moschopoulos  gives  rules  of  procedure  for  the  cases  in  which 
11  =  2  m  +  1  and  n  =  4  m  respectively,  and  these  only,  in  the 
treatise  as  we  have  it ;  he  promises  to  give  the  case  where 
n  =  4ra+2  also,  but  does  not  seem  to  have  done  so,  as  the 
two  manuscripts  used  by  Tannery  have  after  the  first  two  cases 
the  words  reAoy  rov  avTov.  The  treatise  was  translated  by 

De  la  Hire,1  edited  by  S.  Giinther,2  and  finally  edited  in  an 
improved  text  with  translation  by  Tannery.3 

The  work  of  Moschopoulos  was  dedicated  to  Nicolas  Arta- 
vasdus,  called  RHABDAS,  a  person  of  some  importance  in  the 
history  of  Greek  arithmetic.  He  edited,  with  some  additions 
of  his  own,  the  Manual  of  Planudes;  this  edition  exists  in 
the  Paris  MS.  2428.  But  he  is  also  the  author  of  two  letters 
which  have  been  edited  by  Tannery  in  the  Greek  text  with 
French  translation.4  The  date  of  Rhabdas  is  roughly  fixed 
by  means  of  a  calculation  of  the  date  of  Easter  '  in  the  current 

year '  contained  in  one  of  the  letters,  which  shows  that  its date  was  1341.  It  is  remarkable  that  each  of  the  two  letters 
has  a  preface  which  (except  for  the  words  T^V  8j\a><nv  T&V  ci/ 
Tofr  dpiOfiois  faTrifjLdTow  and  the  name  or  titlfr  of  the  person 
to  whom  it  is  addressed)  copies  word  for  word  the  first  thir- 

teen lines  of  the  preface  to  Diophantus's  Arithmetica,  a  piece 
of  plagiarism  which,  if  it  does  not  say  much  for  the  literary 
resource  of  Rhabdas,  may  indicate  that  he  had  studied  Dio- 
phantus.  The  first  of  the  two  letters  has  the  heading  «  A  con- 

cise and  most  clear  exposition  of  the  science  of  calculation 
written  at  Byzantium  of  Constantine,  by  Nicolas  Artavasdus 

1  Mem.  de  VAcad.  Eoyale  des  Sciences,  1705. 
2  Vermischte  Untersuchungen  zur  Gesch.  d.  Math.,  Leipzig,  1876. 
8  'Le  traite  de  Manuel  Moschopoulos  sur  les  carrSs  magiques'  in Annuaire  de  V Association  pour  V encouragement  des  ttudes  grecques,  xx, 

1886,  pp.  88-118.  
* 

4  'Notices  sur  les  deux  lettres  arithnietiques  de  Nicolas  Rhabdas'  in 
Notices  et  extmits  des  tnanuscHts  de  la  Bibliotheque  Rationale,  xxxii,  pt.  1. 
1886,  pp.  121-252. 
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of  Smyrna,  arithmetician  and  geometer,  TOV  'PafiSa,  at  the 
instance  of  the  most  revered  Master  of  Requests,  Georgius 

Chatzyces,  and  most  easy  for  those  who  desire  to  study  it/ 
A  long  passage,  called  €K<f>pa<ri$  rov  SaKrvXiKov  ptrpov,  deals 

with  a  method  of  finger-notation,  in  which  the  fingers  of  each 

hand  held  in  different  positions  are  made  to  represent  num- 

bers.1 The  fingers  of  the  left  hand  serve  to  represent  all  the 
units  and  tens,  those  of  the  right  all  the  hundreds  and 

thousands  up  to  9000  ;  *  for  numbers  above  these  it  is  neces- 
sary to  use  writing,  the  hands  not  sufficing  to  represent  such 

numbers.'  The  numbers  begin  with  the  little  fingers  of  each 
hand;  if  we  call  the  thumb  and  the  fingers  after  it  the  1st, 

2nd,  3rd,  4th,  and  5th  fingers  in  the  German  style,  the  succes- 
sive signs  may  be  thus  described,  premising  that,  where  fingers 

are  not  either  bent  or  '  half  -closed  '  (KXivopcvoi)  or  c  cl9sed  ' 
i)9  they  are  supposed  to  be  held  out  straight 

(a)  On  the  left  hand  : 

for  1,  half-close  the  5th  finger  only; 

„    2,         „  „    4th  and  5th  fingers  only  ; 

„    3,         „  „    3rd,  4th  and  5th  fingers  only  ; 

„    4,         „  „    3rd  and  4tli  fingers  only  ; 

„    5,         „  „    3rd  finger  only  ; 

»    6,          „  „    4th       „          „ 

„    7,  close  the  5th  finger  only; 

„    8,     „       „    4th  and  5th  fingers  only  ; 

„    9,      „       „    3rd,  4th  and  5th  fingers  only. 

(6)  The  same  operations  on  the  right  hand  give  the  thou- 
sands, from  1000  to  9000. 

(c)  On  the  left  hand  : 

for  10,  apply  the  tip  of  the  forefinger  to  the  first  joint  of 

the  thumb  so  that  the  resulting  figure  resembles  <r  ; 

, 

as  showing  that  he  too  wan  acquainted  with  the  system  (The  Miscellaneous 

Works  of  the  Venerable  Bede,  ed.  J.  A.  Giles,  vol.  vi,  1843,  pp.  141-3). 
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for  20,  stretch  out  the  forefinger  straight  and  vertical, 
keep  fingers  3,  4,  5  together  but  separate  from  it 
and  inclined  slightly  to  the  palm ;  in  this  position 
touch  the  forefinger  with  the  thumb ; 

„    30,  join  the  tips  of  the  forefinger  and  thumb  ; 

„  40,  place  the  thumb  on  the  knuckle  of  the  forefinger 
behind,  making  a  figure  like  the  letter  f  ; 

„  50,  make  a  like  figure  with  the  thumb  on  the  knuckle 
of  the  forefinger  inside ; 

„  60,  place  the  thumb  inside  the  forefinger  as  for  50  and 

bring  the  forefinger  down  over  the  thumb,  touch- 
ing the  ball  of  it ; 

„  70,  rest  the  forefinger  round  the  tip  of  the  thumb, 
making  a  curve  like  a  spiral ; 

„  80,  fingers  3,  4,  5  being  held  together  and  inclined 
at  an  angle  to  the  pdflm,  put  the  thumb  across  the 
palm  to  touch  the  third  phalanx  of  the  middle 
linger  (3)  and  in  this  position  bend  the  forefinger 
above  the  first  joint  of  the  thumb ; 

„    90,  close  the  forefinger  only  as  completely  as  possible. 

(d)  The  same  operations  on  the  right  hand  give  the  hun- 
dreds, from  100  to  900. 

The  first  letter  also  contains  tables  for  addition  and  sub- 
traction and  for  multiplication  and  division ;  as  these  are  said 

to  be  the  'invention  of  Palamedes',  we  must  suppose  that 
such  tables  were  in  use  from  a  remote  antiquity.  Lastly,  the 
first  letter  contains  a  statement  which,  though  applied  to 
particular  numbers,  expresses  a  theorem  to  the  effect  that 

(a0+  10^  +  ...  +  10r'XJ  (&o+  10^  +  ...  +  10wftn) 

is  not  >  10™+"+-, 
where  «0,  Oj ...  60,  ̂   ...  are  any  numbers  from  0  to  9. 

In  the  second  letter  of  Rhabdas  we  find  simple  algebraical 
problems  of  the  same  sort  as  those  of  the  Anthologia  Graeca 
and  the  Papyrus  of  Akhmim.  Thus  there  are  five  problems 
leading  to  equations  of  the  type 

x      x 
—  +  -  +  ...  =a. fm      n 
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Rhabdas  solves  the  equation  —  +  -  =  a,  practically  as  we 
^  m      n          r  * 

should,  by  multiplying  up  to  get  rid  of  fractions,  whence  he 
obtains  x  =  mna /(m  +  n).  Again  he  solves  the  simultaneous 
equations  x  +  y  =  a,  ma?  =  ny  ;  also  the  pair  of  equations 

,    y  x x  +  2-  =  y+  --  =  a. 
m      y     n 

Of  course,  m,  n,  a...  have  particular  numerical  values  in 
all  cases. 

Rhabdas' s  Rule  for  approximating  to  the  square  root  of 
a  non-square  number. 

We  find  in  Rhabdas  the  equivalent  of  the  Heronian  formula 

for  the  approximation  to  the  square  root  of  a  non-square 
number  A  =  a*  +  6,  namely 

b 
a  =  a  +  — ; 2a 

he  further  observes  that,  if  a  be  an  approximation  by  excess, 
then  o^  =  A/OL  is  an  approximation  by  defect,  and  ̂ (a  +  cXj) 
is  an  approximation  nearer  than  either.  This  last  form  is  of 

course  exactly  Heron's  formula  a  =  } (a  +  —\  •    The  formula 
was  also  known  to  Barlaam  (presently  to  be  mentioned),  who 
also  indicates  that  the  procedure  can  be  continued  indefinitely. 

It  should  here  be  added  that  there  is  interesting  evidence 
of  the  Greek  methods  of  approximating  to  square  roots  in  two 

documents  published  by  Heiberg  in  1899.1  The  first  of 
these  documents  (from  a  manuscript  of  the  fifteenth  century 

at  Vienna)  gives  the  approximate  square  root  of  certain  non- 
square  numbers  from  2  to  147  in  integers  and  proper  fractions. 
The  numerals  are  the  Greek  alphabetic  numerals,  but  they  are 
given  place-value  like  our  numerals :  thus  OLTJ  =  18,  «#£=  147, 

~  =  — 9  and  so  on:  0  is  indicated  by  4  or,  sometimes,  by  •. 
PTJ  28 
All  these  square  roots,  such  as  \/(21)  =  4§£,  \/(35)  =  5^J, 
'/(1 12)  =  10||,  and  so  on,  can  be  obtained  (either  exactly  or, 
in  a  few  cases,  by  neglecting  or  adding  a  small  fraction  in  the 

1  ( Byzantinische  Analekten'  in  Abh.  zurGesch.  d.  Math.  ix.  Heft,  1899, 
pp.  163  sqq. 
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numerator  of  the  fractional  part  of  the  root)  in  one  or  other 
of  the  following  ways  : 

(1)  by  taking  the  nearest  square  to  the  given  number  A, 

say  a2,  and  using  the  Heronian  formulae 

(2)  by  using  one  or  other  of  the  following  approximations, 
where 

a2<  A  <  (tt+1)2,  and  A  =  a*  +  b  = 
namely,  b  b        7 

a+  _,     «f  —       b  , 
2  a  2a+    -- 2  a 

or  a  combination  of  two  of  these  with 

(JL          C 

(3)  the  formula  that,  if  y  <    -,  >  then o      ct 

a      ma  +  nc      c 

T)      mb  4-  nd      d 

It  is  clear  that  it  is  impossible  to  deny  to  the  Greeks  the 
knowledge  of  these  simple  formulae. 

Three  more  names  and  we  have  done. 

IOANNES  PKDIASIMUS,  also  called  Galenus,  was  Keeper  of  the 
Seal  to  the  Patriarch  of  Constantinople  in  the  reign  of 

Andronicus  III  (1328-41).  Besides  literary  works  of  his, 
some  notes  on  difficult  points  in  arithmetic  and  a  treatise  on 

the  duplication  of  the  cube  by  him  are  said  to  exist  in  manu- 
scripts. His  Geometry,  which  was  edited  by  Friedlein  in  1866, 

follows  very  closely  the  mensuration  of  Heron. 

BAKLAAM,  a  monk  of  Calabria,  was  abbot  at  Constantinople 
and  later  Bishop  of  Geraci  in  the  neighbourhood  of  Naples; 
he  died  in  1348.  He  wrote,  in  Greek,  arithmetical  demon- 

strations of  propositions  in  Euclid,  Book  II,1  and  a  Logistic  in 
six  Books,  a  laborious  manual  of  calculation  in  whole  numbers, 

1  Edited  with  Latin  translation-  by  Dasypodius  in  1564,  and  included 
in  Heiberg  and  Menge's  Euclid,  vol.  v,  ad  fin. 
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ordinary  fractions  and  sexagesimal  fractions  (printed  at 
Strassburg  in  1592  and  at  Paris  in  1600).  Barlaam,  as  we 
have  seen,  knew  the  Heronian  formulae  for  finding  successive 
approximations  to  square  roots,  and  was  aware  that  they  could 
be  indefinitely  continued. 

ISAAC  ARGYRUS,  a  monk,  who  lived  before  1368,  was  one  of 
a  number  of  Byzantine  translators  of  Persian  astronomical 
works.  In  mathematics  he  wrote  a  Geodaesia  and  scholia  to 

the  first  six  Books  of  Euclid's  Elements.  The  former  is  con- 
tained in  the  Paris  MS.  2428  and  is  called  'a  method  of 

geodesy  or  the  measurement  of  surfaces,  exact  and  shortened  '  ; 
the  introductory  letter  addressed  to  one  Colybos  is  followed 
by  a  compilation  of  extracts  from  the  Geometrica  and  Stereo- 
metrica  of  Heron.  He  is  apparently  the  author  of  some 
further  additions  to  Rhabdas's  revision  of  the  Manual  of 
Planudes  contained  in  the  same  manuscript.  A  short  tract 

of  his  '  On  the  discovery  of  the  square  i*oots  of  non-rational 
square  numbers  J  is  mentioned  as  contained  in  two  other  manu- 

scripts at  Venice  and  Rome  respectively  (Codd.  Marcianus  Gr. 
333  and  Vaticanus  Gr.  1058),  where  it  is  followed  by  a  table 
of  the  square  roots  of  all  numbers  from  1  to  102  in  sexa- 

gesimal fractions  (e.^.  ̂ 2  =  1  24'  51"  48'",  ̂ 3=1  43'  r^O'").1 

1  Heiherg,  '  Byxantinische  Analekten  ',  in  Abh.  zur  Cesch.  d.  Math,  ix, 
pp.  169-70. 
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On  Archimedes's  proof  of  the  subtangent-property  of 
a  spiral. 

THE  section  of  the  treatise  On  Spirals  from  Prop.  3  to 
Prop.  20  is  an  elaborate  series  of  propositions  leading  up 
to  the  proof  of  the  fundamental  property  of  the  subtangent 
corresponding  to  the  tangent  at  any  point  on  any  turn  of  the 
spiral.  Libri,  doubtless  with  this  series  of  propositions  in 
mind,  remarks  (Histoire  des  sciences  math&matiques  en  Italie, 

i,  p.  31)  that'Apr&s  vingt  si&cles  de  travaux  et  de  d^cou- 
vertes,  les  intelligences  les  plus  puissantes  viennent  encore 
(Schouer  contre  la  sy&th&se  difficile  du  Traite  des  Spirales 

d'Arehimfcde/  There  is  no  foundation  for  this  statement, 
which  seems  to  be  a  too  hasty  generalization  from  a  dictum, 
apparently  of  Fontenelle,  in  the  Histoire  de  VAcadtmie  des 
Sciences  pour  Vann&e  1704  (p.  42  of  the  edition  of  1722), 
who  says  of  the  proofs  of  Archimedes  in  the  work  On 

Spirals:  'Elles  sont  si  longues,  et  si  difficiles  a  embrasser, 
que,  comme  on  l'a  pft  voir  dans  la  Preface  de  1' Analyse  des 
Infiniment  petits,  M.  Bouillaud  a  avou£  qu'il  ne  les  avoit 
jamais  bien  entendues,  et  que  Vi&te  les  a  injustement  soup- 

^onn^es  de  paralogisme,  parce  qu'il  n'avoit  pA  non  plus 
parvenir  &  les  bien  entendre.  Mais  Routes  les  preuves  qu'on 
peut  donner  de  leur  difficult^  et  de  leur  obscurit^*  tournent 

a  la  gloire  d'Archimfede;  car  quelle  vigueur  d'esprit,  quelle 
quantit^  de  vftes  diff<£rentes,  quelle  opini&tretd  de  travail  n'a- 
t-il  pas  fallu  pour  lier  et  pour  disposer  un  raisonnement  que 
quelques-uns  de  nos  plus  grands  g^om^tres  ne  peuvent  suivre, 

tout  li^  et  tout  disposd  qu'il  est  ? ' 
P.  Tannery  has  observed1  that,  as  a  matter  of  fact,  no 

mathematicians  of  real  authority  who  have  applied  or  ex- 

tended Archimedes's  methods  (such  men  as  Huygens,  Pascal, 
Roberval  and  Fermat,  who  alone  could  have  expressed  an. 
opinion    worth     having),    have     ever    complained    of    the 

1  Bulletin  des  sciences  mathtmatiques,  1895,  Part  i,  pp.  265-71. 
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'  obscurity '  of  Archimedes ;  while,  as  regards  Vieta,  he  has 
shown  that  the  statement  quoted  is  based  on  an  entire  mis- 

apprehension, and  that,  so  far  from  suspecting  a  fallacy  in 

Archimedes's  proofs,  Vieta  made  a  special  study  of  the  treatise 
On  Spirals  and  had  the  greatest  admiration  for  that  work. 

But,  as  in  many  cases  in  Greek  geometry  where  the  analy- 
sis is  omitted  or  even  (as  Wallis  was  tempted  to  suppose)  of 

set  purpose  hidden,  the  reading  of  the  completed  synthetical 
proof  leaves  a  certain  impression  of  mystery;  for  there  is 
nothing  in  it  to  show  why  Archimedes  should  have  taken 
precisely  this  line  of  argument,  or  how  he  evolved  it.  It  is 

a  fact  that,  as  Pappus  said,  the  subtangent-property  can  be 

established  by  purely  'plane1  methods,  without  recourse  to 
a  'solid*  vtvorts  (whether  actually  solved  or  merely  assumed 
capable  of  being  solved).  If,  then,  Archimedes  chose  the  more 
difficult  method  which  we  actually  find  him  employing,  it  is 
scarcely  possible  to  assign  any  reason  except  his  definite 
predilection  for  the  form  of  proof  by  reductio  ad  absurdum 

based  ultimately  on  his  famous  '  Lemma '  or  Axiom. 
It  seerns  worth  while  to  re-examine  the  whole  question  of 

the  discovery  and  proof  of  the  property,  and  to  see  how 

Archimedes's  argument  compares  with  an  easier  f  plane  '  proof 
suggested  by  the  figures  of  some  of  the  very  propositions 
proved  by  Archimedes  in  the  treatise. 

In  the  first  place,  we  may  be  sure  that  the  property  was 
not  discovered  by  the  steps  leading  to  the  proof  avS  it  stands. 
I  cannot  but  think  that  Archimedes  divined  the  result  by  an 
argument  corresponding  to  our  use  of  the  differential  calculus 
for  determining  tangents.  He  must  have  considered  the 

instantaneous  direction  of  the  motion  of  the  point  P  describ- 
ing the  spiral,  using  for  this  purpose  the  parallelogram  of 

velocities.  The  motion  of  P  is  compounded  of  two  motions, 
one  along  OP  and  the  other  at  right  angles  to  it.  Comparing 
the  distances  traversed  in  an  instant  of  time  in  the  two  direc- 

tions, we  see  that,  corresponding  to  a  small  increase  in  the 

radius  vector  r,  wo  have  a  small  distance  traversed  perpen- 
dicularly to  it,  a  tiny  arc  of  a  circle  of  radius  r  subtended  by 

the  angle  representing  the  simultaneous  small  increase  of  the 
angle  6  (AOP).  Now  r  has  a  constant  ratio  to  6  which  we  call 
a  (when  6  is  the  circular  measure  of  the  angle  6).  Consequently 
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the  small  increases  of  r  and  6  are  in  that  same  ratio.  There- 
fore what  we  call  the  tangent  of  the  angle  OPT  is  r/a, 

i.e.  OT/r  =  r/a;  and  OT  =  r2/a,  or  rd,  that  is,  the  arc  of  a 
circle  of  radius  r  subtended  by  the  angle  0. 

To  i>rove  this  result  Archimedes  would  doubtless  begin  by 

an  analysis  of  the  following  sort.  Having  drawn  OT  perpen- 
dicular to  OP  and  of  length  equal  to  the  arc  ASP,  he  had  to 

prove  that  the  straight  lino  joining  P  to  T  is  the  tangent 
at  P.  He  would  evidently  take  the  line  of  trying  to  show 

that,  if  any  radius  vector  to  the  spiral  is  drawn,  as  OQ',  on 
either  side  of  OP,  Q'  is  always  on  the  side  of  TP  towards  0, 
or,  if  OQ'  meets  TP  in  F,  OQ'  is  always  less  than  OF.  Suppose 

that  in  the  above  figure  OR'  is  any  radius  vector  between  OP 
and  OS  on  the  '  backward '  side  of  OP,  and  that  OR  meets  the 
circle  with  radius  OP  in  R,  the  tangent  to  it  at  P  in  (r,  the 

spiral  in  JB',  and  TP  in  F'.  We  have  to  prove  that  R,  R'  lio 
on  opposite  sides  of  F',  i.e.  that  RR'  >  RF' ;  and  again,  sup- 

posing that  any  radius  vector  OQ'  on  the  '  forward '  side  of 
OP  meets  the  circle  with  radius  OP  in  Q,  the  spiral  in  Q'  and 
TP  produced  in  F,  we  have  to  prove  that  QQ'  <  QF. 

Archimedes  then  had  to  prove  that 

(1)  F'M :  RO  <  RR':  RO,  and 
(2)  FQ:QO>Qff:QQ. 
Now  (1)  is  equivalent  to 

F'R :  RO  <  Yarc  RP\ :  Tare  A8P\.  since  RO  =  PO. 
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But  (arc  A  HP)  =  OT,  by  hypothesis ; 

therefore  it  was  necessary  to  prove,  alternando,  that 

(3)  F'R :  (arc  RP)  <  RO  :  OT,  or  PO :  OT, 

i.e.      <  'PM:  MO,  where  OM  is  perpendicular  to  SP. 
Similarly,   in   order  to   satisfy   (2),    it    was    necessary    to 

prove  that 

(4)  /<V :  (arc  PQ)  >  PM:  MO. 

Now,  as  a  matter  of  fact,  (3)  is  a  fortiori  satisfied  if 

F'R :  (chord  RP)  <  PM:MO  ; 

but  in  the  case  of  (4)  we  cannot  substitute  the  chord  PQ  for 

the  arc  PQ,  and  we  have  to  substitute  PG',  where  G'  is  the 
point  in  which  the  tangent  at  P  to 
the  circle  meets  OQ  produced ;  for 

of  course  PG'  >  (arc  PQ),  so  that  (4) 
is  a  fortiori  satisfied  if 

It  is  remarkable  that  Archimedes 

uses  for  his  proof  of  the'two  cases  Prop. 
FIG.  1.  8  and  Prop.  7  respectively,  and  makes 

no  use  of   Props  6  and  9,  whereas 
the  above  argument  points  precisely  to  the  use  of  the  figures 
of  the  two  latter  propositions  only. 

For  in  the  figure  of  Prop.  6  (Fig.  1),  if  OFP  is  any  radius 
cutting  AB  in  F,  and  if  PB  produced  cuts  OT,  the  parallel  to 
AB  through  0,  in  H,  it  is  obvious,  by  parallels,  that 

PF:  (chord  PB)  =  OP  :  Pll. 

Also  PH  becomes  greater  the  farther  P  moves  from  B 
towards  A,  so  that  the  ratio  PF :P.B  diminishes  continually, 
while  it  is  always  less  than  OB :  BT  (where  BT  is  the  tangent 
at  B  and  meets  Oil  in  T),  i.e.  always  less  than  BM:  MO. 

Hence  the  relation  (3)  is  always  satisfied  for  any  point  R'  of 
the  spiral  on  the  '  backward '  side  of  P. 

But  (3)  is  equivalent  to  (1),  from  which  it  follows  that  F'R 
is  always  less  than  RR',  so  that  R'  always  lies  on  the  side of  TP  towards  0. 



560  APPENDIX 

Next,  for  the  point  Q'  on  the  '  forward  *  side  of  the  spiral 
from  P,  suppose  that  in  the  figure  of  Prop.  9  or  Prop.  7  (Fig.  2) 
any  radius  OP  of  the  circle  meets  AB  produced  in  F,  and 

PIG.  2. 

the  tangent  at  B  in  G ;  and  draw  BPH,  BGT  meeting  OT,  the 
parallel  through  0  to  AB,  in  H,  T. 

Then         PF:BG>FG:  BG,  since  PF  >  FG, 

>  OG  :  GT,  by  parallels, 

>  OB:  BT,  a  fortiori, 
>BM:MO\ 

and  obviously,  as  P  moves  away  from  B  towards  OT,  i.e.  as  G 
moves  away  from  B  along  BT,  the  ratio  OG:GT  increases 
continually,  while,  as  shown,  PF:BG  is  always  >  BM:MO, 
and,  a  fortiori, 

PJP:(arcPJ5)  >BM:MO. 

That  is,  (4)  is  always  satisfied  for  any  point  Q'  of  the  spiral 
'  forward '  of  P,  so  that  (2)  is  also  satisfied,  and  QQ'  is  always 
less  than  QF. 

It  will  be  observed  that  no  i/eflcm,  and  nothing  beyond 

'  plane '  methods,  is  required  in  the  above  proof,  and  Pappus's 
criticism  of  Archimedes's  proof  is  therefore  justified. 

Let  us  now  consider  for  a  moment  what  Archimedes  actually 
does.  In  Prop.  8,  which  he  uses  to  prove  our  proposition  in 

the  'backward'  case  (-R',  JR,  F'),  he  shows  that,  if  PO:OV 
is  any  ratio  whatever  less  than  PO :  OT  or  PM:MO,  we  can 

find  points  F',  G  corresponding  to  any  ratio  PO  :  0V  where 
OT  <  0V  <  OF,  i.e.  we  can  find  a  point  Ff  corresponding  to 
a  ratio  still  nearer  to  PO  :  OT  than  PO:OV  is.  This  proves 

that  the  ratio  RF' :  PG,  while  it  is  always  less  than  PM:MO, 
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approaches  that  ratio  without  limit  as  R  approaches  P.  But 

the  proof  does  not  enable  us  to  say  that  RF' -.(chord  PR), 
which  is  >  RF' :  PG,  is  also  always  less  than  PM :  MO.  At 
first  sight,  therefore,  it  would  seern  that  the  proof  must  fail. 
Not  so,  however;  Archimedes  is  nevertheless  able  to  prove 
that,  if  P  V  and  not  PT  is  the  tangent  at  P  to  the  spiral,  an 
absurdity  follows.  For  his  proof  establishes  that,  if  PFis  the 

tangent  and  OF'  is  drawn  as  in  the  proposition,  then 
F'O  :  RO  <  OR:  OP, 

or  F'O  <  OR',  '  w^ich  is  impossible '.  Why  this  is  impossible 
does  not  appear  in  Props.  18  and  20,  bat  it  follows  from  the 
argument  in  Prop.  13,  which  proves  that  a  tangeijt  to  the  spiral 
cannot  meet  the  curve  again,  and  in  fact  that  the  spiral  is 
everywhere  concave  towards  the  origin. 

Similar  remarks  apply  to  the  proof  by  Archimedes  of  the 
impossibility  of  the  other  alternative  supposition  (that  the  tan- 

gent at  P  meets  OT  at  a  point  U  nearer  to  0  than  T  is). 

Archimedes 's  proof  is  therefore  in  both  parts  perfectly  valid, 
in  spite  of  any  appearances  to  the  contrary.  The  only  draw- 

back that  can  be  urged  seems  to  be  that,  if  we  assume  the 
tangent  to  cut  OT  at  a  point  very  near  to  T  on  either  side, 

Archimedes's  construction  brings  us  perilously  near  to  infini- 
tesimals, and  the  proof  may  appear  to  hang,  as  it  were,  on 

a  thread,  albeit  a  thread  strong  enough  to  carry  it.  But  it  is 
remarkable  that  he  should  have  elaborated  such  a  difficult 

proof  by  means  of  Props.  7,  8  (including  the  €  solid*  vsvvis  of 
Prop.  8),  when  the  figures  of  Props.  6  and  7  (or  9)  themselves 
suggest  the  direct  proof  above  given,  which  is  independent  of 
any  i/et/cny. 

P.  Tannery,1  in  a  paper  on  Pappus's  criticism  of  the  proof  as 
unnecessarily  involving  '  solid '  methods,  has  given  another 
proof  of  the  subtangent-property  based  on  '  plane '  methods 
only ;  but  I  prefer  the  method  which  I  have  given  above 
because  it  corresponds  more  closely  to  the  preliminary  proposi- 

tions actually  given  by  Archimedes. 

1  Tannery,  Memoires  stientijiquesi  i,  1912,  pp.  HOO-16. 

1523.2  O  O 
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47. -o»/ : 

cicriTc*  (Plato)  iii.  355. 
rjTos,  -op,  that  cannot  be  gone 

through,  i.e.  infinite  343. 
vvciTos,    -ov    ii.    462  :    anay&yt]   els 
u&vvarov,  &C.  372. 

postulate  373. 
l   11. 

y,  -ov,  irrational  84,  DO :  nfp\ 

<iX<»yo>i/  yp<i[JifJi(di>  icat  WHTT&V  (DeillO- 
critus)  156-7,  181  :  /iXoyoi  wcr/rf/i 
yp<ip.fjL<u  (Plato)  157. 

ilviiXtjfjLfjut  ii.  287. 
aiHiXayovj  proportional :  used  as  ad- 

jective $5. 
tlvH\v6fjL€vos  (TOTTOS),  Treasury  of 

Analysis  421-2,  ii.  399,  400,  ii. 
426. 

aixirraXiv,  inversely  385  :  oW/niXu/ 
\i>tns  ii.  400. 

livatTTpf  \fsavTt  (ai/acrr/Wf/W),  COHVCt- 
ttndo  386. 

(Ji/a(7r/;o</)i;,  conversion  /&. 
(Jva(rrpo0tK(>y  (roTToy),  a  class  of  locus 

ii.  185. 

os  by  Hypsicles419,  ii.  213. 
ii.  244. 

a^coi/,  axis  341. 

CIO/KOTO?,  -ov,  undefined  :  irXfjdus  fio- 
f((do>i/  dopcoToi'  (—  unknown,  *r) 
94,  ii.  456 :  *?  ciopurro  ii.  489. 491. 

MTra-vcayr/,     reduction     372  :      «rr.     *«s 
(lOiWrov,    rcductio   ad    absurdum 
372. 

ei7rodei£ty,4>ro0/370,  ii.  533. 
fiTroKaraoTariKos1,-?;,  -oi/,  recurring  108. 
<i7nWa<nff,    distance    or    duuensitm 

305  w.,  or  interval  306  ?i. 

ap8n\os>  'shoemaker's  knife'  ii.  23, 
ii.  101-2,  ii.  371-7. 

itptO^TiK^  theory  of  numbers,  opp, 
to  XoytoTiK')  13-16. 

^  of  Niconmchus  97. 
number  :  definitions  of 

'number1  69-70:  in  Diophantus, 
used  for  unknown  quantity  (jc) 
94,  ii.  456. 

reciprocal   of  upi 
ic)  in  Diophantus  ii.  458. 

.  'rope-stretchers'  121- 
2,  178. 
prjTos,  -ov,  irrational  157. 
THtKis  apnof,   eren-times-eren    71, 

with  Neo-Pythagoreans  =2",  72. 
Tit'iKis  ncpiTTo?,  even-ti  men-odd  72. 
TioTTf'ptTTOf,    even-odd,    restricted 
by    ftTeo-Pythagoreans    to    form 
2  (2w*4-l),  72. 

-«,  ovt  even  70. 
a  lost  work  of  Archimedes 

ii.  81. 

'Aor/w&crtfii  of  Eratosthenes  ii.  109. 
<itrrpoX«/3ov  opy«i/oi/  of  Hipparchus 

ii.  256. 

-or,    incommensurable 

oi/,  non-secant  ii.  227. 
t  -oi/,  incomposite  72. 

-oi/,  indivisible  181  :  Aristo- 
telian  7T€pt  ciTofio)!/  ypapp.u>v   157, 

346-8. 
,  -or»,  absurd  ii.  462. 

i/civ  :  rply  <w£rjfai$  (Plato)  306-7. 
,  rpirr,  297  :   KV&VV  aSfa  297. 

305-  6  «. 

i]  ii.  308. 
segment  of  circle  lesa  than  a 

semicircle  ii.  314. 

Heron  ii.  309,  ii.  346-7. 
uVa  of  Heron  18,  ii.  298,  ii. 

302,  ii.  308-9. 
trptvofi  forced  or  un- natural ii.  362. 
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y,  *  little  altar1,  properly  a 
wedge-shaped  solid  ii.  319,  ii.  333 : 
measurement  of  (Heron),  ii.  332-3 : 
(=  a-fyvio-Kos)  of  a  certain  kind of  solid  number  107,  ii.  240,  ii. 
315. 

ycco&iKri'ci  =  mensuration  1 6. T(G);ji€Tpovu.(va  of  Heion  ii.  318,  ii. 
453. 

y\w\is  (arrow-head),  Pythagorean 
name  for  angle  166. 

yvtopw,  ynomon,  q.v. :  Kara  yvot>p.ova 
= perpendicular  78,  175. 

yvatpifjios,  -ov,  known :  yi/a>/n/ioi>,  an 
alternative   term    for   6e8o/ueW, 
yiven  ii.  537. 

yvoopifjL^s, '  in  the  recognized  manner' ii.  79.  ! 

ypupua,  *  figure1  or  proposition,  of  j theorem  of  Eucl.  1.  47,  144.  ! 
ypnfjififf  I    dia    or   fK   TO>V  ypap,p.u>v   of 

theoretical  proof  ii.  257,  258.         ! 
ypap,piKus,  -»?,  -di/,  linear:  used  of 

prime  numbers  73 :  ypappiKtil 
€7riard(7€is,  '  Considerations  on 
Curves ',  by  Demetrius  ii.  359  : 
ypappiKus,  graphically  93. 

ypufatv,  to  draw  or  write  on  159, 
173 :  also  to  prove  203  H.,  339. 

S)  -rjy  -oi/,  yiven '.  senses  of, 
ii.  537-8. 

iy  to  prove  328. 
di?  371. 
secondary  :    of  composite 

numbers  72  :    dcvrepa  p.vpuis  (  = 
10,0002)  40. 
aprjrrjs,  compasses  308,  ii.  540. 

:  8i«X«Wi,  separando  or  divi- 
dendo  (in  transformation  of  ratios) 
386. 

8iaip€<ris :  \6you,  separation  of  a 
ratio  386 :  Trcpl  biaipevwv  fii&Xinv, 
On  divisions  (of  figure^  by 
Euclid  425. 

ff}  dimension  :    nepl  dtnorci- 
y,  a  work  of  Ptolemy  ii.  295. 

interval    215 :    distance 
239. 

8fciuXos,  *  race-course  ' :   representa- 
tions of  square  and  oblong  num- 

bers as  sums  of  terms  114. 
ftdoyai:  btbo^vov^  yiven,  senses  ii. 

537-8. 

os  (rd/roy),  a  species  of  locus 
ii.  185. 
Vrdi/at  :  €*</>'  ei^  ̂ tcorcos1,  extended 
one  way  ii.  428. 
KoXovpos,  -ov,  twice-truncated  107. 
oTTTpa,  dioptra,  q.v. 

|     SlOTTTplKr)  18. 

opi((iv  :  dicopicrnevrj  rop.rj,  Deter- 
minate Section,  by  Apollonius 

ii.  180. 

opio-fjLos,  definition,  delimitation  : 
two  senses  (1)  a  constituent  part 
of  a  theorem  or  problem  370, 
(2)  a  statement  of  conditions  of 
possibility  of  a  problem  303,  319- 
20.  371,  377,  395,  396,  428,  ii.  45- 

6,  'ii.  129-32,  ii.  168,  ii.  230. 
7rXoVo-dr^ff,  double-equation  (Dio- 
phantus)  ii.  468. 
irXovs,  -/),  "Ovv  l  dtrrXrj  fivpuis  == 
10,0002  (Apollonius)  40:  ̂ rrX^ 
IO-OTIJS,  8i7r\fj  t<ra>(ns,  double-equa- 

tion (Diophantus)  ii.  468. 
/S,  beam,  a  class  of  solid  number 
107,ii.  240. 

=  &OKIS  ii.  315. 

dpaxw,  sign  for,  31,  49,  50. 
dvvap.ts  :  incommensurable  side  of 

square  containing  a  non-square 
number  of  units  of  area  203-4  : 
square  or  square  root  209  n., 
297  :  square  of  unknown  quantity 

(=^2j  (Diophantus)  ii.  457-8: 
iwApti,  l  in  square  '  187,  308  : 
TtTfxiTrXf;  &wapis  =  eighth  power 
(Egypt)  ii.  546  ;  power  in 
mechanics  445. 

^vi'ap.odvvaiJLLs,  square  -  square  = 
fourth  power  (Heron)  ii.  458  : 
fourth  power  of  unknown  (Dio- 

phantus) ii.  458,  ii.  546. 
SwapoKvpos,  square-cube,  =  fifth 

power  of  unknown  (Diophantus  ) 
ii.  458. 

SvynfjiooTov,  3i'va/Ao8ui/a/zo0rdi',  &c., 
reciprocals  of  powers  of  unknown 
(Diophantus)  ii.  458. 

$vva(T0ai,to  be  equivalent  *  in  square  ' 
to,  i.  e.  to  be  the  side  of  a  square 
equal  to  (a  given  area)  : 
305  -6  n. 

dvvao-Ttvoptvri,      Opp.     to 
305-6  n. 

*  figure1     of     a    conic    ii. 
139:  '  species1  =  particular  power 



INDEX  OF  GREEK   WORDS 
565 

of  unknown,  or  term,  in  an  equa- 
tion (Diophantus)  ii.  4GO. 

(If9  pta,  «V,  one  :  ef«  TrXttco,  'several 
ones'   (definition   of   *  number') 70. 

cl<rr)y€i<T0ai,  to  introduce  or  explain 
213. 

everts-,  setting-out  370,  ii.  533. 
'EKireTtivuaTti    of    Democritus    178. 81- 

cvjcXoc)  ii.  288. 

,  falling-short  (in  application 
of  areas),  name  given  to  tUipse  by 
Apolloniua  150,  ii.  138. 

c'XXurr)f,  -fV,  defective  (of  numbers), 
contrasted  with  fw^cf  74,  101  : 
^  fXXiTTfs-  /euro)  i/e  Coi/  ii.  459. 

eVaXXa£,  alternately  (in  proportions) 
385. 

€  v  void,  notion  :    Koival  cWoim,  com- 
mon notions  =  axioms  336. 
ff,  objection  372,  ii.  31  1,  ii.  533. 

9,  bulging  out  6. 
ii.  234. 

(£r)yr}(nsi    elucidation    ii.    223,    ii. 
231-2. 

-rjKoarov,  or  Trpwrov  cf.,  a  60th  (  = 

a  minute),  dcvrepov  €'£.,  a  second, &C.45. 

ravQrjpa,  (Abloom1)  of  Thy  m  arid  as  : 
a  system  of  linear  equations  solved 

, 
r«$i},  contact  :   'En-nc^m,   Contacts 
or  Tanyencies,  by  Apollonius  ii. 
181. 

ri,  on  :  TO  0-17/1(101'  €</>'  w  (or  o5)  7\', 
archaic  for  'the  point  Ar1  199: 
i)  ty'  ?;   .4/f,  'the  straight  line 

'  ib. 

—  ratio  1  +          ,  102. wi  +  n 

eTTi/io^iof,  superparticnlaris  =  ratio 
of  form  (w  +  1)/  ii,  90,  101  :  cVi- 
popiov  5t(i(7Tr/fia  215. 

€7ri7T6§OjLieT/)lKa    11.  453. 

€7Ttcri?finartai,    weather     indications 

j  177n,ii.  234. 
(niTptros  =  ratio  4/3,  101  :  tVirpirof 

irv0fir>  (Plato)  306-7. 
€<ry«roff  :     ra     car^rtrn,    extremities 

293. 

wponrjKfjr,  -cy,  oblong  ;   of  numbers 

of  form  w(m  -f  1),'  82,  108. *  prime  72. 

oy,  a  class  of  locus  ii.  185, 
ii.  193. 

€(f>68tov,  Method  ii.  246. 

V,  lever  or  balance  :  n-fp!  fvywr, 
a  work  of  Archimedes  ii.  23-4, ii.  351. 

,  -a,  -ov,  ratio  of  3/2,  101. 
io  v,  ̂  -obol,  sign  for,  31  ,  49,  50. 

KT}   18. 

^  97. 
/o-i?,  position  :  impa  ̂'act  (so. 
ptvrjv),  parallel  to  a  straight  line 
given  in  position  ii.  193:  Trpns 
fa'a-d  fvOfiuu,  on  straight  lines 
given  in  position  ii.  426. 
penf,  shield,  old  name  for  ellipse 
439,  ii.  lll,ii.  125. 

:  l\\optvriv  used  by  Plato  of 
the  earth  314-15. 

io-uKis  ?<7<K,  equal  an  equal  number 
of  times,  or  equal  multiplied  by 

equal  204. 
larofjifTpos,   -or,    of  equal    contour  : 

TTfpi  i<Top,€Tpctv  crx»//iura)i>,  by  Zeno- 
dorus  ii.  207,  ii.  390. 

cVoTrXei'poff,     -ov,     equilateral  :     of 
square  number  (Plato)  204. 

iVoppoTTui,  equilibrium  :  nfpl  la-oppo- 
7rio)i/,  work  by  Archimedes  ii.  24, 

*  il  331' 

t<;of,  equal  :   &i  to-ou,  ex  aeqitali  (in 
proportions)  386  :    &'  iaov  eV  rt  • 
r<ipny/if  1  17  dia\oyiq  386. 

icrori/r  or  ttrcoaiy,  equation  ii.  468. 

ioropin,  inquiry,  Pythagoras's  name for  geometry  166. 
iV^uf,  power  (in  mechanics)  445. 

i}/>,     turning-point    in     race- course 114. 

•vXos,  -77,  -or,  curved  249,  341. 
:r),  Canonic,  q.v. 

><av,  ruler  239:    Table  (astron.), 

\lrtrf o<f>op in,  work  by  Ptolemy  ii. 
293:  canon(in music), v. Kararopfj. 

KaTaypufaiv :  to  inscribe  in  or  on  (c. 

gen.)  131. KaraXoyot,  work  by  Eratosthenes  ii. 
108. 

KaTfurKCvafaiv  193  n. 
KaraarK€vriy  constmction  (constituent 

part  of  proposition)  370,  ii.  533. 
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KnT(t(TTfpurpoi9  work  by  Eratosthe- 
nes ii.  108. 

Vararopff     Kavovos,    Sectio    canon  is, 
attributed  to  Euclid  17,  444. 

KaTovnpa£is  rail'  dptOp&v,  naming  of 
numbers  (Archimedes)  ii.  23. 

xaroTjrpiKiJ,  theory  of  mirrors  18. 
K€i/Tpo#apiK«,  problems  on  centre  of 

gravity  ii.  24,  ii.  350. 

KcWpoi/,  centre  :  f)  CK  roC  Kt'vrpov  = radius  381. 

K(paTQ€i8i]s  (yttivla)  178,  882. 
of  Sporus  234. 

v,  inflect :  jccitXdcrdm  337. 
pappy,  conchoid  238. 

K<H\oya>viov  ii.  211. 
KoXovpos,  -ov,  truncated  ii.  333:  (of 

pyramidal  number)  107. 
KOO-KII/OV,  siere  (of  Eratosthenes)  16, 

100,  ii.  105. 
Ko^XoeiS/}?  y pappy,  coMoid  238. 
KvftoKvftos,  cube-cube,  =  sixth  power 

of  unknown  (Diophantus)  ii.  458. 
Ki;|3oKv/3o0Toi>,    reciprocal    of   Kv/3<>- 

KV&OS  ii.  458. 

Ki'poe,  cube  :    *(>$<»>v   avfrj    (Plato) 
297:    cube    of   unknown    (Dio- 
phantus)  ii.  458 :   KV&OS  cftXrjero? 
=*  ninth    power    of     unknown 
(Egyptian)  ii.  546. 

KvK\tKfj  0to>pui,   De  motu   circular! i 
by  Cleomedes  ii.  235. 

jeucXifcof,  -*},  -ov,  circular,   used  of 
square  numbers  ending  in  5  or  6, 
108. 

\dnctv :  forms  used  to  express  minus. 
and  sign  for  (Diophantus),  ii.  459. 

Xetyir,  wanting  (Diophantus) :  Aetyet 
=  minus  ii.  459. 

Xe£is:    Kara  Xc^iy,  word  for  word 
183. 

\€irrovy  a  fraction  (Heron)  48  :   =  a 
minute  (Ptolemy)  45. 

\fjppa,  lemma  373. 
Xoyicr/Aoy,  calculation  13. 
Xoyicrri/cv,  art  of  calculation,  opp. 

to  dpiOprjriKT]  13-16,  53. 
Xoyo?,  ratio :    Xdyoi;  drroTopf^   sectio 

rationis,  by  Apollonius  ii.  175. 

subjects  of  instruction 
10-11 :  term  first  appropriated 
to  mathematics  by  Pythagoreans 
11 :  7T€p\  r£)t>  paQripdrw,  a  work 
by  Protagoras  179. 

•/,  •(>!/  :  parjuLariKo  n 
Pythagorean  school,  opp.  to 
aKovapariKoi  11  :  Matfi/iifmici) 

ra£is  of  Ptolemy  ii.  273-4: 
partita,  ra  (Plato)  288. 

peBoptov,  boundary  ii,  449. 
pciovpov  irpoca-Kapifavpwov  (Heron), 

curtailed  and  pared  in  front  (cf. 
scarify),  of  a  long,  narrow,  tri- 

angular prism  (Heib.)  ii.  319. 

pos:  /nf'p/;,  parts  (=  proper  frac- 
tion) dist.  from  ps'pos  (aliquot 

part)  42  (cf.  p.  294). 
pccro\dfiot>,  mean-Jimler  (of  Erato- 

sthenes) ii:i04,  ii.  359. 

/X6T*'o>pO£,    -Ol/  I      7T€pl    pfTf  da/HttP,    WOl'k 
by  Posidonius  ii.  219,  ii.  231-2. 

pfTeWpOOKOTTtKT)   18. 

Mfrp//0tir,  Mensurae  (Heronian)  ii. 
319. 

/nr>off,  length  :  used  by  Plato  of  side 
of  square  containing  a   square 
number  of  units  of  area  204. 

/ufc),  term  for  problems 
about  numbers  of  apples  (e.g.)  14, ii.  442. 

vofioupcvos  (TOTTOS),  Little 
Astronomy  ii.  273. 
a,  mina  (=  1000  drachmae)  :  M 
stands  for,  31. 

/io?pn,  fraction  :  l/360th  of  circum- 
ference or  a  degree  45,  61  :  poipa 

TOTTIKI},  xp°viK*l  (in  Hypsicles)  ii. 

povas,  monad  or  unit  43  :  definitions 
of,  69  :  povd8av  (Tvcrrrjpn  =  number, 
69  1  devTfpwdovpevrj  povns  =  10, 
TptwSovpfi-rj  p.  =  100,  &c.  (Iambi.) 
114:    pnvas  Ofariv  Hvovcra  =  point 

69,  283. 
/iopioi/,  part  or  fraction  :  pnpiov  or 

€v  popiv  =  divided  by  (Diophan- 
tus) 44. 

pvpias  (with  or  without  irpvTtj  or 
ctnXrj)  myriad  (10,000),  p. 

or  din\j)  10,0002,  &c.  40. 

(solid  ?)  156,  178. 
,  to  verge  (towards)  196.  239, 

337,  ii.  65. 
W,  inclinatio  or  *  verging',  a 
type  of  problem  235  41,  260,  ii. 
199,  ii.  385:  vevoras  in  Archi- 

medes ii  65-8:  two  books  of 
vtva-fLs  by  Apollonins  ii.  189  92 
ii.  401,  ii.  412-13. 
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,  goal  or  end  of  race-course 
114. 

o]3oXoff,  obol  :  sign  for,  31,  49,  50. 

'oXu/iTTiovZ/cm,  work  by  Eratosthenes ii.  109. 

oi/uf,  a  wedge-shaped  figure  ii.  319, 

^  ii.  333. opy  avoir  OIIKTJ  1R. 
op&oy,  .a,  -or,  right   or  perpendi- 

cular :  np6la  TrXevpu,  latus  rectum * 
ii.   139:    opffla    faapcrpot,   *  erect 
diameter',  in  double  hyperbola, ii.  134 

ifajf  :  topurfJLfvos,  defined,  i.e.  de- 
terminate 94,  340. 

ifov    (KVK\OS),     dividing    circle  : 
fcon*o»(Eucl.)351f  352. 

,  (1)  definition  373:    (2)  limit 
or  boundary  293  :   (3)  term  (in  a 
proportion)  306  n. 

de/Lu'a  or  ov&V,  sign  for  (0),  39,  45. 

IT  a  /3w  Knl  Kiva>  rav  yav,  saying  of 
Archimedes  ii.  18. 

Trap*  qv  bvvavran  (nl  Karayofifi/nirfTa'}- 
pivots),  expression  for  parameter 
of  ordinates  ii.  139. 

7ra/wi]3o\jJ,  application  :  TT.  TWI/  xwptW 
application  of  areas  150  :  Ta  ( 

yivnptva  aijfifca,  the 
foci  of  a  central  conic,  ii.  156  : 
parabola  (the  conic)  150,  ii.  138. 

Hapado£oypa(f)oi  ii.  541. 
7Tfif)atio£oc  y  puppy,  paradoxical  curve 

(of  Menelaus)  ii.  260-1,  ii.  360. 
177,  ii.  234. 

vj   to   pull   awry  :   nnpf  O-TTO- ii.  398. 

-orqff,  nearness  to  equality,  ap- 
proximation :    TTo/Jtacmjroi"   n-ycoy^ 

(Diophantus)  ii.  477,  ii.  500. 
r,  axe-shaped  figure  ii.  315. 

,  to  *  five  '  (=  count)  26. 
176,  ii.  104. 

ntpnivov(ra  TrocruTrjs  =  unit,  69. 

Trc'paffy    limit     or    extiemity    293: 
limiting  surface  166  :  mpas  cru>- 
xXfio*',  definition  of  figure  ii.  221. 

mpKrmiiiTloy,  odd-even  :    with   Neo- 
Pythagoreans  is  of  form 

)>  72. 

q.v. 
fia  19, 

tyXucor,  -i/,  -oi',  how  great  (of  mag- 
nitude) 12. 

size  384. 
-a,  -oi/,  transverse  : 

or  TrXcvpa  ii.  139. 
o$-,  -oV,  (easily)  formable 

ii.  487. 
firaWir,  a  work  by  Eratosthenes 
ii.  104. 
^or  ,  multitude  :  TrX^or  ?v  =  unit, 
69  :    irXfjQos  fapta-pwov  =  number, 
70  :  TrXrjQos  /Liorddo>f  aopio-TO*i/,  def. 
of  unknown  *  quantity  '   94,  ii. 456. 

iv6i$,  «i  brick,  a  solid  number  of 
a  certain  form  107,  ii.  240,  ii, 315. 

>XXa7rX«o-ie7Ti/u*  p^ff,  multiplex  super* 
partien*,  =  ratio  of  form 

p+    ̂    ,  103. 
1      ni+n 

,    multiplex    su- 
perparticularit,  =  ratio  of  form --f  103. 

n 

,  •«,  -oi/,  multiple  101. 
,  a  compound  pulley  ii, 

18. 

Tropi/io?,  »ov  (7ro/)iffiv),  procurable  : 
one  sense  of  ktopevns  ii.  538. 

TTopto-jiifl,  porisin:    (1)  =  corollary, 
(2)  a  certain  type  of  proposition 
372-3,  ii.  533. 

7roo-oj>,  quantity,  of  number,  12. 
TrofroYqy,  quantity  69,  70  :   numbei 

defined  as  Troo-oT^ros-  xvpa  €K  povtl 
dav  crvyKfijjifvov  70. 

irpofj.i,Kr)f,  prolate  (=  oblong)   203; 
but  distinguished  from  trtpopfiKrn 

83,  108. 
7rpO(r(iyo)yiov  3C9. 
TTporno-tf  =  enunciation      370,      ii. 533. 

TTpwros,  prime  72. 
71  TWO"  If,  C«/W  372. 

7iv0prtv,  base  ;  ==  digit  55-7,  1  15-17 
eVi'rpiros  jriGprjv  306-7. 

irvpapif,  pyramid  126. 
irvpciw,    Truptor,    burning    mirror 

n(pl   TTvpc/wp,   work    by   Dioclef 
264,  ii.  200  ;   ir€pl  TOV  irvpiov,  b) 
Apollonius  ii.  194. 

pqro?,  -T;,  -(if,  rational  :  used  in  sense 
of  *  given  '  ii.  537. 

:    Trepi    ponSn1,    a    mechanica 
work  by  Ptolemy  ii.  295. 
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103. 
of  Archimedes    ii.  23,    ii. 

49. 

9  a  form  of  sun-dial  ii.  1,  ii.  4. 
ri,  scene-painting  18,  ii. 224. 

2o0ia,  nickname  of  Democritus  176. 
iTTrctpn,  spire  or  tore  ii.  117:  varie- 

ties Of  (facxfc) 
p,svrj  or  fTraXXttTTou  ra),  ii.  204. 

ord0/i»7,  plumb-line  78,  R09. 
a-rnrrjpy  sign  for,   81. 
<rTcpeop.€Tpuit  solid  geometry  12-13. 
(TT€pfOfjL€Tpovfj,(va  ii.  453. 
«TTr)\if,  column,    a   class    of   solid 

number,  107. 

trTtyprj,  point  69  : 
unit,  69. 

crro*x€£a>T»79,  -6,   the  writer  of  Ele- 
ments (o-rot^cioj/),  used  of  Euclid 357. 

orpoyyuXos,  -or,  round   or  circular 
293. 

cru/iTr/pacr/ia,  conclusion  (of  proposi- 
tion). 370,  ii.  533. 

o-vpQecris  (Xctyov),  composition  (of  a 
ratio)  385. 

9    collection  :      MtydXrj    <rvv 
of    Ptolemy    348,    called 
aTiKr)  aiWafis  ii.  273. 

vvvBcvri  =  componendo 
proportion)  385. 

s,  construction  151,  158. 

'y,  -jj,  -u*>,  spherical  :  used  of 
cube  numbers  ending*  in  5  or  6, 
107-8. 

(j</>7iao-K09,   stake,   a  form   of    solid 
number,  107. 

orfaviorKos,  wedge,  a  solid  of  a  certain 
form,  measurement  of,  ii.  332-3  : 
a  solid  number,  107,  ii.  315.  ii. 
319. 

o-xco-19,  relation  384. 
(rxwaToiroictv,  to  form  a  figure  ii. 

226. 

TdXavrov,  signer  (T),  31,  50. 
Tapda>o'€iv:  (dt*  i<rov)  tv  rfTapay^vrj 

ai/aXoym,  in  disturbed  proportion 
386. 

T<i<7crcii>  :  rfray^eVoi/,  assigned  «=  r7rt- 
tum  ii.  192,  ii.  537:  m  Karayoufvat 
TCTaypetwt  (cvtieim),  (straight 
lines)  drawn  ordinate-wise  =  or- 
dinates  ii.  139: 

ii.  134. 

speed  :  TTC/H  rn^wv,  work  by 
Eudoxus  329. 

,  -a,  -or,  perfect  :  TfXcioff  d/jitf- 
74,  101. 

/,  |  of  obol,  sign  for,  31, 
49,  50. 

rcrpayaw'feii/,  to  square  :  fj  Terpnya)- 
vifrwa  (ypa/ift^),  the  quadratrix 
225,  ii.  359. 

T€Tpayo>via-fjins9  squaring  173. 
TCTp«a-w75,99w.,318f  ii.  241. 
TfTpnTrXfJ  fiuwipty  =  8th  power  of 
unknown  (Egyptian  term)  ii. 546. 

ryiijfui,  segment  :  used  of  lunes  as 
well  as  segments  of  circles  184  : 
segments  or  sectors  187-9  :  rpr}- 
Mara  =  l/360th  parts  of  circum- 

ference and  l/120th  parts  of 
diameter  of  circle  (Ptolemy)  45. 

TOJJLCVS,  shoemaker's  knife,  term  for sector  of  circle  381. 
ifj,    section  :    rn    irtpl    rrjv    TOJJLTJV 

(Proclus)  324-5. TTO?,  Iccus  :  classifications  of  loci 
218-19,  ii.  185  :  TOTTOI  /rpos  ypu/*- 

/Ltaiy,  To/rot  Trpoy  €7ri<pai>(i(ns  (-a) 
218-19,  439  :  ro/roi  Trpor  /ufornrr;raf 

ii.  105  :  T('ITOS  ni/«Xuo/i6i/os>,  Twit- 
wiry  of  Analyst*,  q.v. 

sy  circle-drawer  78,  308. 
iywvos  aiiiQufc,  triangular  number, 15-16. 

iKoXouof,  thrice-truncated  107. 

/,    three-side,     Monelaus's term   for  spherical   tiiangle    ii. 262. 

Tpio>po\ov,  sign  for,  49. 

water-clocks    ii. 
309. 

iSy  forthcoming  :  positive  term  , 
dist.   from    negative   (Xetyi?)  ii. 
459. 

vTTfTrt/LtfpiJy,    subsuperpartiens,    YQCI- 
procal  of  €irip€pfi9  102. 

{•/rcTTi/LKipiof,  subsuperparticularis,  re- 
ciprocal  of  c  m^opios  101. 

V7r€ppo\f],  exceeding  (in  application 
of  areas)  :  name  given  to  Jiyper- 

t  bola  150,  ii.  138. vjrfpTc\€iof9    vTTfprfX^,    over-perfect 
(number)  74,  100. 

'YTTotfe'cms  T&V  7iXai/ci>/JuVa»>,  work  by 
Ptolemy  ii.  293. 

{'TTOTToXXaTrXttO'lOS',  UT 
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101-3. 
oreiWii/,  subtend  193  n. 

-irXrji;,    starting-point     (of    race- course) 114. 

<i7rXai/6}t/    afrrepGH'.   work    by 
Ptolemy,  ii.  293. 
nAirqr  (a/iid/ifir),  (number)  of  bowls 
(in  simple  algebraical  problems) 

14,ii.442.  *  ' 
m,  by  Geminus  ii.  223. 

\n\Kovs  (Jth  of  obol),  sign  for,  31  : 
48,  50. 

lp,  w?an?/,<?,  in  sense  of  number  of 
men  27. 
iopaXXurTpa  ii.  309. 

tt,  colour  or  skin  :  Pythagorean 
name  for  surface  166,  293. 

povoypafom,  work  by  Eratosthenes ii.  109. 

colour  (in  relation  to  sur- 
face) 293. 

/HOJ/,  area  300  n.  :  ̂ wptou  annrofj.^ 
ftectio  spatii,  by  Apollonius  ii. 179. 

ii.  253. 

ii.  546. 

of  Apollonius  234,  ii.  104. 
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Abacus  46-8. 
'Abdelmelik  al-Shlrazi  ii.  128. Abraham  Echellensis  ii.  127. 
Abu   Bekr  Muh.    b.  al-  Hasan   al- 

Karkhi,  see  al-KarkhT. 
Abu  '1  Fath  al-Isfahanl  ii.  127. 
Abu  '1  Wafa  al-JBuzjani  ii.  328,  ii. 

450,  ii.  453. 
Abu  Nasr  Mansar  ii.  262. 
Achilles  of  Zeno  275-6,  278-80. 
Adam,  James,  305-7,  313.  | 
Addition  in  Greek  notation  52.          i 
Adrastua  ii.  241,  243,  244. 
Aetius  158-9,  163,  ii.  2.  ! 
'Agania1:  attempt  to  prove  paral-   | 

lei-postulate  358,  ii.  228-30. 
Agatharchus  174. 
Ahnies  (Papyrus  Rhind)  125,  130,   j 

ii.  441.  i 
Akhmiin,  Papyrus  of,  ii.  543-5. 
Albertus  Pius  ii.  26. 
Al-Chazin!  ii.  260-1. 
Alexander  the  'Aetolian'  ii.  242. 
Alexander  Aphrodisiensis  184,  185, 

186,  222,  223,  ii.  223,  ii.  231. 
Alexeieff,  ii.  324-5  n. 
Al-Fakhri,    by    al-Karkhi    109,    ii. 

449-50. 
Algebra  :   beginnings  in  Egypt  ii. 

440  :   /law-calculations  ii.  440  -1  : 
Pythagorean,  91-7  :  exanthema  of 
Thymaridas  94-6. 

Algebra,  geometrical,   150  4  :    ap- 
plication  of  areas  (q.v.)  150-3: 

scope    of    geometrical    algebra 
153-4  :  method  of  proportion  ib. 

Al-Hajjaj,    translator    of    Euclid, 
362  :  of  Ptolemy  ii.  274. 

Alhazen,  problem  of,  ii.  294. 
Al-Kafi  of  al-Karkhi  111. 
Al-KarkhT  :  on  sum  of 

109-10,  111,  ii.  51,ii.  449. 

Allman,  G.  J.  134,  183. 
Almagest  ii.  274. 
Alphabet,  Greek  :  derived  from 

Phoenician,  31  -2  :  Milesian,  33  -4: 
^Mast-numerical  use  of  alphabet, 35-6  n. 

Alphabetic  numerals  31-40,  42-4. 
Amasis  4,  129. 
Auienemhat  I  122,  TH  122. 
Ameristus  140,  141,  171. 
Amyclas  (better  Amyntas)  320-1. 
Amyntas  320  1. 
Analemma  of  Ptolemy  ii.  286-92: 

of  Diodorua  ii.  287. 
Analysis  :  already  used  by  Pytha- 

goreans 168  :  supposed  invention 
by  Plato  291-2:  absent  from 
Euclid's  Elements  371-2:  defined 
by  Pappus  ii.  400. 

Anatolius  11,  14,  97,  ii.  448,  ii.  545-6. 
Anaxagoras  :  explanation  of  eclipses 

7,  162,  172  :  moon  borrows  light 
from  sun  138,  172,  ii.  244  :  cen- 

trifugal force  and  centripetal 
tendency  172-3:  geometry  170: 
tried  to  square  circle  173,  220  : 
on  perspective  174  :  in  Erastae 
22,  174. 

Anaximander  67,  177  :  introduced 
gnomon  78,139,140:  astronomy 
139,  ii.  244  :  distances  of  sun  and 
moon  139  :  first  map  of  inhabited 
earth  ib. 

Anaximenes  ii.  244. 
Anchor-ring,  see  Tore. 
Anderson,  Alex.,  ii.  190. 
Angelo  Poliziano  ii.  26. 

Angle  *  of  a  segment  '   and  '  of  a 
semicircle  '  179  :    '  angle  of  con- 

tact '  178-9,  ii.  202. 
Anharmonic  property,    of  arcs   of 

great  circles  ii.  269-70  : 
lines  ii.  270,  ii.  420-1. 

:  of  straight 
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Anthemius  of  Trails  243,  ii.  194, 
ii.  200  3,  ii.  518,  ii.  540,  ii. 
541-3. 

Antiphon    184,    219,    221-2.    224, 

_271. 
Apastamba-&ulba-Sntm  145-6. 
Apelt,  E.  F.  330. 
Apelt,  0.  181  n.,  182. 
Apices  47. 
Apollodovus,  author  of  Chronica, 

176. 

Apollotlorus  o  \oyi(TTiK('>$  :  distich  of, 
131.133,  134,  144,  145. 

Apollonius  of  Perga  ii.  1,  ii.  126. 
Arithmetic  :  MKVTUKLQV  234,  ii. 

194,  ii.  253  (approximation  to 

TT,  ?&.),  'tetrads1  40,  continued 
multiplications  54-7. 
Astronomy  ii.  195-6:  A.  and 

Tycho  Brahe  317,  ii.  196:  on 
epicycles  and  eccentrics  ii.  195  6, 
ii.  243  :  trigonometry  ii.  253. 

Conies  ii.  126-75:  text  ii.  126- 
8,  Arabic  translations  ii.  127, 
prefaces  ii.  128-32,  characteris- 

tics ii.  132-3:  conies  obtained 
From  oblique  cone  ii.  134  8, 
prime  property  equivalent  to 
Cartesian  equation  (oblique  axes) 
ii.  139,  now  names,  parabola,  &c. 
150,  167,  ii.  138,  transformation 
of  coordinates  ii.  141-7,  tangents 
ii.  140-1,  asymptotes  ii.  148-9, 
rectangles  under  segments  of  in- 

tersecting chords  ii.  152-3,  har- 
monic properties  ii.  154-5,  focal 

properties  (central  conies)  ii.  156  - 
7,  normals  as  maxima  and  mini- 

ma ii.  159-67,  construction  of 
normals  ii.  166-7,  number  of 
normals  through  point  ii.  163-4, 
propositions  giving  evolute  ii. 
164-5. 

On  contacts  ii.  181-5  (lemmas 
to,  ii.  416-17),  three-circle  pro- 

blem ii.  182-5. 
Sectio  ration  is  ii.  175  9  (lemmas 

to,  ii.  404-5). 
Sectio  spatii  ii.  179-80,  ii.  337, 

ii.  339. 
Determinate  section  ii.  180-1 

(lemmas  to,  ii.  405-12). 
Comparison  of  dodecahedron 

and  icosahedron  419  20,  ii.  192. 
Duplication  of  cube  262  3,  ii. 

194. 

*  General  treatise '  ii.  192-3,  ii. 
253  :  on  Book- 1  of  Euclid  358. 

i>fv<j€it  ii.  68,  ii.  189-92  (lemmas 
to,  ii.  412  16),  rhombus-problem 
ii.  190-2,  square  -  problem  ii. 
412-13. 

Plane  Lociii.  185-9  (lemmas  to, 
ii.  417-19). 

On  cochlias  232,  ii.  193,  '  sister 
of  cochloid'  225,  231-2,  On  iVra- 
tionals  ii.  193,  On  the  burning- 
mirror  ii.  194,  ii.  200-1. 

Application  of  areas  K>0-3 :  method 
attributed  to  Pythagoras  150, 
equivalent  to  solution  of  general 
quadratic  150-2,  394-6. 

Approximations  to  \/2  (by  means 
of  *  side- '  and  'diameter-'  num- 

bers) 91  3,  (Indian)  146  :  to  v/3 
(Ptolemy)  45,  62-3,  (Archimedes) 
ii:51-2:  to  TT  232-5,  ii.  194,  ii. 
253:  to  surds  (Heron)  ii.  323  6, 
cf.  ii.  547-9,  ii.  553-4:  to  cube 
root  (Heron)  ii.  341-2. 

Apuleius  of  Madaura  97, 99. 
Archibald,  R.  C.  425  n. 
Archimedes  3,  52,  54, 180, 199,  202, 

203  H.,  213,  217,  224-5,  229,  234, 
272,  ii.  1. 

Traditions  ii.  16-17,  engines  ii. 
17,  mechanics  ii.  18,  general 
estimate  ii.  19-20. 

Works :  character  of,  ii.  20  2, 

works  extant  ii.  22-3,  lost  ii.  23- 
5,  103  ;  text  ii.  25-7,  MSS.  ii.  26, 
editions  ii.  27  :  The  Method  ii.  20, 

21,  22,  27-34,  ii.  246,  ii.  317-18  : 
On.  the  Sphere  and  Cylinder  ii.  34- 
50  :  Measurement  of  a  circhii.  50- 
6,  ii.  253  :    On  Conoids  and  Sphe- 

roids ii.  56  -64  :  On  Spirals  230-1, 
ii.  64  75  (cf.  ii.  377-9),  ii.  556-61 : 
Sand- reckoner  ii.  81-5  :   Quadra- 

ture of  Parabola  ii.  85-91 :    me- 
chanical works,   titles  ii.  23-4, 

Plane,  eqtultbrhims  ii.  75-81  :    On 
Floating  Bodies  ii.  91-7,  problem 
of  crown  ii.  92-4  :  Liber  assumjt- 
torum  ii.  101-3:   Cattle-problem 

j       14,  15,  ii.  23,  ii.  97-8,   ii.  447  : 
Catoptrics  444,  ii.  24. 

Arithmetic :   octads  40-1,  frac- 
tions 42,  value  of  TT  232-3,  234, 

ii.  50-6  :   approximations  to  \/^ 
ii.  51-2. 
*   Ast  10110 my  ii.    17  18,  sphere- 
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making  ii.   18,   on  Aristarchus's 
hypothesis  ii.  3-4. 

Conies,  propositions  in,  438-9, 
ii.  122-6. 

Cubic  equation  solved  by  conies 
ii.  45-6. 
On  Democritus  180,  327, 

equality  of  angles  of  incidence 
and  reflection  ii.  353-4,  integral 
calculus  anticipated  ii.  41-2,  61, 
62-3, 74, 89-90:  Lemma  or  Axiom 
of  A.  326-8,  ii.  35 :  i/eiVei?  in,  ii. 
65-8  (Pappus  on,  ii.  68) :  on  semi- 
regular  solids  ii.  98-101 :  triangle, 
area  in  terms  of  sides  ii.  103: 

trisection  of  any  angle  240-1. 
Archytas  2,  170,  212-16,  ii.  1:  on 

p.a6f)iJLaTa  11,  on  logistic  14,  on  1 
as  odd-even  71 :  on  means  85,  86: 
no  mean  proportional  between  n 
andn-f  1,  90,215:  on  music  214: 
mechanics  213  :  solution  of  pro- 

blem of  two  mean  proportionals 
214,  219,  245,  246-9,  334,  ii.  261. 

Argyrus,  Isaac,  224 «.,  ii.  555. 
Aristaeus  :  comparison  of  five  regu- 

lar solids  420  :  Solid  Loci  (conies) 
438,  ii.  116, 118-19 

Aristaeus  of  Croton  86. 
Aristarchus  of  Samos  43,  139,  ii.  1- 

15,  ii.  251 :  date  ii.  2  :  o-Kttyrj  of, 
ii.  1 :  anticipated  Copernicus  ii. 
2-3:  other  hypotheses  ii.  3,  4: 
treatise  On  sizes  and  distances  of 
Sun  and  Moon  ii.  1,  3,  4-15,  tri- 

gonometrical purpose  ii.  5  :  num- 
bers in,  39  :  fractions  in,  43. 

Aristonophus,  vase  of,  162. 
Aristophanes  48,  161,  220. 
Aristotelian  treatise  on  indivisible 

lines  157,  346  8. 
Aristotherus  348. 
Aristotle  5,  120,  121  :  011  origin  of 

science  8  :  on  mathematical  sub- 
jects 16-17 :  on  first  principles,  de- 

finitions, postulates,  axioms  336-8. 
Arithmetic :  reckoning  by  tens 

26-7,  why  1  is  odd-even  71 :  2 
even  and  prime  73 :  on  Pytha- 

goreans and  numbers  67  9  :  on 
the  gnomon  77-8,  83. 

Astronomy :  Pythagorean  sys- 
tem 164-5,  on  hypothesis  of  con- 

centric spheres  329,  335,  ii.  244, 
on  Plato's  view  about  the  earth 
314  15. 

On  the  continuous  and  infinite 

342-3  :  proof  of  incommensura- 
bility of  diagonal  91 :  on  principle 

of  exhaustion  340 :  on  Zeno's 
paradoxes  272, 275-7,  278-9, 282: 
on  Hippocrates  22 :  encomium  on 
Democritus  176. 

Geometry :  illustrations  from, 
335,  336,  338-40,  on  parallels 
339, proofs  differing  from  Euclid's 
338-9,  pro  positions  not  in  Euclid 
340,  on  quadratures  184-5,  221, 
223,  224  n.,  271,  on  quadrature 
by  lunes  (Hippocrates)  184-5, 
198-9:  on  Plato  and  regular 
solids  159  :  curves  and  solids  in 
A.  341. 

Mechanics  344  6,445-6:  paral- 
lelogram of  velocities  346  :  '  Aris- 

totle's wheerii.  347-8. 
Aristoxenus  24  u.,  66. 
Arithmetic  (1  j  =  theory  of  numbers 

(opp.  to  \oyi(JTtKr))  13  16:  early 
4  Elements  of  A  rithmetic '  90,  216  r 
systematic  treatises,  Nicomachus 
Introd.  Ar.  97-112,  Theon  of 
Smyrnal  12- 3,Iamblichus,Comm. 
on  Nicomachus  113-15,  Domninus 
ii.  538.  (2)  Practical  arithmetic  : 
originated  with  Phoenicians  120 
1,  in-primary  education  19-20. 

Arithmetic  mean,  defined  85. 
Antlimetica  of  Diophantus  15-16, 

ii.  449-514. 
Arithmetical  operations:  see  Addi- 

tion, Subtraction,  &c. 
Arrow  of  Zeno  276,  280  1. 

Aryabhatta  234. 
Asclepius  of  Trail es  99. 
Astronomy  in  elementary  education 

19  :  as  secondary  subject  20-1. 
Athelharcl  of  Bath,  first  translator 

of  Euclid  362  4. 
Atheriaeus  144,  145. 

Athenacus  of  Cyzicus  320-1. 
*  Attic1  (or  'Herodianic')  numeials 

30-1. 
August,  E.  P.  299,302,361. 
Autolycus  of  Pitane  348  :  works 

On  the  moving  Sphere  348-52,  On 
Risings  and  Settings  352-3  :  rela- 

tion to  Euclid  ;^5i"2. 
Auverus,  C.  ii.  26. 
Axioms :  Aristotle  on,  336  :  —Com- 

mon Notions  in  Euclid  376 :  Axiom 

of  Archimedes  326-8,  ii.  35. 
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Babylonians :  civilization  of,  8,  9  : 
system  of  numerals  28  9 :  sexa- 

gesimal fractions  29:  *  perfect 
proportion  '86. Bachet,  editor  of  Diophantus  ii. 
454-5,  ii.  480. 

Bacon,  Roger :  on  Euclid  367-8. 
Baillet,  J.  ii.  543. 
Baldi,  B.  ii.  308. 
Barlaam  ii.  324  n.,  ii.  554-5. 
Barocius  ii.  545. 

Barrow,  I.,  edition  of  Euclid,  369- 
70  :  on  Book  V  384. 

Bathycles  142. 
Baudhayana  &  S.  146. 
Baynard,  D.  ii.  128. 
Benecke,  A.  298,  302-3. 
Benedetti,  G.  B.  344,  446. 
Bert  rand,  J.  ii.  324  n. 
Bessarion  ii.  27. 
Besthorn,  R.  0.  362,  ii.  310. 
Billingsley,  Sir  H.  369. 
Bjornbo,  A.  A.  197  n.,  363,  ii.  262. 
Blass,  C.  298. 
Blass,  F.  182. 
Boeckh,  A.  50,  78,  315. 
Boetius  37,  47,  90:  translation  of 

Euclid  359. 
Boissonade  ii.  538. 
Bumbelli,  Rafael,  ii.  454. 
Borchardt,  L.  125,  127. 
Borelli,  G.  A.  ii.  127. 
Bouillaud  (Bullialdus)  ii.  238,  ii. 

556. 

Braunmiibl,  A.  von,  ii.  268-9  ??.,  ii. 
288,  ii.  291. 

Breton  (de  Champ),  P.  436,  ii.  3(>0. 
Bretsclmeider,  C.  A.  149, 183,324  r>, 

ii.  539. 

Brochard,  V.  276-7,  279  n.,  282. 
Brougham,  Lord,  436. 
Brugsch,  H.  K.  124. 
Bryson  219,  223-5. 
Burnet,  J.  203  M.,  285,  314-15. 
Butcher,  S.H.  299,300. 
Buzengeiger  ii.  324  n. 

Cajori,  F.  283  N. 
Calculation,  practical :  tbc  abacus 

46-8,  addition  and  subtraction 
52,  multiplication  (i)  Egyptian 
52-3  (Russian  ?53n.),  (ii)  Greek 
53-8,  division  58-60,  extraction 
of  square  root  60-3,  of  cube  root 
63  4,  ii.  341  2. 

Callimachus  141-2. 

Callippus:  Great  Year  177:  system  of 
concentric  spheres  329, 335,  ii.  244. 

Cambyses  5. 
Camerarius,  Joachim,  ii.  274. 
Camerer,  J.  G.  ii.  360. 
Campanus,  translator  of  Euclid 

363-4. 
Canonic  =  theory  of  musical  inter- 

vals 17. 
Cantor,  G.  279. 
Cantor,  M.  37-8,  123,  127,  131,  135, 

182,  ii.  203,  ii.  207. 
Carpus  of  Antioch  225,  232,  ii. 359. 

Case  (TTTWC™)  372,  ii.  533. 
Cassini  ii.  206. 
Casting  out  nines  115  17,  ii.  549. 
Catoptric,  theory  of  mirrors  18. 
Catoptrica  :  treatises  by  Euclid  (?) 

442,  by  Theon  (?)  444,  by  Archi- 
medes 444,  and  Heron  444,  ii.  294, 

ii.  310,  ii.  352-4. 
Cattle-problem  of  Archimedes  14, 

15,  ii.  23,  ii.  97-8,  ii.  447. 
Cavalieri,  B.  180,  ii.  20. 
Censorinus  177. 
Centre  of  gravity  :  definitions  ii. 

302,  ii.  350-1,  ii.  430. 
Ceria  Arlstotelica  ii.  531. 
Chalcidiua  ii.  242,  244. 
Chaldaeans :  measurement  of  angles 

by  ells  ii .  2 1 5- 1 6 :  order  of  planets ii.  242. 
Charmandrus  ii.  359. 
Chaslcs,  M.  ii.  19,  20:  on  Porisms 

435-7,ii.419. 
Chords,  Tables  of,  45,  ii.  257,  ii. 

259-60. 

Chvysippusl79:  definitionofunit69. 
Cicero  144,  359,  ii.  17,  19. 
Circle:  division  into  degrees  ii.214- 

15  :  squaring  of,  173,  220  35, 
Antiphon  221-2,  Bryson  223-4, 
by  Archimedes's  spiral  225,  230- 
1,  Nicomedes,  Dinostratus,  and 
quadratrix  225-9,  Apollonius 
225,  Carpus  225 ;  approximations 
to  TT  124,  232-5,  ii.  194,  ii.  253, 
ii.  545. 

Cissoid  of  Diodes  264-6. 
Clausen,  Th.  200. 
Cleanthes  ii.  2. 

Cleomedes:  'paradoxical1  eclipse  6: 
De  motu  circulars  ii.  235-8,  244. 

Cleonides  444. 
Cochlias  232,  ii.  193. 
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Cochloids  238-40 :  4  sister  of  coch- 
loid' 225,  281-2. 

Coins  and  weights,  notation  for,  31. 
Columella  ii.  303. 
Commandinus,  F.,  translator  of 

Euclid,  365,  425,  Apollonius  ii. 
127,  Analemma  of  Ptolemy  ii. 

281,PlanJspherium  ii.292,  Heron's 
Pneumatica  ii.  308,Pappus  ii.  36Q, 
Serenus  ii.  519. 

Conchoid  of  Nicomedes  238-40. 
Conclusion  370,  ii.  533. 
Cone:  Democritus  on,  179-80,  ii. 

110:  volume  of,  176,  180,  217, 
327,  413,  ii.  21,  ii.  332 :  volume 
of  frustum  ii.  334:  division  of 

frustum  in  given  ratio  ii.  340-3. 
Conic  sections :  discovered  by  Me- 

naechmus  252-3,  ii.  110-16:  Eu- 
clid's Conies  and  Aristaeus's  Solid 

Aor/438,  ii.  116-19:  piopositions 
included  in  Euclid's  Conies  ii. 
121-2  (focus-directrix  property 
243-4,  ii.  119  21),  conies  in  Archi- 

medes ii.  122-6  :  names  due  to 
Apollonius  150,  ii.  138 :  Apollo- 
nius's  Conies  ii.  126-75  :  conies 
in  Fmymentum  Bobienxe  ii.  200- 
203:  in  Anthemius  ii.  541-3. 

Conon  of  Samoa  ii.  16,  ii.  35(J. 
Construction  370,  ii.  533. 

Co nve t-s ion  of  ratio  (conwrtendo)  386. 
Cook-Wilson,  J.  300  M.,  ii.  370. 
Counter-earth  164. 
Croesus  4,  129. 
Ctesibius  213:  relation  to  Philon 

and  Heron  ii.  298-302. 

Cube  :  called  *  geometrical  har- 
mony '  (Philolausj  85-  6. 

Cube,  duplication  of:  history  of 
problem 244-6:  reduction  by  Hip- 
pocrates  to  problem  of  two  mean 
proportionals  2,  183,  200,  245: 
solutions,  by  Archytas  246-9,  Eu- 
doxus  249-51,  Menaechmns  251- 
5,  *  Plato'  255-8,  Eratosthenes 
258-60,  Nicomedes  260-2,  Apol- 
lonius,  Philon,  Heron  262-4,  Dio- 

des 264-6,  Spprus  and  Pappus 
266-8 :  approximation  by  plane 
method  268-70. 

Cube  root,  extraction  of,  63-4 : 
Heron's  case  ii.  341-2. 

Cubic  equations,  solved  by  conies, 
237-8,  ii.  45-6,  ii.  46  ;  particular 
case  in  Diopbantus  ii.  465,  ii.  512. 

Curtze,  M.  75  //.,  ii.  309. 

Cyrus  129. 
Dactylus,  l/24th  of  ell,  ii.  216. 
Damastes  of  Sigeum  177. 
Damianus  ii.  294. 
Darius-vase  48-9. 
D'Armagnac,  G.  ii.  26. 
Dasypodius  ii.  554  w. 
De  la  Hire  ii.  550. 

De  lev!  et  ponderoso  445-6. 
Decagon  inscribed  in  circle,  side  of, 

416  :  area  of,  ii.  328. 
Dee,  John,  369,  425. 
Definitions  :  Pythagorean  166  :  in 

Plato  289,  292-4  :  Aristotle  on, 
337:  in  Euclid  373:  Definitions 
of  Heron,  ii.  314  16. 

Demetrius  of  Alexandria  ii.  260,  ii. 
359. 

Democritus  of  Abdera  12,  119,  121, 

182  :  date  176,  travels  177  :  Aris-^ 
totle's  encomium  176 :  list  of 

1  works  (1)  astronomical  177,  (2) 
mathematical  178  :  on  irrational 
lines  and  solids  156-7,  181  :  on 
angle  of  contact  178-9:  on  cir- 

cular sections  of  cone  179  80,  ii. 
110  :  first  discovered  volume  of 
cone  and  pyramid  176,  180,  217, 
ii.  21  :  atoms  mathematically  di- 

visible ad  inf.  181  :  'E*C7r«T<JcrpiTfi 
178,181  :  on  perspective  174:  on 
Great  Year  177. 

Dercyllides  ii.  244. 
Descartes  75  n.,  279. 
Dicaearchus  ii.  242. 
Dichotomy  of Zeno  275,  278  80. 
Diels,  H.;  U2n.,  176,  178,  184,  1«8. 
Di gamma :  from  Phoenician  Van 

32  :  signs  for,  ib. 

Digit  27. 
Dinostratus  225, 229,  320-1,  ii.  359. 
Diocles  :  inventor  of  cissoid  264-6: 

solution  of  Archimedes  On  Sph. 

and  Cyl.  11.  4,  ii.  47-8:  on  burn- 
ing-mil vors  ii.  200-3. 

Diodorus  (math.) :  on  parallel-pos- 
tulate 358  :  Analemma  of,  ii.  287, 

ii.  359. 
Diodorus  Siculus  121, 141, 142, 176. 
Diogenes  Laertius  144, 145,177,291. 

Dionysius,  Plato's  master,  22. 
Dionysius,  a  friend  of  Heron,  ii.  306. 
Dionysodoms  ii.  46,  ii.  218-19,  ii. 

334-5. 
Diophantus  of  Alexandria :  date  ii. 
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448 :  works  and  editions  ii,  448- 
55:  Arithmeticalb-lb:  fractions 
in,  42-4 :  notation  and  definitions 
ii.  455-61 :  signs  for  unknown  (x) 
and  powers  ii.  456-9,  for  minus 
ii.  459:  methods  ii.  462-79 :  de- 

terminate equations  ii.  462-5, 
484-  90  :  indeterminate  analysis 
ii.466- 76, 491-514  :  'Poiisms'  ii. 
449,  450,  451,  ii.  479-  80  :  propo- 

sitions in  theory  of  numbers  ii. 
481-4 :  conspectus  of  Arithmeiica 
ii.  484-514  :  On  Polygonal  Num- 
fowlG, 84,ii.514  17:  'Moriastica' ii.  449. 

DioptralS,  ii.256  :  Heron's  Dioptra 

ii.  345-6.  " 
Division :  Egyptian  method  53, 

Greek  58  60 :  example  with  sexa- 
gesimal fractions  (Theon  of  Alex- 

andria)  59-  60. 
Divisions  (of  Fif/ures),  On,  by  Euclid 

425-30  :  similar  problems  in 
Heron  ii.  3:iG  40. 

Dodecagon,  area  of,  ii.  328. 
Dodecahedron :  discovery  attributed 

to  Pythagoras  or  Pythagoreans 
65, 141, 158-60,  162  :  early  occur- 

rence 160:  inscribed  in  sphere 
(Euclid)  418  19,  i Pappus)  ii.  369  : 
Apollonius  on,  419-20:  volume 
of,  ii.  335. 

Donminus  ii.  538. 
Dositheus  ii.  34. 
Dufaciu,  P.  446. 
Dupuis,  J.  ii.  239. 

Earth  :  measurement K  of,  ii.  82, 
(Eratosthenes)  ii.  106-7,  (Posido- 
nius)  ii.  220. 

Ecliptic  :  obliquity  discovered  by 
Oenopidcs  174,  ii.  244:  estimate 
of  inclination  (Eratosthenes,  Pto- 

lemy) ii.  107-8. 
Eci  hantus  317,  ii.  2. 

Edi'u,  Temple  of  Horus  124. 
Egypt :  priest  s  4-  5,  8-  9  :  i  elations 

with  Greece  8;  origin  of  geometry 
in,  120-2:  orientation  of  temples 

^  122. Egyptian  mathematics :  numeral 
system  27-8,  fractions  28,  multi- 

plication, &c.  14-15,  52-3:  geo- 
metry (mensuration)  122-8:  tri- 
angle (3,  4,  5)  right-angled  122, 

147:  value  of  TT  124,125:  measure- 

ment oi  pyramids  126-8:  maps 
(regional)  139 :  algebra  in  Papyrus 
Rhlnd,  &c.  ii.  440-1. 

Eisenlohr,  A..123, 126,  127. 
Eisenmann,  H.  J.  ii.  360. 
Elements  :  as  known  to  Pytha- 

goreans 166-8:  progress  in,  down 
to  Plato  170-1, 175-6,201-2, 209- 
13,  216-17  :  writers  of  Elements, 
Hippocrates  of  Chios  170-1, 201- 
2,  Leon,  Theudius  320-1  :  other 
contributors  to,  Leodamas,  Ar- 
chytas  170,  212-13,  Theaetetus 
209-12, 354,  Hermotimus  of  Colo- 

phon 320,  Eudoxus  320,  323-9, 
354:  Elements  of  Euclid  357  419: 

the  so-called  4  Books  XIV,  XV ' 419-21. 

Ell,  as  nieasuie  of  angles  ii.  215-16. 
Empedocles  :  on  Pythagoras  65. 
Enestiom,  G.  ii.  341-2. 
Enneagon :  Heron's  measurement of  side  ii.  259,  of  area  ii.  328  9. 
Exanthema  of  Thymaridas  (system 

of  simple  equations)  94 :  other 
types  reduced  to,  94-6. 

Equations  :  simple,  in  Papyrus 
Rhind,  &c.  ii.  441 :  in  epcttithenta 
of  Thymaridas  and  in  laniblichus 
94  6  :  in  Greek  anthology  ii. 
441-3:  indeterminate,  see  Inde- 

terminate Analysis  :  see  «/,vo 
Quadratic,  Cubic. 

Eratosthenes  ii.  1,  16:  date,  &c. 
ii.  104:  siere  (mMTKivttir)  for  finding 
primes  16,  100,  ii.  105  :  on  dupli- 

cation of  cube  244-  6, 251,  258-  60 : 
theP/d/o/f /nut  ii.  104-5 :  On  Mean* 
ii.  105  6,  ii.  359  :  Measurement  of 
earth  ii.  106-7,  ii.  242,  ii.  346 : 
astronomy  ii.  107-9  :  ̂  chronology 
and  Gt'oymphicaii.  109:  on  Octaf- teris  ib. 

Erycinus  ii.  359,  365-8. 
Euclid  2-3,93,  131  :  iJate,&e.  354- 

6:  stories  of,  25,  354,  357:  rela- 
tion to  predecessors  354,  357 : 

Pappus  on,  356-7. Arithmetic:  classification  and 
definitions  of  numbers  72-3,  397, 
*  perfect  *  numbers  74,  402 :  for- 

mula for  right-angled  triangles 
in  rational  numbers  81-2,  405. 

Conic*  438-9,  ii.  121-2,  focus- 
directrix  property  ii.  119-21 :  on 
ellipse  439,  ii.  Ill,  ii.  125. 
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Data     421-5,     Divisions     (of 
figures)  425-30,  ii.  336,  339. 

Elements:  text  360-1,  Theon's 
edition  358,  360,  ii.  527-8,  trans- 
lation  by  Boetius  359,  Arabic 
translations  362,  ancient  com- 

mentaries 358-9,  editio  princeps 
of  Greek  text  360,  Greek  texts  of 
Gregory,  Peyrard,  August,  Hei- 
berg  360-1 :  Latin  translations, 
Athelhard  362-3,  Gherard  363, 
Campanus  363-4,  Commanclinus 
365:  first  printed  editions,  Rat- 
dolt  364-5,  Zamberti  365:  first 
introduction  into  England  363  : 
first  English  editions,  Billingsley, 

&o.  369-7*0:  Euclid  in  Middle 
Ages  365-9,  at  Universities  368  - 
9:  analysis  of,  373-419:  arrange- 

ment of  postulates  and  axioms 
361 :  1. 47,  how  originally  proved 
147-9 :  parallel-postulate  358, 
375,  ii.  227-30,  ii.  295-7,  ii.  534 : 
so  called  'Books  XIV,  XV  419- 21. 

Mechanics  445-6  :  Music  444- 
5,  Sectio  canon  is  17,  90,  215, 
444-5:  0/>tfc$17-18,441-4:  Phae- 
nomena  349,  351-2,  440-1,  ii. 
249:  Potisms  431-8,  lemmas  to, 
ii.  419-24:  Pseudana  480-1 :  Sur- 

face-Loci 243-4,  439-40,  lemmas 
to,  ii.  119-21,  ii.  425-6. 

Eudeuius  201,  209,  222:  History  of 
Geometry  118,  119,  120,  130,  131, 

135,  150,  171 :  on  Hippocrates's 
lunes  173,  182,  183-98:  Histonj 
of  Astronomy  174,  329,  ii.  244. 

Eudoxus  24,  118,  119,  121,  320, 
322-4:  new  theory  of  propoition 
(that  of  Eucl.  V.  ii)  2,  153,  216, 
325-7  :  discovered  method  of  ex- 

haustion 2,  176,  202,  206,  217, 
222,  326,  327-9  :  problem  of  two 
mean  proportionals  245, 246, 219 
51 :  discovered  three  new  means 

86:  'general  theorems1  323-4: 
On  speeds,  theory  of  concentric 
spheres  329-34,  ii.  244 :  Phaeno- 
mena  and  Mirror  322. 

Eugeniue  Siculus,  Admiral,  ii.  293. 
Euler,  L.  75n.,  ii.482,  ii.483. 
Euphorbus  (=  Pythagoras)  142. 
Eurytus  69. 
Eutocius  52,  57-8,  ii.  25,  ii.  45,  ii, 

126,  ii.  518,  ii.  540-1. 

Exhaustion,  method  of,  2,  176,  ;202, 
217,  222,  326,  327  9 :  develop- 
ment  of,  by  Archimedes  224,  ii. 
35-6. 

False  hypothesis:  Egyptian  use  ii. 
441 :  in  Diophantus  ii.  488,  489. 

Fermat,  P.  75  n.,  ii.  20,  ii.  185,  ii. 
454,  ii.  480,  ii.  481-4 :  on  Porisms 
435. 

Fontenelle  ii.  556. 
Fractions :  Egyptian  (submultiples 

except  $)  27  8,  41:  Greek  sys- 
tems 42-4  :  Greek  notation  16. : 

sexagesimal  fractions,  Babylo- 
nian 29,  in  Greek  44-5. 

*  Friendly '  numbers  75. 

Galilei  344,  446. 
GeeponicuSi  Liber,  124,  ii.  309,  ii. 

318,  ii.  344. 
Geminus  119,  ii.  222-34  :  on  arith- 

metic and  logistic  14 :  on  divi- 
sions of  optics,  &c.  17-18 :  on 

original  steps  in  proof  of  Eucl.  I 
32,  135-6:  on  parallels  358: 
attempt  to  prove  parallel-postu- 

late ii.  227-30  :  on  original  way 
of  producing  the  three  conies 
ii.  Ill :  encyclopaedic  work  on 
mathematics  ii.  223-31 :  onPosi- 
donius's  Meteorologica  ii.  231-2  : Introduction  to  Phaenomena  ii. 

232-4. 
Geodesy  (yeo>8auriu)  =  mensuration 

(as distinct  from  geometry)  16-17. 
Geometric  mean,  defined  (Archytas) 

85  :  one  mean  between  two 
squares  (or  similar  numbers),  two 
between  cubes  (or  similar  solid 
numbers)  89-90,  112,  201,  297, 
400 :  no  rational  mean  between 
consecutive  numbers  90,  215. 

;  Geometrical  harmony '  (Philolaus's 
name  for  cube)  85-6. 

Geometry  :  origin  in  Egypt  120-2 : 
feometryin  secondary  education 
0-1. 

Georgius   Pachymeres  ii.  453,    ii. 
546. 

Gerbert  (Pope  Sylvester  II)  365-7  : 
geometry  of,  366 :  ii.  547. 

Gerhardt,  C.  J.  ii.  360,  ii.  547. 
Gherard  of  Cremona,  translator  of 

Euclid  and  an-Nairm  363,  367, 
ii.  309 :  of  Menelaus  ii.  252,  ii.  262. 
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Ghetaldi,  Marino,  ii.  190. 
Girard,  Albert,  435,  ii.  455. 
Gnomon :  history  of  term  78-9 : 
gnomons  of  square  numbers  77- 
8,  of  oblong  numbers  82-3,  of 
polygonal  numbers  79  :  in  appli- 

cation of  areas  151-2 :  use  by 
al-Karkhi  109-10 :  in  Euclid  379  : 
sun-dial  with  vertical  needle  139. 

Gomperz,  Th.  176. 
Govi,  G.  ii.  293  n. 
Gow,  J.  38. 
Great  Year,  of  Oenopides  174-5, 

of  Callippua  and  Democritus  177. 
Gregory,  D.  360-1,440,  441,  ii.  127. 
Griffith,  F.  LI.  125. 
Giinther,  S.  ii.  325  w.,  ii.  550. 

Guldin's  theorem,  anticipated  by 
Pappus  ii.  403. 

Halicarnassus  inscriptions  32  -  3, 34. 

llalley,  E.,  editions  of  Apollonius's 
Conies  ii.  127-8,  and  Srctio  ratio- 
nix  ii.  175,  179,  of  Menelaus  ii. 
252,  ii.  262,  of  extracts  from 
Pappus  ii.  360,  of  Serenns  ii.  519. 

Hal  ma,  editor  of  Ptolemy  ii.  274, 
275. 

Hammer- Jen  sen,  I.  ii.  300  n.,  ii. 
304  fi. 

Hankel,  II.  145,  149,  288,  369,  ii. 
483. 

Hardy,  G.  II.  280. 

Harmonic  mean  (originally  'biib- 
contrary')  85. 

Harpedonaptac,  '  rope-stretchers ' 
121-2,  178. 

Hfirun  ar-Rashid  362. 
Han  -  calculations  ( Egyptian)  ii. 

440-1. 
Hecataeus  of  Miletus  65,  177. 
Heiben,  J.  L.  233  w. 
Heiberg,  J.  L.  184,  187  n.,  188, 

192  w.,  196-7  «.,  315,  361,  ii.  203, 
ii.  309,  310,  316,  318,  319,  ii.  519, 
ii.  535,  543,  553,  555  n. 

llelcephlll. 
Hendecagon  in  a  circle  (Heron)  ii. 

259,  ii.  329. 
Henry,  C.  ii.  453. 
Heptagon  in  a  circle,  ii.  103 : 

Heron's  measurement  of,  ii.  328. 
Heraclides  of  Pontus  24,  ii.  231-2 : 

discovered  rotation  of  earth  about 

axis816-17,ii.2  3,  and  that  Venus 

and  Mercury  revolve  about  sun 
312,  317,  ii.  2,  ii.  244. 

Heraclitus  of  Ephesus  65. 
Heraclitus,  mathematician  ii.  192, 

ii.  359,  ii.  412. 
Hermannus  Secundus  ii.  292. 
Hermesianax  142  n.,  163. 
Hermodorus  ii.  359. 

Hcrmotimus  of  Colophon  320-1  : 
Elements  and  Loci  ib.,  354. 

4  Horodianic '  (or  '  Attic ')  numerals 30-1. 
Herodotus  4,  5,48,  65,  121,  139. 
Heron  of  Alexandria  121,  ii.  198, 

ii.  259 :  controversies  on  date  ii. 
298-307  :  relation  to  Ctesibius 
and  Philon  ii.  298-302,  to  Pappus 
ii.  299-300,  to  Posidonius  and 
Vitruvius  ii.  302-3,  to  ayrimen- 
sores  ii.  303,  to  Ptolemy  ii.  303-6. 
Arithmetic:  fractions  42-4,  mul- 

tiplications 58,  approximation  to 
surds  ii.  51,  ii.  323-6,  approxima- 

tion to  cube  root  64,  ii.  34172, 

quadratic  equations  ii.  344,  in- 
determinate problems  ii.  344, 

444-7. 
Character  of  works  ii.  307-8 : 

list  of  treatises  ii.  308-10. 
Geometry  ii.  31 0-1 4,  Definitions 

ii.  314-16:  comni.  on  Euclid's 
Elements  358,  ii.  310-14  :  proof  of 
formula  for  area  of  triangle  in 
terms  of  sides  ii.  321-3 :  duplica- 

tion of  cube  262-3. 
Metrica  ii.  320-43:  (1)  mensu- 

ration ii.  316-35:  triangles  ii. 
320-3,  quadrilaterals  ii.  326, 

regular  polygons  ii.  326-9,  circle 
and  segments  ii.  329-31 :  volumes 
ii.  331-5,  fropucTKos  ii.  332-3,  frus- 

tum of  cone,  sphere  and  segment 
ii.  334,  tore  ii.  334-5,  five  regular 
solids  ii.  335.  (2)  divisions  of 
figures  ii.  336-43,  of  frustum  of 
cone  ii.  342-3. 

Mechanics  ii.  346-52  :  on  Ar- 
chimedes's  mechanical  works  ii. 
23-4,  on  centl-eof  gravityii.  350-1, 352. 

Belopoel'ca  18,  ii.  308-9,  Catop- 
trica  18,  ii.  294,  ii.  310,  ii.  352-4. 

Dioptra  ii.  345-6,  Pneitmatica 
and  Automata  18,  ii.  308,  310. 

On  Water-clocks  ii.  429,  ii.  536. 
Heron,  teacher  of  Proclus  ii.  529. 
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Heron  the  Younger'  ii,  545. Heronas  99. 
Hicetas  317. 
Hierius  268,  ii.  359. 
BKeronymus  129. 
Hilal  b.  Abi  Hilal  al-Himsi  ii.  127. 
Hiller,  E.  ii.  239. 
Hilprecht,  H.  V.  29. 
Hipparchus  ii.  3,  18,  198,  216,  218 : 

date,  &c.  ii.  253  :  work  ii.  254-6  : 
on  epicycles  and  eccentrics  ii. 
243,  ii.  255  :  discovery  of  preces- 

sion ii.  254:  on  mean  lunar  month 

ii.  254-5 :  catalogue  of  stars  ii. 
255 :  geography  ii.  256 :  trigono- 

metry ii.  257-60,  ii.  270. 
Bippasus  65,  85,  86,  214:  construc- 

tion of  'twelve  pentagons  in 
sphere '  160. 

Hippias  of  Elis:  taught  mathe- 
matics 23:  varied  accomplish- 

ments ib.j  lectures  in  Sparta  24 : 
inventor  ofquadratrix  2, 171, 182, 
219,  225-6. 

Hippocrates  of  Chios  2,  182,  211: 
taught  for  money  22 :  first  writer 
of  Elements  119,  170,  171 :  ele- 

ments as  known  to,  201  -  2  : 
assumes  fcvcm  equivalent  to  solu- 

tion of  quadratic  equation  88, 
195-6 :  on  quadratures  of  lunes 
170,  171,  173,  182,  183-99,  220, 
221:  proved  theorem  of  Eucl.  XI I 
2,  187,  328 :  reduced  duplication 
of  cube  to  problem  of  finding 
two  mean  proportionals  2,  188, 
200,  245. 

Hippolytus:  on  irvQucvcs  (bases)  and 
'rule  of  nine 'and  '  seven1 115-16. 

Hippopede  of  Eudoxus  338-4. Hornet  5. 

*  Horizon ' :  use  in  technical  sense  by Euclid  352. 
Horsley,  Samuel,  ii.  190,  ii.  360. 
Hultsch,  F.  204, 230, 349,  350,  ii.  51, 

ii.  308,  ii.  318,  319,  ii.  361. 
Hunrath,  K.  ii.  51. 
Hunt,  A.  S.  142. 
Hypatia  ii.  449,  ii.  519,  ii.  528-9. 
Hypotenuse,  theorem  of  square  on, 

142,  144-9  :  Proclus  on  discovery 
of,  145 :  supposed  Indian  origin 
145-6. 

Hypsicles :  author  of  so-called  Book 
XIV  of  Eucl.  419-20,  ii.  192 :  de- 

finition of  'polygonal  number' 84, 

ii.  213,  ii.  515 :  'Ap<i</>optfe<fc  ii. 
213-18,  first  Greek  division  of 
zodiac  circle  into  360 parts  ii.214. 

lamblichus  4,  69,  72,  73,  74,  75,  86, 
107,  ii.  515,  529 :  on  tmivewi  of 
Thymaridas,  &c.  94-6:  works 
113-14 :  comm.  on  Nicomachus 
113  -15 :  squares  and  oblong  num- 

bers as  'race-courses'  114:  pro- 
perty of  sum  of  numbers  3  n  -  2, 

3n-l,  3n  114-15. 
Ibn  al-Haitham,on  burning-mirrors 

ii.  201 :  ii.  453. 

Icosahedron  159 :  discovery  attri- 
buted to  Theaetetus  162 :  volume 

of,  ii.  335. 
Incommensurable,  discovery  of,  65, 

90-1, 154:  proof  of  intfommensu- 
rability  of  diagonal  of  square  91. 

Indeterminate  analysis  :  first  cases, 
right' angled  triangles  in  rational 

numbers  80,  81,  'side-1  and  'dia- 
meter-' numbers  91-3,  ii.  536: 

rectangles  with  area  and  peri- 
meter numerically  equal  96-7 : 

indeterminate  equations,  first 
degree  ii.  443,  second  degree  ii. 
443-4  (we  also  Diophantus),  in 
Heronian  collections  ii.  344,  ii. 
444-7. 

India :  rational  right-angled  tri- 
angles in,  145-6:  approximation 

to  ̂ /2,  146. 
Indian  Table  of  Sines  ii.  253. 

Irrational :  discovered  by  Pythago- 
reans 65,  90-1,  154,  and  with 

reference  to  \/2, 155, 168  :  Demo- 
crituson, 156-7,181:  Theodotuson, 
203-9:  extensions  by  Theaetetus 
209-12,  Euclid  402-1  l,Apollonius ii.  193. 

Isaac  Argyrus  224  n.,  ii.  555. 
Ishaq  b.  Hunain,  translator  of 

Euclid  362,  of  Menelaus  ii.  261, 
and  Ptolemy  ii.  274. 

Isidorus  Hispalensis  365. 
Isidorus  of  Miletus  421,  ii.  25,  ii. 

518,  ii.  540. 
Isocrates  :  on  mathematics  in  edu- 

cation 21. 

Isoperimetric  figures  ii.  206-13,  ii. 
390-4. 

Jacob  b.  Machir  ii.  252,  ii.  262. 
Jacobus  Cremonensis  ii,  26-7. 
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Jan,  C.  444. 
Joachim  Camerarius  ii.  274. 
Joachim,  H.  H.  348  n. 
Johannes  de  Sacrobosco  368. 
Jordanus  Nemorarius  ii.  328. 
Jourdain,  P.  E.  B.  283  n. 

Kahun  Papyri  125,  126. 
Kant  173. 

Keil,  B.  34-5. 
Kepler  ii.  20,  ii.  99. 
KCchly,  H.  A.  T.  ii.  309. 
Koppa  (9  for  90)=  Phoenician  Qoph QO 

Kubitschek,  W.  50. 

Lagrange  ii.  483. 
Laird,  A.  G.  306  n. 
Laplace  173. 
Larfeld,W.  31  n.,  33-4. 
Lawson  486. 
Leibniz  279,  ii.  20. 
Lemma  373,  ii.  533. 
Leodamas  of  Thasos  120;  170,  212, 

291,  319. 
Leon  319. 
Leon  (of  Constantinople)  ii.  25. 
Leonardo  of  Pisa  367,  426,  ii.  547. 
Lepsius,  C.  R.  124. 
Leucippus  181. 
Libri,  G.  ii.  556. 

'  Linear  '  (of  numbers)  73. 
1  Linear*  loci  and  problems  218-19. 
Lines,  classification  of,  ii.  226. 
Livy  ii.  18. 
Loci :  classification  of,218-19,  plane, 

solid,  linear  218:  loci  on  surfaces 
219:  'solid  loci 'ii.  116-19. 

Loftus,  W.  K.  28. 

Logistic     (opp.    to    'arithmetic'), 
science  of  calculation  13-16,  23, 
53. 

Loqistica    speciosa    and    mimerosa 
(Vieta)  ii.  456. 

Loria,  G.  iv-v,  350  n.,  ii.  293  n. 
Luca  Paciuolo  367,  ii.  324  n. 
Lucas,  E.  75  n. 
Lucian  75  H.,  77,  99,  161,  ii.  18. 
Lucretius  177. 

Magic  squares  ii.  550. 
Magnus,  Logistica  234-5. 
Mamercus  or  Mamertius  140,  141, 

171. 

al-Ma'mun,  Caliph  362. 
al-Mansur,  Caliph  362. 

pp 

Manus,  for  number  27. 
Marinus  444,  ii.  192,  ii.  537-8. 
Martianus  Capella  359,  365. 

Martin,  T.  H.  ii.  238,  ii.  546.- 
Maslama  b.  Ahmad  al-Majrl^I  ii. 

292. 
Massalia  8. 
Mastaba  tombs  128. 
Mathematics:  meaning  10-11, clas- 

sification of  subjects  11-18 : 
branches  of  applied  mathematics 
17-18 :  mathematics  in  Greek 
education  18-25. 

Maurolycus  ii.  262. 
Means  :  arithmetic,  geometric,  and 

Bubcontrary  (harmonic)  known 

in  Pythagoras's  time  85 :  defined 
by  Archytas  ib. :  fourth,  fifth,  and 
sixth  discovered,  perhaps  by  Eu- 
doxus  86,  four  more  by  Myonidea 
and  Euphranor  86:  ten  means 
in  Nicomachus  and  Pappus  87-9, 

Pappus's  propositions  88-9  :  no rational  geom.  mean  between  suc- 
cessive numbers  (Archytas)  90, 215. 

Mechanics,  divisions  of,  18  :  writers 
on,  Archytas  213,  Aristotle  344-6, 
445-6,  Archimedes  ii.  18,  ii.23-4, 
ii.  75-81,  Ptolemy  ii.  295,  Heron  ii. 
346-52,  Pappus  ii.  427-34. 

Megethion  ii.  360. 
Memus,  Johannes  Baptista,  ii.  127. 
Menaechmus  2,  25,  251-2,  320-1 : 

discoverer  of  conic  sections  251- 
3,  ii.  110-16  :  solved  problem  of 
two  mean  proportionals  245, 246, 

251-5:  on 'problems '318. 
Menelaus  of  Alexandria  ii.  198,  ii. 

252-3 :  date,  &c.  ii.  260-1:  Table  of 
Chords  ii.  257:  Sphaerica  ii.  261- 
73  :  Menelaus's  theorem  ii.  266- 
8,  270 :  anharmonic  property  ii. 
269 :  7rapd8o£os  curve  ii.  260-1. 

Mensa  Pythagorea  47. 
Mensuration :  in  primary  education 

19  :  in  Egypt  122-8 :  in  Heron  ii. 
316-35. 

Meton  220. 
Metrodorus  ii.  442. 
Minus,  sign  for.  in  Diophantus  ii. 

459-60. 
Mochus  4. 

Moschopoulos,  Manuel,  ii.  549-50. 
Muhammad  Bagdadinus  425. 
Multiplication:  Egyptian  method 
2 
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52-3,  Greek  53-4,  'Russian'  53  n.: 
examples  from  Eutocius,  Heron, 

Theon  57-8:  Apollonius's  con- 
tinued multiplications  54-7. 

Multiplication  Table  53. 
Jtfumm,  an  angular  measure  ii.  215. 
Musical  intervals  and  numerical 

ratios  69,  75-6,  85,  165. 
Myriads, '  first ',  *  second ',  &c.,  nota- 

tion for,  39-40. 

Nagl,  A.  50. 
an-Nairizi :  comm.  on  Euclid  363, 

ii.  224,  ii.  228-30,  ii.  309-10. 
NasTraddin  at-Tusi :  version  of  Eu- 

clid 362,  of  Apollonius's  Conies 
ii.  127  :  of  Ptolemy  ii.  275. 

Naucratis  inscriptions  33. 
Nemesius  441. 
Neoclides  319. 

Ner  (Babylonian)  (=600)  28,  ii. 
215. 

Nesselmann,  G.  H.  P.  ii.  450-1,  ii. 
455-6. 

Newton  370,  ii.  20,  ii.  182. 
Nicolas  Rhabdas  40,  ii.  324  n ,  ii. 

550-3. 
Nicomachus  of  Gerasa  12,  69,  70, 

72,  73,  74,  76,  83,  85,  86,  ii.  238, 
ii.  515:  works  of,  97:  Introductio 
arithmetical  character  of  treatise 

98-9,  contents  99-112,  classifica- 
tion of  numbers  99-100:  on  'per- 
fect1 numbers  74, 100-1 :  on  ten 

means  87  :  on  a  'Platonic'  theo- 
rem 297 :  sum  of  series  of 

natural  cubes  109-10. 
Nicomedes  225-6,  ii.  199:  cochloids 

or  conchoids  238-40:  duplica- 
tion of  cube  260-2. 

Njloxenus  129. 
Nine,  rule  of,  115-16:  casting  out 

nines  ii.  549. 
Nipsus,  M.  Junius,  132. 
Nix,  L.  ii.  128, 131,  ii.  309. 
Noel,  G.  282. 
Number:  defined,  by  Thales  69,  by 
Moderatus,  Eudoxus,  Nicoma- 

chus, Aristotle  70 :  classification 

of  numbers  70-4  :  '  perfect ', 
'  over-perfect*  and  '  defective 1 
numbers  74-5,  *  friendly'  75, 
figured  76-9  :  'oblong1,  'prolate1 
82-3, 108,  114,  similar  plane  and 
solid  numbers  81-2,  90,  solid 
numbers  classified  106-8 :  '  the 

number  in  the  heaven '  (Pytha- 
gorean) 68,  'number'  of  an  object 69. 

Numerals:  systems  of, decimal, qui- 
nary, vigesimal  26 :  origin  of 

decimal  system  26-7 :  Egyptian 
27-8;  Babylonian  systems  (1) 
decimal  28,  (2)  sexagesimal  28-9: 
Greek  (1)  'Attic'  or  'Herodianic' 
30-1:  (2)  alphabetic  system, 
original  in  Greece  31-7,  how 
evolved  31-2,  date  of  introduc- 

tion 33-5,  mode  of  writing  36-7, 
comparison  of  two  systems  37-9 : 
notation  for  large  numbers,  Apol- 

lonius's tetrads  40,  Archimedes's 
octads  40-1. 

Nyuiphodorus  213. 

'  Oblong'  numbers  82-3,  108,  114: 
gnomons  of,  82-3. Ocreatus,  111. 

Octads,  of  Archimedes  40-1. 
Octagon,  regular,  area  of,  ii.  328. 
Octahedron  159,  160,  162 :  volume 

of,  ii.  335. 
'Odd*  number  defined  70-1:  1 

called  *  odd-even '  71 :  'odd-even', 
'  odd-times-odd ',  &c.,  numbers 
71-4. 

Oenopides  of  Chios  22,  121 :  dis- 
covered obliquity  of  ecliptic  138, 

174,  ii.  244:  Great  Year  of,  174-5  : 
called  perpendicular  gnomon-wise 
78, 175 :  two  propositions  in  ele- 

mentary geometry  175. 
Olympiodorus  444. 
One,  the  principle  of  number  69. 
Oppermann  ii.  324  n. 
Optics :  divisions  of,17-18 :  of  Euclid 

441-4 :  of  Ptolemy  ii.  293-4. 
Oval  of  Cassini  ii.  206. 

Oxyrhynchus  Papyri  142. 

Pamphile,  131,  133,  134. 
Pandrosion  ii.  360. 

Pappus  (see  also  Table  of  Contents, 
underChap.XIX)ii.l7-18,ii.  175, 
180, 181,  182, 183,  185,  186,  187, 
188,  189,  190,  ii.  207,  211,  212, 
213,  ii.  262,  ii.  337,  ii.  355-439 : 
on  Apollonius's  tetrads  40,  on 
Apollonius's  continued  multi- 

plications 54-7 :  on  ten  means 
87-9  :  on  mechanical  works  of 
Archimedes  ii.  23-4 :  on  conies 
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of  Euclid  and  Apollonius  438, 
proof  of  focus-directrix  property 
ii.  120-1 :  commentary  on  Euclid 
358,  ii.  356-7,  on  Book  X  154-5, 
209,  211,  ii.  193  :  commentary  on 

Euclid's  Data  421-2,  ii.  357,  on 
Diodorus's  Analemma-  ii.  287, 
scholia  on  Synfaxfs  ii.  274 :  on 
classification  of  problems  and 
loci  (plane,  solid,  linear)  218-19, 
ii.117- 18,  criticism  on  Archimedes 
and  Apollonius  288,  ii.68,  ii.167: 
on  surface-loci  439-40,  ii.  425-6 : 
on  Euclid's  Porisnts 431-3,  436-7, 
ii.  270,  ii.  419-24  :  on  '  Treasury 
of  Analysis1 421, 422, 439,  ii.  399- 
427:  oncoc/tfo/<fc238-9:  on  quad- 
ratrix  229-30,  ii.  379-80,  con- 

structions for,ii.  380-2:  on  dupli- 
cation of  cube  266-8,  268-70:  on 

trisection  of  any  angle  241-3, 
ii.  385-6,  veto-is  with  regard  to 
parallelogram  236-7 :  on  isoperi- 
inetry  (ef.  Zenodorus)  ii.  207,  ii. 
211-12,  ii.  390-4. 

'  Paradoxes'  of  Eryeinus  ii.  365-8. 
Parallelogram  of  velocities  346,  ii. 

348-9. 
Parapegma  of  Dcmocritus  177. 
Parmenides  138. 
Pateriusii.  536  7. 
Patricius  ii.  318,  319. 
Pebbles,  for  calculation  46,  48. 
Pentagon,  regular :  construction 

Pythagorean  160-2 ;  area  of,  ii.327. 
Pentagram,  Pythagorean  161-2  (see 

En-ata). 
'Perfect1  numbers  74-5:  list  of 

first  ton  ib.  :  contrasted  with 

'  over-perfect '  and  '  defective ' 
ib. :  10  with  Pythagoreans  75.  • 

*  Perfect '  proportion  86. Pericles  172. 
Pericles,  a  mathematician  ii.  360. 
Perseus  226 :    spiric    sections    ii. 

203-6. 
*  Phaenomenn '  =  observational  as- 

tronomy 17 :  322,  349. 
Philippus  of  Opus  354 :  works  by, 

321 :  on  polygonal  numbers  84, 
ii.  515  :  astronomy  321. 

Philolaus  67,  72,  76,  78,  86,  158, 
ii.  1 :  on  odd,  even,  and  even-odd 
numbers  70-1 :  Pythagorean  non- 
geocentric  astronomy  attributed 
to,  163-4. 

Philon  of  Byzantium  213  :  duplica- 
tion of  cube  262-3:  Philon,  Ctesi- 

bius  and  Heron  ii.  298-302. 
Philon  of  Gadara  234. 
Philon  of  Tyana  ii.  260. 
Philoponus,  Joannes,  99,  223,  224  n. 
Phocaeans  7. 
Phocus  of  Samos  138. 
Phoenician  alphabet,  how  treated 

by  Greeks  31-2  :  arithmetic  ori- 
ginated with  Phoenicians  120-1. 

'Piremus'  or  'peremus'  in  pyramid 
126,  127. 

4  Plane'  loci  218. 

'Plane1  problems  218-19. 
Planisphaerium  of  Ptolemy  ii.  292-8. Planudes,  Maximus,  117,  ii.  453,  ii. 

546-9. 
Plato  19,  22,  24,  121,  142*.,  170,  176  : 

iTo)  iii,  24,  355  :  on  educa- 
tion in  mathematics  19-20,  284: 

on  mathematical  'arts1,  measure- 
ment and  weighing  308,  instru- 

ments for,  308-9,  principle  of 
lever  309  :  on  optics  309,  441  : 

on  music  310  :  Plato's  astronomy 
310-15:  on  arithmetic  and  logistic 
13-14:  classification  of  numbers, 
odd,  even,  &c.  71-2,  292:  on 
number  5040,  294:  the  Geometri- 

cal Number,  305-8  :  on  arithme- 
tical problems  15,  ii.  442:  on 

geometry  286-8,  constructions 
alien  to  true  geometry  ib.  :  on- 

tology of  mathematics  288-9: 
hypotheses  of  mathematics  289- 90  :  two  intellectual  methods 
290  2  :  supposed  discovery  of 
mathematical  analysis,  120,  212- 
13,  291-2  :  definitions  of  various 
species  of  numbers  292,  figure 
292-3,  line  and  straight  line  293, 
circle  and  sphere  293-4  :  on 
points  and  indivisible  lines  293  : 
formula  for  rational  right-angled 

triangles  81,  304  :  'rational'  and 
'irrational  diameter  of  5'  93, 
306-7  :  Plato  and  the  irrational 
156,  203-5,  304:  on  soli*  geo- 

metry 12-13,303  :  on  regular  and 
semi-regular  solids  294-7  :  Plato 
and  duplication  of  cube  245-6, 
255,  287-8,  303:  on  geometric 
means  between  two  squares  and 
two  cubes  respectively  89>  112, 
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201,297,  400:  on  *  perfect '  pro- 
portion 86 :  a  proposition  in 

proportion  294:  two  geometrical 
passages  in  Meno  297-303 :  pro- 

positions 'on  the  section*  304, 
324-5. 

'Platonic*  figures  (the  regular 
solids)  158, 162, 294-5,  296-7. 

Playfair,  John,  436. 
Pliny  129,  ii.  207. 
Plutarch  84,  96,  128,  129,  130,  133, 

144, 145, 167, 179,  ii.  2,  3,  ii.  516: 
on  Archimedes  ii.  17-18. 

Point:  defined  as  a  'unit  having 
position  '  69, 166 :  Plato  on  points 293. 

Polybius  48,  ii.  17  n.f  ii.  207. 
Polygon:  propositions  ahout  sum 

of  exterior  or  interior  angles- 144: 
measurement  of  regular  polygons 
ii.  326-9. 

Polygonal  numbers  15,  76,  79,  ii. 
213,  ii.  514-17. 

Polyhedra,  see-Solids.  ** 
Porism  (1)  =  corollary  372:  (2)  a 

certain  type  of  proposition  373, 
431-8  :  Porisws  of  Euclid,  see 
Euclid  :  of  Diophantus,  see  Dio- 
phantus. 

Porphyry  145:  commentary  on  Eu- 
clid's Elements  358,  ii.  529. 

Poselger,  F.T.  ii.455. 
Posidonius  ii.  219-22  :  definitions 

ii.  221,  226  ;  on  parallels  358,  ii. 
228 :  versus  Zeno  of  Sidon  ii. 

221-2 :  Meteorologica  ii.  219  : 
measurement  of  earth  ii.  220 :  on 
size  of  sunii.  108,  ii.  220-1. 

Postulates :  Aristotle  on,  336 :  in 
Euclid  336, 374-5 :  in  Archimedes 
336,  ii.  75. 

Powers,  R.  E.  75  n. 
Prestet,  Jean,  75  n. 
Prime  numbers  and  numbers  prime 

to  one  another  72-3:  defined  73: 
2  prime  with  Euclid  and  Aristotle, 
not  Theon  of  Smyrna  and  Neo- 
Pythagoreans  ib. 

Problems  :  classification  218-19  : 
plape  and  solid  ii.  117-18  :  pro- 

blems and  theorems  318,  431,  ii. 
583. 

Proclus  12,  99, 175, 183, 213,  224  «., 
ii.  529-37  :  Comm.  on  Eucl.  I.  ii. 
530-5 :  sources  ii.  530-2 :  '  sum- 

mary' 118-21, 170,  object  of,  170- 

"Propo 

1  :  on  discoveries  of  Pythagoras 
84-5,  90,  119,  141,  154  :  on  Euclid 
I.  47,  145,  147:  attempt  to  prove 
parallel-postulate  358,  ii.  534  :  on 
loci  219  :  on  porisms  433-4  :  on 
Euclid's  music  444:  comm.  on 
Republic  92-3,  ii.  536-7  :  Hypoty- 
posis  of  astronomical  hypotheses 
ii.  535-6. 

Prodicus,  on  secondary  education 
20-1. 

Prolate,  of  numbers  108,  204. 
P/™>/370,  ii.533. 
Proportion  :  theory  discovered  by 

Pythagoras  84-5,  but  his  theory 
numerical  and  applicable  to  com- 
mensurables  only  153,  155,  167: 
def.  of  numerical  proportion  190: 

the  '  perfect  '  proportion  86  : 
Euclid's  universally  applicable 
theory  clue  to  Eudoxus  153,  155, 

216,325-7. 
osition,   geometrical  :    formal 

divisions  of,  370-1. 
Protagoras  202  :  on  mathematics 

23,  179. 
Prou,  V.  ii.  309. 
Psammites  or  Sand-reckonerof  Archi- 

medes 40,  ii.  3,  ii.  81-5. 
Psellus,  Michael,  223-4  w.,  ii.  453, 

ii.  545-6. 
Pseudaria  of  Euclid  430-1. 
Pseudo-Boetius  47. 
Pseudo-Eratosthenes:  letter  on  du- 
•   plication  of  cube  244-5. 
Ptolemies  :  coinst)f,with  alphabetic 

numerals  34-5:  Ptolemy  I,  story 
of,  354. 

Ptolemy,  Claudius,  181,  ii.  198,  ii. 
216,  ii.  218,  ii.  273-97:  sexa- 

gesimal fractions  44-5,  approxi- 
mation to  TT  233  :  attempt  to  prove 

parallel-postulate  358,  ii.  295-7  : 
Syntazisii.  273-86,  commentaries 
and  editions  ii.  274-5,  contents 
of,  ii.  275-6,  trigonometry  in,  ii. 
276-86,  290-1,  Table  of  Chords 
ii.  259,  ii.  283-4,  on  obliquity  of 
ecliptic  ii.  107-8  :  Analemma 
ii.  286-92:  Planispheriumii.292- 
3,  Optics  ii.  293-4,  other  works  ii. 
293  :  ircpi  pon&v  ii.  295  :  rrepl  8ia- 
oTttcr*  a>$  ib. 

Pyramids  :  origin  of  name  126  : 
measurements  of,  in  Bhind  Papy- 

rus 126-8:  pyramids  of  Dakshur, 
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Gizeh,  and  Medum  128:  measure- 
ment of  height  by  Thales  129-30 ; 

volume  of  pyramid  176, 180,  217, 
ii.  21,  &c.,  volume  of  frustum  ii. 
334. 

Pythagoras  65-6, 121, 131, 133, 138: 
travels  4-5,  story  of  bribed  pupil 
24-5:  motto  25, 141:  Heraclitus, 
Empedocles  and  Herodotus  on, 
65 :  Proclus  on  discoveries  of,  84- 
5,90,119,141,154:  made  mathe- 

matics a  part  of  liberal  education 

141,  called  geometry  *  inquiry1 
166,  used  definitions  166 :  arith- 

metic (theory  of  numbers)  66-80, 
figured  numbers  76-9 :  gnomons 
77,  79:  *  friendly1  numbers  75: 
formula  for  right-angled  tri- 

angles in  rational  numbers  79- 
80 :  founded  theory  of  proportion 

84-5,  introduced  'perfect*  pro- 
portion 86 :  discovered  depen- 

dence of  musical  intervals  on 
numerical  ratios  69,  75-6,  85, 
165:  astronomy  162-3,  earth 
spherical  ?&.,  independent  move- 

ment of  planets  67, 163:  Theorem 
of  Pythagoras  142,  144-9,  how 
discovered?  147-9,  general  proof, 

how  developed  i&.,  Pappus's -ex- 
tension ii.  369-71. 

Pythagoreans  2,  11,  220:  quadri- 
vium  11  :  a  Pythagorean  first 
taught  for  money  22 :  first  to 
advance  mathematics  66 :  '  all 

things  are  numbers  *  67-9  :  '  num- 
ber '  of  an  object  69, '  number  in 

the  heaven1  68:  figured  numbers 69 :  definition  of  unit  69 :  1  is 
odd-even  71  :  classification  of 

numbers  72-4 :  '  friendly '  num- 
bers 75:  10  the  'perfect1  number 

75:  oblong  numbers  82-3,  108, 
114 :  side- and  diameter- numbers 

giving  approximations  to  V2, 91— 
3 :  first  cases  of  indeterminate 

analysis  80,  91,  96-7:  sum  of 
angles  of  triangle  =  27?,  135, 
143 :  geometrical  theorems  attri- 

buted to,  143-54 :  invented  appli- 
cation of  areas  and  geometrical 

algebra  150-4:  discovered  the  in- 
commensurable 65,  90-1,  154, 

with  reference  to  \/2  155, 168: 
theory  of  proportion  only  ap- 

plicable to  comniensurables  153, 

155,  167,  216:  construction  of 

regular  pentagon  160-2  :  astro- 
nomical system  (non-geocentric) 

163-5 :  definitions  166 :  on  order 
of  planets  ii.  242. 

Qay  en  heru,  height  (of  pyramid) 127. 

Quadratic  equation :  solved  by  Py- 
thagorean application  of  areas 

150-2,  167,  394-6,  422-3:  nu- 
merical solutions  ii.  344,  ii.  448, 

ii.  463-5. 
QuadraMx  2,  23, 171, 182,  218, 219, 

225-30,  ii.  379-82. 
Quadrivium  of  Pythagoreans  11. 
Quinary  system  of  numerals  26. 
Quintilian  ii.  207. 
Qusta  b.  Luqa,  translator  of  Euclid 

362,  ii.  453. 

Rangabe,  A.  R.  49-50. 
Ratdolt,  Erhard,  first  edition  of 

Euclid  364-5. 
Reductio  ad  absurdum  372 :  already 

used  by  Pythagoreans  168. 
Reduction  (of  a  problem)  372. 
Reflection:  equality  of  angles  of 

incidence  and  reflection  442,  ii. 

294,  ii.  353-4. 
Refraction  6-7,  444 :  first  attempt 

at  a  law  (Ptolemy)  ii.  294. 

Regiomontanus  369,  ii.  27,  ii.  453-4. 
Regula  Nicomachi  111. 
Rhabdas,  Nicolas,  40,  ii.  324  n.,  ii. 

550-3. 
Rhind  Papyrus:  mensuration  in, 

122-8:  alffebra  in,  ii.  440-1. 
Right-angled  triangle :  inscribed 

by  Thales  in  circle  131 :  theorem 
of  Eucl.  I.  47,  attributed  to 
Pythagoras  142,  144-5,  supposed 
Indian  origin  of,  145-6. 

Right-angled  triangles  in  rational 

numbers :  Pythagoras's  formula 
80,  Plato's  81,  Euclid's  81-2, 
405:  triangle  (3,  4,  5)  known  to 
Egyptians  122:  Indian  examples 
146 :  Diophantus's  problems  on, 
ii.  507-14. 

Robertson,  Abram,  ii.  27. 
Rodet,  L.  234. 
Rodolphus  Pius  ii.  26. 
Roomen,  A.  van,  ii.  182. 
Rudio,  F.  173,  184,  187-91,  ii. 539. 
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Rudolph  of  Bruges  ii.  292. 
Ruelle,  Ch.  tm.  ii.  538. 
Rttstow,  F.  W.  ii.  309. 
Ruler  -  and  -  compasses    restriction 

175-6. 

Sachs,  Eva,  209  n. 
Salanrinian  table  48,  50-1. 
Salmon  ii.  23,  ii.  103. 

Sampi  ("^  =  900)  derived  from Ssade  q.v. 

Sar  (Babylonian  for  602)  28,  ii.  215. 
Satapcttha  Brdhmana,  146. 
Savile,  Sir  H.,  on  Euclid  360,  369. 
Scalene:  of  triangles  142:  of  certain 

solid  numbers  107:  of  an  odd 
number  (Plato)  292:  of  an  oblique 
cone  ii.  134. 

Schiaparelli,  G.  317,  330,  ii.  539. 
Schmidt,  W.  ii.  308,  309,  310. 
Schflne,  H.  ii.  308. 
SchCne,  R.  ii.  308,  317. 
Scholiast  to  Charmides  14,  53. 
Schooten,  P.  van,  75  n.,  ii.  185. 
Schulz,  0.  ii.  455. 
Scopinas  ii.  1. 
Secondary  numbers  72. 
Sectio  canonis  17,  215,  444. 
Seelhoff,  P.  75  n. 
Seleucus  ii.  3. 
Semicircle  :  angle  in,  is  right 

(Thales)  131,  133-7. 
Senkereh,  Tables  28,  29. 

Senti,  base' (of  pyramid)  127.  • 
Se-qet,  *  that  which  makes  th  e  nature ' 

(of  pyramid  )  =  cot  an  gent  of  angle 
of  slope  127- 8,  130,  131. 

Serenus  ii.  519-26:  On  section  of 
cylinder  ii.  519-22,  On  section  of 
cone  ii.  522-6. 

Sesostris  (Ramses  II)  121. 
Sexagesimal  system  of  numerals 

and  fractions  28-9:  sexagesimal 
fractions  in  Greek  44-5,  59,  61-3, 
233,  ii.  277-83. 

Sextius  220. 
Sicily  8. 
4  Side-1  and  'diameter-numbers1 91- 

3,  112,  153,  308,  380,  ii.  536. 
Simon,  M.  200. 
Simplicius :  extract  from  Eudemus 

on  Hippocrates's  quadrature  of 
lunes  171,  182-99 :  on  Antiphon 
221-2 :  on  Eudoxus's  theory  of 
concentric  spheres  329 :  commen- 

tary on  Euclid  358,  ii.  539-40  :  on 

mechanical  works  of  Archimedes 
ii.  24:  ii.  538-40. 

Simson,  R.,  edition  of  Euclid's 
Elements  365,  369,  and  of  Euclid's 
Data  421 :  on  Euclid's  Porisms 
435-6:  restoration  of  Plane  Loci 
of  Apollonjus  ii.  185,  ii.  360. 

Simus  of  Posidonia  86. 

Sines,  Tables  of,  ii.  253,  ii.  259-60. 
Sinus  rectus,  sinus  versus  367. 
Sluse,  R.  F.  de,  96. 
Smith,  D.  E.  49,  133w. 

'Solid'  loci  and  problems  218,  ii. 
117-18:  Solid  Loci  of  Aristaeus 

438,  ii.  118-19. 
1  Solid '  numbers,  classified  106-8. 
Solids,  Five  regular :  discovery  at- 

tributed to  Pythagoras  or  Pytha- 
goreans 84,  141,  158-60,  168, 

alternatively  (as  regards  octahe- 
dron and  icosahedron)  to  Theae- 

tetus  162:  all  five  investigated 
by  Theaetetus  159, 162,  212,  217: 

Plato  on,  158-60:  Euclid's  con- 
structions for,  415-19 :  Pappus's 

constructions  ii.  368-9  :  content 
of,  ii.  335,  ii.  395-6. Solon  4,  48. 

Sophists :  taught  mathematics  23. 
Sosigenes  316,  329. 
Soss  =  sussu  =  60  (Babylonian)  28, 

ii.  215. 

Speusippus  72,  73,  75,  ii.  515:  on 
Pythagorean  numbers  76,  318 : 
^on  the  five  regular  solids  318  :  on 
theorems  ib. 

Sphaerlc  11-12:  treatises  on,  by  Au- 
tolycus  and  Euclid  348-52,  440- 
1 :  earlier  text-book  presupposed 
in  Autolycus  349-50 :  Sphaerica 
of  Theodosius  ii.  245,  246-52,  of 
Menelaus  ii.  252-3,  260,  261-73. 

Sphere-making  18:  Archimedes  on, 
ii.  17-18. 

Spiric  sections  ii.  203-6. 
Sporus  226 :  criticisms  on  quadrn- 
Mx  229-30  :  Krjpin  234 :  duplica- 

tion of  cube  266-8. 
Square  root,  extraction  of,  60-3: 

ex.  in  sexagesimal  fractions 

(Theon)  61-2,  (scholiast  to  ̂   Eu- 
clid) 63 :  method  of  approxima- 
ting to  surds  ii.  51-2,  ii.  323-6, 

ii.  547-9,  ii.  553-4. 
Square  numbers  69  :  formation  by 

adding  successive  gnomons  (odd 
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numbers)  77  :  any  square  is  sum 
of  two  triangular  numbers  83-4  : 
8  times  a  triangular  number 

-f  1  «  square,  84,  ji.  516. 
Ssade,  Phoenician  sibilant  (signs 

T  A  m  T)  became  "^  (900)  32. 
'  Stadium/  l/60th  of  30°,  ii.  215. 
Stadium  of  Zeno  276-7,  281-3. 
Star-pentagon,  or  pentagram,  of 

Pythagoreans  161-2. 
Stereographic  projection  (Ptolemy) 

ii.  292. 

Steyin,  S.  ii.  455. 

*  Stigma,'  name  for  numeral  5", 
oiiginally  C  (digamma)  32. 

Strabo  121,  ii.  107,  ii.  220. 
Strato  ii.  1. 

Subcontrary  (=  harmonic)  mean, 
defined  85. 

Subtraction  in  Greek  notation  52. 

Surds:  Theodorus  on,  22-3,  155-6, 

203-9,  304:  Theaetetus's  general- 
ization 203-4,  205,  209,  304 :  see 

also  *  Approximations '. 
Surface-Loci  219,  ii.  380-5 :  Euclid's 

439-40,  ii.  119,  ii.  425-6. 
Silrya-Siddhanta  ii.  253. 
tiit88u  —  soss  (Babylonian  for  60)  28, 

ii.  215. 
Synesius  of  Cyrene  ii.  293. 
Synthesis  37 1-2:  defined  by  Pappus 

ii.  400. 

Syracuse  8. 

Table  of  Chords  45,  ii.  259-60,  ii. 
283. 

Taittiriya  Samhitd  146. 
Tannery,  P.  15,  44,  87,  89, 119, 132, 

180,  182,  184,  188,  196  w.,  232, 
279,  326,  440,  ii.  51,  ii.  105,  ii. 
204-5,  ii.  215,  ii.  218,  ii.  253, 
ii.  317,  ii.  453,  ii.  483,  ii.  519, 
ii.  538,  ii.  545,  546,  ii.  550,  ii.  556, 
ii.  561. 

Teles  on  secondary  education  21. 
Teos  inscription  32,  34. 
Tetrads  of  Apollonius  40. 
Tetrahedron  :  construction  416,  ii. 

368  :  volume  of,  ii.  335. 
Thabit  b.  Qurra :  translator  of  Eu- 

clid 362,  363:  of  Archimedes's 
Liber  assumptorum  ii.  22 :  of 

Apollonius's  Conies  V-VII  ii,  127: 
of  Menelaus's  Elements  of  Geo- metry ii.  260 :  of  Ptolemy  ii. 
274-5. 

Thales  2,  4,  67 :  one  of  Seven  Wise 
Men  128,  142:  introduced  geo- 

metry into  Greece  128:  geometri- 
cal theorems  attributed  to,  130- 

7 :  measurement  of  height  of 

pyramid  129-30,  and  of  distance 
of  ship  from  shore  131-3 :  defini- 

tion of  number  69 :  astronomy 
137-9,  ii.  244:  predicted  solar 

eclipse  137-8. Theaetetus  2,  119,  170:  on  surds 
22-3,155,  203-4,  205,  209,  304: 
investigated  regular  solids  159, 
162,  212, 217 :  on  irrationals  209- 

12,  216-17. Themistius  221,  223,  224. 
Theodorus  of  Cyrene :  taught  mathe- 

matics 22-3 :  on  surds  22-3, 155- 
6,  203-9,  304. 

Theodosius  ii.  245-6:  SphaericaSW- 
50,  ii.  246-52:  other  works  ii. 
246 :  no  trigonometry  in,  ii.  250. 

Theologumena  arithmetices  96,  97, 
318. 

Theon  of  Alexandria :  examples  of 
multiplication  and  division  58, 
59-60 :  extraction  of  square  root 
61-3:  edition  of  Euclid's  Elements 
360-1,  ii.  527-8 :  of  Optics  441, 
ii.  528  :  Catoptrica  ib. :  commen- 

tary on  Syntaxis  58,  60,  ii.  274, 
ii.  526-7. 

Theon  of  Smyrna  12,  72,  73,  74,  75, 
76,  79,  83,  87,  ii.  515 :  treatise 

of,  ii.  238-44  :  on  '  side- '  and 
4  diameter-numbers1  91-3,  112: forms  of  numbers  which  cannot 

be  squares  112-13. 
Theophrastus  158,  163:  on  Plato's view  of  the  earth  315. 
Theudius  320-1. 
Theuth,  Egyptian  god,  reputed  in* ventor  of  mathematics  121. 
Thevenot,  M.  ii.  308. 
Thrasyllus  97,  176,  177,  ii.  241,  ii. 243. 

Thucydides  ii.  207. 
Thymaridas  :  definition  of  unit  69: 

1  rectilinear '  =  prime  numbers 
72  :  cTrdvQrujLn,  a  system  of  simple 
equations  solved  94. 

Tiinaeus  of  Locri  86, 
Tittel  ii.  300,  301,  304. 

Tore  (or  anchor-ring) :  use  by  Ar- 
chytas  219,  247-9:  sections  of 
(Perseus),  ii.  203-6:  volume  of 
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(Dionysodorus  and  Heron),  ii. 
218-19,  ii.  334-5. 

Torelli,  J.  ii.  27. 
Transversal:  Menelaus's  theorem 

for  spherical  and  plane  triangles 
ii.  266-70:  lemmas  relating  to 
quadrilateral  and  transversal 
(Pappus)  ii.  419-20. 

' Treasury  of  Analysis'  421,  422, 
439,  ii.  399-427. 

Triangle:  theorem  about  sum  of 
angles  Pythagorean  135,  143, 
Geminus  and  Aristotle  on,  135-6. 

Triangle,  spherical :  called  rptTrXet- 
pov  (Menelaus)  ii.  262 :  proposi- 

tions analogous  to  Euclid's  on 
plane  triangles  ii.  262-5 :  sum  of 
angles  greater  than  two  right 
angles  ii.  264. 

Triangular  numbers  15,  69 :  forma- 
tion 76-7 :  8  times  triangular 

number  -f  1  =  a  square  84,  ii. 
516. 

Trigonometry  ii.  5,  ii.  198,  ii.  257-9, 
ii.  265-73,  ii.  276-86,  ii.  290-1. 

Trisection  of  any  angle  :  solutions 
235-44 :  Pappus  on,  ii.  385-6. 

Tschirnhausen,  E.  W.  v.,  200. 
Tycho  Brahe  317,  ii.  2,  ii.  196. 
Tzifra  (=  0)  ii.  547. 

Ukha-fhebt  (side  of  base  in  pyramid) 
126,127. 

Unit :    definitions   (Pythagoreans, 
Euclid,  Thymaridas,  Chrysippus) 
69. 

Usener,  H.  184,  188. 

Valla,  G. :  translator  of  extracts 
from  Euclid  365,  and  from  Archi- 

medes ii.  26. 

Venatorius,  Thomas  Gechauff:  ed. 
princeps  of  Archimedes  ii.  27. 

Venturi,  G.  ii.  308. 
Vieta  200, 223,  ii.  182,  ii.456,  ii.480, 

ii.  557. 

Vigesimal  system  (of  numerals)  26. 
Vincent,  A.  J.  H.  50,  436,  ii.  308, 

ii.  545,  ii.  546. 
Vitruvius  18,  147,  174,  213,  ii.  1, 

ii,   245:    Vitruvius  and  Heron, 
ii.  302-3. 

Viviani,  V.  ii.  261. 
Vogt,  H.,  156  M.,  203  n. 

Wescher,  C.  ii.  309. 
Wilamowitz  -  Moellendorff,    U.   v., 

158  w.,  245,  ii.  128, 

Xenocrates  24,  319 :  works  on 

Numbers 319 :  upheld  'indivisible 
lines '181. 

Xenophon,  on  arithmetic  in  educa- 
tion 19. 

Xy  lander  (W.  Holzmann)  ii.  454-5, ii.  545. 

Yahya  b.  Khalid  b.  Barmak  ii.  274. 

Zamberti,  B.,  translator  of  Euclid 
365,  441. 

ZenoofElea  271-3:  arguments  on 
motion  273-83. 

Zeno  of  Sidon  on  Eucl.  I.  1.  859,  ii. 
221-2. 

Zenodorus  ii.  207-13. 
Zero   in  Babylonian  notation  29 : 

0  in  Ptolemy  39,  45. 
Zeuthen,  H.  G.  190,  206-9,  210-11, 

398,  437,  ii.  52,  ii.  105,  ii.  203, 
ii.  290-1,  ii.  405,  ii.  444. 

Zodiac  circle :  obliquity  discovered 
by  Oenopidcs  138,  174,  ii.  244. 
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