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TensoRF: Tensorial Radiance Fields

We thank the reviewers for their encouraging comments.
We are glad to see that the reviewers generally appreciate
our good result quality and high (memory and time) effi-
ciency, and think the paper is “inspiring to the researchers
in this field and can potentially make a big impact” (R1) and
the idea “seems general and can be extended to the related
tasks” (R2). We now respond to reviewers’ comments.
Good rendering quality. (R1, R2, R3) We utilize a multi-
channel feature grid to represent a radiance field; other con-
current works (like DVGO, Plenoxels) also found similar
grids can lead to fast reconstruction. Our central idea is to
consider the grid as a 4D tensor and adopt low-rank tensor
factorization for efficient modeling. This naturally leads to
high compactness in addition to fast reconstruction, and we
believe this also benefits the reconstruction quality.

Note that, although we leverage tensor decomposition,
we are not addressing a decomposition/compression prob-
lem, but a reconstruction problem based on gradient de-
cent, since the feature grid / tensor is unknown. In essence,
our CP/VM decomposition offers low-rank regularization
in the optimization, leading to better quality. In fact, with
a dense feature grid, this reconstruction problem is rel-
atively over-parameterized/under-determined; e.g., a 3003

grid with 27 channels has >700M parameters, while one
hundred 800 × 800 images provide only 64M pixels for
supervision. Therefore, many design choices – including
pruning empty voxels, coarse-to-fine reconstruction, and
adding additional losses, which have been similarly used in
TensoRF and concurrent works (DVGO, Plenoxels) – are all
essentially trying to reduce/constrain the parameter space
and avoid over-fitting. In general, low-rank regularization
is crucial in addressing many reconstruction problems, like
matrix completion [1], compressive sensing [2], denoising
[4]; tensor decomposition has also been widely used in ten-
sor completion [5, 3], which is similar to our task. Tensor
decomposition naturally provides low-rank constraints and
reduces parameters; this similarly benefits the radiance field
reconstruction as demonstrated by our work.

Moreover, TensoRF represents a 5D radiance field func-
tion that expresses both scene geometry and appearance;
hence, we believe our 4D tensor is generally low-rank, be-
cause a 3D scene typically contains a lot of similar geom-
etry structures and material properties across different lo-
cations. Note that, in various appearance acquisition tasks,
similar low-rank constraints have been successfully applied
for reconstructing other functions, including the 4D light
transport function in relighting [7] and the 6D SVBRDF
function in material reconstruction [8, 6] (where a common
idea is to model a sparse set of basis BRDFs; this is similar
to our modeling of vector components in the feature dimen-
sion in the matrix B). We combine low-rank constraints and
neural networks from a novel perspective, in tensor-based
radiance field reconstruction. TensoRF essentially models

the scene with global basis components, discovering the
scene geometry and appearance commonalities across the
spatial and feature dimensions. As pointed by R1 and R2,
we hope our findings in tensorized low-rank feature model-
ing can inspire other modeling and reconstruction tasks.

R2. Theoretical analysis on gradient-decent-based nonlin-
ear optimization with neural modules is always a challenge.
We hope the discussion about our work and other low-rank
optimization tasks is able to address your concern. We will
also address the writing and formatting issues as suggested.

R3. We thank the reviewer for pointing out those valuable
references; we will add and discuss all of them in the paper.
Besides, our model is not very sensitive to different num-
bers of feature channels and we thus chose 27 to be consis-
tent with the SH coefficients. Specifically, TensoRF-VM-
192 achieves PSNRs of 33.07/33.14/33.27 with 13/27/54
channels respectively on the NeRF Synthetic dataset.

One current limitation is that we do not handle un-
bounded scenes, since we consider a regular bounding box.
We believe this can be addressed by applying spherical co-
ordinates (like NeRF++) and leave such applications in fu-
ture work. This has been discussed in the supplementary
material. Besides, we didn’t find any clear failure cases in
the four common datasets we evaluate, but similar to NeRF,
our quality can be relatively lower with blurriness/noises,
if a scene contains highly specular materials or very de-
tailed structures; we can add this discussion. Nonetheless,
as shown by the per-scene results in the supplementary ma-
terial, TensoRF achieves reasonable reconstruction on every
scene and leads to the best quality on most scenes.

References
[1] E. J. Candes and Y. Plan. Matrix completion with noise. Proceedings

of the IEEE, 98(6):925–936, 2010. 1
[2] W. Dong, G. Shi, X. Li, Y. Ma, and F. Huang. Compressive sens-

ing via nonlocal low-rank regularization. IEEE transactions on image
processing, 23(8):3618–3632, 2014. 1

[3] S. Gandy, B. Recht, and I. Yamada. Tensor completion and low-
n-rank tensor recovery via convex optimization. Inverse problems,
27(2):025010, 2011. 1

[4] H. Ji, C. Liu, Z. Shen, and Y. Xu. Robust video denoising using
low rank matrix completion. In 2010 IEEE Computer Society Confer-
ence on Computer Vision and Pattern Recognition, pages 1791–1798.
IEEE, 2010. 1

[5] J. Liu, P. Musialski, P. Wonka, and J. Ye. Tensor completion for es-
timating missing values in visual data. IEEE transactions on pattern
analysis and machine intelligence, 35(1):208–220, 2012. 1

[6] G. Nam, J. H. Lee, D. Gutierrez, and M. H. Kim. Practical svbrdf
acquisition of 3d objects with unstructured flash photography. ACM
Transactions on Graphics (TOG), 37(6):1–12, 2018. 1

[7] J. Wang, Y. Dong, X. Tong, Z. Lin, and B. Guo. Kernel nyström
method for light transport. In ACM SIGGRAPH 2009 papers, pages
1–10. 2009. 1

[8] Z. Zhou, G. Chen, Y. Dong, D. Wipf, Y. Yu, J. Snyder, and X. Tong.
Sparse-as-possible svbrdf acquisition. ACM Transactions on Graphics
(TOG), 35(6):1–12, 2016. 1


