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Abstract—This article presents an application of an XGBoost
and deep neural network ensemble as a solution for a task
assigned at the FedCSIS 2022 Challenge: Predicting the Costs of
Forwarding Contracts. We demonstrate that prediction quality
can be improved by combining the two approaches. We present
a neural network architecture based on three independent flows.
We then discuss the influence of long short-term memory units on
the risk of overfitting. Finally, we show that the static XGBoost
model can complement a neural network that processes dynamic
data.
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I. INTRODUCTION

C
OST estimations are an imperative factor in business de-

cisions in the transport sector. Researchers have demon-

strated that due to a variety of dependencies, the price es-

timation of shipments in the shipping industry is frequently

complex. Based on these studies, shipment pricing methods

can be classified into two major classes: scenario-based pricing

methods and algorithmic pricing. This article focuses on the

former.

We concentrate on the logistical problem of predicting the

costs of executing forwarding contracts. Our work relates

closely to the FedCSIS 2022 Challenge: Predicting the Costs

of Forwarding Contracts1, which was organised in association

with the Conference on Computer Science and Information

Systems (https://fedcsis.org/). The competitors were tasked

with designing high-quality methods for predicting the costs

associated with forwarding contracts based on many features

that describe key contract data and planned routes.

The competitors’ task involved developing a predictive

model that assessed the actual costs of individual orders as

accurately as possible. Such models will be used in the future

to support freight forwarders in the selection of profitable

contracts.

II. RELATED WORK

The need for transportation arises from the need to move

goods from one place to another in line with consumer

demand. Sea transportation is one of the cheapest and oldest

modes of transportation of goods. During the last twenty years,

seabourne trade has accounted for approximately 80% of the

1https://knowledgepit.ml/fedcsis-2022-challenge/

world’s and 90% of developing countries’ total trade volume.

According to recent statistics, since the 1980s, global seaborne

trade has increased in size almost threefold, and containerised

trade has increased also [1]. The goods delivered to major sea

ports are next distributed by road or by rail. The global weight

of loads in ports and the density of road/railway link networks

continues to increase steadily. This means that the problem of

optimal planned deliveries has become a significant challenge.

The article of Joo, Min, and Smith [2] presents an entire

framework for benchmarking freight rates based on current

and historical data. This is one of the first articles to examine

shipping cost differentials between different shippers and to

determine their causes.

The authors of [3] address the research gap of optimal spot

shipment price calculation based on current shipment demand

and available shipping capacity. The authors gathered data

from various sources to generate a shipping dataset for 2016–

2018. They use regression and correlation analysis to quantify

their research outcomes.

A fuzzy regression forecasting model was introduced in

[4] to forecast demand by examining the current international

air cargo market. The difficulty of such forecasting derives

primarily from individuals’ differing perceptions of their so-

cioeconomic environments and their competitiveness when

evaluating risk. The main purpose of using fuzzy regression

is to resolve these uncertainties and specificities while accom-

modating individuality.

Many long-term and long-distance transportation services

are offered now via various types of auction; firms in the

sector must deliver competitive prices if they want to win

the competitions. The article of Nataraj et al [5] explores

the application of forecasting and statistical learning methods

to enhance the competitiveness of firms when applying for

tenders. The authors use time series analysis to: (i) forecast

the long-term cost of logistics services; and (ii) construct ‘risk-

aware’ intervals for the prices to be offered in bids.

Yang and Mehmed [6] adopt an artificial neural network

to forecast shipping freight rates. The key objective of their

work is to improve the forecasting accuracy of traditional time

series analysis. They evaluate the accuracy of their forecasting

models using the mean square error with historical data. The

authors used two different dynamic artificial neural network

models, NARNET and NARXNET, and compared their per-
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formance. The experimental results suggest that, in general,

NARXNET outperforms NARNET in all forecast horizons.

This reveals the importance of the information contained in

forward freight agreements in improving forecasting accuracy.

In 2022, Adrian Viellechner defended his PhD disser-

tation [7] on the application of machine learning models

to transportation forecasting. First, Viellechner analyses the

container shipping industry to predict delays of vessels. In

his second study, he presents how machine learning methods

can be applied to predict spot rates in container shipping.

With accuracy of 89%, his forecasts support the decision-

making of various shipping players in the negotiation of

transportation contracts. By proposing prediction solutions that

feature high accuracy, robustness, and applicability in practice,

Viellechner’s dissertation demonstrates that machine-learning-

based solutions enhance effectiveness in transportation.

III. PROBLEM DESCRIPTION

The problem involves predicting the current costs of individ-

ual orders using detailed information, such as the type of order,

the basic characteristics of the shipped goods (e.g. dimensions,

special requirements), and the expected route that a driver

would traverse. Using machine learning approaches, our goal

is to create an accurate regressive method for predicting the

costs associated with forwarding contracts; one that is based on

contract data and planned routes. We evaluate the regression

models using the root mean square error measure.

IV. DATA

The accuracy of the forwarding contract cost prediction

method depends heavily on the quality and quantity of the

training data.

The datasets made available to the competitors contained

six years of order history that appeared on the transport

exchange, along with details such as the type of order, the

basic characteristics of the shipped goods (e.g. dimensions,

special requirements), and the expected route that a driver

would traverse. More details about competition and data are

presented in [8].

V. DATA PROCESSING

A. Data preprocessing

The initial step of the data’s preprocessing involved trans-

lating categorical features into one-hot encoding. We set the

minimum threshold for any categorical value at 2,500; if the

value occurred fewer times than this threshold, we translated

it as ’unknown’. We used a regex-based method to extract

minimal and maximal temperatures. When information about

temperature was unavailable, we filled it in with a constant

value of 35. We assumed that high temperatures did not in-

crease contract costs, and that 35 was a neutral value. Since the

dataset does not contain this value in the temperature column,

it allows the model to handle situations when the absence

of temperature data is relevant for undisclosed reasons. Our

future experiments showed temperature information increased

prediction quality. Based on date information associated with

journey start dates, we matched fuel prices and added them as

an additional column to each row.

We will refer to the dataset outlined above as our base

set. We adopted a different approach for the neural network

and XGBoost models to use the additional data included in

the sequences of steps corresponding to each row from the

base set. For XGBoost, we aggregated additional information,

such as how many times an external fleet was used in the

transport process, or how many times a specific country was

visited. For the neural network, we removed some columns

from the sequence data, such as cargo hold height and width,

and treated this data as a fixed-size window of twelve steps.

Approximately 0.4% of the sequences included in training set

were longer, which forced us to cut off the sequences’ tails to

a fixed twelve-length size. Approximately 99.6% of sequences

were shorter; to solve this difficulty, we padded the sequences

with zero vectors. We choose sequences size respect to balance

between computation complexity and prediction quality. We

found out based on the cross-validation that lower sequence

size increased prediction error.

Our first experiments revealed large differences between

the cross-validation results and the preliminary scores. This

led us to the conclusion that our models were overfitted.

These differences disappeared, however, after we disabled the

shuffling of the data during the cross-validation procedure. We

supposed that the dates included in the training set could lead

to the model becoming overfitted.

We assumed that date relations with target values would

suppress the recognition of other patterns. To avoid this situa-

tion in our subsequent experiments, we prepared an additional

set with the date information removed to make it more difficult

for the model to build a relation between start times and

predicted expenses.

VI. PREDICTION MODELS

We used two different models: XGBoost and a deep neural

network(DNN). We intended to compare the approaches and

to verify whether the two models could be complementary in

the regression problem embedded in sparse space. Significant

differences exist in the training data prepared for each model.

XGBoost naturally models static data and cannot handle

dynamic data directly. For this reason, all information from

the sequences is aggregated then presented as scalar values for

each row from the base set. This method introduces the risk

of eliminating important information from the data included

in the order of steps in a sequence.

The deep neural network can handle dynamic data using a

recurrent approach. We used popular long short-term memory

units, which are known for their high efficiency and have

proved their worth in a wide range of fields, including machine

translation [9], financial market forecasting [10] and air quality

prediction [11].

Long short-term memory is commonly used with one-hot

encoding in various problems, such as electric load forecasting

[12] and the construction of intelligent agents that play video

games [13]. We used long short-term memory to enable the
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models to extract important information from the order of

sequences, encode it in a static space, and use it with the

static data included in the base set.

We encoded the date as a number of minutes starting from

1st January 2016. We allowed XGBoost to operate on date

information; we removed this information from the dataset of

the deep neural network, however. For the final prediction, we

used the strategy of split data set into 75% train and 25% test.

For XGBoost this split was done randomly but for a DNN we

used the oldest 25% of data as a validation set.

A. XGBoost

From a theoretical perspective, tree-based methods should

naturally fit to data with mixed domain values. This sug-

gests that any ensemble of trees is an effective choice for

concatenate categorical features with other domains, such as

the distance between two cities or temperature. Tree-based

methods are limited to static data, which could lead to the loss

of important information from the sequences. We accepted that

risk and selected XGBoost as our base model.

Our first experiments were based on a fourfold cross-

validation method. We achieved an impressive root mean

square deviation of 0.1324. However, our preliminary result,

evaluated on a small part of the test set, was 0.4047, which

was significantly worse. In this paper we call this model

XGBoost CV-optimized. We observed that the root mean

square deviation based on cross-validation increased to 0.158

when we disabled data shuffling. This suggests that the data

contained some undisclosed information associated with time,

which led to overfitting. From this point, we based each step

only on 75% of the data; we used the remainder as a validation

set for the training procedure. The experimental values are

presented in Table I.

To prevent overfitting, we explored the possibility of in-

creasing the model’s regularisation parameters. We decreased

subsampling to 0.8, which forced the model to randomly

skip some rows in training iterations. We also increased

the regularisation λ parameter, which corresponds to L2

regularisation. This approach forced our model to become

more conservative and less likely to overfit. Adjusting both

parameters decreased the gap between the final score and the

cross-validation result. Our experiments failed to reveal any

opportunity to increase the α parameter, which corresponds to

L1 regularisation without significantly lowering the quality of

the model’s predictions.

To find a reason for the high error of XGBoost CV-

optimized predictions, we compared feature importance tables

of our models. We recognized that the CV-optimized model

increased the importance of specific categorical values. The

biggest difference was the importance of the ’unknown’ prim

ferry line value generated by the procedure described in V.

Importance for this value increased from 0.0001 to 0.08.

We also noticed that XGBoost CV-optimized tended to be

more confident on every localization feature corresponding to

country code like route start country or first unload country.

B. Deep neural network

Our second model was based on a neural network. We

decided to allow fully-connected layers to encode the inputs

before we concatenated them into fully-connected layers op-

erating on the whole data. The input was divided into three

independent flows:
1) localisation data: static data from the base set, including

all information about geolocalisation associated with route

starts and ends, as well as first loadings and last unloadings.

These vectors contained latitudes, longitudes, and country

codes.
2) general data: static data from the base set, including all

information not included in the localisation data.
3) sequence data: vectors that represent fixed-size se-

quences of route steps. Applying long short-term memory units

enabled us to handle dynamic data and to transform sequences

to static fully-connected rectifier layers.

To prevent overfitting and the local minima trap, we added

small Gaussian noise layers to the inputs. These layers guaran-

tee the training process to be out of balance, which prevents the

local minima trap.’The amount of information in a weight can

be controlled by adding Gaussian noise and the noise level can

be adapted during learning to optimise the trade-off between

the expected squared error and the information in the weights’

[14]. Adding noise to the input also enabled us to control the

degree of fitting to the data. Additionally, we used dropout

with p = 0.4 to each layer, which decreased the probability

of the model’s overfitting [15]. The network architecture is

presented in Figure 1.

For the training network, we used the Adam optimiser

[16]. Adam automatically adapts parameters to training, which

enabled us to avoid the arduous process of training tuning on

the mixed domains. We repeated the training process after

the competition ended to gain greater insight into the deep

neural network’s results. For this training, we used all of the

testing data as a validation set. We present a chart of root mean

square errors during the training process in Figure 2. We can

observe that the training process is highly chaotic initially, and

that the validation root mean square errors rapidly reduce to

0.158− 0.16 before stabilising. It is noteworthy that the chart

begins from the twentieth epoch. The best result achieved in

this experiment was 0.1564.

To analyse the influence of the sequential data flow pro-

cessed using long short-term memory units, we prepared an

additional deep neural network with similar architecture, but

without the sequential data flow. The error observed in the

training process is presented in Figure 3. We made two key

observations associated with the overfitting risk:

• The deep neural network with long short-term memory

tends, as it continues to train, to enlarge the gap between

training and the validation data much faster than the

network without sequential data flow. This could be

the result of the network’s increased capacity, or could

suggest that information about the order of the sequences

misdirects the training process. Both reasons lead easily

to overfitting.
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Input size: 48 Input size: 42 Input size: 12x118

ReLU x1024

ReLU x256

ReLU x1024

ReLU x256

x256

ReLU x512

ReLU x256

ReLU x1024

ReLU x512

ReLU x256

Output: Sigmoid x1

Fully connected layer

LSTM layer

Gaussian noise layer

Fig. 1. The architecture of the deep neural network used as one of the
solutions to a defined problem.

• The deep neural network without long short-term mem-

ory tends to gain and lose the optimisation target in

each epoch in an increasingly synchronised manner. The

shapes of the training and validation error curves correlate

more closely on this network.

We conclude that long short-term memory would extract

important information from the dataset and increase prediction

quality but should be used carefully because of the overfitting

problem.

VII. RESULTS

To generate the final prediction, we used an ensemble of the

XGBoost and deep neural network models as the arithmetic

mean of both predictions. As illustrated in Table I and Figure

4, this ensemble reaches the best result of 0.1498. This root

mean square error value is significantly better than the results

of the individual models, demonstrating clearly that the deep

neural network and XGBoost extracted different information

from the complementary data. In the training process, we used

the splitting data strategy described in VI. This strategy lets

us have better control over the overfitting.

Fig. 2. The root mean square errors during the deep neural network’s training
process. The blue series represents error on the training data; the orange series
represents error on the whole validation set—which corresponds directly to
the final scores of the competition.

Fig. 3. The root mean square errors during the training process of the neural
network without sequential data flow. The blue series represents error on the
training data; the orange series represents error on the whole validation set—
which corresponds directly to the final scores of the competition.

Our cross-validation-optimised XGBoost model reaches a

root mean square error of only 0.404, which is significantly

worse than the other models. We failed to identify precisely

which factor caused the overfitting. Future experiments that

focus on the analysis of smaller parts of the dataset should be

performed to gather detailed information on this problem.

VIII. CONCLUSIONS

This article presents our solution to the FedCSIS 2022 Chal-

lenge: Predicting the Costs of Forwarding Contracts. During

our experiments, we identified an overfitting problem, which

had a significant impact on subsequent steps. We prepared

two approaches: XGBoost and a deep neural network. We

demonstrated that the application of a long short-term memory
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TABLE I
EXPERIMENTAL RESULTS: PREDICTION QUALITY ROOT MEAN SQUARE

ERRORS BASED ON CROSS-VALIDATION AND PRELIMINARY SCORES

Model CV Preliminary Final score

XGBoost 0.153 0.1522 0.15252

XGBoost CV-optimized 0.1324 0.4047 0.40394

Deep Neural Network 0.1581 0.1585 0.15815

Ensemble - 0.1500 0.14978

XGBoost DNN Ensemble

0.148

0.15

0.152

0.154

0.156

0.158

0.16

R
M

S
E

CV Preliminary Final score

Fig. 4. Root mean square errors based on three experiments: fourfold cross-
validation (blue), preliminary scores, and final scores.

layer to sequential data improves the results; however, it also

increases the probability of overfitting. We demonstrated that

combination of the deep neural network and XGBoost is

potentially complementary, significantly increases prediction

quality, and serves as a possible solution for mixing dynamic

data with the static XGBoost approach.
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