
Applying SoftTriple Loss for Supervised Language

Model Fine Tuning

Witold Sosnowski

Faculty of Mathematics

and Information Science

Warsaw University of Technology

Warsaw, Poland

Email: witold.sosnowski.dokt@pw.edu.pl

ORCID: 0000-0002-2241-9588

Anna Wróblewska

Faculty of Mathematics

and Information Science

Warsaw University of Technology

Warsaw, Poland

Email: anna.wroblewska1@pw.edu.pl

ORCID: 0000-0002-3407-7570

Piotr Gawrysiak

Faculty of Electronics

and Information Technology

Warsaw University of Technology

Warsaw, Poland

Email: p.gawrysiak@ii.pw.edu.pl

ORCID: 0000-0002-9647-6761

Abstract—We introduce a new loss function based on cross
entropy and SoftTriple loss, TripleEntropy, to improve classifica-
tion performance for fine-tuning general knowledge pre-trained
language models. This loss function can improve the robust
RoBERTa baseline model fine-tuned with cross-entropy loss by
about 0.02–2.29 percentage points. Thorough tests on popular
datasets using our loss function indicate a steady gain. The fewer
samples in the training dataset, the higher gain—thus, for small-
sized dataset, it is about 0.71 percentage points, for medium-
sized—0.86 percentage points, for large—0.20 percentage points,
and for extra-large 0.04 percentage points.

I. INTRODUCTION

N
ATURAL language processing (NLP) is a rapidly grow-

ing area of machine learning with applications wherever

a computer needs to operate on a text that involves capturing

its semantics. It may include text classification, translation,

text summarization, question answering, and dialogues. All

these tasks are downstream and depend on the quality of

the text representation [1]. Many models can produce such

text representations, from Bag-of-Word (BoW) or Word2Vec

word embedding to the state-of-the-art language representation

model BERT with variations in most NLP tasks.

The best performance on text classification tasks is obtained

when the model is first trained on a general knowledge corpus

to capture semantic relationships between words and then fine-

tuned with an additional dense layer on a domain corpus with

cross-entropy loss [2].

We introduce a new loss function – TripleEntropy –

to improve classification performance for fine-tuning gen-

eral knowledge pre-trained language models based on cross-

entropy loss and SoftTriple loss [3], [4]. Triplet Loss trans-

forms the embedding space so that vector representations

from the same class can form separable subspaces, stabilizing

and generalizing the language model fine-tuning process.

TripleEntropy can improve the fine-tuning process of the

RoBERTa based models, so the performance on downstream

tasks increases by about 0.02 - 2.29 percentage points.

In the following sections, we review relevant work on state-

of-the-art in distance metric learning (Section II); describe

our approach for training and our metric SoftTriple loss and

outline the experimental setup (Section III); discuss the results

(Section IV); conclude and offer directions for further research

(Section V).

II. RELATED WORK

A. Building Sentence Embeddings

Building embeddings that represent sentences is challenging

because the natural language can be very diverse. The meaning

can change drastically depending on the context of a word. It is

also an important issue because the quality of sentence embed-

dings substantially impacts the performance of all downstream

tasks like text classification and question answering. Because

of that, so far, considerable research effort has been put into

building sentence embeddings.

One of the first vector representations (embeddings), BoW,

is an intriguing approach in which the text is represented as a

bag (multiset) of its words, with each word represented by its

occurrence in the text [5]. The disadvantage of this strategy

was that the BoW embeddings fail to capture hidden meaning

of words and sentences, unlike the Word2Vec approach, which

used a machine learning process to predict word embed-

dings [6] and is able to represent the latent meaning of the

word. In Word2Vec, each word embedding is selected based

on its overall context in the training corpus and can express

the latent semantics of words. Unfortunately, this method does

not express the semantics of the whole sentence, so several

approaches have been proposed to solve this problem. The

most popular approaches build the sentence embedding as a

weighted average of the sentence’s word vectors. Since in

Word2Vec every word embedding is static, regardless of its

meaning in the whole sentence, this approach is not adapted

to changes in sentence and context semantics.

Bidirectional Encoder Representations from Transformers

(BERT) is a well-known technique for constructing high-

quality sentence embeddings that can express the dynamic and

latent meaning of the whole sentences better than any previous

approach. Its sentence embeddings can accurately reflect the

meaning of the input text, making a significant difference

in the quality of the downstream tasks performed. An even

better variant of the BERT-based architecture, RoBERTa, has
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emerged and has lately become unquestionably state-of-the-art

in terms of sentence embedding construction [7], [8].

B. Distance Metric Learning

Embedding learning that exploits the fact that instances

from the same class are closer than instances from other

classes is known as Distance Metric Learning (DML) [4].

DML recently has drawn much attention due to its wide

applications, especially in image processing. It can be used in

the classification tasks together with the k-nearest neighbour

algorithm [9], clustering along with K-means algorithm [10]

and semi-supervised learning [11]. DML’s objective is to

create embeddings similar to examples from the same class

but different from observations from other classes. [12]. In

contrast to the cross-entropy loss, which only takes care of

intra-class distances to make them linearly separable, the DML

approach maximizes inter-class and minimizes the intra-class

distances [13]. Aside from that, a typical classifier based

solely on cross-entropy loss concentrates on class-specific

characteristics rather than generic features of the dataset, as it

is only concerned with distinguishing between classes rather

than learning their representations. DML focuses on learning

class representations, making the model more generalizable

to new observations and more robust to outliers. There are

various DML methods in use today, of which the following

are the most important.

1) Contrastive Loss: Contrastive Loss (CL) is one of the

earliest methods in DML [14]. It concentrates on pairs of

similar and dissimilar observations1, whose distances are at-

tempted to be minimized if they belong to the same class and

maximized if they belong to different classes. The CL method

is given in Equation 1.
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where i denotes the index of a pair of representations z1i , z
2
i

of the sample pair x1
i , x

2
i from the set of all pairs P in the

training set with the cardinality N . yi denotes label assigned

to the ith pair. It has a value of 0 if the associated samples

x1
i and x2

i belong to the same class, otherwise it has a value

of 1. d() is the Euclidean distance functions between a pair

of representations z1i , z
2
i . m > 0 is the margin beyond which

dissimilar points have no effect on the loss.

2) Triplet Loss: Triplet Loss, as another solution to the

DML problem, is similar to Contrastive Loss but works with

triplets instead of pairs [15]. Each triplet comprises an anchor,

a positive, and a negative observation. Positive examples

are members of the same class as an anchor, but negative

instances belong to a separate class. Because it considers more

observations simultaneously, it optimizes the embedding space

1In this paper we use: observations, samples, examples as synonyms. We
even refer to sentences as observations because most datasets contain one
sentence as an observation, i.e., the input to the ML model

better than Contrastive Loss. The actual formula for Triplet

Loss is in Equation 2.
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where i is the index of a triplet of representations zai , z
p
i , z

n
i

of the samples xa
i , x

p
i , x

n
i from the set of all triplets T in the

training set with the cardinality N . xa
i denotes an anchor,

x
p
i (positive) is the observation from the same class as the

anchor, xn
i (negative) denotes an observation belonging to a

different than the anchor class, m is a margin imposed between

positive and negative pairs margin.

The most typical issue with triplets and contrastive learning

is that as the number of observations in a batch grows, the

number of pairs and triplets grows squarely or cubically.

Another point is that using training pairs and triples, which

are relatively easy to distinguish, leads to poor generalization

of the model. Semi-solutions of the above problems are

as introducing Ä a temperature parameter that controls the

separation of classes [16], or hard triples, which samples such

triplets that the anchor and the positive are not close together,

and the anchor and the negative are close together [17].

Triplet Loss has previously been used with the BERT

language model to detect whether new claims are similar to

a set of claims that were previously fast-checked online [18].

Another interesting work uses self-supervised triplet training

to learn similarities for recommendations [19]. The triplet

network was also used with the BERT encoder in the domain

of protein modelling to solve several regression tasks with

limited data such as peak absorption wavelength or enantios-

electivity [20].

3) ProxyNCA Loss: It is a more general approach to solving

a problem with high resource consumption [12]. It employs

proxies – artificial data points in the representation space that

represent the entire dataset. One proxy approximates one class;

therefore, there are as many proxies as classes. This technique

drastically reduces the number of triplets while simultaneously

raising the convergence rate since each proxy makes the triplet

more resistant to outliers. The proxies are integrated into

the model as trainable parameters since the synthetic data

points are represented as embeddings. Equation 3 depicts a

ProxyNCA loss formula.
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where i denotes the index of the representation zi of the

observation xi, N indicates the number of observations in the

training set, p(yi) denotes the anchor’s proxy, p(Nei) denotes

proxies representing the different classes that xi belongs, d

is the Euclidean distance between the anchor and the given

proxy.

4) SoftTriple Loss: A single proxy per class may not be

enough to represent the class’s inherent structure in real-

world data. Another DML loss function introduces multiple
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proxies per class - SoftTriple Loss [4]. It can produce better

embeddings while maintaining a smaller number of triplets

than Triplet Loss or Contrastive Loss. The SoftTriple Loss is

defined by the Equations 4, 5 and 6.
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where N denotes the number of observations in the training

set, c * C indicates the class index, C indicates number of

classes, k is the number of proxies per class, ¶ defines a margin

between the example and class centres from different classes,

¼ reduces the influence from outliers and makes the loss more

robust, µ is the scaling factor for the entropy regularizer, zi
defines the representation of the observation xi, w

k
c denotes

proxy embeddings of the class c (there are k of them).

III. OUR APPROACH

For fine-tuning pre-trained language models, we offer a

novel objective function TripleEntropy. It is based on the

supervised cross-entropy loss and the SoftTriple Loss [4].

The latter component is a loss from the Distance Metric

Learning (DML) family of losses, which learns an embedding

by capturing similarities between embeddings from the same

class and distinguishing them from embeddings from different

classes [4].

For the classification problem, let us denote (as in the

previous section):

" N – the number of observations,

" c * C the class index, where C indicates the number of

classes,

" yic – the objective probability of the class c for the ith

observation,

" ´ – the scaling factor that tunes influence of both parts

of the loss.

The TripleEntropy is given by the Equation 7:

L = (´)3MCE + (12 ´)3SoftTriple (7)

where

3MCE = 2
1

N

N
�

i
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It can be applied for different encoders E(·) * R
d

from natural language processing domain such as BERT [3],

RoBERTa [7] or others models that create text representations

(embedding).

A. Model

In our work, we use the objective function from Equation 7

to fine-tune the pre-trained BERT-based language models

provided by the huggingface library as RoBERTa-base and

RoBERTa-large as depicted in the figure 1. In the standard

settings, the single input text is first tokenized with Byte-

Pair Encoding (BPE) tokenizer [2], which produces a vector

of tokens xi with a maximum length of 512, with [CLS]
at the beginning of an array, [EOS] at the end and [SEP ]
between tokens representing different sentences. The output

of RoBERTa model E(xi) * R
d is an array of embeddings,

where each input token has its corresponding embedding.

1) Multinominal Cross-Entropy Loss: In our experiments,

we used the multinominal cross-entropy (MCE) loss calculated

in the same way as it was proposed by the authors of the

BERT language model [3]. The sentence representation is

obtained by pooling the output of the model E(xi) * R
d

and passing it to the C dimensional single fully connected

layer. Its output is passed to the softmax function generating

probabilities pic, which are, along with objective probabilities

yic, directly feeding the multinominal cross-entropy loss.

2) SoftTriple Loss: The second component of the TripleEn-

tropy loss Equation 7 is SoftTriple Loss Equation 4, respon-

sible for a more robust and better generalization of the model

during tuning. It is fed by the direct output of the model

E(xi) * R
d, even before pooling. It means that if the batch

size is B, then the total number of embeddings that feed

SoftTriple Loss during one training iteration is B * |xi|.
This implementation ensures that the proxies representing each

class will be well approximated so that the quality of fine-

tuning increases.

Our implementation is a development of the earlier work

[21], where Contrastive Loss was applied only to the embed-

ding corresponding to the first [CLS] token of the input vector

xi. We apply SoftTriple Loss to the embeddings corresponding

to all tokens from the input vector xi, which ensures the

better generalization of the fine-tuning process but requires

more computing power. Fortunately, the SoftTriple Loss is

significantly more efficient than the Contrastive Loss since

it generates triplets not from all observations but from its

approximated proxies.

B. Training and testing

During our experiments, each result (average accuracy)

was obtained as based on 4 seed runs (2, 16, 128, 2048),

where each run was 5-fold cross-validated. It means that each

accuracy result is an averaged of 20 different results. Apart

from that, each result was based on the best parameter com-

bination obtained by grid search which included parameters

k * {10, 100, 1000, 2000}, µ * {0.01, 0.03, 0.05, 0.07, 0.1},

¼ * {1, 3, 3.3, 4, 6, 8, 10}, ¶ * {0.01, 0.1, 0.3, 0.5, 0.7, 0.9, 1}
and ´ * {0.1, 0.3, 0.5, 0.7, 0.9}. We noticed that for most ex-

periments, the best hyperparameter set is following k = 2, 000,

µ = 0.1, ¼ = 3.3, ¶ = 0.3 and ´ = 0.9.
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Fig. 1. BERT-based model fine-tuning architecture using TripleEntropy loss
as the sum of SoftTriple Loss and Cross-Entropy Loss

C. Datasets

We conducted experiments to assess the usefulness of our

TripleEntropy loss. To do so, we employed a variety of well-

known datasets from SentEval [22] along with the IMDb

[23]. These datasets cover both text classification and textual

entailment as two important natural language tasks. Addi-

tionally, we have examined the performance of our method

when the number of training examples is limited to 1,000 and

10,000 observations on sampled datasets. Table I shows the

description of the datasets and their sampled versions.

IV. RESULTS

Our results are presented in the form of a comparison

between the performance of the RoBERTa-base (RB) and

the RoBERTa-large (RL) models as baselines, followed by

the RoBERTa-base with TripleEntropy Loss (RB TripleEn-

tropy) as well as RoBERTa-large with TripleEntropy Loss (RL

TripleEntropy). All results shown below are expressed as a

weighted F1 score. Moreover, we have created 4 experimental

groups depending on the size of the dataset. In the first group,

we present results regarding the small-sized datasets with a

number of sentences of 1,000. In the second group, we explore

results for the medium-sized datasets in which the number

of sentences is about 4,000. In the third group, we present

results belonging to the large-sized datasets with a number

of sentences of about 10,000. The extra-large-sized group

consists of elements where the number of observations is larger

than 50,000.

The RB baseline models were trained with the use of

AdamW optimizer [30], beginning learning rate 1e-5, L2

regularization, learning rate scheduler and linear warmup from

0 to 1e-5 for the first 6% of steps and batch size of 64.

The RB TripleEntropy models were trained on the same set

of hyperparameters as the baseline models they refer to and

additional parameters specific to TripleEntropy Loss, as it is

described in Section III-B.

A. RB TripleEntropy for small datasets

Table II presents the results for the datasets containing 1,000

sentences. We observe that models trained using TripleEntropy

have a higher performance than the baselines by about 0.71

percentage points. It is worth noting that the gain in perfor-

mance is observed in each dataset, especially for the TREC-1k

and MRPC-1k, where it amounts to 2.29 and 1.11 percentage

points, respectively.

B. RB TripleEntropy for medium datasets

Table III shows the results based on the datasets containing

about 4,000 sentences. Here, we can observe that models

trained using TripleEntropy have higher performance than the

baselines by about 0.86 percentage points. The highest gain

in performance is observed in the case of TREC and MRPC

datasets by 1.00 and 1.28 percentage points, respectively.

C. RB TripleEntropy for large datasets

Table IV shows the results based on the datasets containing

about 10,000 sentences. The gain in the performance amounts

to 0.20 percentage points.

D. RB TripleEntropy for extra-large datasets

Table V shows the results based on the datasets containing

more than 50,000 sentences. The gain in the performance is

not as high as in the case of the medium and small-sized

datasets, and it is 0.04 percentage points on average, which is

not significant.

E. RL TripleEntropy for small datasets

We have compared our results to the related work [21]

where the authors claim the performance gains over baseline

RoBERTa-large by applying loss function consisted of cross-

entropy loss and Supervised Contrastive Learning loss. The

work shows the improvement over baseline in the few-shot

learning, defined as fine-tuning based on the training dataset

consisting of 20, 100 and 1,000 observations. In order to

compare our new loss function with the results from the

related work, we conducted experiments where the baseline

was RoBERTa-large (RL) with cross-entropy loss and com-

pared it to the RoBERTa-large with TripleEntropy loss (RL

TripleEntropy) on the dataset consisted of 1,000 observations.

Our method yields a gain over baseline of 0.48 percentage

points, which is higher than the performance improvement
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TABLE I
SENTEVAL AND IMDB DATASETS, AND THEIR SAMPLED SUBSETS, USED IN OUR EVALUATION.

Dataset # Sentences # Classes Sampled sub-
sets

Task

SST2 67k 2 10k, 1k Sentiment (movie reviews)[24]
IMDb 50k 2 10k, 1k Sentiment (movie reviews) [23]
MR 11k 2 10k, 1k Sentiment (movie reviews) [25]
MPQA 11k 2 10k, 1k Opinion polarity [26]
SUBJ 10k 2 1k Subjectivity status [27]
TREC 5k 6 4k, 1k Question-type classification [25]
CR 4k 2 1k Sentiment (product review) [28]
MRPC 4k 2 1k Paraphrase detection [29]

TABLE II
WEIGHTED F1 SCORE OF ROBERTA-BASE (RB) VS ROBERTA-BASE WITH TRIPLEENTROPY LOSS (RB TRIPLEENTROPY) FOR SMALL DATASETS

CONTAINING 1,000 OBSERVATIONS

Model SST2-S IMDb-S SUBJ-S MPQA-S MRPC-S TREC-S CR-S MR-s avg

RB 88.63 81.00 94.61 87.75 78.01 79.80 91.57 85.89 85.91
RB TripleEntropy 89.09 81.45 94.70 87.93 79.12 82.09 92.16 86.39 86.62

TABLE III
WEIGHTED F1 SCORE OF ROBERTA-BASE (RB) VS ROBERTA-BASE WITH TRIPLEENTROPY LOSS (RB TRIPLEENTROPY) FOR MEDIUM DATASETS

CONTAINING ABOUT 4,000 OBSERVATIONS

Model MRPC-M TREC-M CR-M avg

RB 83.11 96.19 93.28 90.86
RB TripleEntropy 84.39 97.19 93.58 91.72

TABLE IV
WEIGHTED F1 SCORE OF ROBERTA-BASE (RB) VS ROBERTA-BASE WITH TRIPLEENTROPY LOSS (RB TRIPLEENTROPY) FOR LARGE DATASETS

CONTAINING ABOUT 10,000 OBSERVATIONS

Model SST2-L IMDb-L SUBJ-L MPQA-L MR-L avg

RB 92.63 85.12 96.83 91.08 89.09 90.95
RB TripleEntropy 92.79 85.23 97.15 91.30 89.29 91.15

TABLE V
WEIGHTED F1 SCORE OF ROBERTA-BASE (RB) VS ROBERTA-BASE WITH TRIPLEENTROPY LOSS (RB TRIPLEENTROPY) FOR EXTRA LARGE DATASETS

CONTAINING MORE THAN 50,000 OBSERVATIONS

Model SST2-XL IMDb-XL avg

RB 94.89 87.10 91.00
RB TripleEntropy 94.95 87.12 91.04

over baseline for a dataset of the same size from the related

work, in which improvement over baseline is 0.27 percentage

points. The results are presented in Table VI.

F. Discussion

Our method improves the performance most significantly

for the small-sized dataset by 0.87 percentage points in the

case of the RoBERTa-base baseline and 0.48 percentage points

in the case of the RoBERTa-large baseline and the medium-

sized dataset, where the increase amounts to 0.86 percentage

points. For the large-sized dataset, the rise over baseline is

0.20%, while for the extra-large-sized dataset, the gain over

baseline amounts to 0.04 percentage points. Our experiments

show consistent performance improvement over baseline when

using TripleEntropy loss, which is highest for the small and

medium-sized datasets and decreases for the large and extra-

large sized datasets. It is an improvement over previous related

work, where the performance improvement for the supervised

classification tasks was achieved only for the few-shot learning

settings [21].

We also conclude that the smaller the dataset is, the higher

our new goal function’s performance gain over baseline. This

observation is consistent with the conclusions of previous

work [21]. The increase is negligible when the dataset is

larger than about 10k observations. In addition, our work

focuses on datasets of no less than 1k observations, so we

do not know how it behaves in the case of few-shot learning,

which in contrast, has been well documented in the case of

work [21]. The performance comparison between baseline and

our method throughout dataset size is depicted in Figure 2.

V. CONCLUSIONS

We proposed a supervised Distance Learning Metric ob-

jective that increases the performance of the RoBERTa-base
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TABLE VI
WEIGHTED F1 SCORE OF ROBERTA-LARGE (RL) VS ROBERTA-LARGE WITH TRIPLEENTROPY LOSS (RL TRIPLEENTROPY) FOR SMALL DATASETS

CONTAINING 1,000 OBSERVATIONS

Model SST2-S MPQA-S MRPC-S TREC-S CR-S MR-S avg

RL 91.96 90.18 76.09 83.75 93.43 89.69 87.52
RL TripleEntropy 92.14 90.59 77.16 84.59 93.62 89.89 88.00

Fig. 2. Performance comparison between RB and RB TripleEntropy

models, which are strong baselines in the Natural Language

Processing tasks. The performance is improved over multiple

tasks from the single sentence classification and pair sentence

classification to be higher by about 0.02-2.29 percentage points

depending on the training dataset size. In addition, each result

has been confirmed through tests with 5-fold cross-validation

on 4 different seeds to increase its reliability.

In the future, we plan to investigate the effect of other

DML methods on the performance of language models in a

manner similar to the SoftTriple Loss method. We also want

to extend the applicability of TripleEntropy by comparing the

results with language models from different architectures, such

as BERT, DistilBERT, or XLNet, to investigate its overall

usefulness. Furthermore, given that our new loss function

performs better the smaller the dataset, we plan to test how

TripleEntropy behaves under few-shot learning settings.
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