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Abstract—Real-time collaboration has become a prominent
feature of nowadays’ software engineering practices. Conflict-
free replicated data types (CRDT) offer efficient mechanisms for
implementing real-time collaborative environments. However, the
lack of extensibility of CRDT limits their applicability. This is a
particularly important problem in settings relying on complex,
non-linear data types. In this paper, we report our results in
augmenting primitive CRDT with extension mechanisms. We
demonstrate our technique through an example from the realm
of model-driven engineering, where graph types are prevalent.

Index Terms—CRDT, Collaborative software engineering,
Strong eventual consistency, Concurrency control

I. INTRODUCTION

T
ODAY’S software engineering is often carried out in

distributed settings [1], necessitating advanced coordi-

nation mechanisms, such as real-time collaboration. A key

challenge in real-time collaboration is to guarantee the con-

vergence of the stakeholders’ local replicas while ensuring

timely execution and smooth user experience [2]. Traditional

mechanisms that implement locking [3] fall short of addressing

this challenge. A more appropriate consistency model for real-

time collaboration is strong eventual consistency (SEC) [4].

SEC ensures that (i) the updates will eventually be observed

by each stakeholder, and (ii) the local replicas that received

the same updates will be in the same state.

Conflict-free replicated Data Types (CRDT) [5] provide an

efficient implementation of the SEC model. While CRDT

have been successful in supporting real-time collaboration over

linear data types, such as text and source code, some appli-

cations require more complex data types. For example, graph

models are frequently employed in Model-Driven Software

Engineering (MDSE) [6]. However, the lack of appropriate

extension mechanisms in current CRDT frameworks renders

the definition of more complex data types a challenging task.

In this paper, we report on our experiments with extensible

CRDT using our prototype framework, CollabServer
1
. The

contributions include (i) a collection of CRDT primitives; (ii)

an extension mechanism for the customization of CRDT; and

(iii) performance assessment of the approach. We demonstrate

our approach on an illustrative case for Mind map editors,

which represents typical modeling environments that require

graph semantics to represent models.

C. Masson is currently with Ubisoft, Paris.
1
https://github.com/geodes-sms/collabserver-framework

II. BACKGROUND

Collaborative Model-Driven Software Engineering: The

challenges of distributed software engineering are substan-

tially exacerbated by the complexity of the engineered sys-

tem that necessitates collaboration between stakeholders of

highly diverse expertise. Model-driven software engineering

(MDSE) [6] allows stakeholders to reason at higher levels of

abstraction and by that, enables aligning the work of diverse

stakeholders. Combining the benefits of collaborative software

engineering with MDSE, collaborative MDSE [7] has become

a prominent paradigm in software engineering practice. Due

to the often disparate vocabularies of stakeholders, identifying

overlaps between the stakeholders’ concerns is not trivial [8].

This, in turn, renders the detection of conflicts a challenging

task. Recent studies [9], [10] show that only one-third of real-

time collaborative MDSE solutions provide explicit conflict

resolution mechanisms. State-of-the-art tools mostly rely on

version control systems to facilitate collaborative MDSE [11].

Other approaches define consistency in terms of bijective cor-

respondence, e.g., by linking elements through correspondence

graphs [12], processes [13], or semantic links [14]. However,

these techniques do not support real-time collaboration.

Real-time collaboration and CRDT: Sun et al. [2] define

four requirements for effective real-time collaboration: (i)

convergence of replicas; (ii) user intention preservation; (iii)

causality preservation of updates; and (iv) timely execution of

updates. CRDT support real-time collaboration by eliminat-

ing conflicts between the distributed stakeholders’ operations,

without the need for a costly consensus mechanism, while

showcasing excellent fault tolerance and reliability proper-

ties. Notable open-source CRDT frameworks include Au-

tomerge
2

and Yjs
3
. Automerge enables real-time collaboration

in JavaScript-based systems, based on the JSON format. Yjs

uses linked lists as its foundational data type, but the internal

representation can be extended to achieve collaboration over

complex data types. However, this extension is not trivial.

III. THE COLLABSERVER FRAMEWORK

A. Design principles

1) Operation-based CRDT: There are two equivalent ap-

proaches to implementing CRDT. State-based CRDT are

2
https://github.com/automerge/automerge
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https://github.com/yjs/yjs
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Fig. 1. Total order of updates in the LWW paradigm.

structured in a way that they adhere to a monotonic semi-

lattice. Operation-based CRDT require that concurrent opera-

tions commute, i.e., irrespective of the order of operations,

local replicas converge. We have opted for the operation-

based CRDT scheme. This approach, as opposed to state-

based CRDT, requires less network bandwidth, because only

operations have to be sent through the network. In addition, an

operation-based approach is more suitable for integration with

external components, such as databases and user interfaces.

2) Last-Writer-Wins (LWW): Automated reconciliation be-

tween replicas can be achieved at the application level or at

the data level [15]. The LWW paradigm [16] implements the

latter and has been widely adopted for operation-based conflict

resolution. In LWW, conflicted operations are resolved by

timestamps; the data with the more recent timestamp prevails.

Fig. 1 shows an example resolution scenario under LWW. User

A and User B initially have their local replicas in consistent

states. At t = 1, User A executes the update x = 15. The

updated value and the timestamp are propagated to User B.

However, before the message arrives, User A executes another

update: x = 20, at time t = 2. The update is propagated to

User B. Networks usually do not guarantee order preservation.

Thus, the second update may arrive at User B earlier than the

first. Upon receiving the update, User B will reconcile this new

value with his local replica. User B has x = 10 timestamped

with t = 0; and an update that says x = 20 timestamped with

t = 2. Under the LWW paradigm, the latter value is accepted.

Eventually, the first update reaches User B. User B has x = 20

timestamped with t = 2; and an update of x = 15 timestamped

with t = 1. Under the LWW paradigm, the former value is

accepted, leaving the replicas in consistent states.

3) CRDT tombstone metadata: To ensure that operations

commute, data is never deleted, only flagged as removed (i.e.,

soft delete). This information is captured in the tombstone

metadata with boolean semantics. In an alternative approach

by Shapiro et al. [5], dedicated partitions of the specific

datatypes are reserved for storing deleted elements (LWW-

element-Set). The benefit of our approach is that it reduces

the number of elementary data operations upon changes.

4) Commutativity and idempotence: Operation-based

CRDT assume that operations commute (i.e., x ç y = y ç x)

and are idempotent (i.e., x ç x = x). Traditionally, these

properties are ensured by the communication protocol [5].

We have implemented the base type system of CollabServer

in a way that commutativity and idempotence are guaranteed

by design. As a consequence, CRDT that extend base

TABLE I
COLLABSERVER BASIC TYPES AND THEIR METHODS

Data type Methods

LWWRegister
query()
update(value, timestamp)

LWWSet

query(key)
add(key, timestamp)
clear(timestamp)
remove(key, timestamp)

LWWMap

query(key)
add(key, value, timestamp)
clear(timestamp)
remove(key, timestamp)

LWWGraph

queryVertex(vertexID)
addVertex(vertexID, timestamp)
removeVertex(vertexID, timestamp)
addEdge(source, target, timestamp)
removeEdge(source, target, timestamp)
clearVertices(timestamp)

CollabServer types are expected to satisfy these properties

without further development effort. Commutativity and

idempotence are achieved by the combination of timestamps

and tombstones. Timestamps ensure that each replica will

order the update operations in the same way. Tombstone

metadata ensures that no information is lost.

B. CollabServer CRDT primitives

Table I summarizes the CRDT provided by CollabServer.

Every CRDT is equipped with atomic create, read, update,

and delete (CRUD) operations. More complex operations

can be implemented in specific applications. CollabServer is

implemented in C++, using the Standard Template Library

(STL) [17]. At the source code level, CollabServer CRDT are

implemented as C++ templates, allowing easy extensibility and

customization. More information is available in [18] and from

the GitHub repository of the project
1
. In the following, we

briefly discuss the CRDT provided by CollabServer.

1) LWWRegister: The LWWRegister is the simplest prim-

itive implemented in the CollabServer framework. It stores an

atomic value, its timestamp ts, and its tombstone metadata.

The query method returns the value stored in the register. The

update method changes this value, as shown in Algorithm 1.

2) LWWSet: The LWWSet is a monotonically increasing

data structure with the usual set semantics. That is, a value

can exist in the set only once. The LWWSet is implemented

as a C++ HashMap, with the values stored in the key set,

and the associated value set storing the metadata (timestamp

and tombstone). The query method (Algorithm 2) returns

the respective key of the hashmap if it exists and is not

marked as removed. The add method (Algorithm 3) inserts

an element into the set. If the element already exists in the

set, its timestamp is updated. If the element does not exist in

the set, it is added to the set, along with the required metadata.

The remove method (Algorithm 4) flags an element as deleted

if its timestamp is higher than the current timestamp. In case

the element is already deleted, its timestamp is updated, and

a false value is returned. If the requested element is not

present in the set, it is added with tombstone metadata that

designates a deleted state. The clear method executes the

remove method on every element in the set.
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Algorithm 1: lwwregister_update(value, ts)

if value, ts > current_timestamp then

current_value = value
current_timestamp = value, ts
return true

else
return false

Algorithm 2: lwwset_query(key)

element = hashmap[key]
if element is not None AND is not element.value.isRemoved then

return element.key
else

return None

3) LWWMap: The LWWMap stores key-value pairs of data

with the keys being stored in an LWWSet and the associated

value being stored in an LWWRegister. By reusing the pre-

viously defined LWW types, the API methods of the LWWMap

can be reduced to the ones defined in Algorithms 1–4.

IV. CUSTOMIZING CRDT

In this section, we demonstrate the extensibility of Collab-

Server CRDT by (i) constructing a custom physical CRDT,

the LWWGraph (Section IV-A); and (ii) based on this custom

type, constructing a domain-specific type (Section IV-B). For

the latter, we use the example of a Mind map editor, providing

domain-specific operations for constructing and manipulating

a Mind map, such as adding and removing topics; and placing

a marker on a topic. Fig. 2 show the extended type system.

CollabData

LWWRegister

keys

vertexIDs
MindMap

values

* *

outEdges

**

LWWMapLWWSet

LWWGraph

Fig. 2. Type system with the customized types highlighted

A. Constructing custom CRDT: LWWGraph

The LWWGraph is a directed graph, represented by its adja-

cency list, stored in an LWWMap. Vertex IDs are stored as keys

and the vertices are stored as values. There are no restrictions

on the type of the vertex ID, it only depends on the specific

implementation, and its typing is deferred to the developer. A

vertex is defined as a tuple (content, edges), describing the

content of the vertex and an LWWSet of the outgoing edges

from this vertex. Each key is the ID of the target vertex.

The queryVertex method invokes the query method on the

LWWMap storing the adjacency list of vertices, and returns the

vertex if exists. Similarly, the addVertex method invokes the

Algorithm 3: lwwset_add(key, ts)

element = hashmap[key]
if element is not None then

if ts > element.value.timestamp then
element.value.timestamp = ts
if element.value.isRemoved then

element.value.isRemoved = false
return true

return false
else

element = {key, {ts, false}}
hashmap.add(element)
if element.value.timestamp <= lastclear_timestamp then

element.value.timestamp = lastclear_timestamp
element.value.isRemoved = true
return false

else

return true

Algorithm 4: lwwset_remove(key, ts)

element = hashmap[key]
if element is not None then

if ts > element.value.timestamp then

element.value.timestamp = ts
if not element.value.isRemoved then

element.value.isRemoved = true
return true

return false
else

element = {key, {ts, true}}
hashmap.add(element)
return false

add method on the LWWMap storing the adjacency list. The

removeVertex method (Algorithm 5) removes a vertex from

the graph, and all edges connected to it. If the vertex does not

exist yet, it is added in the adjacency list, and the remove

method of the LWWMap is invoked. The addEdge method

(Algorithm 6) creates a new edge connecting the source vertex

with the target vertex. We distinguish between three scenarios.

First, we apply addEdge on two existing vertices. In this

case, the edge is added to the underlying graph; or if the

edge already exists, its timestamp is updated. Second, we

apply addEdge when one or two vertices do not exist. This

case occurs when the addEdge operation is observed before

the addVertex operation. To ensure the commutativity of

operations, CollabServer implements the addEdge method in

a way that it also applies addVertex on the source and target

vertices. Missing vertices are then simply added along with

the edge. Receiving a later addVertex operation will simply

update the timestamps. Third, we apply addEdge with the

source and/or the target vertex that has already been deleted.

This case occurs when the addEdge operation is received with

the source and/or the target vertex already deleted. The case

where removeVertex is older than addEdge is a trivial one,

since addEdge also applies addVertex as seen earlier. The

opposite case (removeVertex older than addEdge) requires

additional steps. First, the edge is created as discussed before.
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Algorithm 5: lwwgraph_removeVertex(vertexID,ts)

removed = adj.remove(vertexID, ts)

vertex = adj.queryCRDT(vertexID)
vertex.edges.clear(ts)

for vertex in adj.iteratorCRDT do

if vertex.edges.has(vertedID) then

vertex.edges.remove(vertexID, ts)

return removed

Algorithm 6: lwwgraph_addEdge(src, trgt, ts)

info = {’srcAdded’: false, ’trgtAdded’: false, ’edgeAdded’: false}

info[’srcAdded’] = adj.add(src, ts)
info[’trgtAdded’] = adj.add(trgt, ts)

vertexSrc = adj.queryCRDT(src)
info[’edgeAdded’] = vertexSrc.edges.add(trgt, ts)

if not vertexSrc.edges.queryCRDT(trgt).isRemoved then

vertexTrgt = adj.queryCRDT(trgt)

if vertexSrc.isRemoved OR vertexTrgt.isRemoved then
t = max(vertexSrc.ts, vertexTrgt.ts)
vertexSrc.edges.remove(trgt, t)
info.edgeAdded = false

return info

return info

Then, we check if the newly created edge is dangling and

remove it. This way, addEdge is commutative. Note that, as

shown in Algorithm 6, this operation returns more information

since additional actions can be performed on the edge or the

vertices. The removeEdge method (Algorithm 7) removes

an edge from the graph. This operation may encounter a

situation where the source vertex does not exist yet in the

graph. Since all operations are required to be commutative, the

source vertex is created with the smallest timestamp and the

isRemoved flag is set to true. The clearVertices method

removes all vertices and their associated edges from the graph.

B. Constructing domain-specific CRDT

The construction of custom CRDT is achieved by extending

the CollabData base type and defining custom operations

while ensuring their commutative and idempotent properties.

We demonstrate the extensibility of primitive CollabServer

data types by constructing the MindMap CRDT for the

MindmapEditor application. The MindMap type is a graph;

each topic and marker of the MindMap is a vertex of the

graph; edges of the graph connect topics to their parent

topic, and markers to the topics they mark. Constructing the

MindMap requires extending the LWWGraph primitive type

and augmenting it with domain-specific methods that are

commutative and idempotent. The outline of the MindMap

CRDT is shown in Listing 1. The full implementation is

available from the GitHub repository of the project.
1

The methods in Listing 1 reuse the API of the LWWGraph;

thus, they inherit CRDT properties. The MindMap type ex-

tends the LWWGraph by introducing the notion of attributes,

for example, for storing the name of the MindMap. As shown

Algorithm 7: lwwgraph_removeEdge(src, trgt, ts)

adj.remove(src, Timestamp.MIN)
if src ! = trgt then

adj.remove(trgt, Timestamp.MIN)

vertex = adj.queryCRDT(src)
return vertex.edges.remove(trgt, ts)

in Listing 2, attributes are added to LWWGraph-derivatives by

invoking the add method of the LWWMap that allows storing

key-value pairs. The built-in CRDT can be readily reused to

construct custom data types. This has been demonstrated in

this example, and also in the definition of the LWWMap and

LWWGraph that reuse more primitive CollabServer CRDT.

Listing 1. MindMap CRDT with domain-specific operations
class Topic: Vertex{...}

class Marker: Vertex{...}

class MindMap: LWWGraph{

void addTopic(const UUID& topicId){

LWWGraph::addVertex(topicId,Timestamp::now())

notifyOperationBroadcaster()

}

void removeTopic(const UUID& id){}

void addMarker(const UUID& id){}

void removeMarker(const UUID& id){}

void connectTopics(const UUID& t1,const UUID& t2){

LWWGraph::addEdge(t1, t2, Timestamp::now())

notifyOperationBroadcaster()

}

void putMarker(const UUID& m, const UUID& t){}

...

}

Listing 2. API for adding attributes to the MindMap
class MindMap: LWWGraph{

void addAttribute(

const UUID& id,

const std::string& name,

const std::string& value) {

//calls the LWWMap super class

LWWGraph::add(name, value, Timestamp::now())

notifyOperationBroadcaster()

}

}

V. PERFORMANCE EVALUATION

Although performance was not our primary concern in this

exploratory project, we provide a performance evaluation of

the framework. As the performance of CRDT is determined

by the number of objects present in the application [19], we

assess the performance by simulating a scenario in which new

vertices and edges are added to a shared model.

Experimental setup: We used the following se-

quence as a test scenario: add topici → add topicj →

connectTopics topici, topicj The scenario was exe-

cuted 50.000 times. That is, 100.000 topics (graph vertices)

and 50.000 relationships (edges) were generated. We have

executed the test scenario with one, two, and four parallel

users, and measured the change in response times. In the case

of two and four parallel simulated users, each user carried out
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TABLE II
RESPONSE TIMES OF THE 1/2/4 USER CASES

Response times
Users Min [ms] µ [ms] σ Max [ms]

1 0.11 0.94 0.22 17.4
2 0.13 2.06 0.33 17.4
4 0.37 5.92 0.49 17.4

this sequence, adding topics (vertices) and connecting them

(by adding edges) to the same shared mind map (graph).

The measurements have been executed on a VMWare virtual

machine running a 64-bit Ubuntu 20.04.1. OS, with 4GB of

memory, and with 4 CPU cores allocated, checked at 2.6 GHz.

Results: To assess the scalability of the framework,

response times were measured at the local replicas, defined as

the time difference between issuing a command in the editor

and getting a response. To filter noise, we clipped the sample

at µ ± 3σ (0.2% of the cases). The mean response time in

the one-user case shows linear scaling with the number of

objects. (Linear regression statistic: p = 22E 2 17.) We have

observed the same linear increase in response times in the

two and four-user cases. We have also observed increasing

response times with the increasing number of users. Table II

shows the mean response time in one, two, and four user cases.

The mean response time increased by a factor of 2.2 and 2.8

as the number of users doubled from one to two, and from

two to four, respectively. A statistically significant difference

is observed in the mean response time of the three cases, as

confirmed by a t-test (α = 0.05, p =2e-11).

We observed a linear increase in the memory heap. The

majority of memory consumption is due to C++ node iterators

and hashtable objects the LWWGraph relies on.

Discussion: We observe a linearly increasing response

time and a linearly increasing memory footprint. This is in

line with the observation of Sun et al. [20]. We conclude

that this performance profile is characteristic of CRDT imple-

mentations, and can be effectively treated by suitable garbage

collection mechanisms [21]. We consider these results ade-

quate (i) considering the benefits in extensibility CollabServer

CRDT provide; and (ii) considering that performance was not

the primary objective of the current solution.

VI. CONCLUSION

In this paper, we presented an approach for augmenting

CRDT with extension mechanisms and demonstrated that the

performance repercussions of extensibility are manageable.

We provided a family of concurrency control algorithms,

ensuring strong eventual consistency and allowing for efficient

real-time collaboration. Our algorithms and data types show

linear scaling of response time and memory footprint with

the number of objects in memory and with users. This is

a characteristic performance profile of CRDT. Our results

suggest that CRDT can be used in disciplines where cus-

tomizability is a key factor, such as collaborative modeling

using domain-specific modeling languages. In future work, we

will investigate garbage collection mechanisms to achieve the

scalability collaborative engineering tools require. We used the

takeaways of this exploratory project in the development of our

real-time collaborative modeling framework lowkey [22].
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