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What is model merging?

We consider 2 deep models, with different parameters 0, sharing the same non-linear
architecture (with attention/relu/etc layers).
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We want to use them together; can we merge them?

Weight averaging? Really? Despite the non-linearities?



Model merging by weight averaging
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When fine-tuning from a shared pre-trained initialization,
we can merge models (and their abilities) by weight averaging
“Linear Mode Connectivity and the Lottery Ticket Hypothesis” by Frankle et al., ICML 2020.

“Model soups: averaging weights improves accuracy without increasing inference time” by Wortsman et al., ICML 2022.
“Diverse Weight Averaging for Out-of-Distribution Generalization” by Ramé et al., NeurlPS 2022.



Weight averaging as an efficient and improved ensembling strategy
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RLHF in one slide
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WARM: Weight Averaged Reward Models (ICML 2024)

The problem: reward hacking Our solution: merge reward models

Misalignment as the policy exploits errors Train several RMs, weight average them, and then run RLHF against the WARM.
in the RM without really improving human

preferences (because of label noise and
distribution shifts).
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WARP: Weight Averaged Rewarded Policies (arXiv 2024)
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We use the merged policy as an advanced new initialization for subsequent WARP iterations.

... and iterate from
the new init 3




Rewarded soups: towards Pareto-optimal alignment (NeurlPS 2023)
and Conditioned Language Policy (arXiv since yesterday)

Goal: Maximizing a linear combination of rewards (for multi-objective RLHF).
Where the reward weightings A are usually manually fixed before training
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e.g. quality factuality safety
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Our solution: Learn {ei}1<i<M (one for each reward) and interpolate them for improved
results and flexibility at deployment.
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Thank you



