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Context and challenge Weight Averaged Reward Models (WARM)

After pre-training and supervised fine-tuning, LLMs are aligned

via reinforcement learning with human feedback (RLHF); the LLM . .
policy optimizes a reward model, which is only an imperfect RL fine-tuning
approximation of human preferences. This can lead to reward

hacking, where increases in reward are not correlated with . : Aligned LLM
better/safer generations. Sample from policy RL fine-tune step

Generate ou}'put by feedipg 3 Assign a reward to the Use RL to maximize reward .';-\
We improve reward modeling by (i) training M independent RMs I_> an unlabeled input data point model’s output. > by updating weights. .\\
from a shared pre-trained initialization and (ii) weight average
them into WARM, (iii) finally used in RL.

o>

0 1 M
/ »0 wa __ Z
Pre-training :,OSft \ ~o ° 0 M m=1

SFT 0
Multiple RM Z\éz

fine-tunings

veraged Reward Model

@ \ WARM: Weight

Collect preference dataset

Human or Al pairwise feedback.
Thanks to linear mode connectivity, WARM benefits from: 0 Q
e Efficiency, removing the memory/inference overheads of
(traditional) ensembling of the predictions of M models. Multiple RM
o to corruptions in preference labels, reducing fine-tunings
memorization by enforcing invariance across runs.
e Reliability under distribution shifts, improving generalization
by reducing variance.
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WARM experiments on summarization
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Follow-up work: Weight Averaged Rewarded Policies (WARP)

1. RLHF with EMA

In WARP, we merge policies themselves (rather than reward models). The goal is to: anchor in KL
e maximize the reward model, to improve policy's alignment with human preferences,

e minimize the KL, to mitigate forgetting of general pre-trained knowledge.

We apply 3 variants of weight averaging at three distinct stages, iteratively.

3. Linear interpolation
e Exponential moving average (EMA) for dynamic anchor in the KL regularization. towards init
o of task vectors of fine-tuned models.
e Linearly interpolate towards the initialization (LITI) to mitigate forgetting.

New init

This strategy was used in Gemma 2! :
... and iterate from

the new init <



