

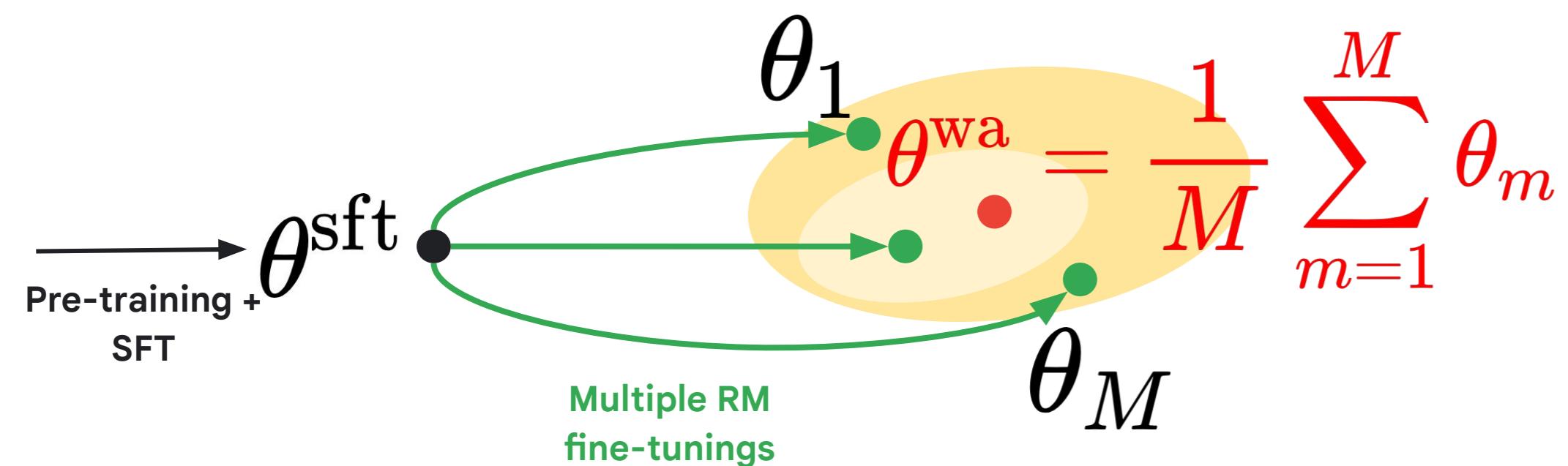
WARM: On the Benefits of Weight Averaged Reward Models

Alexandre Ramé, Nino Vieillard, Léonard Hussenot,
Robert Dadashi, Geoffrey Cideron, Olivier Bachem, Johan Ferret

Context and challenge

After pre-training and supervised fine-tuning, LLMs are aligned via reinforcement learning with human feedback (RLHF); the LLM policy optimizes a **reward model**, which is only an imperfect approximation of human preferences. This can lead to **reward hacking**, where increases in reward are not correlated with better/safer generations.

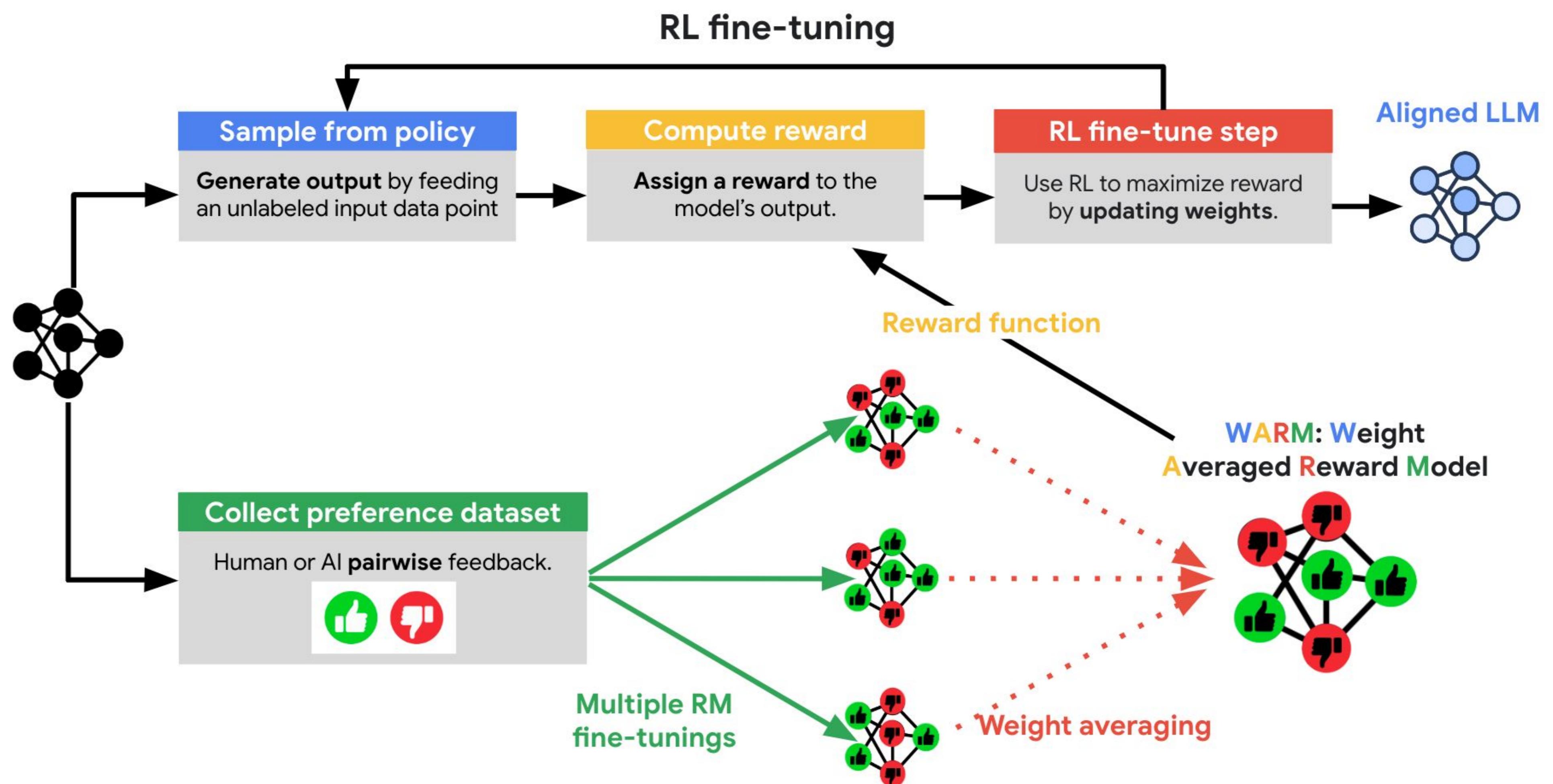
We improve reward modeling by (i) training M independent RMs from a shared pre-trained initialization and (ii) weight average them into WARM, (iii) finally used in RL.



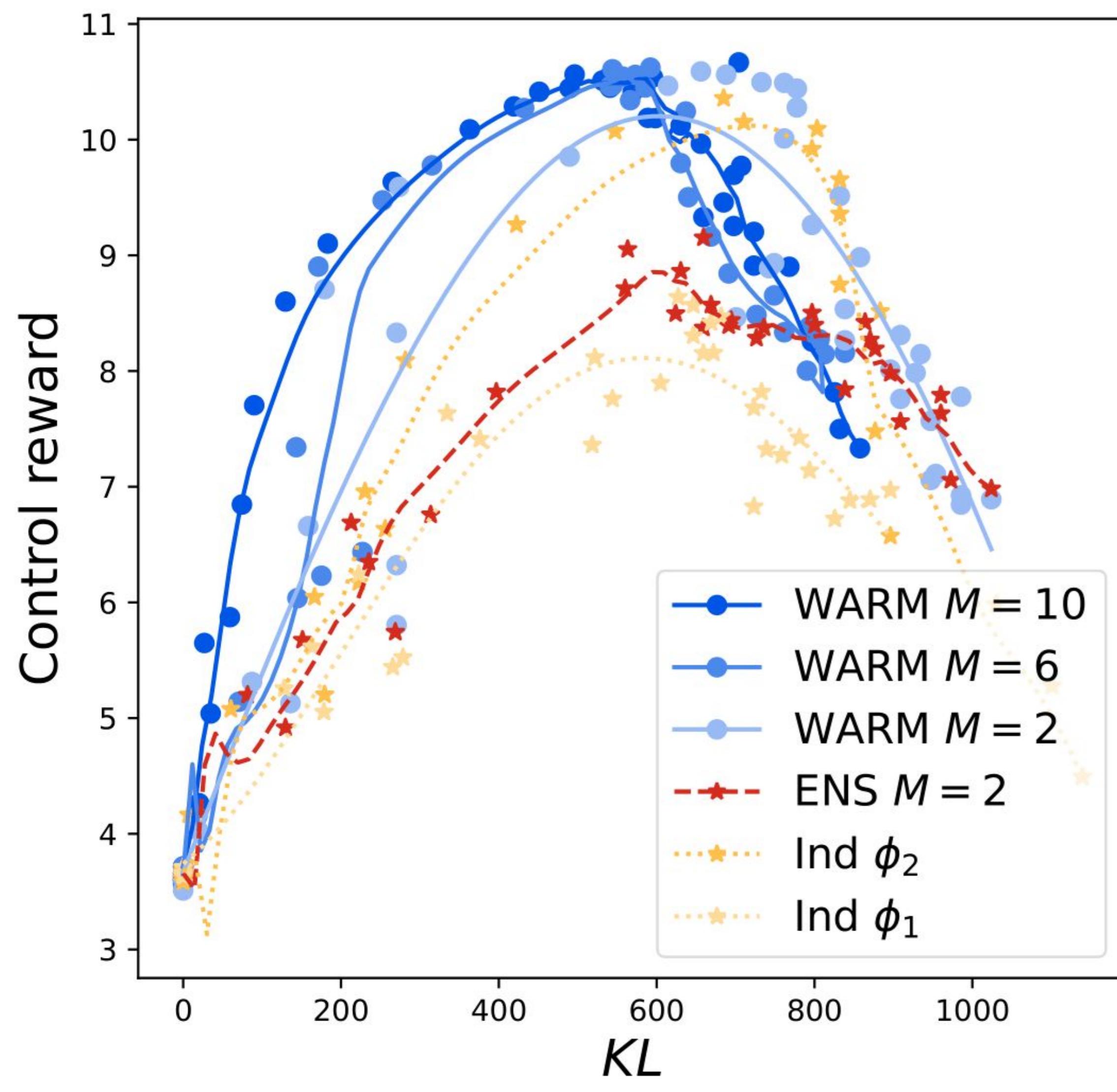
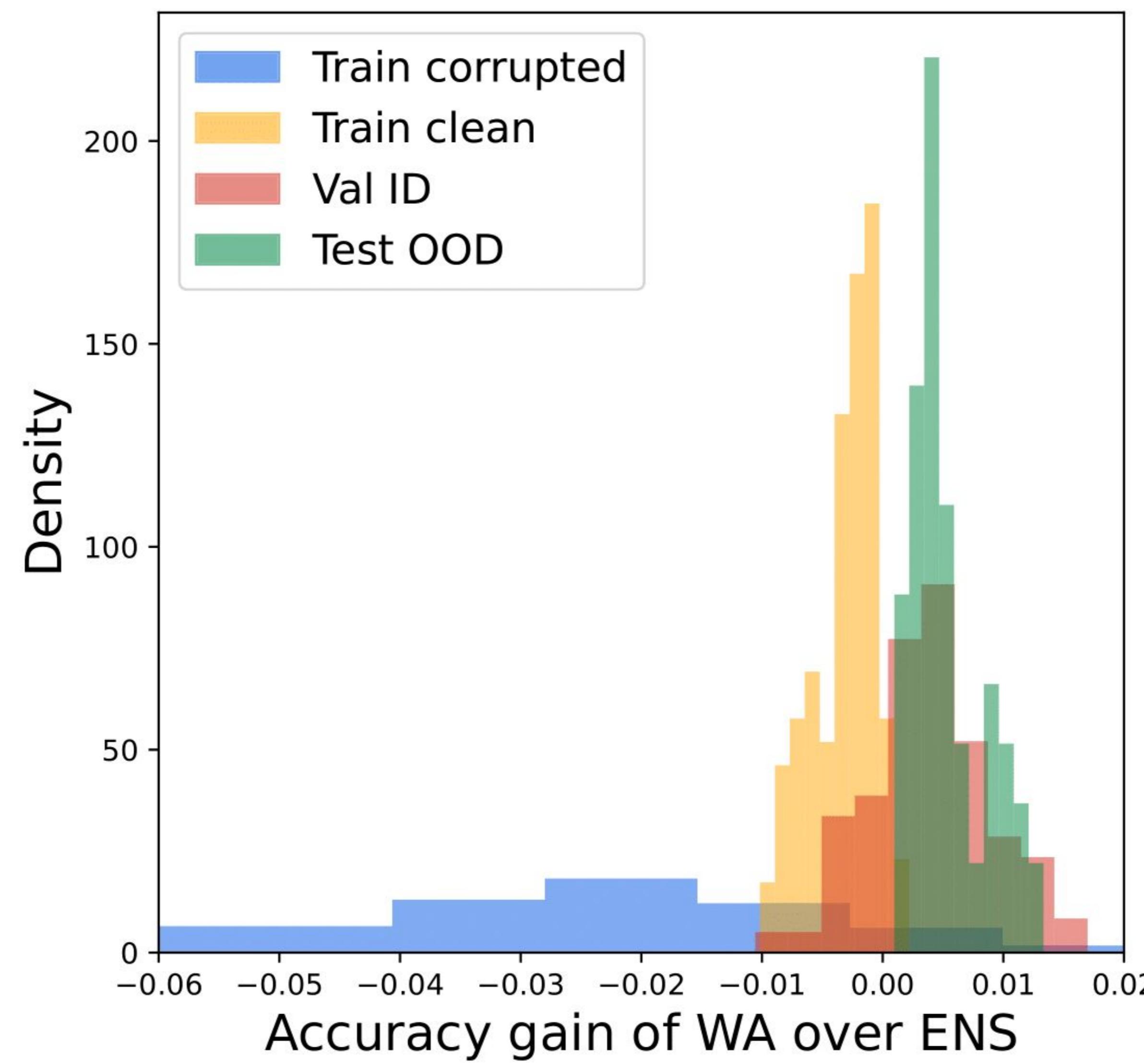
Thanks to linear mode connectivity, WARM benefits from:

- **Efficiency**, removing the memory/inference overheads of (traditional) ensembling of the predictions of M models.
- **Robustness** to corruptions in preference labels, reducing memorization by enforcing invariance across runs.
- **Reliability** under distribution shifts, improving generalization by reducing variance.

Weight Averaged Reward Models (WARM)



WARM experiments on summarization



Mitigate reward hacking during RL

- (1) by reducing memorization under label noise,
- (2) and improving generalization under distribution shifts.

Setup
Data: TL;DR summarization
RL method: REINFORCE
Policy RLHFd: PaLM-XXS
Proxy reward: PaLM-XXS
Control reward: PaLM-XS

Follow-up work: Weight Averaged Rewarded Policies (WARP)

In WARP, we merge policies themselves (rather than reward models). The goal is to:

- maximize the reward model, to improve policy's alignment with human preferences,
- minimize the KL, to mitigate forgetting of general pre-trained knowledge.

We apply 3 variants of weight averaging at three distinct stages, **iteratively**.

- **Exponential moving average (EMA)** for dynamic anchor in the KL regularization.
- **Spherical linear interpolation (SLERP)** of task vectors of fine-tuned models.
- **Linearly interpolate towards the initialization (LITI)** to mitigate forgetting.

This strategy was used in Gemma 2!

