
UNIVERSITÀ DEGLI STUDI DI MILANO

CORSO DI DOTTORATO IN INFORMATICA XXVIII (28th) CICLO

TESI DI DOTTORATO DI RICERCA

A Pyramidal Approach for Designing Deep

Neural Network Architectures

INF/01

Candidato
Ihsan Ullah

Relatore
Prof. Alfredo Petrosino

Coordinatore del Dottorato
Prof. Paolo Boldi

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
Department of Computer Science

University of Milan

February 2017

i

ii

Developing an intelligent system, capable of learning discrimina-
tive high-level features from high dimensional data lies at the core
of solving many computer vision (CV) and machine learning (ML)
tasks. Scene or human action recognition from videos is an impor-
tant topic in CV and ML. Its applications include video surveillance,
robotics, human-computer interaction, video retrieval, etc. Several
bio inspired hand crafted feature extraction systems have been pro-
posed for processing temporal data. However, recent deep learning
techniques have dominated CV and ML by their good performance
on large scale datasets.

One of the most widely used deep learning technique is Con-
volutional neural network (CNN) or its variations, e.g. ConvNet,
3DCNN, C3D. CNN kernel scheme reduces the number of parame-
ters with respect to fully connected Neural Networks. Recent deep
CNNs have more layers and more kernels for each layer with respect
to early CNNs, and as a consequence, they result in a large number
of parameters. In addition, they violate the pyramidal plausible ar-
chitecture of biological neural network due to the increasing number
of filters at each higher layer resulting in difficulty for convergence
at training step.

In this dissertation, we address three main questions central to
pyramidal structure and deep neural networks: 1) Is it worth to
utilize pyramidal architecture for proposing a generalized recognition
system? 2) How to enhance pyramidal neural network (PyraNet) for
recognizing action and dynamic scenes in the videos? 3) What will
be the impact of imposing pyramidal structure on a deep CNN ?

In the first part of the thesis, we provide a brief review of the
work done for action and dynamic scene recognition using traditional
computer vision and machine learning approaches. In addition, we
give a historical and present overview of pyramidal neural networks
and how deep learning emerged. In the second part, we introduce a
strictly pyramidal deep architecture for dynamic scene and human
action recognition. It is based on the 3DCNN model and the image

iii

pyramid concept. We introduce a new 3D weighting scheme that
presents a simple connection scheme with lower computational and
memory costs and results in less number of learnable parameters
compared to other neural networks. 3DPyraNet extracts features
from both spatial and temporal dimensions by keeping biological
structure, thereby it is capable to capture the motion information
encoded in multiple adjacent frames. 3DPyraNet model is extended
with three modifications: 1) changing input image size; 2) changing
receptive field and overlap size in correlation layers; and 3) adding a
linear classifier at the end to classify the learned features. It results
in a discriminative approach for spatio-temporal feature learning in
action and dynamic scene recognition. In combination with a linear
SVM classifier, our model outperforms state-of-the-art methods in
one-vs-all accuracy on three video benchmark datasets (KTH, Weiz-
mann, and Maryland). Whereas, it gives competitive accuracy on a
4th dataset (YUPENN).

In the last part of our thesis, we investigate to what extent CNN
may take advantage of pyramid structure typical of biological neu-
rons. A generalized statement over convolutional layers from input
up-to fully connected layer is introduced that further helps in un-
derstanding and designing a successful deep network. It reduces
ambiguity, number of parameters, and their size on disk without de-
grading overall accuracy. It also helps in giving a generalize guideline
for modeling a deep architecture by keeping certain ratio of filters
in starting layers vs. other deeper layers. Competitive results are
achieved compared to similar well-engineered deeper architectures on
four benchmark datasets. The same approach is further applied on
person re-identification. Less ambiguity in features increase Rank-1
performance and results in better or comparable results to the state-
of-the-art deep models.
Keywords: Pyramidal Neural Network, CNN, Action Recognition,
Object Classification, Dynamic Scene Recognition.

iv

Parts of this report have been included in the following papers:

Ihsan Ullah and Alfredo Petrosino, ”A Strict Pyramidal Deep Neu-
ral Network for Action Recognition”, in International Conference on
Image Analysis and Processing (ICIAP), 2015

Ihsan Ullah and Alfredo Petrosino, ”About Convolutional Neural
Network with Pyramid Structure”, in International Joint Confer-
ence on Neural Network (IJCNN), 2016

Sara Iodice, Alfredo Petrosino, and Ihsan Ullah, ”Strict Pyrami-
dal Deep Architectures for Person Re-Identification”, in Advances
in Neural Network 2016

Ihsan Ullah and Alfredo Petrosino, ”Spatiotemporal Features Learn-
ing with 3DPyraNet”, in Advanced Concepts for Intelligent Vision
Systems (ACVIS) 2016

Ihsan Ullah and Alfredo Petrosino. ”A Deep Pyramidal Neural Net-
work for Spatio-Temporal Feature Learning”, To be Submitted in
IEEE Transaction on Neural Network and Learning System, 2016.

To my mother,
for her love, prayers and sacrifices.

To my brothers, sisters, brother-in-laws, uncles, and
specially my loving wife and daughter for their continuous prayers,
support and motivation.

v

Acknowledgments

First and foremost, all praise and thanks to ALLAH, the Almighty
for his guidance, protection, sustenance and the innumerable favors
which he has bestowed upon me.

For many days I have considered what I might write here, and
whom I might thank. After reading the acknowledgments of my
friends dissertations over the years, it is clear to me that this page
is one of the few true soapboxes allotted to us in life, and it would
be tragic, especially for me, to waste it.
I would like to express my special appreciation and thanks to my
advisor - Prof. ALFREDO PETROSINO, you have been a tremen-
dous mentor for me by encouraging my research and for allowing me
to grow as a research scientist. Your advice on both research and as
well as on my professional career have been priceless.

I appreciate the time and effort of thesis external reviewers -
Prof. VIRGINIO CANTONI, Prof. SILVIO SAVERESE, and Prof.
BRUNO J.T FERNANDES for their valuable feedback and helpful
suggestions.

I am highly grateful to University of Milan for awarding me with
the scholarship and CVPR Lab, University of Naples ’Parthenope’
for providing me an excellent mobility opportunity that had made a
positive impact on my life. I am also grateful to my seniors Assist
Prof. Alessio Ferone and Assist Prof. Antonio Maratea and junior
colleagues in CVPR Lab, who helped me during my research phase

vi

vii

through consistent guidance and motivation. I am thankful to my
good friends F. Battistone and S. Iodice for their help and motivation
through out my stay at CVPR Lab. Furthermore, I am very grateful
to Prof. SILVIO SAVERESE for giving me the opportunity to be a
part of the CVGL group at Stanford University.

I am highly thankful to my family members for their kind support
and prayers with all of the sacrifices that they have made on my be-
half. Last, but not least, I truly appreciate my beloved wife, for your
kind love, patience, understanding, consistent encouragement and
motivation throughout my life and PhD. Though, miles away, their
unconditional support, wishes and prayers have always surrounded
me.

Ihsan Ullah

Contents

List of Tables xiii

List of Figures xvi

1 Introduction 1

2 Related Work 11
2.1 Action and Dynamic Scene Recognition 12

2.1.1 Action Recognition (AR) 12
2.1.1.1 Hand-Crafted Features for AR . . . 12
2.1.1.2 Deep Learned approach for AR . . . 15

2.1.2 Dynamic Scene Recognition (DSR) 19
2.1.2.1 Hand-Crafted Features for DSR . . . 20
2.1.2.2 Deep Learning for DSR 22

2.2 History of Pyramidal Neural Networks (PNN) 23
2.2.1 Neocognitron 25
2.2.2 Honavar and Uhr Model 28
2.2.3 McQuoid Model 28
2.2.4 Cantoni & Petrosino Model 29
2.2.5 PyraNet Model 31

2.2.5.1 Architecture 32
2.2.5.2 Weighting Scheme 33
2.2.5.3 Training Model 35
2.2.5.4 Experiments & Results 39

viii

Contents ix

2.2.6 I-PyraNet Model 39
2.2.7 LCNP Model 41
2.2.8 Conclusion . 42

2.3 Some Variants of CNN since LENET5 44
2.3.1 LENET5 . 45
2.3.2 AlexNet . 46
2.3.3 (RCNN) . 49
2.3.4 Network-in-Network (NiN) 49
2.3.5 GoogleNet . 51
2.3.6 3DCNN . 54
2.3.7 Two Stream CNN 58
2.3.8 Learning Spatio-Temporal Features with Con-

volutional networks 59
2.4 Comparing CNN and PyraNet 61

2.4.1 Visualizing and Understanding CNN 61
2.4.2 Visualizing Pyramidal Neural Network 66
2.4.3 Similarities and Comparison 67

2.5 Chapter Summary 70

3 A 3D Strictly Pyramidal Neural Network 72
3.1 Motivation . 72
3.2 3DPyraNet . 73

3.2.1 3D Weight Matrix 74
3.2.2 Proposed Architecture 76

3.2.2.1 3D Correlation Layer 78
3.2.2.2 Temporal Pooling Layer (3DPool) . . 82
3.2.2.3 Fully Connected Layer 83

3.2.3 3DPyraNet Training 84
3.2.3.1 Last Layer (Output) 86
3.2.3.2 Full Connected Layer (L-1) 87
3.2.3.3 3D Pyramidal Layer 91
3.2.3.4 3D Temporal Pooling Layer 95

Contents x

3.3 Results & Discussion 97
3.3.1 AR Evaluation Datasets 97
3.3.2 Discussion . 98

3.3.2.1 Computation Time 101
3.4 Chapter Summary 102
3.5 Related Publications 103

4 Spatiotemporal Feature Learning with 3DPyraNet 105
4.1 Motivation . 106
4.2 Proposed 3DPyraNet-F 109

4.2.1 Architecture 110
4.2.2 3DPyraNet-F Training 115
4.2.3 3DPyraNet-F M 115

4.3 Results & Discussion 116
4.3.1 DSR Evaluation Datasets 117

4.3.1.1 YUPENN 117
4.3.1.2 MaryLand-in-the-wild 118

4.3.2 AR Performance 118
4.3.3 DSR Performance 120
4.3.4 Parameters Reduction 122

4.4 Chapter Summary 123
4.5 Related Publications 123

5 Adopting Strictly Pyramidal Architecture in Deep CNN 126
5.1 Motivation . 126
5.2 Background . 128
5.3 Proposed Model . 130
5.4 Experimental Results 131

5.4.1 Datasets . 132
5.4.1.1 MNIST 132
5.4.1.2 CIFAR-10 132
5.4.1.3 CIFAR-100 133
5.4.1.4 ImageNet-12 133

Contents xi

5.4.1.5 VIPeR 134
5.4.2 Impact of Pyramidal Structure 134
5.4.3 Parameter Reduction & Size on Disk 136
5.4.4 Performance of Pyramidal Models with Less data140
5.4.5 Comparison with State-of-the-art 141
5.4.6 Reducing Ambiguity 145

5.4.6.1 SP-Improved-DML 147
5.4.6.2 SP-Improved-DML Performance . . . 150

5.5 Conclusion . 152
5.6 Related Publications 154

6 Conclusion 155

List of Acronyms 157

Bibliography 161

List of Tables

2.1 Performance of DL for Object classification and recog-
nition since 2010, Here Dropout, Sliding Window, Data
Augmentation are represented by DO, SL and DA re-
spectively. SetA represents ImageNet 2009 Fall ver-
sion, SetB represents ImageNet 2012 + 22k Addi-
tional images, SetC Training set consist of PascalVOC
(1000) + ImageNet (512) classes and Testing set con-
sist of PascalVOC 2012 & 20 (but trained with 1512).
While last SetD Training set contains PascalVOC (1000)
+ ImageNet (512) classes and for Testing (PascalVOC
2012) & 20 (but trained with 1512) 55

3.1 3DPyraNet Mathematical Notations to be used in For-
ward Propagation . 79

3.2 3DPyraNet Mathematical Notations to be used in Backward-
Propagation . 85

3.3 (a) Mean accuracy of five random data setups, (b)
Proposed Vs. Others for Weizmann and KTH datasets 100

3.4 Accuracies for Action (Weizmann and KTH) and Scene
(YUPENN and MaryLand) datasets, Layers represents
main layers, Parameters are in million, and size is in
MB . 102

xii

List of Tables xiii

4.1 Network Structure used for Action (Weizmann(10) and
KTH(6) shown in first two rows) and Scene (Mary-
Land (13) and YUPENN(14)) datasets. Feature map
size at main Layers is shown for each model as well as
the number of output classes 116

4.2 Accuracies for Action (Weizmann and KTH) and Scene
(YUPENN and MaryLand) datasets, Layers represents
main layers, Parameters are in million, and size is in
MB . 124

4.3 MaryLand dataset per class Accuracies vs state-of-
the-art models . 125

4.4 YUPENN dataset per Class Accuracies vs state-of-
the-art models . 125

5.1 Results for Referenced Models vs. their reversed model
according to our statement 137

5.2 Reduction in Kernels by Factor ′f ′ along with their
accuracies . 138

5.3 Parameters and their size on disk for base and pyra-
midal architectures along with their accuracies . . . 139

5.4 Best Strictly Pyramidal Models and their Accuracies 140
5.5 Evaluating generalization power of Strictly Pyramidal

networks with reduction of training Data medium and
large datasets. top-1 and top-5 represents error. . . 141

5.6 Comparison with Stat-of-the-art in-terms of Error%
and Less number of Parameters 144

List of Figures

1.1 Some real world actions in a video to recognize. . . . 2
1.2 Sample Images from KTH Dataset 3
1.3 Samples images from MaryLand dataset. First Row

from left to right (Avalanche, Iceberg Collapse, Wa-
terfall), Second Row from left to right (Fountain, Boil-
ing Water, Chaotic Traffic) 4

1.4 Visual Cortex structure of a Human. 5
1.5 Macqake Monkey Brain Deep structure for decision

making. 10

2.1 Fukushima Neocognitron, where on top of each layer
its relation is shown with Hubel and Wiesel Classical
hypothesis. 26

2.2 Cantoni and Petrosino Model. 30
2.3 PyraNet Kernel Architecture 34
2.4 PyraNet Model. 34
2.5 LENET5 Model . 46
2.6 Alex ConvNet architecture on two GPU’s, along with

number of kernels and their sizes. 48
2.7 GoogleNet Model . 53
2.8 Difference between 2D and 3D Convolution 56
2.9 3DCNN Architecture for Human Action Recognition 57
2.10 Two Stream model architecture for video classification 59
2.11 Visualizing feature maps of a deep CNN model [1] . . 64

xiv

List of Figures xv

2.12 Comparison of Convolutional kernel vs Weighted Sum
Kernels, (a) Original Leena Image (b) Output map re-
sulted by Weighted Sum Kernels of PyraNet, (c) Out-
put map resulted by Convolutional kernel of CNN. . . 70

3.1 Difference between 2D and 3D weighted Sum Kernel
Calculation . 76

3.2 3D weighted Sum Kernel Calculation 77
3.3 Learned 3D kernel Matrix of first layer of a trained

3DPyranet model . 77
3.4 Learned 3D kernel Matrix of second layer of a trained

3DPyranet model . 78
3.5 Proposed model of 3DPyraNet 81
3.6 (a) Confusion Matrix for best case Weizmann without

Skip (b) Current Best KTH without Running 104

4.1 Proposed model 3DPyraNet-F (It becomes simple 3DPyraNet
if we remove SVM). Blue represents Correlation layers
(weighted sum), gray represents normalization, brown
represents pooling, and bright blue represents fully
connected layer . 111

4.2 Samples images from YUPENN (1st row from left to
right (Beach, Waterfall, Ocean)) and MaryLand (2nd

row from left to right (Waterfall, Fountain, Boiling Water)119

5.1 Strictly Pyramidal Architecture for CNN (SPyr CNN). 132
5.2 Performance evaluation based on Accuracy for CIFAR-

100 with reduction in training data for total of 70000
iterations . 142

5.3 Comparison of Validation Accuracy with less data af-
ter each 10000 iterations for total of 450000 iterations 142

5.4 Training Loss with 10000 iterations difference for total
of 450000 iterations 143

List of Figures xvi

5.5 Output maps of first convolutional layer of Caffe trained
model . 145

5.6 Output maps of 1st convolutional layer of our SPyr BVLC Ref
trained model . 146

5.7 Strictly Pyramidal CNN (SP-CNN) 150
5.8 Structure of SP-Improved-DML 151
5.9 CMC Rank-1 accuracy for Improved-DML, Non-SP-

Improved-DML and SP-Improved-DML 152
5.10 Rank-1 for SP-Improved-DML models by using differ-

ent number of filters combinations 153

Chapter 1
Introduction

In the last two decades, one of the goal of computer vision (CV)
research community is to have a smooth representation of the vi-
sual world capable of recognizing actions/scenes in videos also in
complex scenarios. While the task appears natural and easy for hu-
mans, action/scene recognition is very complex for computers and
no efficient general solution has been envisaged till now, except for
some controlled situations. Indeed, the problem of large-scale re-
alistic action/scene recognition involves many challenging sub-tasks
which still remain unsolved.

An action can be measured like a sequence of primitive actions
that accomplishes a function or simple purpose, such as jumping,
running, walking, or kicking a ball, etc. This task is difficult due to:
existence of high variation between the same action done by different
people in different styles, the perspectives from which they can be
viewed, and possibility of several other external factors, like changing
lighting in a scene, color variations for different instances, partial or
full occlusions, image resolution due to the distance between the
subject and recording camera, and background clutter (Fig. 1.1 and
Fig. 1.2). In addition, as shown in Fig. 1.2, there is also a certain
degree of intra-class similarity among several action categories.

Similarly, dynamic natural scene classification is an important
challenge in the area of automated video understanding. The ability

1

CHAPTER 1. INTRODUCTION 2

Figure 1.1: Some real world actions in a video to recognize.

of distinguishing scene is of great interest to video surveillance, robot
navigation, video summarization, video segmentation, etc. since it
provides hints about the presence of an action, surface, or objects.
For example, a forest scene probably contains trees and may in-
clude any animal or bird, whereas, a scene from a street mostly
contains cars or pedestrians etc. [2]. Similarly, an object, action,
their relation, and presence helps to distinguish a specific scene. In
a short recorded clip, a set of dynamic patterns and their spatial
layout describe a dynamic scene. As an example, a beach scene
might be considered by the combination of slowly moving clouds at
the top, mid-scene water waves move forward and than backwash,
and a foreground of static sandy texture [2, 3, 4]. Fig. 1.3 shows
some of the scenes taken from a dynamic scene recognition dataset
[5] with camera induced motion. Currently, there is strong interest
in spatio-temporal analysis at various levels of complexity, ranging
from optical flow and dynamic texture analysis to high-level analysis
in terms of scenes of particular events in a video. To deal with these
problems, mainly two type of techniques are adopted, i.e. hand-
crafted descriptors or learned features in combination with a specific

CHAPTER 1. INTRODUCTION 3

Figure 1.2: Sample Images from KTH Dataset

classifier.
Handcrafted descriptors, such as HoF or HoG computed on STIP

[6], proved to be very effective for human action recognition but not
for dynamic scenes. Similarly, combination of HOF+GIST or MSOE
[3, 2] or other descriptors shows good result in scene recognition but
not for action. Incorporating temporal information usually gets bet-
ter performance [7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19], achiev-
ing 90+% accuracy on specific datasets. However, in real-world sce-
narios represented by large scale datasets [12] with variation in pose,
occlusions, illumination changes and their interactions with objects
or other subjects in the video, the effectiveness of conventional mod-
els significantly degrades.

In the last years, neural network based methods have been de-
veloped by going deeper for learning more discriminative and varied
features for action recognition [20, 21, 22, 13, 12] and scene recogni-
tion [23, 24]. Most of these models are based on the Convolutional
neural net (CNN) introduced by Y. LeCun et al. [25] in end of 80’s.

CNN revealed excellent performance at various tasks in 90’s such
as hand-written digit classification [25]. Similarly, later it performed
well for traffic sign boards recognition [26, 27]. But after a long

CHAPTER 1. INTRODUCTION 4

Figure 1.3: Samples images from MaryLand dataset. First Row from left to right
(Avalanche, Iceberg Collapse, Waterfall), Second Row from left to right
(Fountain, Boiling Water, Chaotic Traffic)

struggle, G. Hinton et al. reintroduced CNN with recent resurgence
of neural networks known as Alex ConvNet a deep CNN model [12].

The newly proposed deep neural network proved to be an opera-
tive key for mining high level features from the input data by winning
ImageNet-2012 classification competition. Since than, several works
have shown extraordinary performance, and error on ILSVRC-12 is
now reduced to 4.7% [28] which is considered better than human
accuracy on ILSVRC-12. This performance is brought by several
factors; availability of labeled large data i.e. 1.2 million images in
ILSVRC-2012 [29], introduction and availability of powerful GPU’s
and their implementation in parallel programming structure [12],
and some new activation functions and regularization techniques
that avoids over fitting and local minima problem [12, 28]. More
recently, some deep neural architectures are introduced to handle
action/scene recognition. As instance, the 3D-convolutional neural
network (3DCNN) [13] model is introduced for action recognition in
surveillance videos; with the help of its 3D kernel not only spatial

CHAPTER 1. INTRODUCTION 5

but also temporal features are captured.
Anyway, this inspiring progress is still limited in understanding

the internal and external operation and behavior of these complex
models. How they attain such good performance is still a ques-
tion mark. Is it the model architecture width and depth, number
of parameters, regularization techniques, or availability of data and
technology that made this performance possible? Indeed, without a
fully understanding of how one can design an architecture, achieving
better results on more challenging tasks is reduced to a hit-and-trial
concept.

Figure 1.4: Visual Cortex structure of a Human.

A main drawback in deep architectures is that the number of pa-
rameters is unarguably a substantial issue in applications. Many
researchers are trying to reduce the amount of parameters or solver
size on disk, hence, it is infeasible to be implemented in mobile de-
vices. In this regards, in [30] the authors tried to reduce the number

CHAPTER 1. INTRODUCTION 6

of parameters by avoiding fully connected layers (as majority of pa-
rameters are in those layers). Sparsity reduction complex method-
ologies are used in [31] for refining the trained models, or by learning
connections layer wise instead of weights and then retraining the net-
work [30]. On the other hand, these models also violate biological
concepts, e.g. rather than decreasing ambiguity, it increases it by
increasing the number of maps and parameters.

Literature review on biological studies showed that biological neu-
ral network works in pyramid structure [32, 11, 33]. Visual processing
is done in stages where each area performs a transformation on its in-
puts and invariance is built gradually across many successive step as
can be seen in Fig. 1.4 [34, 35]. The image passes from retina to lat-
eral geniculate nucleaus (LGN) and reaches the visual cortex divided
in different layers. Through these layers, a decision is taken about
what the object, person, or action is seen at a specific time [32]. An
in depth structure is shown in Fig. 1.5, that shows how a signal path
inside a brain of a macaque monkey passes through layers [35]. At
each layer, level of abstraction increases as the signals are propagated
from the retina to the different regions of the brain. For example,
majority of the connections from the LGN go directly to the primary
visual cortex. In the primary visual cortex (PVC), simple cortical
cells are the first neurons to receive signals which detects lines at dif-
ferent angles from horizontal to vertical direction, whereas complex
cortical cells detect motion. At the end, hyper-complex pyramidal
cells detect specific bars with specific length and motion. All con-
nections are further transferred to more complex region of brain to
detect complex patterns. Literature review demonstrated that some
of these neurons are particular in detection of basic shapes like trian-
gles, squares or circles, while other neurons (grandmother cells) are
activated when visualizing faces or complex objects.

Pyramids at their simplest are like stack of filtered images with
exponentially reduction in their dimensions. Pyramidal structure is
natural, compact, and an efficient technique for refinement, learning,

CHAPTER 1. INTRODUCTION 7

and adaptation of high level features in an algorithm. Several models
have been proposed based on the concept of pyramids, e.g. Neocog-
nitron, early LENET, Pyramidal neural network, spatial pyramids,
etc. [33, 25, 14, 36]. The term pyramid in deep learning is be-
ing used several times. However in all previous works, it is used
in a very limited scenario, e.g. either in one layer like the Spatial
Pyramid Matching (SPM) [36] for Pool layer or in last Conv layer.
Recently, the model in [37] adopts pyramid structure in its last Conv
layer of CNN for face recognition on LFW dataset, achieving 97.5%
accuracy. P. Wang et al [38] applied temporal pyramid pooling to
enhance and use the temporal structure of videos just like spatial
pyramids in [68] where the model incorporated weak spatial infor-
mation of local features. This pyramidal temporal pooling method
showed better results than state-of-the-art two-stream model [39] on
HMDB1 dataset. The aim of the thesis is to use, analyze, under-
stand, and emphasize the impact of pyramidal structures in deep
learning for actions, dynamic scenes, digits and objects recognition.

CHAPTER 1. INTRODUCTION 8

Contribution:
In this thesis, mainly a deep learning architecture is proposed to
handle both spatial and temporal information at the same time. It
is based on a new 3D kernel method and strictly following biological
plausible pyramidal structure. The inspiration to propose a 3D struc-
ture for strictly pyramidal neural network is taken from two models,
i.e. 3DCNN and PyraNet. We adopted dominant characteristics of
both the models to examine the power of a biological structure in
DL approaches.

We divide our thesis in three parts. The first part is propos-
ing a new strictly pyramidal model 3DPyraNet with new weight-
ing scheme for action/dynamic scene recognition from videos. Sec-
ondly, a spatio-temporal feature learning approach using 3DPyraNet
in combination with a linear classifier is proposed. The third mod-
ule applies pyramidal structure to deep CNN architectures for better
understanding of its behavior. Some of the well-known datasets for
action and dynamic scene recognition are used to assess power of our
proposed models, weighting scheme, and the pyramidal architecture.

CHAPTER 1. INTRODUCTION 9

More in detail, the parts are organized as follows:
Part I:

• in chapter 2, we describe early neural networks since perceptron
till Alex ConvNet, and specifically their connection scheme, net-
work structure, activation functions, weight update rules, super-
vised training, training protocols, error measures, weight initial-
ization, regularization, early stopping , dropout, weight sharing
etc. This includes models like PyraNet, IPyraNet, CNN, Con-
vNet, GoogleNet, 3DCNN, etc.

Part II:

• in chapter 3, we combined deep architecture 3DCNN and PyraNet
approach to design the proposed model 3DpyraNet. Its motiva-
tion, background, weighting scheme, structure, and architecture
are discussed.

• in chapter 4, we proposed an enhanced version of 3DPyraNet,
named 3DPyraNet-F, capable to learn spatio-temporal features.
Its motivation, background, and architecture are discussed. We
show how with the 3DPyraNet-F learned features, a simple lin-
ear classifier can outperform other state-of-the-art models.

Part III:

• in chapter 5, we analyze the impact of imposing pyramidal struc-
ture on CNN while retaining actual performance as well as re-
ducing the parameter number.

• in chapter 6, we summarize our contributions and give advice
about possible future research directions.

CHAPTER 1. INTRODUCTION 10

Figure 1.5: Macqake Monkey Brain Deep structure for decision making.

Chapter 2
Related Work

This chapter is divided in four main sections. In the first part, we
describe an insight of action/scene recognition. A short review is
given on the state-of-the-art work being done for enhancing AR and
DSR from videos in the traditional CV and DL. The second portion
first discusses early ML architectures being used since perceptron.
It is followed by a detailed background related to pyramidal neural
networks (PNN) and its key aspects because they are our main focus
in this work. Pyramidal structure is used for optimizing the code
and enhancing the performance. In the third section of this chapter,
we discuss state-of-the-art CNN along with few recent very deep
flavors of CNN for object recognition and for learning spatiotemporal
features for (AR/DSR), e.g. AlexNet, 3DCNN, C3D network etc.
Finally, the last part compares and visualize CNN and PyraNet.

The description helps in understanding a CNN architecture for its
better modeling and designing of a new architecture. It also helps
in proposing a new architecture by studying and keeping in mind
the limitations of CNN and the advantages of PyraNet. One of the
main concept we learn from PyraNet is adopting its pure pyramidal
structure in deep networks. ’Strict/Pure’ mean reducing/refining
feature maps and their size as the network goes deeper. The PyraNet
is explained in detail in Sec. 2.2.5 because we are extending it to 3D
(i.e. 3DPyraNet) and imposing its idea on CNN to propose strictly

11

CHAPTER 2. RELATED WORK 12

pyramidal CNN (i.e. Spyr CNN) models.

2.1 Action and Dynamic Scene Recognition

In the following sub-sections, we give a short overview of hand-crafted
and DL approaches being proposed for AR and DSR.

2.1.1 Action Recognition (AR)

AR is one of the challenging research area of CV and ML. Two
types of approaches are adopted to tackle this problem, i.e. Hand-
crafted feature extraction approach and features learning approach.
In the next subsection, we briefly discuss some of the state-of-the-art
hand-crafted feature descriptor/extraction approaches for AR. Few
of the state-of-the-art feature learning approaches are discussed later
in Sec. 2.1.1.2.

2.1.1.1 Hand-Crafted Features for AR

Researchers trust on local hand-crafted features due to their perfor-
mance and real time processing speed for AR. They combine their
spatial and temporal information for optimal performance. From
several years, low level features are heavily used with much suc-
cess in AR, e.g. spatio-temporal interest points (STIP) model that
combines temporal Gabor filter and a spatial Gaussian filter in or-
der to extract spatiotemporal key points. This technique is further
combined with different descriptors to propose other model such as
Harris3D by Laptev et. al. [40]. Their results are still comparable
to many state-of-the-art techniques in some databases. Similarly,
Cuboid by Dollar et al, 3D-Hessian, Dense sampling, Spatio-temoral
regularity based features (STRF) with combination of HOG/HOF,
HOG3D, SURF, Extended SURF, and MoSIFT as feature descrip-
tors show good result for AR.

CHAPTER 2. RELATED WORK 13

Spatiotemporal features are most favorable when foreground seg-
mentation and tracking are not possible in pre-processing step due
to its complexity and large number of frames/videos, e.g. UCF101
dataset [41]. However, according to work done in [42], it is time con-
suming and not favorable for real-time applications as it takes about
0.9 FPS to 4.6 FPS. A key drawback of local feature based tech-
niques is that the sparse representation such as bag-of-visual-words
(BoVW) abandons geometric associations of the features and there-
fore they are less discriminative. In addition, hard-assignment quan-
tization during the codebook creation for BoVW, and later clustered
by K-means algorithm, also makes the sparse features less discrimi-
native.

Chindler et al. [43] propose a system for human action recognition
of a single activity in a video sequence such as walking or jumping. It
uses the form features and motion features for feature extraction. A
SVM classifier is used to classify both datasets. The main objective
of this work is to identify that a short snippets having only 1-7 frames
are enough to recognize basic action in a video. The model shows
good performance on WEIZMANN and KTH datasets. Ullah et al.
[44] propose a method of classifying human action using the stan-
dard Bag of features (BoF) in realistic videos. They use segments of
videos rather than whole video to extract region level local features
using existing techniques and classifying them using a multi-channel
SVM. The Hollywood-2 action dataset is used for experiments. The
results significantly improved as compare to state of the art tech-
niques. Song et al. [45] focus to elucidate the intra-class variations
of human actions and multiple heterogeneous feature representation
of videos. Their localized multiple kernel learning (L MKL) method
use to resolve the issues in realistic human AR. The experiments
are evaluated on Hollywood-2 and YouTube datasets. The L MKL
achieves the best result and outperformed existing approaches.

Recently, Song et al. [46] present an approach that they termed
as the trajectory of surface patch (ToSP) to relate the variations of

CHAPTER 2. RELATED WORK 14

surface patches on the human body over time. The variety of local
patches are clutched using ToSP pipeline. The Body Surface Context
(BSC) uses as a feature extractor forms ToSP segments. The NJUST
RGB-D [47] and MSRDailyActivity3D [48] public datasets are used
for experiments. The kNN and SVM classifies the testing set and
achieves satisfactory results as compared to existing approaches like
depth features and trajectory based features.

Zhang et al. [49] evaluate spatial-temporal pyramid sparse coding
(STPSC) approach for human AR. The feature trajectory is used for
feature extraction and sparse coding is utilized to calculate paradigm
dictionary in-order to attain the lower reconstruction errors. The
KTH and Hollywood human activities datasets are used for exper-
imentation. The non-linear SVM classifier is used for evaluation of
dataset that achieves higher result compare to state-of-the-art tech-
niques.

A human action can be observed as combination of consecutive
silhouettes over time, where each silhouette registers a pose of this
action at a specific instant. Davis et al. [50] reveale after their
experiments that a human action can be correctly classified even
when it is projected onto a single frame by incorporating partial
time element. In [51], human actions are treated via silhouettes as
three-dimensional shapes and the Poisson equation properties are
adopted to obtain space-time key features. Holistic body shaped
and local temporal motions in a silhouettes are combined to encode
human actions using a quantized dictionary from space-time windows
[52]. L. Shao and X. Chen [53] propose a model in which body
poses are sampled from silhouettes and fed into a bag-of-features
models. Qu et al. [54] consider the changes between frames and
utilize them as transitional features. Sun et al. [55] combine the
local 3D-SIFT descriptors and global Zernike motion energy image
features by integrating the local and global features.

Since last two decades, many researchers are working on AR from
videos. They are successful to achieve even more than 90% of accu-

CHAPTER 2. RELATED WORK 15

racy. All of these models work in limited scenarios, e.g. one model
work only on one dataset or recognition scenario and not on oth-
ers. However, research community wants some powerful automatic
systems that may learn features from input to output by itself. In ad-
dition, it may produce generalization, increase accuracy, and should
be fast enough to be deployed in real world scenarios due to huge
emerging industries. One of the solution for this problem is adopting
a DL approach for AR.

2.1.1.2 Deep Learned approach for AR

The key focus of this work is NN based features which is explic-
itly discussed in the remaining part of this section. Nowadays, as
a standard biologically inspired technique, DL is one ML algorithm
that tries to learn high-level perception of data using hierarchical
structures. In comparison to traditional hand-crafted features, DL
achieves more intellectual learning and contains hierarchical feature
extraction layers that comprise much more trainable weight param-
eters than shallow architectures, e.g. kernel machines [56]. Previous
models operate on top of hand-crafted action features, e.g. [57, 20],
whereas most recent methods proposed end-to-end AR frameworks
from the pixel-level to classifying them in respective action category.

The foremost natural step to learn action from videos is to con-
sider each frame as an input to a system. Where a supervised DL
algorithm is applied on each frame to extract action features at
the frame-level, e.g. applying a 2D deep CNN on individual frame
[58, 24]. However, this technique does not result in optimal perfor-
mance. Therefore, some works tried to learn action from the trans-
formation of frames in an unsupervised manner at first step and later
at the final steps they learn the action features in a supervised man-
ner. In this regards, Taylor et al. [20] proposed a deep multi-stage
model based on convolutional gated Restricted Boltzmann Machine
(ConvGRBM). Where, ConvGRBM uses 2D convolution to extracts
motion-sensitive features from every neighboring frame pairs in an

CHAPTER 2. RELATED WORK 16

unsupervised manner. Whereas, the intermediate layer captures the
spatio-temporal cues by 3D convolution to learn spatio-temporal fil-
ters, followed by a normalization layer, an average spatial pooling
layer and an additional max pooling layer that perform pooling in the
temporal dimension. Finally, the action representations can be ob-
tained by the fully-connected layers. These upper layers are trained
using traditional back-propagation algorithm. B. Chen et al. [21]
propose a similar but generative unsupervised model known as space-
time deep belief networks (ST-DBN). The key idea of this model is
to use alternating layers of spatial and temporal convolutional RBM
(CRBM) to extract long range dependencies from spatial and tem-
poral domain. It also uses weight sharing across all CRBM in a layer
and measures invariance at each layer for various transformations of
the input. The model takes a clip as input and shows superior per-
formance for AR in comparison to frame based models. Also, Le et
al. [22] use a clip as input to learn features using their unsupervised
model. However, they convert the frames using independent sub-
space algorithm [59] into a feature vector. The network is built by
copying the learned network and pasting it to different parts of the
input data. Outputs are than treated as the inputs to a new ISA
network. PCA is used to reduce the dimensionality of the feature
vector. The reduced set of features from both layers are combined
prior to classification.

M. Baccouche et al. [60] propose a model that uses CNN and
RNN. At first step, CNN is converted to 3D form that learn spatio-
temporal features from raw gray input frames. Once the network
converge, feature vector from all clips are given to a newer version
(long short term memory (LSTM) network) of RNN to classify the
video in respected category. Similarly, Ji et al. [61, 13] suggest
and empirically shows that in practice it is important to provide the
network with supplementary information (e.g., optical flow) to fa-
cilitate training. Therefore, their propose model takes hard-coded
features (in their case gray image, gradient along x-axis and y-axis,

CHAPTER 2. RELATED WORK 17

and optical flow along x-axis and y-axis). This 3D model outper-
formed 2D frame based counterparts with a huge margin. It uses
3D kernels/filters that are extended along the temporal axis to learn
spatio-temporal features encoded in adjacent frames. Other than
convolution in 3D convolutional layer, pooling and weight-sharing
concept also helps in achieving robustness across scale and spatial
variations. The model works in a supervised manner that use the
back-propagation algorithm to update its network parameters. By
analyzing the learned kernels of a CNN model shows that the initial
layers learn low level features (e.g. edges, or result of Gabor-like fil-
ters) whereas higher layers learn high level features (e.g. body parts
or high level semantics [62]).

These models have given a baseline for AR using DL. More recent
work use the more deeper variants of AlexNet [12] model to propose
their new deep networks. A. Karpathy et al. [24] proposed 4 variants
of AlexNet (but small in spatial input size) by fusing the informa-
tion over temporal dimension through the network in different ways.
These variants include single-frame model that consider each frame
in the video as an input to classify the action. Late-fusion model
include two of single-frame networks each getting input frame that is
13 frames a part from each other while fusing at first fully connected
layer. Early-fusion model is an extension of 3DCNN model, how-
ever, the temporal part is more than 3 rather 10. This primary and
straight connectivity to pixel data permits the network to specifically
detect local motion direction and speed. Whereas, slow-fusion model
is combination of late and early fusion. It fuses temporal information
gradually through out the network such that higher layer get access
to gradually more global information in both spatial and temporal
dimensions. This behaves same as the 3DCNN model but 10 frames
as input clip, temporal part of 4 and stride of 2 results in 4 feature
maps at higher layer. The model is trained in a month over 1 million
youtube videos. This slow-fusion shows the best performance among
the four variants.

CHAPTER 2. RELATED WORK 18

K. Simonyan and A. Zisserman propose a two-stream AlexNet
model [63] with different type of input spatio-temporal input data,
i.e. single frame to one stream and optical flow information to the
second stream. These two stream are fused after softmax layer by
calculating their class score. Based on their experiments, use of opti-
cal flow shows significant improvement over raw input frames despite
small training data. J. Donahue et al. propose a model [64] similar
to model in [60]. This long term recurrent convolutional (LTRC)
network uses a CNN learned feature vector as input to a LSTM.
However, this model is different in two ways, i.e. i) it integrate 2D
CNNs rather than 3D that can be pre-trained on large datasets, ii)
CNN and LSTM are combined into a single model to enable end-to-
end fine-tuning. An additional difference can be the variable length
input frames to the network. This model shows promising results
for action/activity recognition. J. Yue-Hei Ng et al. [65] propose a
similar model, however they follow model in [63] as the base struc-
ture to extract CNN feature vector. This feature vector is given to
a feature aggregation module that perform different type of pooling
or apply LSTM to predict the class predictions for each stream. In
the end, fusion of class scores is being done. This model uses two
CNN architectures, i.e. AlexNet [12] and GoogleNet [66].

D. Tran et al. [23] propose a spatio-temporal feature learning
approach that uses 3D-ConvNets with same number of layers and
network structure as AlexNet. The model outperforms all others
with small convolution kernels of size 3×3×3. The model is trained
with Sports 1million dataset. The learned model is used as a fea-
ture extractor. The extracted features are called C3D features that
outperformed all other methods on 4 different video analysis tasks
with a simple linear SVM. However, this model does not show its
multi-class classification performance.

CHAPTER 2. RELATED WORK 19

2.1.2 Dynamic Scene Recognition (DSR)

A ’scene’ represent a place where an action or event take place. How-
ever, in comparison to scene recognition from still images where each
class label is based only on the spatial properties, dynamic scene clas-
sification/recognition/understanding tries to categorize videos into
different classes whose semantic labels are derived from the events
happening in the scene. DSR is an important task in the area of
automated image understanding. The capability of a system to dis-
tinguish dynamic scenes is very beneficial, as it can help in providing
priors for the presence of an action and objects, as well as spatial
location and size [2, 67]. A serious challenge for dynamic scene un-
derstanding results due to the wide range of naturally occurring phe-
nomena. These phenomenas must be encompassed.

Scene understanding has widely been researched from still im-
ages due to their impact on action recognition [68]. Several datasets
have been collected to learn indoor and outdoor scenes, e.g. SUN
Database [69], Places Dataset [70], Indoor Scene Dataset [71], etc.
It involves classifying an image into one of the several given classes.
Several CV techniques focus on finding appropriate spatial feature
descriptors for a given image. However, as previously mentioned,
DSR/DSC /DSU tries to categorize videos into different classes based
on the semantic labels derived from the events happening in the scene
with the passage of time, e.g. the dynamic scenes like ’avalanche’ is
given its class label based on the breaking, falling down, and move-
ment of ice, and not just based on the spatial attributes of the scene
[2, 67]. Therefore, temporal part plays an important role in this re-
gards. In the coming subsections, we explain briefly some of the main
traditional hand-crafted and deep learning approaches for DSR. In
the text we may use DSC, DSR, or DSU interchangeably.

CHAPTER 2. RELATED WORK 20

2.1.2.1 Hand-Crafted Features for DSR

This section describes few of the main contributions for improving
DSR by using hand-crafted local and global features. M. Marszalek
et al. [68] start exploiting DSR for improving human AR in videos.
Their model for scenes and actions is based on the bag-of-features
frame-work in combination with SVM -based classifier. They use 2D
and 3D-Harris detector as well as HoF, HoG, and SIFT descriptors
for extraction of features. This work highlighted the importance of
DSU and became the base.

N. Shroff et al. [5] present one of the most challenging dataset
known as ’MaryLand-in-the-Wild’. They propose this dataset based
on the idea that dynamic attributes can be augmented with spa-
tial attributes of a scene for semantically meaningful classification
of a dynamic scene. In addition, one of the main difficulty is the
existence of camera induced motion in the videos. They propose
Chaos features where each feature is the resultant of certain other
features. It is based on the Chaos theory which states that every
subsequent point of a given measurement is the result of an entan-
gled combination of influences from all other system variables [72].
Their combination of static and dynamic Chaos features with linear
SVM outperformed GIST, Bag-of-words, Mean GIST, and dynamic
Chaos.

K. G. Derpanis et al. [2] collect a new dataset called ’YUPENN’
dataset. They experiment to find the impact of multiscale orientation
measurements on scene classification by systematically evaluating
spatial appearance, temporal dynamics and joint spatial appearance
and dynamics. Their spatiotemporal oriented energy features (SOE)
based on the Gaussian filters in combination to nearest neighbor
(NN) classifier shows good result for spatial, temporal and spatio-
temporal features for their stabilized ’YUPENN’ dataset. However,
in case of spatio-temporal features of MaryLand-in-the-Wild dataset,
their features have slightly bad result in comparison to Chaos+GIST

CHAPTER 2. RELATED WORK 21

and HOF+GIST.
C. Feichtenhofer et al. [18] propose a spacetime descriptor that ex-

ploits the corresponding nature of spatial and temporal information,
as inspired by prior work on the role of directional features in scene
classification. It uses a random forest classifier to learn multi-class
categorization of the features. In addition, each video is processed
in temporal slices with scale matched favorably to scene dynamics
over camera motion. This slicing helps in temporal alignment to
be handled as latent information in the classifier and for proficient
incremental processing. This model outperforms Chaos+GIST and
HOF+GIST as well as SOE on both ’YUPENN’ and ’MaryLand’
datasets.

In continuation of their work on DSR, C. Feichtenhofer et al. [73]
propose a model that extracts spatiotemporal oriented primitive fea-
tures from a temporal subset of the input video. It uses 3D Gaussian
third derivative filters as feature descriptor. Than features are en-
coded into a mid-level representation learned for the task and also
steered to extract dynamic pooling energies. It uses a feature vec-
tor (FV), improve feature vector (IFV), local linear coding (LLC),
and vector quantization (VC) technique for coding. In the end, the
encoded features are pooled via a novel dynamic spacetime pyramid
that adapts to the temporal image structure, as guided by the pooling
energies. The codebook entries for VQ and LLC are quantized and
trained using K-means algorithm. Whereas, in case of FV coding, a
Gaussian mixture model (GMM) is used. The pooled encodings are
concatenated into vectors that work as the final feature vector for on-
line recognition classified by a linear SVM classifier. The model with
IFV shows 10% better result than the previous models (HOF+GIST,
Chaos+GIST, SOE, SFA, CSO) on both YUPENN and MaryLand
datasets. Recently, in [67], they slightly modify their previous work
that outperformed even C3D a deep learning approach. In their
previous work on DSR, simple color histograms are used to cap-
ture chromatic information. Whereas, in this approach the model

CHAPTER 2. RELATED WORK 22

incorporates and shows improved performance when moving from
histogram to mean and variance based color representations.

2.1.2.2 Deep Learning for DSR

DL has been many times used for scene recognition from still images.
However, very little work has been done for dynamic scene recogni-
tion using DL. As previously discussed in Sec. 2.1.1.2, D. Tran et al.
[23] propose a model that learn spatiotemporal features from videos
using 3D CNN. In which they train a model with Sports 1Million
dataset, and than use that trained model to extract features at fc6
layer from other datasets. These fc6 layer activations are averaged
to form a 4096-dim video descriptor. L2-normalization is applied on
that feature vector. These normalized feature vectors are called C3D
features. They apply the trained network on YUPENN and Mary-
Land dataset. Its C3D features are classified with a linear SVM that
shows better result than many traditional hand-crafted approaches
as well as ImageNet architecture.

Recently, A. Gangopadhyaya et al. [74] propose a model that an-
alyze the performance of statistical aggregation (SA) techniques on
various pre-trained CNN models to address DSR. It works by ex-
tracting CNN activation features for a number of frames in a video
and then use an aggregation scheme in order to find robust feature
descriptor for each video. A 4096 dimensional vector is extracted
from each frame which contains rich spatial information and repre-
sents a single frame in the given video. All of these feature vectors
are combined in one to capture the temporal statistics of the spatial
features. It is done to induce a certain degree of temporal invariance
and extract temporally un-ordered characteristics. They consider
two strategies to aggregate these spatial descriptors temporally, i.e.
statistical aggregation and vector of locally aggregated descriptors
(VLAD). In statistical aggregation, they used mean, standard devi-
ation, skewness, kurtosis, and Max. Whereas, VLAD is the popular
vertical pooling strategy developed after bag-of-words feature en-

CHAPTER 2. RELATED WORK 23

coding. In VLAD the features are classified by a linear SVM in the
end. They have 3 pretrained networks, i.e. i) trained with AlexNet
(1000 categories), ii) with Places Dataset (having 205 scene cate-
gories), iii) and Hybrid network (trained with combination of 205
Places dataset categories and 978 object categories from ILSVRC12
dataset). These trained networks are used to extract features from
YUPENN and MaryLand datasets. These fc6 or fc7 layers features
for certain number of frames are chosen from the video. The final
feature vector for each video is calculated by performing temporal
aggregation using statistical moments, max pooling or vectorial pool-
ing. The feature vector is given to a linear SVM to classify each video
based on one-vs-all classification criteria. Their approach resulted in
optimal result for both YUPENN and MaryLand datasets.

Based on the literature review, we have concluded that the 3D
structure in deep models such as 3DCNN and C3D have great im-
pact on spatiotemporal feature learning. This 3D structure give a
generalization power to the models. Therefore, our work is an inspi-
ration of these models. We try to propose an architecture that may
learn features from input up to the output without incorporating any
sophisticated pre-processing steps.

2.2 History of Pyramidal Neural Networks (PNN)

In NNs, parameter learning algorithm or model is solely not im-
portant. Its combination with appropriate prior knowledge of the
architecture and connections play an important role for reducing the
number of learning parameters, network complexity and execution
time. However, sometime question of accuracy is not raised while
comparing networks with fewer parameters vs. more parameters.
Excessive and redundant number of features does affect the perfor-
mance of a network. Feature reduction/selection techniques like PCA
[75], LDA [76], and ICA [77], etc. are commonly used to select most
discriminative features at an extra cost. However, image pyramids

CHAPTER 2. RELATED WORK 24

(IP) can do that role more efficiently than the statistical tools. Both
IPs and NNs have parallel topology.

IPs have shown to be an effective and discriminative data process-
ing structure for images, which reduces redundant and non-discriminative
data exponentially. A simple IP consists of several levels of filtered
and sampled images stacked over each other containing original im-
age at the bottom followed by next bigger filtered image and so on.
The filtering can be linear or nonlinear, e.g. Gaussian or Max etc.
depending on the image and the scenario of the problem. This struc-
ture helps algorithms to reduce their time complexity from O(logn2)
to O(logn). The content and behavior of IPs, i.e. cell, level, neigh-
borhood, and processing performed by those cells can be considered
an equivalent terminology in NN as neuron, layer, receptive field,
activation functions, respectively. These make them similar and fa-
vorable to early perceptron’s and NNs. Especially, the structure,
i.e. regular structure or irregular structure gave an intuition for the
receptive field concept in later NN models, i.e. Neocognitron, CNN
etc. [11, 78, 33].

According to H. Bischof and W. G. Kropatsch [79], any pyramid
can be stored in graphs with ′n′ neighborhood graphs and ′n−1′ ver-
tical graphs, whereas in case of regular pyramids one doesn’t need to
save all graphs. Based on these understandings one can convert and
represent any regular pyramid to a NN model; however the problem
of shift variance will remain as it is. Further, they describe how one
can interchangeably use these concepts in order to propose further
PNN. They propose few of the early supervised and unsupervised
PNN, e.g. supervised (2× 2/2 curve pyramid, neural network pyra-
mid) and unsupervised distributed curve pyramid. Despite similar
structure as NN, the question remains for selecting suitable learning
algorithms for the pyramidal architectures in order to tackle local
minima problem as well as faster convergence. Besides mostly used
supervised learning techniques, a more suitable learning algorithm
could be an unsupervised to extract the hidden capabilities of PNN

CHAPTER 2. RELATED WORK 25

by tackling slow learning and bad scaling characteristics. Over the
passage of last four decades, several models are presented. Some of
the famous PNNs are given below, which later somehow became the
base for most DL architectures.

Starting from the base idea of 1960’s, Hubel and Wiesel divided
brain cells of the visual cortex region in three classes, i.e. simple,
complex and hyper-complex cells. In their hypothesis, visual infor-
mation use to be processed hierarchically from simple cells to com-
plex cells and complex cells to lower-order hyper-complex cells and
further to high-order hyper-complex cells as shown in Fig. 2.1. In
the coming sections we discuss some of the early PNN as well as
PyraNet.

2.2.1 Neocognitron

Hubel and Wiesel further put forward that relation between lower-
order complex cells to higher-order hyper-complex cells seems sim-
ilar to the relation between simple cells to complex cells. This is
the idea that becomes the seed for Neocognitron model proposed
by Fukushima [33]. However, now neurophysiologists are not giv-
ing any importance to the idea of classifying hypercomplex cells into
lower-order and higher-order. Similarly, the early Neocognitron is
composed of two major cells, i.e. simple and complex in short S-cells
and C-cells cascaded after each other which does feature extraction
from low level like edges to high level like higher-order features spe-
cific to patterns, are extracted and then finally classified in object
categories.

This network is an iterative, self-organizing and competitive learn-
ing model, where all output units responds to the input image in re-
sponse of any activity. The neuron with maximum value is selected
and a strengthening signal is sent down to the receptive field neurons
in the layer below, whereas other cells decline. This strengthens only
those signals which have specific meaning, i.e. discriminative features
of an object while neglecting the rest. Further, after recognizing one

CHAPTER 2. RELATED WORK 26

Figure 2.1: Fukushima Neocognitron, where on top of each layer its relation is shown
with Hubel and Wiesel Classical hypothesis.

pattern, the system automatically transfers towards another object
and tries to learn its pattern by interrupting the previously ’on’ sig-
nals by a decay term that causes a gradual decrease in their activities
letting the previously suppressed cells to win in order to learn any
other pattern in the image. In this way, for the first time kernels learn
the shape of fully or partially occluded objects through ensembles of
non-connected regions of attentions in input patterns. However, it is
quite complex for the systems at that time and needed a lot of time
for convergence [11, 33].

The same model is still under research for further enhancement
with modification in network structures and learning algorithms.
However, its proper pyramidal structure has been changed due to
changing number of maps in each layer. Fukushima proposes a newer
version of Neocognitron [80], in which several new concepts and layers
are introduced for improvement of recognition rate. These contribu-
tions includes: a) Inhibition effect from surrounding neurons between
S-cells to C-cells, b) new layer for extracting contrast from the input
maps followed by edge detection layer, c) modification in learning
strategies like 1) self-organizing of line-extraction cells, 2) unsuper-
vised learning in the middle layers with usage of thresholding with
larger values for extracting edges, 3) supervised competitive learn-

CHAPTER 2. RELATED WORK 27

ing at the final layer where the threshold value is kept low based on
their previous experience that results in more training but less recog-
nition time due to less redundant reference vectors inside the class
borders, d) staggered arrangement of S-cells and C-cells for removal
of accessory circuits present in the previous versions that results in
simplification of the network architecture as well as improvement of
recognition rate. However, the model has the deficiency that one
has to check performance for different combination of prior learned
threshold values and their combination.

Recently, K. Fukushima proposes a newer version of Neocognitron
in which he proposed ’add-if-silent’ learning rule [81]. Based on which
if all S-Cells in a receptive field are silent despite of non-zero training
stimulus, than a new S-Cell generates and adds to the network that
learns the presented training pattern. If there exist more silent re-
ceptive fields, the same procedure repeats until the whole area cover
with non-silent S-Cells. Further, two other learning rules are used,
i.e. ’winner-take-all’ and ’winner-kill-loser’ rule. The advantage of
using ’add-if-silent’ and ’winner-kill-loser’ rule is not only that it
achieve higher recognition rate compare to other like ’winner-take-
all’ rule, but to stabilize the network by making it monotonically
increasing the number of cell-planes and stopping it when the ref-
erence vectors cover the multidimensional feature space. This also
reduces the computational cost of Neocognitron. In addition, as in
many neural networks and previous versions of Neocognitron, aver-
aging is used at C-Cells, which provide spatially blurred effect in the
succeeding cell-planes that is also called spatial pooling. This pro-
vide smoothing affect to additive random noise present at S-Cells.
Instead of averaging, this time Root-Mean-Square is used which is
not very different than averaging, but it increase the recognition rate
by providing reduction in fluctuation from response of C-cells caused
by spatial shift of a stimulus feature. At highest layer they show
that interpolating-vector can greatly increase the recognition rate in
combination to the above discussed work.

CHAPTER 2. RELATED WORK 28

The reason to discuss Neocognitron models is to highlight and to
give respect to Fukishima as initiator of many ideas being used in
todays NN.

2.2.2 Honavar and Uhr Model

V. Honavar and L. Uhr in 1989 strictly followed the idea of Hubel and
Weasel visual cortex architecture in their pyramidal network [11, 78].
This network combined the idea of pyramid structure with MLP
architecture and back-propagation (BP) learning rule. In addition,
they introduce prior knowledge architecture by specifying a receptive
field instead of fully connected neurons. This receptive field concept
reduced the spatial resolution exponentially. Whereas, the learning
algorithm repeatedly updates weights to correct the output of each
neuron.

A translated version of the input image or lower layer map is
cascaded over current layer map, in which the pattern is at a distance
of eight pixels from the image centre. This network is composed of
six layers and is dependent on image size. The larger the image,
larger the number of hidden layers and number of weights. However,
it is tested on a very small and limited dataset. Than the idea of
CNN came with weight sharing concept that is discussed in later
section.

2.2.3 McQuoid Model

McQuoids [82] in 1993 propose a four layer PNN to recognize even
multiple digits at a time based on the idea of visual system of our
brain, i.e. retina as input image followed by three neuronal layers.
The first layer results from planes of ensembles, each aligned above
one another, creating a column of ensembles consisting of 5×5 grid of
neurons connected to input image directly using same shared weights.
There is only one column for each input neuron belonging to an input
receptive field of 7 × 7 neurons, connected by shared weights that

CHAPTER 2. RELATED WORK 29

provide translation invariance. The same structure is followed by
second layer with 5 × 5 receptive field, however, layer 3 is made of
neurons, one for each class and it worked as a monitor for verifying
the presence of continuous patterns of activation and can be realized
by any algorithm even other than connectionist.

This network for an image of size 24 × 24 and 3 areas consist of
19882 neurons with 948735 links. Online approach for learning is
adapted to recognize the binary images having digits 0-4 and their
combination with impulsive noise but no rotation and translation in-
variance. Its capabilities are highly limited to rotation and transla-
tion invariance. In addition, it also behave as an associative memory
that memories the accomplish task with large number of weights that
can be achieved with less number of associative memories by other
tasks.

2.2.4 Cantoni & Petrosino Model

V. Cantoni and A. Petrosino [11] in 2002 propose a PNN architecture
that is somewhat similar to Honavar et al.[78] but strict compared to
CNN, Neocognitron and some other models. Because the resolution
is reduced continuously at each higher layer and transfer of informa-
tion is refined at each step similar to visual cortex system. Compare
to Honavar et al. the base layers are composed of multi-resolution
analysis of the input image, followed by a structured receptive field
NN approach for classification as shown in Fig. 2.2. One of core idea
is to limit the number of weights up to higher levels instead of using
and learning till the input image. In deeper network, local gradients
in the BP becomes smaller and smaller and finally almost becomes
negligible in the layer closer to the input pixels. Therefore, they used
free parameters for classification only.

The feature map given to this network is extracted by a system in-
spired from the human visual system that recognize things in a scale
independent way, i.e. multi-resolution approach. Multi-resolution
approach at the base preserves the spatial localization and spatial

CHAPTER 2. RELATED WORK 30

Figure 2.2: Cantoni and Petrosino Model.

frequency information because the functions and variables used are
based on local information of the data which reduces the frequency
content with the help of local low pass filtering e.g. Laplacian pyra-
mids in this case. The stopping criteria for reduction of the features
from the input in the multi-resolution analysis is based on the pre-
fixed parameter, i.e. log(M) where ’M’ is less than ’N’, the size of
the input image. But this ’M’ can be kept totally fixed in order to
increase the number of layers in the case of high number of classes
in the input images. This is highly correlated to the information
content of the images provided to the system. The map at layer ’M’
of the Laplacian pyramid is given to the classification stage which
is followed by a structured hidden layer, i.e. a neuron at l + 1 layer

CHAPTER 2. RELATED WORK 31

that is connected to 4× 4 neurons at layer l = m, and then neurons
at layer l + 2 are connected with 2× 2 neurons of layer l + 1.

This structure is invariant to rotation, shift, and noise. But it
is also successful to identify the partially occluded patterns in the
image due to its similarity with visual attention concepts, i.e. scan-
ning mechanism for attaining selective attention. It scans from left
to right and top to bottom until encounter a neuron from the pat-
tern body which they identified by transitioning of the pixel from
white to black, and then setting the receptive field from that neu-
ron. Their results are 4 − 5% better in classification than Hanover
and Uhr’s system at the same dataset of tools and letters having less
parameters.

2.2.5 PyraNet Model

S. L Phung and A. Bouzerdoum [14] propose multilayered architec-
ture inspired by IPs and receptive fields concept of NN for classifi-
cation of visual patterns. Their PNN is named as (PyraNet). It is
quite similar to V. Cantoni and A. Petrosino PNN [11] in pyramidal
structure but the only difference is that PyraNet model in pyramidal
layers learns coefficients of the receptive fields adaptively. Whereas,
in V. Cantoni and A. Petrosino PNN coefficients of the low pass
filters are fixed. However, higher layers are learned.

PyraNet is also similar in structure to CNN. PyraNet and CNN
both follow same BP technique for learning parameters with cross-
entropy loss function. However, this BP technique is modified for
the new weight parameters scheme as shown in coming subsection.
2.2.5.3. Further, it differs from CNN in three main aspects. First,
PyraNet has no pooling layers for reduction of dimensions, rather
the dimensions are reduced by the stride of the kernel at each layer.
Similar reduction procedure has been adopted now in new deep
CNN models [83]. Secondly, it does not perform convolution rather
weighted sum (WS) operation or correlation over the receptive field.
Finally, in weight sharing concept, where CNN has a kernel to fil-

CHAPTER 2. RELATED WORK 32

ter the whole image and may extract low level features like edges.
Whereas, PyraNet is not just limited to low level at a specific posi-
tion, i.e. weights are not in the form of a kernel that slides over the
whole image, rather each output neuron has a local unique kernel
specifically assigned to it. These kernels are based on input neurons
in a receptive field and their corresponding receptive field (weights)
in a weight matrix. This results in unique locally connected kernel
for each output neuron. However, the locally connected kernels in
PyraNet are up to some extent shared for another neuron unlike the
locally connected layers in CNN [84].

PyraNet used five different training methods for optimization and
reduction of error, i.e. three of them are first order optimization tech-
niques (Gradient Descent (GD), Gradient Descent with Momentum
and variable learning rate (GDMV), and Resilient BP (RPROP)),
fourth is Conjugate Gradient (CG) that is in the middle of first and
second order, while fifth is Leveberg-Marquadrt (LM) which is from
the second order methods. They examine the convergence speed
and computational load in order to handle large datasets with these
training algorithms for PyraNet. To compare the speed and load
of different networks, they propose a unit known as gradient descent
epoch time unit (gdeu) where one gdeu is the mean of the time taken
for performing one GD training epoch on a fixed training set and a
fixed number of size for the networks.

2.2.5.1 Architecture

Fig. 2.4 shows basic architecture of a PyraNet. It consists of two
types of several processing layers. At the base, it comprise of 2-
Dimensional pyramidal layers that does dimensionality reduction
and feature extraction. Whereas, on the top, 1-Dimensional fully
connected layers that perform classification of patterns. First 2D-
pyramidal layer is directly extracting features from real input image
that are refined and provide as input map to the higher one or more
consecutive 2D-pyramidal layers. Each neuron at higher layer is the

CHAPTER 2. RELATED WORK 33

output of weighted sum of a neurons (shown in Eq. 2.1) in a re-
ceptive field (set of neurons calculated using Eq. 2.2) at lower layer
with adjacent weight parameters in weight matrix for that layer.
Each neuron is passed through an activation function, e.g. sigmoid
or hyperbolic tangent to produce output map. The output of last
pyramidal layer is connected to fully connected 1-D layers. These can
be further connected to other 1-D layers in case of complex problems.
Whereas, output of last fully connected layer is considered the output
to represent the given input.

2.2.5.2 Weighting Scheme

An important part in popular convolutional deep models is their
weight-sharing concept that give an edge over other NN models. This
property reduces large amount of learning parameters. However,
increases burden on those fewer parameters. Fig. 2.3 shows the
weighting scheme adopted in PyraNet. Each neuron has its own
unique weight. This unique weight scheme results in weight matrix
that have same size as the input image or feature map at lower layer.
And at the time of computation, each output neuron gets a unique
kernel based on calculated receptive field. This behave like position
oriented kernels. These are learned using updated back-propagation
technique and stochastic mini-batch gradient decent approach.

The output of 2D-Neuron in a pyramidal layer is calculated by:

yln(u,v) = fl

 ∑
(i,j)∈Rln

(u,v)

W ln
(i,j) x

ln−1
(i,j) + bln(i,j)

 (2.1)

Where l = 1, 2, 3..Lp and if l = 1 than it represents real input.
Further, Rln

(u,v) is a 2x2 receptive field of neuron (u, v) at level l given
by

Rl
u,v =

{
(i, j) | (u− 1) + 1 ≤ i ≤ (u− 1) + rl;

(v − 1) + 1 ≤ j ≤ (v − 1) + rl ;
(2.2)

CHAPTER 2. RELATED WORK 34

Figure 2.3: PyraNet Kernel Architecture

Figure 2.4: PyraNet Model.

CHAPTER 2. RELATED WORK 35

Size of receptive field is represented by rl, gap and overlap of a kernel
in pyramidal layer is represented by gl and ol, respectively. The gap
factor is calculated by subtracting ol from rl. The output of y

lp
(u,v) of

the last pyramidal layer is rearranged by vectorizing the 2d matrix
in a 1-D matrix by arranging each column after the other in a vector
form as shown in Eq. 2.3. This 1-D vector is given as input to the
upper 1-D fully connected layer.

y
Lp

(u,v) |u = 1, 2, . . . HLp
, v = 1, 2, . . .WLp

− >
{
y
Lp
m |m = 1, 2 . . . NLp

} (2.3)

The last 2-D and 1-D layer are used in same manner like a fully
connected layer of a MLP. To calculate output for each neuron in 1-
D layer, W l

m,n be the synaptic weight from neuron ′m′ in layer ′l−1′,
to neuron ′n′ in layer ′l′. bln represents the bias for neuron ′n′ in the
layer ′l′. The output of this 1-D neuron is given by Eq. 2.4. l = L

represents output layer of the network.

yln = fl

(
Ml−1∑
m=1

W l
m,n y

l−1
m + bln

)
(2.4)

2.2.5.3 Training Model

PyraNet model adoptes two approaches for training that are gener-
ally used. First approach is to use network output directly while in
the second approach they have utilize the posterior probabilities of
class membership. For this reason, they have used mean square error
(MSE) shown in Eq. 2.5 for first approach, and cross-entropy (CE)
as shown in Eq. 2.6 for the second as error function, respectively.

EMSE(w) =
1

K × NL

K∑
k=1

NL∑
n=1

∣∣yL,kn − dkn
∣∣2 (2.5)

ECE (W) = −
K∑
k=1

NL∑
n=1

dkn lnp
k
n (2.6)

CHAPTER 2. RELATED WORK 36

Where dkn represents 1 for selected class otherwise 0 as shown below:

dkn=

{
1 if desired class

0 otherwise

And pkn is a posterior probability in result of applying softmax func-
tion on output.

pkn= exp
(
yL,kn

)
/

NL∑
i=1

exp
(
yL,ki

)
, n= 1, 2, 3 . . .NL (2.7)

It use an updated version of back-propagation technique to update
the weight parameters for the network.
Calculating Error gradients
The weight gradients are updated in two steps. First, it calculate er-
ror sensitives for each neuron at each layer, and then error gradients
that are subtracted from old weights.
Step1 Error Sensitivities:
These error sensitivities are partial derivatives of error at output
layer (calculated with MSE or CE) with respect to weighted sum in-
put. However, there is slight difference between 1D and 2D neurons.
This difference is because of the connection difference at pyramidal
layer and fully connected layer. For 1D layer the error sensitivity is
calculated by Eq. 2.8 and for 2D layer by Eq. 2.9.

δl,kn =
∂E

∂sl,kn
where l > Lp (2.8)

δl,ku,v =
∂E

∂sl,ku,v
where l < Lp (2.9)

The calculation of error sensitivity for output layer, 1D layer and
2D layers is different. Therefore, they calculated it with the help of
given equations. At output layer;

δl,kn =
2

K ∗NL
ekn f

′

L

(
SL,kn

)
where n = 1, 2 . . . NL (2.10)

CHAPTER 2. RELATED WORK 37

Other 1-D layers (Lp < l < L)

δl,kn = f
′

l

(
Sl,kn
) Nl+1∑

m=1

δl+1,k
m W l+1

m,n (2.11)

For last pyramidal layer:- (l = Lp)

(δLp,k
n , n = 1, 2, . . . NLp

)− > δ
Lp,k
u,v (2.12)

where u = 1, 2, . . . HLp
and v = 1, 2, . . .WLp

. While, in pyramidal 2D
layers error sensitivity is calculated by:

∂E

∂Sl,ku,v
= f

′

l

(
Sl,ku,v

) wl+1
u,v ∗

ihigh∑
i=ilow

j=jhigh∑
j=jlow

δl+1,k
i,j

 (2.13)

Where as the ilow, ihigh, jlow and jhigh are calculated by:

ilow =

⌈
u− rl+1

gl+1

⌉
+ 1

ihigh =

⌊
u− 1

gl+1

⌋
+ 1

jlow =

⌈
v − rl+1

gl+1

⌉
+ 1

jhigh =

⌊
v − 1

gl+1

⌋
+ 1

Step2 Error Gradients (Weight and Bias gradients): Now
after calculating error sensitivity for each neuron, the weight gra-
dients are calculated. The error sensitivity associated with specific
input neurons are multiplied and summed to calculate the fractional
value to be subtracted from the previous weights. To calculate error

CHAPTER 2. RELATED WORK 38

gradient for 1D layer (Lp < l < L), Eq. 2.14 is used.

wl
m,n =

∂E

∂wl
m,n

=
K∑
k=1

δl,kn yl−1,k
m (2.14)

where m = 1, 2,Nl−1 , and n = 1, 2,Nl. Now to calculate
bias of those layers it use Eq. 2.15.

bln =
∂E

∂bln
=

K∑
k=1

δl,kn (2.15)

Whereas at pyramidal layers (l ≤ Lp), Eq. 2.16 is utilized for
weight gradients and Eq. 2.17 for calculating bias’s of that layer.

wl,k
i,j =

∂E

∂wl,k
i,j

=
K∑
k=1

{
yl−1,k
i,j ∗

uhigh∑
u=ulow

vhigh∑
v=vlow

δl,ku,v

}
(2.16)

bl,ki,j =
∂E

∂bl,ki,j
=

K∑
k=1

δl,ku,v Where u = 1, 2, . . . Hl and v = 1, 2 . . .Wl

(2.17)

Whereas, the neuron in receptive field of pyramidal layers is calcu-
lated by:

ulow =

⌈
i− rl
gl

⌉
+ 1

uhigh =

⌊
i− 1

gl

⌋
+ 1

vlow =

⌈
j − rl
gl

⌉
+ 1

vhigh =

⌊
j − 1

gl

⌋
+ 1

CHAPTER 2. RELATED WORK 39

2.2.5.4 Experiments & Results

The performance of PyraNet is compared on five networks for speed
and accuracy. Experiments show that GD, GDMV are the slow-
est by having 26900 and 20700 gdeu compared to 65.5, 735.5, and
1035.5 gdeu of LM, CG, and RPROP, respectively. Similarly, the
performances of these train algorithms for varying training epochs
up to 2000 show that RPROP, CG, LM algorithms dominate by
achieving highest classification rates, i.e. 97.3%, 97.2% and 97.5%.
Whereas, GD and GDMV are last by correctly classifying only 96.5%
and 96.6%. However, GD and GDMV need more time to find good
trained parameters and classify accurately. Similarly, they also show
that training a PyraNet with MSE or CE error functions had no
significant difference in performance. PyraNet with RPROP and
CG have acceptable training speed and need less memory. However,
with LM algorithm it is fast in convergence but needs more memory
during execution. PyraNet achieved 96.3% accuracy similar to SVM
for gender recognition and 5% more than CNN with same input size
images of FERET dataset.

2.2.6 I-PyraNet Model

Bruno et al. [85] extended PyraNet by introducing the concept of
inhibitory fields. Inhibitory fields in addition to the receptive fields
can send not only excitatory stimulus but also inhibitory stimulus
to the neurons in the posterior layers. Inhibitory fields concept is
introduced by G. Rizzolti et al. [86], which states that in addition
to receptive field stimulus there exist other stimulus outside the re-
ceptive field which affect the neuron known as inhibitory stimulus
more commonly known as non-classical receptive field. These kinds
of stimulus are found in visual cortex of macaque monkey and have
some influence on decision-making.

The architecture is similar to PyraNet, but the only difference
is the subtraction of the weighted sum of inhibitory field from the

CHAPTER 2. RELATED WORK 40

weighted sum of the receptive field before activation of a neuron. In
pre-processing, it use Gabor filtered images as input to the PyraNet
and applied histogram equalization to achieve better accuracy. The
training is done with same BP algorithm, whereas they used CE
function to minimize the error. I-PyraNet is tested on MIT CBCL
dataset for face detection and compared it with SVM and PyraNet.
I-PyraNet achieves better results than PyraNet, but failed to get
better accuracy than SVM. However, I-PyraNet is 175 times faster
than SVM , which can motivate its use in some applications for future
use.

In [87], I-PyraNet and non-classical receptive field approach is
used for satellite image segmentation. They propose a model for seg-
mentation and classification with receptive field (SCRF). The reason
behind using I-PyraNet is to perform image segmentation and clas-
sification based on not only the value of the pixel, but also by its
neighbor pixels to define a pixel class. The image is divided in two
different sizes of receptive field with overlap, and each sub-image is
classified in class and non-class pixels with the highest probability
that is calculated through supervised classifier, i.e. I-PyraNet. SCRF
shows good results for segmentation compare to k-NN and PyraNet.
From the experiments on segmentation of satellite images for forest
detection, their SCRF with I-PyraNet can achieve error rate from
10% to 2.49% compare to manually segmenting the images, and are
better than other stated in literature in-terms of having less error
rate and processing speed.

Bruno et al. [88] proposed an extension of the same concept, with
slight modification of inhibition of the neuron even at the same layer.
They show that the LIPNet+SCRF not only shows comparable re-
sults to SVM but it consumes less memory by saving less parame-
ters and have better and faster results than SVM if several results
are averaged for the same data. Recently, they introduced a new
model called variable pyramidal neural network with evolutionary
algorithm (VPNN or VPNN-EA) [89]. In this model, rather using

CHAPTER 2. RELATED WORK 41

fixed receptive field, they use variable receptive fields determined
by an evolutionary algorithm. They report better performance for
detecting faces in images than PyraNet and LIPNET.

2.2.7 LCNP Model

R. Uetz and S. Behnke [90] propose a system known as locally-
connected neural pyramid (LCNP) due to having fixed receptive field
with unique connection weights for each neuron. It results in large
amount of free parameters compared to CNN. This model follows
the same idea as [11, 14] for receptive field and having unique con-
nection for each weight like PyraNet [14]. The justification for using
such weights structure given by R. Uetz and S. Behnke is its biologi-
cally motivation, i.e. same connection structure is massively used by
BNN.

Similarly, it does not follow the idea of weight sharing as in CNN
[25]. But it does follow them in two points, increasing the feature
maps as the layer increases and a fixed receptive field with weights
from the lower layer to generate a neuron at upper layer. Their
network consist of at least one map in a layer, however, maps in-
creases as the layers increase, i.e. follows CNN type architecture of
providing many kernels to produce many maps in each layer. Last
output layer is a fully connected layer, where each neuron represents
a class. Supervised learning using ’plain-vanilla’ BP of error is used.
To control the learning, it uses fixed but different learning rate value
for pyramidal layers than the output layer. In addition, LNCP use
the same input layer maps in all layers after subsampling them to
the size of each layer in advance to make them of equal size of their
neighboring maps of the current layer. This is done because lower
layer edge filters provide fine-grained edges compare to high-level
layers that provide coarse-grained edges.

They implemented a parallel version code for PyraNet using GPU
support, which is 82 times faster than CPU implementation. To
evaluate the performance, it is tested on three datasets, i.e. LabelMe,

CHAPTER 2. RELATED WORK 42

MNIST and NORB. They achieve good results for NORB better than
all other state-of-art techniques, i.e. error rate less than 0.05% on
training and 2.87% on testing dataset. However, for MNIST dataset
it is not as better as CNN, i.e. 0.03% for training and 0.76 for testing.
LabelMe is a new dataset that they introduce on which they achieved
3.77% error rate for training and 16.27% for testing.

2.2.8 Conclusion

Although, the techniques described here are not all specifically for
AR, but there are three reasons to explain these old NN techniques.
First, we want to highlight some of those who worked in the start
for providing building blocks of DL concepts. Second, we want to
show the impact of pyramidal architectures on NN and whether it
can be improved further by following strict pyramidal architecture
or not. In the end, as one of the main building blocks in NN is
weight parameter that play vital role in performance, therefore we
have mentioned the weighting scheme proposed in PyraNet.

In early days, most of them tried to reduce weight parameters
due to large number and high time complexity in learning, but it
can result in reduction of accuracy. In addition, fully connected
connections result in huge amount of learning parameters. Training
needs large amount of training data to learn better and avoid over
fitting. Otherwise, this results in less testing accuracy. Weight shar-
ing concept solve some of the previously discussed issues. But what
if one use combination of these two concepts, can it provide some
enhancement, i.e. individual weights for each neuron and receptive
field concept rather than fully connected as in previously discussed
research work [11, 14, 87, 85, 81, 90, 88, 25].

From discussion of previous few papers, a positive sign can be de-
picted for utilizing such architecture for better performances. Nowa-
days, with latest technology and powerful computers, researchers
bypassed being worried for large number of parameters compare to
scenario where cent percent accuracy is more important. Therefore,

CHAPTER 2. RELATED WORK 43

one can observe and further investigate performance of this mid-
dle approach, i.e. individual weights for each neuron at lower level
that can result in different filters for each receptive field similar to
[14, 87, 85, 81, 90, 88, 25], that may provide more absorbing capabili-
ties to weights. The weight parameters will be more than traditional
CNN have but still less than the recent far deeper networks.

The next section describes another most known and usable model
of a pyramidal neural network approach, i.e. CNN. Initially, it not
only have pyramidal structure but also utilizes receptive field concept
more efficiently that helped in reduction of parameters as well as
increasing performance. This model is reborn recently in [12]. In
the next Sec. 2.3, we discuss some of the main models of CNN that
brought revolution in CV and ML.

CHAPTER 2. RELATED WORK 44

2.3 Some Variants of CNN since LENET5

In the era of Neocognitron and Honavar & Uhr systems, Y. Lecun
et al. propose CNN with emphasizes on weight sharing concept
along with the existing idea of receptive fields. This not only re-
duces the complexity and number of weights but also provides the
start of using images as input instead of providing refined extracted
and selected features to the neural systems. Recently G. Hinton
and A. Krizhevsky et al. [12] propose a new CNN model similar
to Lecun LENET5 but with more hidden layers and with few new
amendments. The name ’Deep’ coined due to increasing hidden lay-
ers in CNN. The performance of DL is day by day improving compare
to other state-of-art techniques like BoVW and other CV and ML
techniques.

There are models even before A. Krizhevsky deep ConvNet that
have many hidden layer like some discussed in previous section. Than
what is the reason behind its success? Is it really due to going deeper
by increasing hidden layers, or because of going wider by increasing
kernels and maps? Is it because of pooling? Or is it because of the
increase in labeled training and testing data? Or is it due to powerful
computer and technology? Or due to introducing hybrid networks
that resulted due to combination of new layers like pooling, or steps
like sharing, receptive field, activation functions, normalizations, in-
ceptions, or especially due to GPU? Since last few years enormous
work have been done on CNN and other similar DL models, e.g.
Restricted Boltzman Machine RBM, Recursive NN RNN, Autoen-
coders etc. [91]. However, here we discuss and focus only on those
models that are build on the basis of LENET5 convolutional net-
work, Dropouts, RELU etc., that provides some novelty and great
impact in the area of OR. In coming subsections, we explain few
CNN models.

CHAPTER 2. RELATED WORK 45

2.3.1 LENET5

CNN is introduced by Y. Lecun et al. [25] for character recogni-
tion problem. They introduce the concept of weight sharing and
receptive field in order to reduce the number of parameters in the
network. Its first big success is on hand written digit recognition.
LENET5 implicitly extracts related features to produce a map on
a current layer using shared kernel (weights), applied on the locally
connected area from the previous layers. This work similar to the
pyramid approach and step not only reduces spatial resolution of
the feature map but also provide some shift and distortion invari-
ance along with enhanced edges, corners or endpoints on the output
map. In addition, due to sharing of weights the number of learning
parameters reduces enormously. After several step of convolution
and subsampling, finally the features produced are vectorized and
provided to a fully connected layer for classification using a softmax
logistic regressor.

The topology of the LENET5 contains 8 layers including input
and output, i.e. three convolutional layers where first two are fol-
lowed by subsampling layers that provides translation invariance.
The third one is a special convolution layer fully connected to a
120 neurons that are further connected to another fully connected
84 neurons like a multi-layer perceptron for classification. Finally,
these 84 neurons are computed for output using Euclidian radial ba-
sis function (RBF). For learning the training parameters, BP is used.
However, to speed up the network they adopt stochastic second order
derivative approach of the BP, i.e. Stochastic Diagonal Levenberg
Marquardt Method, where they learn a learning rate value for each
weight parameter instead of hard coded small value for learning rate.
LENET5 recorded about 0.35% error rate just after 19 epochs and
that trained parameters resulted in 0.95% of testing error rate. The
key aspects in this model gave intuition to researchers for utilizing
and modifying CNN for other fields in CV and ML such as Speech,

CHAPTER 2. RELATED WORK 46

medical, biometrics, etc. with slight modification of input maps,
mapping schemes, output neurons, etc.

Figure 2.5: LENET5 Model

2.3.2 AlexNet

Since couple of decades, CNN is focus area of research for Y. Le-
cun and G. Hinton, but in 2012 G. Hinton with his student A.
Krizhevsky proposed a new model [12], i.e. AlexNet for object recog-
nition that revolutionaries CNN and hence coined the word DL.
AlexNet [12] gave rebirth to CNN and shows great results in Ima-
geNet ILSVRC 2011 and 2012 classification benchmark [29]. In their
successful model, the new key factors are: efficient implementation of
distributed powerful GPU based implementation on different layers
of the model that made the training of very large datasets practi-
cal for researchers, introduction of powerful regularization strategies
of dropout, use of a new rectified linear unit instead of traditional
sigmoid and hyperbolic tangent in combination to dropouts, and
availability of large labeled training dataset for supervised training
with the help of softwares like Mechanical TURK, Flicker etc. that

CHAPTER 2. RELATED WORK 47

are used by ImageNet Challenge organizers to provide a very large
labeled dataset for object recognition [29].

AlexNet [12] as shown in Figure 2.6 is a modified version of LENET5
network. Not only this network is deeper than the traditional one,
but wider and more complex as well. They distributed their network
on two separate GPUs in such a way that two maps of layer 2, 4
and 5 interact only with in same GPU, whereas layer 3 is connected
to all maps in layer 2. There are eight abstract layers including in-
put and output but actually first two convolution layers contains one
additional local contrast normalization and overlapped max pooling
layers. Whereas, after last convolution layer there is an overlapped
max-pooling layer followed by the three fully connected layers. The
output of first two fully connected layers are 2× 2048 (2048 for each
GPU). However, last output layer is a fully connected to produce
1000 neurons using softmax function that represents 1000 categories
of ILSVRC 2010 dataset. All convolution and fully connected layers
are activated with ReLU as shown in Eq. 2.18.

y = max(0, x); (2.18)

The network consists of about 60 million parameter having a 10-
bit constraint on mapping from image to label. However, to reduce
over fitting they adopt two strategies, i.e. data augmentation and
dropout. In data augmentation, the training data is being increased
by taking patches from input image. It results an increase in data by
a factor of 2048. Further, the intensities of RGB channels of images
are normalized through PCA; multiply images with those Eigen val-
ues from PCA and then subtract mean zero and standard deviation
of 0.1. Dropout is a probabilistic technique where output of 50% are
dropped and set as zero, having no role in forward and backward
propagation. However, in testing they multiply each output by 0.5
to achieve a geometric mean of predictive distributions produced by
exponentially many drop out networks. Dropout avoids over fitting
but increases cycles by reducing the convergence speed.

CHAPTER 2. RELATED WORK 48

Figure 2.6: Alex ConvNet architecture on two GPU’s, along with number of kernels and
their sizes.

This model achieved error rate of about 17% that is more than 10%
better than other state-of-the-art techniques such as sparse coding
(similar to BoVW) with 28.2% and SIFT+FV with 25.7% in top-
5 results on ILSVRC 2010. However, in top-1 difference is almost
the same but the error is about 37.5%. Whereas, it achievs 15.3%
error rate on ILSVRC 2012 testing set that can be seen in Tab. 2.1.
This result is an abrupt jump of more than 10% decrease compare
to the traditional BoVW models that are competing since 2006 with
reduction in points or ones from total error.

CHAPTER 2. RELATED WORK 49

2.3.3 (RCNN)

One can sometime take benefit from cues such as prior knowledge of
the input given to a network. In case of OR system, one of the cue
can be detecting object as a target, that provide some benefits by
localizing the object as a pre-processing step. Recently, R. Girshish
et al. [92] propose a simple and scalable region based CNN detec-
tion algorithm RCNN that improve previous mean average precision
(mAP) at about 30% compare to other reported maximum mAPs
on VOC 2012 and ILSVRC 2013 detection dataset.

It mainly utilizes CNN to detect, localize and extract object patches
from an image, and if the data is scarsed, then first supervised pre-
training for auxiliary task is done. Followed by pruning the category
specific training which helps distinctively in performance boost by
utilizing low level cues such as color and super pixel consistency for
object proposal in category-agnostic fashion. CNN classifier is used
in the end to classify object categories at those locations.

Overfeat [93] is also similar to RCNN. It is another CNN based
approach that work with multi-scale sliding window which could be
considered a special case of RCNN, if one replaces selective search
region proposal with multi-scale pyramid of regular square search
region, change per class bounding box regressor to a single box re-
gressor and does not use fine tuning for detection by SVM. However,
OverFeat is 9x times faster than RCNN due to not being warped at
sliding window at image level. This methodology is used and utilized
by Oquab et al. [94, 95] for object recognition. The reason for dis-
cussing these object detection techniques is two fold: first it involved
CNN and second they are used as a first step in OR that show very
good results in recent papers.

2.3.4 Network-in-Network (NiN)

M. Lin et al. propose a novel deep model that uses a micro-MLP
inside a traditional CNN that work like a network inside a network.

CHAPTER 2. RELATED WORK 50

It is named ’Network-in-Network’ (NiN) [96]. BP and multi layers of
MLP are the similarity and motivation behind usage of MLP inside
CNN, which they named as ’mlpconv’ (a three layer perceptron)
layer instead of general convolution model that does convolution and
produce output after passing through activation function. In the
end, instead they perform global average pooling instead of fully
connected layers by producing a map for each class category of the
last mlpconv layer that are averaged and fed directly to softmax
layer. It provides three benefits (i) more native to convolution by
enforcing correspondence between feature maps and categories (ii)
over-fitting is avoided at this last layer because there is no parameter
optimization and (iii) robust to spatial translation of the input due
to adding spatial information.

To evaluate the performance of NiN, they use a stacked of three
mlpconv layer followed by a spatial max pooling layer that does some
reduction. Dropout is used in first two stacked layers to avoid over-
fitting. They use the same setup for training and testing as done
by AlexNet [12]: mini-batches of 128 samples, and used manually
setup for learning parameters where as the learning rate is scaled
down by 10 when the accuracy stops to increase. On CIFAR-10,
the test error rate of 10.41% is recorded for model without data
augmentation. However, when data augmentation using translating
with horizontal flipping is used, it reduces it to 8.81% that overcomes
all other stated state-of-the-art techniques with and without data
augmentation. Similarly, on CIFAR-100 their model with dropout
outperform other techniques by reducing 1.17% of error rate than
others bringing overall to 35.68% without data augmentation. Their
global average pooling provides a regularization to their model and
reduced error rate from 17.56% to 15.99% on a similar network with
and without global average pooling.

Zhouwen Tu et al. [97] propose a similar model, where they use in-
frastructure of Caffe [58], network architecture of mlpconv and global
average pooling. However, to boost the recognition performance they

CHAPTER 2. RELATED WORK 51

focus and emphasize on (i) transparency of middle level layers to
overall classification (ii) robustness and discriminativeness of learned
features (more importantly in starting layers) and (iii) avoiding the
exploding and vanishing of gradients while training that reduces per-
formance. Keeping these in mind, they propose a new deeply super-
vised net (DSN) algorithm in which they introduced ’companion
objective’ at each hidden layer that works as a regularizer similar
to pre-training approach. SVM classifier is used at each layer for
this companion objectiveness that behave like local supervision. In
training, they adopted SGD approach similar as in CNN. However,
in BP the error from output layer and the gradients also adds the
local gradients from companion objectives at each layer.

A similar training setup like AlexNet [12] is used for DSN having
momentum of 0.9, baseline infrastructure of Caffe [58], and network
architecture of mlpconv with global average pooling [96]. This setup
achieves 9.78% and 8.22% error rate on CIFAR-10 without and with
data augmentation, respectively. It shows good results compared to
others. Similarly, on CIFAR-100 they achieve stat-of-the-art results
of 34.57% error rate. In addition, one positive impact is not using
large datasets that reduces burden of having large training data.
They show optimal results till date on MNIST, CIFAR-10, CIFAR-
100 and SVHN datasets without data augmentation.

2.3.5 GoogleNet

Recently, Christian Szegedy et al. [66] propose the deepest CNN
model which overcome all other state-of-the-art deep networks and
other CV techniques in ILSVRC 2014 classification and detection
challenge. GoogleNet with abstract 22 layered network is optimized
with Hebbian principle, intuited by multi-scale processing, whereas,
keeping computational budget constant despite of increasing depth
and width such that it have 12x fewer parameters than AlexNet [12]
and having more accuracy than previous models. This model has
influence from NiN model [96, 66] and ’we need to go deeper’ Internet

CHAPTER 2. RELATED WORK 52

meme [98].
Two difficulties arises in increasing the depth, i.e. increase in com-

putational resources and over-fitting. To tackle these issues, they
suggest to move towards sparsely connected architectures from fully
connected and even inside convolutions in Convolutional layer. The
objective of Inception network is to find out how an optimal local
sparse structure in a convolutional vision network can be approxi-
mated and covered by readily available dense components to attain
translation invariance by repeating the convolution. In the layers
close to input image, correlated units use to gather in a local re-
gion that can result in number of clusters in same region which can
be covered by convolution over 1 × 1. Whereas, there exists some
small cluster far from each other that could be covered with larger
convolutions of size 3 × 3 and 5 × 5. These three kernel sizes also
avoids alignment issues and along with pooling of stride 2 represent
the current architecture known as inception module that results in
one bank of features as input to the higher layer. Output correla-
tion statistics use to vary because inception modules are stacked over
each other. Despite that the propose architecture may cover optimal
sparse structure, it can lead to computational blow up with in few
stages due to handling it inefficiently. To tackle this problem, they
apply dimension reduction and projection where ever a threat arise
due to increase in computational requirement by the help of 1 × 1
convolution before 3 × 3 and 5 × 5 and usage of ReLU activation
functions. In addition, this provide a multi-scale features to higher
levels at the same time. The model is shown in Fig. 2.7 that won
ILSVRC 2014 competition and 2-3x faster than similar performing
networks with non-inception architecture.

CHAPTER 2. RELATED WORK 53

Figure 2.7: GoogleNet Model

CHAPTER 2. RELATED WORK 54

In evaluation, by moving from fully connected layer to average
pooling in presence of dropout, their top-1 accuracy increased by
0.6%. In addition, one important step in their network is introduc-
tion of auxiliary classifiers that are connected to intermediate layers
in order to encourage discrimination in the lower stages by provid-
ing extra regularization. For training their GoogleNet, they adopt
asynchronous SGD with momentum in addition to using Polyak av-
eraging at inference time. It achieved top-5 error rate of 6.67% over
ILSVRC 2014 without using any external data that outperformed all
other.

2.3.6 3DCNN

3DCNN for AR from videos can be called as a pioneering role model
in deep architectures [13]. It works end-to-end in a supervised man-
ner for learning action classifiers. Their 3D volume learn implicitly
spatiotemporal features. To effectively incorporate the motion in-
formation in video analysis, a 3D convolution is applied, which dis-
criminate features along both spatial and temporal dimensions. The
difference between the 2D and 3D convolutional kernel is shown in
Fig. 2.8. In a 2D kernel, there is 1-1 communication between the in-
put map and output map which learns spatial information (Fig. 2.8
(a)). Whereas, in a 3D kernel there is 3-1 communication as shown
in Fig. 2.8 (b). The 2D kernel and 3D kernel equations are given
below in Eq. 2.19 and 2.20.

vxyij = tanh

(
bij
∑
m

Pi−1∑
p=0

Qi−1∑
q=0

wpq
ijmv

(x+p)(y+q)
(i−1)m

)
(2.19)

vxyzij = tanh

(
bij
∑
m

Pi−1∑
p=0

Qi−1∑
q=0

Ri−1∑
r=0

wpqr
ijmv

(x+p)(y+q)(z+r)
(i−1)m

)
(2.20)

Three weight kernels are applied on three input frames/maps in tem-
poral domain that combines and generate an output map resulting

CHAPTER 2. RELATED WORK 55

Table 2.1: Performance of DL for Object classification and recognition since 2010, Here
Dropout, Sliding Window, Data Augmentation are represented by DO, SL
and DA respectively. SetA represents ImageNet 2009 Fall version, SetB rep-
resents ImageNet 2012 + 22k Additional images, SetC Training set consist
of PascalVOC (1000) + ImageNet (512) classes and Testing set consist of
PascalVOC 2012 & 20 (but trained with 1512). While last SetD Training set
contains PascalVOC (1000) + ImageNet (512) classes and for Testing (Pas-
calVOC 2012) & 20 (but trained with 1512)

Model Year Dataset Classes Top-1 Top-5 Errate

TCNN [99] 2010 CIFAR-10 10 X X 26.9%

AlexNet [12] 2012 ILSVRC 2010 1000 37.5% 17% X

AlexNet [12] 2012 ILSVRC 2012 1000 36.7% 15.3% X

AlexNet [12] 2012 SetA 1000 67.4% 40.9% X

Clarifai [1] 2013 ImageNet 2012 1000 X 11.7% X

Clarifai [1] 2013 SetB 1000 X 11.2% X

NIN + DO [96] 2014 CIFAR-10 10 X X 10.41%

NIN + DO + DA [96] 2014 CIFAR-10 10 X X 8.81%

NIN + DO [96] 2014 CIFAR-100 100 X X 35.68%

DSN + DO + DA [97] 2014 CIFAR-10 10 X X 8.22%

DSN + DO [97] 2014 CIFAR-10 10 X X 9.78%

DSN + DO [97] 2014 CIFAR-100 100 X X 34.57%

GoogleNet [66] 2014 ILSVRC 2014 1000 X 6.67% X

GoogleNet [66] 2014 ILSVRC 2014 1000 X 6.67% X

Baidu [100] 2014 ILSVRC 2014 1000 X 6.67% X

in spatial as well as motion information. In this model, first hard-
coded layer (H1) gets 9 consecutive maps by leaving one out. H1
layer extract opical-flow along x-axis, optical-flow along y-axis, gra-
dients along x-axis, gradient along y-axis, and original Grey level
images, i.e. a total of 43 input maps of size 80× 60 is given as input
to the first 3D-convolutional layer as shown in Fig. 2.9. In addition,
they apply multiple sets of distinct convolutional kernels at the same
location on the input which extracts multiple types of features from
the same location. 3D kernel not only reduces spatial dimensionality

CHAPTER 2. RELATED WORK 56

of the maps with higher strides but also the number of features from
three to one. That’s why two sets of 3D kernels are used in order to
increase information at higher layer of the model. This C2 results in
33 × 2 maps of size 72 × 54. Followed by a max-pooling layer that
reduces the dimensionality of each map by 2x. Again a three sets
of 3D kernels are applied on maps from pooling layer that provide
23× 6 maps of size 18× 12. Followed by a pooling layer that results
in a 6×4 size map, and a FC convolutional layer that form a feature
vector of size 128 × 1 × 1. These features are used for classification
of the action.

This model is applied on TrecVID a real world airport surveillance
scenario that have recoding for several days. In addition, they apply
it on KTH dataset. On TrecVID, it outperforms all others state-of-
the-art techniques in three categories, i.e. Cell to ear, object put,
Pointing Hand. However, on a small dataset, i.e. KTH compare to
TrecVid, it has comparable results to the state-of-the-art techniques,
i.e. 90.2% vs 91.7% for the six categories in KTH.

Figure 2.8: Difference between 2D and 3D Convolution

CHAPTER 2. RELATED WORK 57

Figure 2.9: 3DCNN Architecture for Human Action Recognition

The hardwired layer and CNN based detected and extracted hu-
man ROIs make its functionality limited. In addition, its perfor-
mance for small scale datasets is also low compare to other models.
This shows that its limitation is mainly data and proper extracted
and centralized humans as input to the network.

Further like other CNNs, it does not follow strict biological pyra-
midal structure of the brain. So we need new Bayesian approach for
the weight kernels that works the same way but may provide better
results. In addition, we can follow the strict biological pyramidal
structure of the brain. Or may introduce some new weight matrix
structure which may be able to absorb more information and may
provide better performance even in the absence of huge amount of
data and without using CNN as human detector, e.g. simple pre-
processing as silhouettes [10, 101] or completely Grey level images as

CHAPTER 2. RELATED WORK 58

input to the network.

2.3.7 Two Stream CNN

This model decomposes spatial and temporal components and deal
them separately in advance as shown in Fig. 2.10. First module is
called Spatial stream ConvNet that treat still frames as input to a
deep ConvNet. While the second is called temporal stream ConvNet
that takes motion information, i.e. optical flow between consecutive
frames. The softmax output of both modules is lately fused and their
score is calculated based on averaging or giving it to a multiclass
linear SVM to find the classified category for the input.

The architecture of both the stream is similar, which contains 5
Conv layers with small 3 × 3 kernels and 3 fully connected layers.
This architecture is being inspired by the model which won 2013
ILSVRC challenge with 13.1% top-5 error rate. The input image is
of size 224 × 224. However, the spatial stream performs like image
classification task for actions. They use a pre-trained model that is
trained with ILSVRC-12 1.2 million images. And only retrained the
last fully connected layer that is called classification layer for these
video frames. This helps in saving a lot of time. Also literature
shows that training a model with a pre-trained model has better
performance. It take 25 frames from each video. Each frame is
given to the ConvNet that becomes 10 by cropping from different
positions and flipped images of the same image. Their results are
averaged in the end. Whereas, the temporal stream takes dense
optical flow information, i.e. displacement vector fields between pairs
of consecutive frames as image that explicitly describe motion in
videos and helps in making recognition easier as well as shows better
results despite less training data. They have shown state-of-the-art
results for UCF-101 and comparable results for HMDB-51 datasets.

CHAPTER 2. RELATED WORK 59

Figure 2.10: Two Stream model architecture for video classification

2.3.8 Learning Spatio-Temporal Features with Convolutional networks

D. Tran et al. [23] proposed a model that uses 3D ConvNet to
learn spatio-temporal features. This 3D ConvNet is different than
3DCNN [13] in following factors, 1) it uses full frame as input rather
than ROI, 2) 3D pooling is used after 3D convolution rather than 2D
pooling, 3) the temporal depth can be more than 3 (however, their
experiments suggest 3 as the best temporal depth) 4) large input
frame size, i.e. 16×3×112×112. However, the results are shown as
binary class classification. In addition, it is pre-trained with Sports
1Million dataset, where the trained model is mainly used as a feature
extractor. Those features are given to a linear SVM to classify as
one-vs-all classification criteria. The features extracted are called
C3D features.

The proposed model is a generalized model. They have evaluated
and trained their model on Sports 1 Million dataset. Whereas, it
extracts features for 4 different classification categories, i.e. action
recognition (UCF101), scene recognition (YUPENN and MaryLand),
action similarity labeling (ASLAN), and object recognition (ego cen-
tric object recognition). In all the scenarios, it outperformed all other
recent models such as traditional CV handcrafted techniques [67],
two stream [63], and A. Karpathy et al. DeepVideo [24].

CHAPTER 2. RELATED WORK 60

The two-stream model [63] has different type of input spatiotem-
poral data, i.e. single frame to one stream and optical flow informa-
tion to the second stream. These two stream are fused after softmax
layer by calculating their class score. Based on their experiments,
use of optical flow shows significant improvement over raw input
frames despite small training data. J. Donahue et al. propose a
model [64] similar to model in [60]. This long term recurrent con-
volutional (LTRC) network uses a CNN learned feature vector as
input to a LSTM. However, this model is different in two ways, i.e.
i) it integrate 2D CNNs rather than 3D that can be pre-trained on
large datasets, ii) CNN and LSTM are combined into a single model
to enable end-to-end fine-tuning. An additional difference can be
the variable length input frames to the network. This model shows
promising results for action/activity recognition.

J. Yue-Hei Ng et al. [65] propose a similar model, however they
followed [63] model as the base structure to extract CNN feature
vector. This feature vector is given to a feature aggregation module
that perform different type of pooling or apply LSTM to predict the
class predictions for each stream. In the end, fusion of class scores
is being done. This model uses two CNN architectures, i.e. AlexNet
[12] and GoogleNet [66].

CHAPTER 2. RELATED WORK 61

2.4 Comparing CNN and PyraNet

In this section, we try to visualize, evaluate and understand either
graphically or by explanation each layer of the CNN and PyraNet
networks. More explanation is given regarding CNN compare to
PyraNet due to the reason that there is a lot of work being done on
CNN based models compare to others.

2.4.1 Visualizing and Understanding CNN

In this section, we have tried to answered some of the most asked
questions by CV community. These questions can answer the old
assumption against NNs, i.e. of being a BlackBox. Some of these
questions are like:

• Whether CNN use background context or information or just
the localize object for recognition?

• What each layer learn?

• Is there any sort of establishment or correspondence between
specific objects parts to understand like human?

• Finding generalization power of deep CNN and effect of the
depth and width?

• Will less training data affect overall performance?

• Does longer pre-training overfits the model generalization capa-
bility?

• Are CNN features sparse and does it affect?

• Finding grandmother cells which fire only for a specific classes
that can help in increasing discrimination?

• Does spatial location matter for classification in CNN ?

CHAPTER 2. RELATED WORK 62

DL, especially CNN and its variants from last couple of years
outperformed all other techniques, without any doubt. But still
researchers can’t fully understand the real recipe behind the suc-
cess. Researchers are asking questions like previously mentioned, for
which many are trying to answer by either visualizing the networks
or through theory. However, most easy and affecting methodology
is to visualize and understand. In this case some of the recent work
done is in [66, 102, 1, 103, 104].

M.D. Zeiler and R. Fergus [1] answer few questions that why and
how they work well and how can we improve them further. They
visualize internal story of CNN as shown in Fig. 2.11. They used
Lenet5 and AlexNet [12] model and tried to reuse the process by
recreating and going from output to input layer, i.e. instead of con-
volution, ReLU, and pooling, they did un-pooling, relu non-linearity
and deconvnet using a transpose version of kernels with those recti-
fied maps. From their experiments, they found visually that:

• Layer 2 captures information about corners, edges/color con-
junctions

• Layer 3 captures fine grained complex invariances, e.g. textures

• Layer 4 captures class specific, e.g. faces legs

• Layer 5 shows entire objects with variation in pose e.g. dogs,
keyboards etc.

Further to understand training and features relationship, the work
in [1] revealed that lower layers compare to higher complex layers
learn 10 times faster. In addition, [1] concludes that the character-
istic of features are invariant to translation, scaling and rotational
symmetry (only). Visualization of features highlighted certain limi-
tations, e.g. first layer filters are mixture of high and low frequency
information but does not care about mid-level. Similarly, at 2nd layer
a high stride is used with convolution that is losing valuable infor-
mation. To fix these limitations, they reduce the kernel and stride

CHAPTER 2. RELATED WORK 63

size due to which information is retained and it helps in classifica-
tion improvement. Moreover, in another experiment in [1], objects
are ocluded to answer the question whether CNN use background
context, information or just the localize object for recognition. It
answers in some probability of performance degradation. They also
investigate and show that higher layer-5 do establish some form of
correspondence between specific object parts, i.e. eyes and nose in
faces. In the end, they try to find generalization power of deep CNN
and effect of the depth and width. Last fully connected layer alone
have no great effect on overall result, same is the case for last 2 con-
volution layers. But if fully connected in combination to middle 2
convolution layers are removed, performance falls that shows that
depth does mater along with width of each layer. It is highlighted
that if both width, depth and size of last two fully connected layers
are increased, than it overfits.

CHAPTER 2. RELATED WORK 64

Figure 2.11: Visualizing feature maps of a deep CNN model [1]

CHAPTER 2. RELATED WORK 65

The generalization power is shown using training a network using
state-of-the-art ImageNet features for classification using a softmax
function on Caltech and PASCAL VOC 2012 datasets. Only fully
connected layers are fine tuned over old trained network of Ima-
geNet. For Caltech-101, it beat state-of-the-art by 2.2%. Whereas,
on Caltech-256 it shows huge difference, i.e. 74.2% vs. 55.2%. How-
ever, on PASCALVOC 2012 they are 3.2% lower than state-of-the-
art. The reason could be that ImageNet and PASCAL VOC are
quite different from each other. In the end, they further evaluate the
importance of depth by using features from each layer independently.
It is concluded that as the layer increases, the performance increases.
Details list of results can be seen in their paper.

Similarly Agarwal et al. [104] try to answer some additional ques-
tion with visualizing and evaluating same AlexNet model in certain
extra scenarios, e.g.:

• Will less training data affect overall performance?

• Does longer pre-training overfits the model generalization capa-
bility?

• Finding grandmother cells which fire only for a specific classes
that can help in increasing discrimination?

• Does spatial location matter for classification in CNN?

• Are CNN features Sparse and does it affect?

They perform similar steps as in [92] model, i.e. pre-training with
ImageNet and fine-tuning on SUN (397 classes with 108k images)
dataset. Whereas, testing it with PASCAL VOC 2007 (20 classes
with 10k images). This gives optimal results of 52.2 ± 0.1 compare
to simple fine tuning and training from scratch. Further, they visual-
ize the fine tune result based on a measure of class selectivity by class
label entropy of set of filters and thresholding those entropies. They
report that fine-tuning changes entropy at layer 6 and 7 and these

CHAPTER 2. RELATED WORK 66

entropies might be tuned with pre-trained model when data is lim-
ited. Otherwise, fine tuning the whole network may benefit more as
well. They also found that generalization takes place quickly starting
from layer 1 to 7. However, more pre-training does improve little bit
of overall performance.

According to neuroscientists, Grandmother cells (GMC) are cells
in human brain that fire only for specific visual saliency or stimuli,
e.g. face involved in an object. According to Agarwal et al. [104] the
GMC filter are those which have high average precision for classify-
ing a class among other classes. However, it is revealed that GMC
like filters exist only for few object categories like person, bicycles,
etc. and compare to these classes, other classes require more filters
to recognize an object class. It indicates that intermediate represen-
tations in CNN are distributed. Sparsity is considered an important
point for different applications in CV and ML. They found that
fully connected layers are mostly sparse. In the end, importance of
spatial information is checked in each layer for overall performance
and reported that in classification spatial information matters more
at lower layer, i.e. layer 1, while gradually decrease is recorded at
higher layers.

Till now researchers have found till layer 5 by visualizing and
analyzing filters and maps to understand what each layer shows. But
the question comes that if it learned till full body parts, what else
can it learn after that. Can it narrate the story? Or can it enhance
it by re-learning the features. Or does we need more layers to learn
more general datasets compare to some specific datasets. We need to
visualize networks like GoogleNet to further understand the learning
of CNN.

2.4.2 Visualizing Pyramidal Neural Network

PNN or PyraNet are quite similar to CNN, e.g. same receptive field
concept, activation functions, and several hidden layers. Still, there
is very less work being done on prior networks. There are certain

CHAPTER 2. RELATED WORK 67

main differences in weights and filtering methodology that differ-
entiate both from each other. PyraNet first layer works similar to
BoVW and CNN by searching and extracting low-level features from
the image. However, unlike CNN, here the image is not as smoothed
or edged as in CNN. PyraNet does down-sampling and feature ex-
traction at the same time by reducing an image by:
Rl =

⌊
(R(l−1) −Ol)/Gl

⌋
Cl =

⌊
(C(l−1) −Ol)/Gl

⌋
where Rl and Cl are the number of rows and columns of the new
map, respectively. ′l′ represents the higher layer. Ol and Gl are the
overlap and gap between two receptive fields at the layer. There
is no separate layer for down sampling. High-level features are ex-
tracted continuously by repeating the same procedure until the size
of the feature map is reduced to a specific size. The feature maps
are too sparse due to the weighted sum operations as compared to
CNN. Some researchers have tried some variation in changing the
initial layers to hardcoded layer of Laplacian and Gaussian to pro-
vide filtered images. Also, contrast normalization has been utilized
after each map. Finally, all the features are classified with a fully
connected layer similar as a CNN model.

2.4.3 Similarities and Comparison

As previously discussed, PyraNet and CNN both have many things
in common. Specially, the pyramidal structure and learning from
photometric discontinuities. Here, we discuss the comparison of each
layer of these models and tries to highlight some areas that can help
us in improving efficiency of recognition processes. Starting from
the input data, both use the same data to classify as class categories
(for example Fig. 2.12 (a)). However, this input can be preprocessed
in different categories for fast convergence or increase in recogni-
tion. Then comes the feature extraction stage, where CNN directly
use convolution rather mainly cross-correlation for extracting feature
from the receptive field and produces a smoothed edged image from

CHAPTER 2. RELATED WORK 68

the beginning prior to learning the weights as shown in Fig. 2.12(c),
PyraNet uses same convolution but with individual kernel for each
receptive field due to unique weights of each neuron. It results in
a sparse initial map shown in Fig. 2.12(b). Initially, it results in a
sparse map, but creates edges after learning the weights.

Weights parameters are in various number and with specific archi-
tecture for each model. CNN has a kernel that is shared throughout
a map, whereas PyraNet has a unique weight for each neuron at
lower layer map which create a unique kernel for each receptive field
that generates an output neuron. Hence, acquiring both properties
from fully connected network and weight sharing due to having less
fixed number of weights, similar to CNN. This big matrix of weights,
and unique kernel of each neuron absorbs more features compare to
one kernel of CNN. This is based on the ideology of strictly following
biological phenomena and not caring about curse of dimensionality
compare to CNN.

PyraNet maintains pyramidal structure by continuously reducing
spatial resolution. It results in localizing the object and decrease in
convergence speed and efficiency. Whereas, CNN decreases the map
size by subsampling but increase its depth by using multiple kernels
that reduce burden on shared kernels and learn different type of fea-
tures with different kernels. However, this increase of kernels result in
violation of pyramidal architecture, increase in time complexity and
convergence time. CNN shows that if it does not increase the depth,
performance reduces and if increased more than a specific limit, it
over-trains [1]. In addition, invariance to geometric transformations
of the input are achieved with continuous reduction of spatial reso-
lution while increasing continuously the feature maps in each higher
convolution layer that provides more richness of the representation
in CNN compare to PyraNet due to its less variant maps in higher
layers.

In terms of model structure, PyraNet has almost same architec-
ture, i.e. Normalization and weighted sum that is repeated until

CHAPTER 2. RELATED WORK 69

last fully connected layers that does the classification similar to the
CNN last fully connected layers. CNN on the other hand is chang-
ing continuously, e.g. Normalization, Convolution and than pooling,
to Convolution, Pooling and than consecutive convolution layers. Or
even like recent new GoogleNet model, that have a softmax classi-
fier at end of pooling in each layer to enhance the low level features
and in order to generate better optimal result by not vanishing the
gradients [66].

PyraNet and CNN both requires large training data to learn prop-
erly. In CNN, invariance to geometric transformations of the input
is achieved with continuous reduction of spatial resolution while in-
creasing continuously the feature maps in each higher convolution
layer that provides richness of the representation. However, one
question arises that whether the difference of performance between
CNN and PyraNet is the weight parameters or the absence of down-
sampling (Pool) layer that provide invariance to geometric trans-
formation of the input. Will CNN give similar performance if we
remove down sampling layer but keep weight sharing concept?

CHAPTER 2. RELATED WORK 70

Figure 2.12: Comparison of Convolutional kernel vs Weighted Sum Kernels, (a) Original
Leena Image (b) Output map resulted by Weighted Sum Kernels of PyraNet,
(c) Output map resulted by Convolutional kernel of CNN.

2.5 Chapter Summary

This chapter helps in reviewing how the performance of DL tech-
niques enhanced. Even now question arises such as whether this
performance is due to huge amount of label data or latest powerful
computational power. One need to understand the structure of these
techniques. In order to benefit from techniques like PNN, which are
similar to CNN and follow the same visual cortex hierarchy of brain,
but with little difference in weight architecture.

Reviewing previous work being done on PNN and CNN model,
considering their benefits and limitations, for example, parameters
explosion is one of the problem that need to be tackled. Further,
rather than the same weighting scheme of CNN, we decided to pro-
pose a new deep model with new weighting scheme. Therefore, we

CHAPTER 2. RELATED WORK 71

have concluded that a pyramidal structure and the weighting scheme
being used in PyraNet can be a viable solution. Not only for parame-
ter reduction, but also to enhance the performance of various applica-
tions. We can introduce a new model by combining the good points
of 3DCNN, C3D, PyraNet, and pyramidal structure. In the next
chapter, our proposed 3D pyramidal neural network is explained.

Chapter 3
A 3D Strictly Pyramidal Neural Network

Our Contribution:

• Presented a novel biologically inspired 3D pyramidal neural net-
work architecture for multi-class classification.

• Extension of PyraNet 2D weighting scheme to 3D weighting
Scheme.

• Introducing 3D temporal pooling.

• Modifying back-propagation for training the 3DPyraNet.

• Evaluating performance on AR and DSR benchmark datasets.

3.1 Motivation

The traditional NN accepts an input or a vector, and simplify it
through a sequence of hidden layers. Each hidden layer consists of
multiple neurons, where each neuron is fully connected to all neu-
rons in lower layer. Further, each neuron in a single layer functions
completely independent and do not share any connections, i.e. no
weight sharing. The last fully-connected layer is called the ”out-
put layer” and in classification problem, it signifies the target class
scores. A neuron in hidden layer with this network structure hav-
ing input image size of 32× 32× 3 (cifar-10 image) consists of 3072

72

CHAPTER 3. A 3D STRICTLY PYRAMIDAL NEURAL NETWORK 73

learnable parameters. However, if there are several hidden neurons,
then multiply it with those numbers of neurons. This results in enor-
mous learnable parameters that are not only hard to manage but also
results in over fitting.

The biological receptive field concept solves this problem as we
studied in previous Chapter. 2. Y. Lecun famous convolutional ker-
nel reduced these parameters enormously. However, still it have some
limitations. Learning huge data in today’s large amount of data, puts
burden on these fewer number of parameters due to which current
models increase kernels as the network goes deeper. Therefore, we
need a solution that combines both these approaches without dis-
turbing accuracy and increasing the learnable parameters.

3.2 3DPyraNet

We report a strict 3D pyramidal neural network (3DPyraNet) model.
It is based on CNN weight sharing concept and the IP structure.
3DPyraNet extracts features from both spatial and temporal dimen-
sions by keeping biological structure, thereby it is capable to capture
the motion information encoded in multiple adjacent frames. One
outlined advantage of 3DPyraNet is that it maintains spatial topol-
ogy of the input image by having position oriented parameters and
presents a simple connection scheme with lower computational and
memory costs compared to other neural networks.

3DPyraNet deep architecture is designed for a general scenario
from videos, e.g. AR or SR, by taking inspiration from 3DCNN,
PyraNet, and recent C3D discussed in Sec. 2.3 and 2.2.5, respec-
tively. This strict 3D pyramidal architecture is based on decision
making pyramidal structure of a brain and pyramidal neurons. This
approach is widely used in NN models, as discussed in previous chap-
ter.

In 3DPyraNet, we proposed three main modules, i.e. 3D weight
matrix for 3D weighted sum/correlation operation, 3D temporal pool-

CHAPTER 3. A 3D STRICTLY PYRAMIDAL NEURAL NETWORK 74

ing, and most importantly the pyramidal structure. We discuss all of
these one by one in coming sections. Similar to 3DCNN, 3DPyraNet
start with a big input data stream followed by extraction of different
set of feature maps with randomly initialized several sets of weight
matrices in first layer. These feature maps are refined at each higher
layer until we achieve a reduced most discriminative set of feature
vector for classification of action/scenes in the videos. Our aim is
to reduce ambiguity in those extracted features and eventually, to
enhance the performance. IP techniques use similar approach of
extracting fewer features through coarse to fine refinement. In addi-
tion, the structure of image pyramids and NN are also similar. For
this reason, 3DPyraNet model is developed by taking inspiration
from an early strictly pyramidal NN model [11] and image pyramids
approach.

To capture actions/scenes as a whole from the videos, we adopt
a similar weighting scheme as used in PyraNet (previously discussed
in Sec. 2.2.5.2). To take advantage of temporal information in the
videos, we modify the 2D structure (Sec. 2.2.5.2) to 3D, and adopted
the 3D structure (sec. 3.2.1). This modification to 3D is done by
taking inspiration from 3DCNN model [13]. The parameters are
learned from input till output using a modified structure of tradi-
tional back-propagation algorithm.

The objective is to show that strictly following pyramidal structure
and adopting a pyramidal 3D structure can enhance performance
by learning spatio-temporal features compare to unrestricted models
even with simple structure, fewer feature maps and hidden layers.

3.2.1 3D Weight Matrix

The concept of 2D weight matrix introduced in PyraNet is modified
for 3D structure by using three weight matrices at a time as show
in Fig. 3.1. This helps in incorporating the temporal information
from the given input consecutive frames. In order to capture further
various type of features, several sets of weight matrices are used.

CHAPTER 3. A 3D STRICTLY PYRAMIDAL NEURAL NETWORK 75

We randomly initialize these weights on each layer but taking care of
suggested techniques stated in literature for corresponding activation
functions used at those layers. For example converting all the weights
to have zero mean and unit variance.

This 3D weight matrix approach is not similar to 3D kernels of
3DCNN. They have a small 3D kernel that filters the whole frame
or feature map and does convolution on three consecutive maps to
produce one output map. Whereas, our approach have three dimen-
sional weight matrix of the size of input map. A small empty kernel
of size r (also represented as RF in some places of this work) is taken
to calculate the weighted sum or correlation operation between ad-
jacent neurons of the input frame/map and weight parameters of
the weight matrix, just like a 3D kernel. However, each neuron gets
a unique 3D kernel form the 3D weight matrix. This correlation
function instead of convolution tries to search for correlation among
the consecutive receptive fields of the frames to recognize specific
category.

The weight-sharing is different than traditional one. The weight
sharing is very minimal in this approach i.e. in worst case

r

r × r
where r = 3, 5, 7 . . . but less than the matrix size. r is the size of the
receptive field kernel. Each neuron has its weight parameter that is
shared locally whenever that neuron is used in a receptive field of an
output neuron. Each neuron in output map has a position oriented
locally connected kernel in the weight matrix. This technique helps
to reduce the ambiguity and burden on the weight kernels. As it
learns position oriented features.

To visualize and examine what weight matrix has learned, we use a
sub-model without pooling (L2P) layer, making it similar to PyraNet
model but in 3DPyraNet structure as shown in Fig. 3.5. The model is
trained with batch mode on Weizmann dataset for about 500 epochs
until it converged at 450th epoch. Than we visualized the learned

CHAPTER 3. A 3D STRICTLY PYRAMIDAL NEURAL NETWORK 76

Figure 3.1: Difference between 2D and 3D weighted Sum Kernel Calculation

3D weight matrix parameters of first layer. We analyze that those
three learned weight matrices are different from each other in-terms
of texture, illumination, and the position of most activated neurons.
Initially, feature maps produced by WS kernels are sparse as com-
pare to convolutional kernel. But later with training the model, it
becomes similar to smooth blurred images of the input sequences as
shown in Fig. 3.3 and 3.4.

There are two main variables that effect performance of a network
in this approach i.e. receptive field size and overlap. We have ex-
amined the performance with different sets of these parameters that
are discussed in coming sections. However, from our experience, the
most considerable receptive size is 3-5 with an overlap of 2-4.

3.2.2 Proposed Architecture

The basic 3DPyraNet model has three main layers i.e. 3Dweighted-
Sum or 3DCorrelation, 3DPooling, and fully connected FC layers.
The first network consist of an input layer, three hidden layers, and
a FC layer as shown in Fig. 3.5. Some recent papers show activation
step as a separate layer as well as normalization as another separate
layer, than based on that our model consist of ten layers. It makes
it a deep network. Tab. 3.1 shows details about certain variable and
parameters used in forward propagation phase.

The given input for this model is in silhouettes/binary form. No

CHAPTER 3. A 3D STRICTLY PYRAMIDAL NEURAL NETWORK 77

Figure 3.2: 3D weighted Sum Kernel Calculation

Figure 3.3: Learned 3D kernel Matrix of first layer of a trained 3DPyranet model

CHAPTER 3. A 3D STRICTLY PYRAMIDAL NEURAL NETWORK 78

Figure 3.4: Learned 3D kernel Matrix of second layer of a trained 3DPyranet model

specific or sophisticated pre-processing is done as compared to ex-
isting DL model [13] for videos. The only pre-processing being done
for AR is applying SOBS background subtraction algorithm [10].
Whereas, in case of dynamic scene recognition a full gray level frame
is give as input to the network. However, the images are normalized
between 0 and 1 by applying zero mean and unit variance proce-
dure for both AR and DSR. It helps in faster convergence and better
performance.

3.2.2.1 3D Correlation Layer

In general, temporal part gives correlation among the objects or ac-
tions in consecutive frames of a video. Therefore, first hidden layer is
a 3D weighted sum (WS) or correlation layer represented as (L1WS)
in the model (Fig. 3.5). It results in maps containing spatial as well
as temporal information extracted from the given sequence of input
frames at input layer. This (WS) layer is a pure correlation operation
among the given neurons and weights in a receptive field of a frame
and weight matrix as shown in Eq. 3.1. The output of 3D Correla-
tion kernel is passed through an activation function i.e. hyperbolic
tangent or LRelu. The resulting map is once again normalized before
passing it as input to the next layer. This normalization not only
enhance accuracy by 4− 5%, but it also helps in faster convergence

CHAPTER 3. A 3D STRICTLY PYRAMIDAL NEURAL NETWORK 79

Description Notation Details
Input Clip Size N1 N1 = H1 ×W1 ×M1

Number of Input frames/maps Mln

{
if ln = 1 than M = 13
otherwise M = Zln

Number of Output feature Maps Zln Zln =
(
Mln−1

−D + 1
)

Type of Layers
3DCorr or 3DWS
3DPool, FC, L

3DCorrelation (weighted sum),
3DPooling, Fully Connected,

and Total Layers
Last pyramidal layer lP it is converted to 1D layer

Activation function of layer ln fln
where n = 1, 2, . . . L,

Sig, htan, ReLU, LReLU
Size of Receptive field in

pyramidal Layers ln
RF or rln ln 6= lfc

Overlap in each
receptive field of layer ln

oln ln 6= lfc

Stride/Gap for
pyramidal layer ln

gln gln = rln − oln

Size of feature map at layer ln Hln ×Wln

Hln =
⌊
Hln−1

−oln
gln

⌋
,

Wln =
⌊
Wln−1

−oln
gln

⌋
Temporal Depth D D=3

Frame Stride G
G = 1 each time
we leave 1 frame

Weight parameter (i, j, d)
at correlation layer

wln
i,j,d

where i = 1, 2..., Hln−1
,

j = 1, 2...,Wln−1
and 1 ≤ d ≤ D

Bias Parameter (u, v, z)
at correlation layer

blnu,v,z
u = 1, 2 . . . Hln , v = 1, 2 . . .Wln

and z = 1, 2, . . .
(
Mln−1−D+1

)
Pooling Layer

Weight parameter at (i,j)
wln

i,j

where i = 1, 2 . . . , Hln−1
,

j = 1, 2 . . . ,Wln−1 and 1 ≤ d ≤ D
Pooling Layer

Bias parameter at (i,j)
blnu,v,z where (u, v, z) = 1× 1× Zln

Total number of Parameters
in the Model

P
P =

∑lp
ln=1Nln

+
∑L

ln=lp+1
Nln × (Nln−1

+ 1)

Table 3.1: 3DPyraNet Mathematical Notations to be used in Forward Propagation

of the network.

ylnu,v,z = fln

 D∑
d=1

∑
(i,j,m)∈Rln,d

(u,v,z)

((
wln

(i,j,d) . y
ln−1
(i,j,m)

)
+ bln(u,v,z)

) (3.1)

Where fln represents activation function used at current layer ln.
(u, v) represents the position of output neuron at z, where z is the
current output map that is generated by a set of input maps (repre-

CHAPTER 3. A 3D STRICTLY PYRAMIDAL NEURAL NETWORK 80

sented by m) in the temporal direction. m is calculated by ’d+z−1’
from layer ’ln−1’ as shown in Eq. 3.2 third row. In our experiments,
dlow and dhigh are set equal to 1 and D, respectively, due to the size
of the kernel temporal depth. The set of neurons of a receptive field,
i.e. i, j in the current map m at the lower layer is calculated by
Eq. 3.2. Where Rln,m

(u,v,z) represents the receptive field for each neuron

(u, v) in z output map. Here, rln in the equation represents the size
of the receptive field, i.e. RF at that layer ln.

Rln,d
(u,v,z) =


(i, j,m) | (u− 1) + 1 ≤ i ≤ (u− 1) + rln;

(v − 1) + 1 ≤ j ≤ (v − 1) + rln;
(dlow + z − 1) ≤ m ≤ (dhigh + z − 1)

 (3.2)

In case of biases, unlike CNN’s, 3DPyraNet does not use one bias for
each output feature map, rather it uses one bias for each neuron in
an output feature map. Further, similar to 3DCNN, we also tried to
extract more type of features from the same spatial position of the
input by using multiple 3D weight sets. However, 3DCNN increase
their set of kernels at each layer, whereas, 3DPyraNet keep it fixed
after starting layer. At each upper layer, the maps are decreased
by two maps. Initialization with multiple kernels at first layer helps
not only in increasing feature maps, but afterwords, due to continu-
ous reduction in maps, help 3DPyraNet in maintaining a pyramidal
structure.

(RF) and (O) are tuned for handling the performance. (RF,O)
size of (4,3) and (3,2) are used in 3DCORR1 and 3DCORR5 layer
of the models for AR, respectively. Similarly, the model for DSR
uses (RF,O) size of (4,3) in 3DCORR1, and 3DCORR5 layer, re-
spectively.

The reason behind using a correlation ’.’ operation in Eq. 3.1
rather than convolution ’∗’ is that, correlation extracts and collect
similarity. As action/scene is defined by recognition of consecutive
almost similar activity, pose of a human body over a continuous
time span, or continuous natural phenomena occurring over time in

CHAPTER 3. A 3D STRICTLY PYRAMIDAL NEURAL NETWORK 81

Figure 3.5: Proposed model of 3DPyraNet

a specific location. Therefore correlation or weighted sum opera-
tion is most suitable for recognizing similarity in videos due to the
correlation existence in consecutive frames.

The WS layer has two main tunable parameters i.e. receptive field
size and stride/overlap for handling the performance. We used three
sets of 3D weight matrix in order to extract different type of features
from the actual input. The set of weights remain same whereas their
size reduce through out the network until 1D layer. In addition, maps
decrease by two in each set as we go deeper in the network. In each
layer, after passing the feature maps through activation function,
the output maps are normalized in order to converge the network
faster by regulating their saturation with simple zero mean and unit
variance approach. This normalization steps also have an impact on
overall performance. If we consider this step as a separate layer, than

CHAPTER 3. A 3D STRICTLY PYRAMIDAL NEURAL NETWORK 82

our model becomes more deeper like some recent deeper model have
shown. We tried to capture global as well as local discriminative
features among the consecutive correlated feature maps. Therefore,
L1WS is followed by pooling layer that is discussed in next section.

3.2.2.2 Temporal Pooling Layer (3DPool)

Pooling divides the feature map into a set of non-overlapping rect-
angles. For each such sub-region it returns a value among each di-
vision. One can use different type of pooling, e.g. Mean, Max, etc.
3DPyraNet uses Max-pooling as it returns maximum value among
each division. This is helpful in removing non-maximum values that
reduces computation for higher layers as well as provide translation
invariance and robustness.

A 3D temporal pooling layer represented by (L2P) in our model
is shown in the Fig. 3.5. This not only reduces spatial resolution but
also, due to 3D pooling among the temporal domain, leads to more
discriminative feature maps. The position oriented weight matrix has
a slight deficiency of learning translation and scale invariant features.
Therefore, to overcome this limitation, we introduce a pooling layer
that helps in translation and scale invariant problem. In-addition, it
also helps in reducing the dimensionality not only in spatial domain
but also in temporal domain to maintain a strict pyramidal structure.
One point to note, unlike traditional pooling layers, where there are
no parameters or biases. Our model have weight parameters for
each output maximum value among the three referenced fields. After
multiplication, a bias is added and the signal is passed through an
activation function like a traditional perceptron to produce an output
map. The output max pooled value for neuron ylnu,v,z is shown in Eq.
3.3.

ylnu,v,z=fln

((
wln
u,v . max

1≤d≤D

(
max

(i,j,m)∈ R
ln−1,d
u,v,z

(
y
ln−1
i,j,m

)))
+ blnu,v,z

)
(3.3)

CHAPTER 3. A 3D STRICTLY PYRAMIDAL NEURAL NETWORK 83

Here Rln,m
u,v,z calculates the range for (i, j,m) indices, i.e. ilow, jlow,

ihigh, jhigh, mlow and mhigh as being calculated by Eq. 3.2 in previous
layer. The temporal depth ’D’ is same as other layers. However, the
size of the receptive field (RF also represented as ’rln’ in Eq. 3.2)
is different than the receptive field of L1WS/3DCorr layer. In our
current models for AR and DSR, (RF,O) values are taken as (2,0)
in first pooling layer. In pooling layer, we have taken weight matrix
of size equal to the output map size, whereas, we set only one bias
for each output map. Hence, u and v in Eq. 3.3 are 1, i.e. the bias
matrix is 1× 1× Z. where Z is the number of output maps in that
layer.

3.2.2.3 Fully Connected Layer

The third layer is again a correlation layer (L3WS). Its output is
converted in 1D column feature vector that is used as a fully con-
nected layer for classification. The overall L3WS and L2P layers
extract discriminative features by capturing the motion information
encoded in multiple adjacent frames. One can have multiple 1D lay-
ers depending on the complexity of the application area. Eq. 3.5
calculates the output for another 1D layer or the final output that
categories the input sequence.

In order to comply with other models, and for the ease of future
reader, we have used the same neuronal structure for our final output
layer to classify the features in output neurons as shown in Eq. 3.4.
Otherwise, the same can be represented in Eq. 3.5, where ′u′ and ′z′

are one as we have 1× n output vector.

yln=fl

(
Nl−1∑
m=1

(
wl
m,n . yl−1

m

)
+ bln

)
(3.4)

ylnu,v,z = fln

(
I∑
i=1

((
wln

(i,v,z) . y
ln−1
(i,1,1)

)
+ bln(1,v,1)

))
(3.5)

CHAPTER 3. A 3D STRICTLY PYRAMIDAL NEURAL NETWORK 84

However, in 1D case the u and z are 1. Only v is more than one, i.e.
the number of output neurons (V). In addition, the set of weights for
that is represented by v in the weight matrix. I represents the num-
ber of weight parameters or the number of neurons in the 1D current
input layer. If ln = L, than it is the final output layer otherwise, it
is a 1D fully connected layer (FC) that is given as input to calculate
output. Weight update is done using a modified version of conven-
tional BP algorithm with a stochastic gradient decent approach for
minimizing the error.

3.2.3 3DPyraNet Training

To learn AR/DSR task efficiently, a fast training algorithm must be
devised. The objective of 3DPyraNet training is to minimize grad-
ually an error function that is defined in terms of our deep-network
outputs and the target outputs. There are two well-known error
functions used to minimize the error. However, literature review
suggests that CE perform similar or better than MSE. The differ-
ence in computation comes only at final output layer. The rest of
the computation is the same. Hence, we discuss the computation
over MSE. Both these errors are explained earlier in PyraNet model
Sec. 2.2.5.3. Delta rule given in Eq. 3.6 is used to update the weight
parameters.

wln,new
u,v,d = wln,old

u,v,d − ε
∂E

∂ wln
u,v,d

(3.6)

Where E is:

E = EMSE(w) =
1

K ×NL

K∑
k=1

NL∑
n=1

|yL,kn − tkn|2 (3.7)

and ε is the learning rate that controls the oscillation while training.
It is always kept small. We use a small value and reduce it by a
factor of 10% after each 10 epochs. This remains the same for all
unless it is otherwise specified.

CHAPTER 3. A 3D STRICTLY PYRAMIDAL NEURAL NETWORK 85

Description Notation Details
Training Clip Index k k = 1, 2 . . .K

Target output category tku,v,z
tku,v,z =

(
tk1 , t

k
2 , t

k
3 , . . . t

k
I

)T
where u = 1, z = 1 and v = 1, 2 . . . I

Weighted Sum input
to neuron (u,v,z)

in Correlation Layer
Sln,k
u,v,z

Sln,k
u,v,z =

∑ihigh

i=ilow

∑jhigh

j=jlow

∑mhigh

m=mlow((
wln

(i,j,d) . y
ln−1

(i,j,m)

)
+ bln(u,v,z)

)
where ilow = (u− 1)gln + 1;
ihigh = (u− 1)gln + rln ;
jlow = (v − 1)gln + 1;
jhigh = (v − 1)gln + rln ;
mlow = dlow + z − 1;
mhigh = dhigh + z − 1;

Output Neuron at
Correlation layer (ln) for sample k

yln,ku,v,z yln,ku,v,z = fln(Sln,k
u,v,z)

Softmax Mapping for Sample k pk,Lu,v,z pk,Lu,v,z = exp(yk,L(u,v,z))/
∑I

i=1 exp(y
k,L
(u,v,z))

The error at output eku,v,z eku,v,z =

{
yL(u,v,z) − t

k
(u,v,z) for MSE

pL
(u,v,z) − t

k
(u,v,z) for CE

Error Functions E(w)

Emse = 1
K×NL

∑K
k=1

∑NL

n=1 |yL,k
n − tkn|2

Ece =
∑K

k=1

∑NL

n=1 t
k,K
n lnpk,Ln

Error Sensitivity of neuron (u, v, z) δln,ku,v,z δln,ku,v,z = ∂E

∂Sln,k
u,v,z

Table 3.2: 3DPyraNet Mathematical Notations to be used in Backward-Propagation

In next section we explain the computation done for calculating
∂E

∂wln
u,v,z

. For FC layers, it is straight forward like a multilayer per-

ceptron. However, in pyramidal layers it becomes complicated. We
explain it separately for each layer, i.e. 3DPyramidal layer, 3DPool-
ing Layer and fully connected layer.

Tab. 3.2 represents variable and notations being used in back-
propagation stage. In order to update the weights, we have to cal-
culate ∂E

∂wln
u,v,z

for every layer. However, we divide it into two steps.

The first step calculates error sensitivity or local error of each neu-
ron, while in second step we calculate the weight gradients to be
subtracted from previous weights.

CHAPTER 3. A 3D STRICTLY PYRAMIDAL NEURAL NETWORK 86

3.2.3.1 Last Layer (Output)

The partial derivative of error with respect to the input is used to
calculate the local gradient or error sensitivity at the output layer.
In Eq. 3.8, L represents last layer, S represents weighted sum for
specific neuron u, v, z at any layer. K,U, V, Z represents number of
sample in the batch, U = 1, V is the number of output neurons,
and Z = 1, respectively. U and Z are always 1 as it is 1D layer. tk

represents the target output at the final output layers for sample k.

δL(u,v,z) =
∂E

∂SL,k(u,v,z)

(3.8)

Using chain rule method, it become as:

∂E

∂SL,k(u,v,z)

=
∂E

∂yL(u,v,z)

∂yL(u,v,z)

∂SL,k(u,v,z)

(3.9)

where

∂yL,k(u,v,z)

∂SL,k(u,v,z)

= f
′

L(SL,k(u,v,z)) (3.10)

MSE is the sum of the square difference between calculated output
and target output and is given in Eq. 3.7. By putting Eq. 3.7 and
3.10 in Eq. 3.9, it will become as:

∂E

∂SL,k(u,v,z)

=
∂(1

K×U×V×Z
∑V

v=1 (yL,k(u,v,z)−t
k
(u,v,z))

2

∂yL,k(u,v,z)

f
′

L(SL,k(u,v,z)) (3.11)

=
2

K × U × V × Z

(
yL,k(u,v,z)−t

k
(u,v,z)

)(∂yL,k(u,v,z)

∂yL,k(u,v,z)

−
∂tL,k(u,v,z)

∂yL,k(u,v,z)

)
f
′

L

(
SL,k(u,v,z)

)
(3.12)

As

eku,v,z =
(
yL,k(u,v,z)− tk(u,v,z)

)
(3.13)

CHAPTER 3. A 3D STRICTLY PYRAMIDAL NEURAL NETWORK 87

and

∂tk(u,v,z)

∂yL,k(u,v,z)

= 0 (3.14)

Therefore,

∂E

∂SL,k(u,v,z)

=
2

K × U × V × Z
ek(u,v,z)

(
∂yL,k(u,v,z)

∂yL,k(u,v,z)

− 0

)
f
′

L

(
SL,k(u,v,z)

)
(3.15)

∂E

∂SL,k(u,v,z)

=
2

K × U × V × Z
ek(u,v,z) (1− 0) f

′

L

(
SL,k(u,v,z)

)
(3.16)

∂E

∂SL,k(u,v,z)

=
2

K × V
ek(u,v,z) f

′

L (SL,k(u,v,z)) (3.17)

As error sensitivity δL,ku,v,z in Eq. 3.8 is calculated by ∂E

∂SL,k
(u,v,z)

, there-

fore putting Eq. 3.17 in 3.8 and simplifying it will give:

δL,ku,v,z = eku,v,z f
′

L (SL,k(u,v,z)) (3.18)

In order to normalize the term individually, we have to divide each
by the sum of total number of neurons in all K samples, i.e. K ×
U × V × Z which can also be represented as K × NL (to represent
it the way it is represented in literature) for the outer layer or just
K × V as the rest, i.e. U and Z are 1. It is given by Eq. 3.17.
Also in our case, we did not normalized the output layer. Therefore,
we can represent and calculate error sensitivity at final output layer
in-terms of Eq. 3.18.

3.2.3.2 Full Connected Layer (L-1)

We have calculated the local gradient for the output neurons in pre-
vious section. Now to back-propagate them in fully connected 1D

CHAPTER 3. A 3D STRICTLY PYRAMIDAL NEURAL NETWORK 88

layers, we do it in two steps as previously mentioned, i.e. calculat-
ing error sensitivities and then the error gradients. However, this is
not simple as compare to output layer. As here, error is on output
layer, and we have to transfer it through connections to each hidden
neuron of 1D layer.

δlnu,v,z =
∂E

∂Sln,ku,v,z

(3.19)

Using Chain rule:

∂E

∂Sln,ku,v,z

=
∂E

∂yln,ku,v,z

∂yln,ku,v,z

∂Sln,ku,v,z

(3.20)

Similar to previous layer, putting value of
∂yln,k

u,v,z

∂Sln,k
u,v,z

given in Eq. 3.10

and the error given by Eq. 3.7, we get:

∂E

∂Sln,ku,v,z

=
∂(1

K×V
∑V

v=1 (y
ln+1,k
u,v,z − tk(u,v,z))

2

∂yln,ku,v,z

f
′

ln
(Sln,ku,v,z) (3.21)

After simplifying the derivatives,

∂E

∂Sln,ku,v,z

=
2

K × V
eku,v,z

(
∂y

ln+1,k
u,v,z − tk(u,v,z)
∂yln,ku,v,z

)
f
′

ln,k

(
Sln,ku,v,z

)
(3.22)

As, ln+1 = L therefore we can not access error at final layer. We
have to use chain rule once again.

∂E

∂Sln,ku,v,z

=
2

K × V
eku,v,z

(
∂eku,v,z

∂yln,ku,v,z

)
f
′

ln

(
Sln,ku,v,z

)
(3.23)

Based on Eq. 3.13, it becomes:

∂E

∂Sln,ku,v,z

=
2

K × V
eku,v,z f

′

ln

(
Slnu,v,z

) (∂eku,v,z

∂S
ln+1,k
u,v,z

∂S
ln+1,k
u,v,z

∂yln,ku,v,z

)
(3.24)

CHAPTER 3. A 3D STRICTLY PYRAMIDAL NEURAL NETWORK 89

To simplify the above Eq. 3.24, as ln+1 = L therefore, we can

write L instead of ln+1 in the following equations.
∂eku,v,z

∂S
ln+1,k
u,v,z

can be

further simplified as:

∂eku,v,z

∂SL,ku,v,z

=
∂yL,ku,v,z

∂SL,ku,v,z

−
∂tk(u,v,z)

∂SL,ku,v,z

= f
′

L

(
SL,ku,v,z

) (3.25)

Similarly, ∂S
ln+1,k
u,v,z

∂ylnu,v,z
or

∂SL,k
u,v,z

∂yln,k
u,v,z

can be further simplified as:

∂SL,ku,v,z

∂yln,ku,v,z

=
∂
(∑VL

v=1w
L
u,v,z y

ln,k
u,v,z + bLu,v,z

)
∂yln,ku,v,z

=

VL∑
v=1

wL
u,v,z (3.26)

or it can be written in three indices (however two of them are just 1
due to 1D vector) as:

∂SL,ku,v,z

∂yln,ku,v,z

=
∂
(∑I

i=1w
L
i,v,z y

ln,k
i,1,1+ bLu,v,z

)
∂yln,ki,1,1

=
I∑
i=1

wL
i,v,z (3.27)

As
∂tLu,v,z

∂SL,k
u,v,z

is constant, so it’s derivative is 0. Now we can put the

resultant of Eq. 3.25 and 3.26 in Eq. 3.24, that gives:

∂E

∂Sln,ku,v,z

= eku,v,z f
′

ln

(
Sln,ku,v,z

) (
f
′

L

(
SL,ku,v,z

))
.

(
I∑
i=1

wL
i,v,z

)
(3.28)

By re-arranging Eq. 3.28, we have found that eku,v,z f
′

L

(
SL,ku,v,z

)
is given

by Eq. 3.18 as error sensitivity at the upper layer (output) neuron.
Further, as ∂E

∂Sln,k
u,v,z

is represented by δlnu,v,z in Eq. 3.19, therefore, Eq.

3.28 becomes:

δlnu,v,z = f
′

ln

(
Sln,ku,v,z

) I∑
i=1

δ
ln+1

i,v,z w
ln+1

i,v,z (3.29)

Where ln+1 is the upper layer (output) and ′l′n is the 1D fully con-
nected layer. We have used i, j,m that are linked with current u, v, z.

CHAPTER 3. A 3D STRICTLY PYRAMIDAL NEURAL NETWORK 90

As it is fully connected layer, therefore, we have only one summation
in the equation to change the variable j (as other remains constant).

However to understand this easily, the best way is to consider
these as simple 1D hidden layers of a multilayer perceptron as given
below in Eq. 3.30.

δln,kn = f
′

ln

(
SL,kn

) Nl+1∑
m=1

δln+1,k
m w

ln+1

m,n (3.30)

ln+1 is the upper layer (output) and ′l′n is the 1D fully connected layer.
Eq. 3.29 or 3.30 are the final equations to be used for calculating
error sensitivity at fully connected layers. Now we have to calculate
actual weight gradients to update our weights.

Weight Gradients at 1D or Fully connected layer:
The weight gradients of 1D fully connected layer is calculated by the
product of local gradients calculated in Eq. 3.29 and their respective
inputs that generated the output in the forward propagation. This
is given in the following Eq. 3.31 (using traditional notations) and
Eq. 3.32 (using 3 index notations).

∂E

∂wln
m,n

=
K∑
k=1

M∑
m=1

δln,kn yln−1,km (3.31)

In terms, of representing it in three variables, it becomes as given in
Eq. 3.32. However, only one variable changes, the rest are 1 as it is
1D column vector.

∂E

∂wln
u,v,z

=
K∑
k=1

jhigh∑
jlow=1

δln,k1,j,1 y
ln−1,k
u,v,z (3.32)

Here δln,k1,j,1 represents the error sensitivity form the upper layer. Hence,
it is a 1D vector therefore, ihigh and mhigh are equal to 1. It runs
for only jhigh, the number of neurons in the vector for the layers less
than L, or the number of neurons in the output layer L, i.e. V .
Whereas, K represents total number of sample frames in a batch.

CHAPTER 3. A 3D STRICTLY PYRAMIDAL NEURAL NETWORK 91

This weight gradient is similar to calculating weight gradients of a
fully connected layer in a multilayer perceptron.

Finally, Eq. 3.29 and 3.31 can be used for error sensitivity and
error gradients at fully connected layers (between output and last
pyramidal layer (LP), i.e. LP < ln < L), respectively. Rather, even
same equations are used for the LP . However, the only difference
is that in case of LP after calculating error sensitivities and weight
gradients, it is rearranged in 3D structure.

Bias gradient for 1D or Fully Connected Layer:
The biases are updated with the same error sensitivities. However,
∂E
∂blni,j,d

is calculated by

∂E

∂blni,j,d
=

K∑
k=1

vhigh∑
vlow=1

δln,ku,v,z (3.33)

In 1D case, i and d are equal to 1, only j represents the number of
output neurons for which their is one bias value. Therefore, the bias
gradient is calculated by the summation of all the error sensitivities
of that position in all the samples K.

3.2.3.3 3D Pyramidal Layer

Calculating error gradients at pyramidal layer is not similar to cal-
culating gradients at CNN. The reason is the unique kernel for every
neuron unlike CNN where same kernel is used for all the neurons.
After calculating the error gradients at 1D layers, the error is back-
propagated to update the weight parameters at 3D pyramidal layers.
It starts in the same manner as for the other 1D layers. The differ-
ence arises after chain rule when the local error sensitivities of the
higher layer are calculated.

δln,ku,v,z=
∂E

∂Sln,ku,v,z

(3.34)

CHAPTER 3. A 3D STRICTLY PYRAMIDAL NEURAL NETWORK 92

∂E

∂Sln,ku,v,z

=
∂E

∂yln,ku,v,z

∂yln,ku,v,z

∂Sln,ku,v,z

(3.35)

This becomes as:

∂E

∂Sln,ku,v,z

=
∂(1

K × VL

∑Kln

k=1

∑Vln
v=1 (yln,ku,v,z− tkv)

2

∂yln,ku,v,z

f
′

ln

(
Sln, ku,v,z

)
(3.36)

∂E

∂Sln,ku,v,z

=
2

K × VL
ekv

(
∂ekv

∂yln,ku,v,z

)
f
′

ln

(
Sln, ku,v,z

)
(3.37)

∂E

∂Sln,ku,v,z

=
2

K × VL
ekv f

′

ln

(
Sln, ku,v,z

)(∂ekv

∂S
ln+1,k
u,v,z

∂S
ln+1,k
u,v,z

∂yln,ku,v,z

)
(3.38)

∂E

∂Sln,k
u,v,z

= 2
K×VLe

k
v f

′

ln

(
Sln, ku,v,z

)
 ∂ekv

∂S
ln+1,k
u,v,z

∂

(∑ihigh
i=ilow

∑jhigh
j=jlow

∑dhigh
d=dlow

w
ln+1
i,j,d y

ln,k
i,j,m + b

ln+1,k

i,j,m

)
∂yln,k

u,v,z

 (3.39)

ilow =

⌈
u− rln+1

gln+1

⌉
+ 1 (3.40)

ihigh=

⌊
u−1

gln+1

⌋
+ 1 (3.41)

jlow=

⌈
v−rln+1

gln+1

⌉
+1 (3.42)

jhigh=

⌊
v−1

gln+1

⌋
+1 (3.43)

CHAPTER 3. A 3D STRICTLY PYRAMIDAL NEURAL NETWORK 93

2
K×NL

is removed as it is used for normalization purpose, and we use
other normalization techniques compare to this. Also due to mini
batch approach, this is not used in our case. The value for lower
and upper bounds, i.e. ilow, ihigh, jlow, and jhigh are calculated by Eq.
3.40, 3.41, 3.42, and 3.43, respectively. Whereas, ’m’ represents the
current map that is calculated by d + z − 1. Also, similar to the
previous layer, using Eq. 3.27 or 3.26, gives us:

∂E

∂Sln,ku,v,z

=
2

K × VL
ekvf

′

ln

(
Sln, ku,v,z

)f ′ln (Sln+1,k
u,v,z

) ihigh∑
i=ilow

jhigh∑
j=jlow

dhigh∑
dlow

w
ln+1

i,j,d


(3.44)

∂E

∂Sln,ku,v,z

=
2

K × VL
f
′

ln

(
Sln, ku,v,z

)
ekv

f ′ln (Sln+1,k
u,v,z

) ihigh∑
i=ilow

jhigh∑
j=jlow

dhigh∑
d=dlow

w
ln+1

i,j,d


(3.45)

Hence, δ
ln+1,k
i,j,m is given by ekv f

′

ln

(
S
ln+1, k
u,v,z

)
and δln,ku,v,z is given by ∂E

∂Sln,k
u,v,z

in Eq. 3.34. Therefore,

δlnu,v,z = f
′

ln

(
Sln, ku,v,z

)
.

D∑
d=1

ihigh∑
i=ilow

jhigh∑
j=jlow

mhigh∑
m=mlow

δ
ln+1,k
i,j,m w

ln+1

i,j,d (3.46)

Where u = 1, 2, 3 . . . Hln and v = 1, 2, 3 . . .Wln. In Eq. 3.46, ilow,
ihigh, jlow and jhigh are calculated by Eq. 3.40, 3.41, 3.42, and 3.43,
respectively. For each z, error sensitivity is calculated by respec-
tive maps m calculated in the range of mlow = z and mhigh =
z + D + 1 from layer ln+1. The temporal depth is D = 3. Eq. 3.46
is the final equation to calculate error sensitivities at 3D weighted
sum/correlation layers.

Weight Gradients for 3D Pyramidal Layers:
The same procedure is followed as it is being done for 1D layer, i.e.

CHAPTER 3. A 3D STRICTLY PYRAMIDAL NEURAL NETWORK 94

to calculate the weight gradients by taking the product of sum of
local sensitivities at higher layer that are in contact with the current
neuron at lower layer.

∂E

∂ wln
i,j,d

=
K∑
k=1

mhigh∑
m=mlow

(
y
ln−1,k
i,j,m ×

uhigh∑
u=ulow

vhigh∑
v=vlow

zhigh∑
z=zlow

δln,ku,v,z

)
(3.47)

here i = 1, 2, 3, . . . Hln, j = 1, 2, 3, . . .Wln, Whereas m is in the range
given by mlow and mhigh as shown below:
mlow = d
mhigh = Mln − (D − d)

Where, ’D’ represents temporal depth, i.e. 3, and d is equal to 1,
2 or 3. M is the number of total input frames/feature maps in that
layer. However, zlow and zhigh can be calculated by Eq. 3.52 and
3.53.

ulow =

⌈
i−rln
gln

⌉
+ 1 (3.48)

uhigh=

⌊
i−1

gln

⌋
+ 1 (3.49)

vlow=

⌈
j−rln
gln

⌉
+1 (3.50)

vhigh=

⌊
j−1

gln

⌋
+1 (3.51)

zlow=

⌈
m−D
G

⌉
+1 (3.52)

zhigh=

⌊
m−1

G

⌋
+1 (3.53)

CHAPTER 3. A 3D STRICTLY PYRAMIDAL NEURAL NETWORK 95

’G’ represents the number of frames that we leave after each 3D cor-
relation. In our experiments it is kept as one, e.g. for first feature
map, we take input maps 1,2, and 3, whereas for the second output
map we consider 2,3, and 4. ’D’ represents the depth as previously
explained.
Bias gradient for 3D Pyramidal Layer:
The biases are also updated with the same error sensitivities. How-
ever, ∂E

∂wln
i,j,m

is calculated by

∂E

∂wln
i,j,m

=
K∑
k=1

δln,ku,v,z (3.54)

The error gradient for a bias is the sum of all the error sensitivities
of that position in all the maps from all the samples K. blni,j,m is the
bias for neuron (i, j) in map m. As we have one bias for each output
neuron, therefore i = u, j = v and m = z.

3.2.3.4 3D Temporal Pooling Layer

The technique to calculate weight gradients is the same as 3D pyra-
midal Layer backpropagation. The only difference is that error is
back-propagated through selected neurons only, e.g. if we use max
pooling, than only the neuron having maximum value among the
three receptive fields is updated.

δln,ku,v,z =
D∑
d=1

f
′

ln

(
Sln,ku′,v′,z′

) ihigh∑
i=ilow

jhigh∑
j=jlow

mhigh∑
m=mlow

δ
ln+1,k
i,j,m . w

ln+1

i,j,d (3.55)

Where the indices (u′, v′, z′) represents the points when it attains the
largest value in the receptive field Rln,d

u,v,z.

argmax
u′,v′,z′

Sln,ku′,v′,z′ := {(u′, v′, z′)|∀(u, v, z) : Sln,ku,v,z < Sln,ku′,v′,z′} (3.56)

It represents the maximum of the maximum values among the three
receptive fields calculated in the same manner as being done for

CHAPTER 3. A 3D STRICTLY PYRAMIDAL NEURAL NETWORK 96

selecting the max value in the forward propagation by Eq. 3.2.(
Sln,ku′,v′,z′

)
is the weighted sum value resulted from the weight pa-

rameter (wu,v) and the max value.
The rest of ranges, i.e. ilow, ihigh, jlow and jhigh are calculated by

Eq. 3.40, 3.41, 3.42, and 3.43, respectively. For each z, error sensi-
tivity is calculated by respective maps m calculated in the range of
mlow = z and mhigh = z+D+1 from layer ln+1. The temporal depth
is D = 3.
Weight Gradients for Pooling Layer: The weight gradients for
3D pooling layer are calculated by:

∂E

∂wln
i,j

=
K∑
k=1

Mln∑
m=1

(
y
ln−1,k
i,j,m

)
.

uhigh∑
u=ulow

vhigh∑
v=vlow

zhigh∑
z=zlow

δln,ku,v,z (3.57)

where, ∂E
∂wln

i,j

are the weight gradients to be used in Eq. 3.6 to update

the weight parameters for pooling layer.
(
y
ln−1,k
i,j,m

)
is the max value

calculated in Eq. 3.3. Range values (vlow, vhigh, ulow, and uhigh) are
calculated by Eq. 3.48,3.49, 3.50 and 3.51, respectively. Eq. 3.52
and 3.53 are used for selecting corresponding maps, i.e. zlow and
zhigh containing error sensitivities. ’d’ is always in the same range of
D = 3.
Bias gradient for 3D pooling layer:
The biases are also updated with the same error sensitivities. How-
ever, ∂E

∂blni,j
is calculated by Eq. 3.58.

∂E

∂blni,j,m
=

K∑
k=1

uhigh∑
u=1

vhigh∑
v=1

δln,ku,v,z (3.58)

The bias gradient calculation for pooling layer is almost same as
3D weighted sum/correlation layers. However, the difference is due
to the reason that 3DPyraNet have only one bias for each output
map in pooling layer. Due to which i = 1 and j = 1 in Eq. 3.58.
Therefore, the error gradient in case of biases is the sum of all the

CHAPTER 3. A 3D STRICTLY PYRAMIDAL NEURAL NETWORK 97

error sensitivities of those maps for all the samples K. blni,j,m is the
bias for all the neurons in that map m. uhigh and vhigh represents
the total rows and columns in the feature map. Also, as 3DPyraNet
have only one bias for each map, therefore, in this case m is same as
z.

In the next section, we discussed our results achieved after exper-
imenting on two benchmark action recognition datasets.

3.3 Results & Discussion

To evaluate the performance of our 3DPyraNet, rather than consid-
ering large datasets, we have decided to examine it with small but
difficult dataset. The reason behind using these small scale datasets
is two fold: first they are fast compare to very large datasets like
UCF101 or HMDB1, second they are not favorable to most deep
learning approaches due to lack of training data. Therefore, we eval-
uated 3DPyraNet on Weizmann and KTH datasets [105, 16].

3.3.1 AR Evaluation Datasets

These datasets are small in sequences but each video consists quite
similar and complicated action scenarios. We implemented our model
in Matlab 2014b. We used their computer vision and machine learn-
ing tool boxes in some cases. The rest we coded our own implemen-
tation.

Weizmann:
It is a good starting dataset for evaluating performance of a network.
It is smaller compare to others in terms of action sequences. However,
it provides ten types of quite similar human actions i.e. Walking,
Running, Jumping, Galloping sideways, Bending, One-hand wave,
Two-hands wave, Jump in place, Jumping Jack, and Skip. Each
action is done by nine actors in different scenarios that make it a
complex task for recognition due to the reason that it have only few

CHAPTER 3. A 3D STRICTLY PYRAMIDAL NEURAL NETWORK 98

short videos for each category, which is not a good scenario rather
challenging for DL models.

KTH:
It is another popular big and complex dataset that contains six ac-
tions done by 25 actors. It provides 2391 sequences in four different
scenarios along with camera movement that results in different res-
olutions. It is big compare to Weizmann dataset but have fewer
action classes. However, one of the action class is very hard to be
tracked by a tracker. As we need 13 consecutive frame for a sequence.
Therefore, in some tests it is neglected for not providing or having
consecutive enough proper segmented sequences. Therefore, in this
case similar to many work being done in literature, the results are
shown with 5 classes. We used a sequence of 13 consecutive frames
of size 64x48 to represent an action for both datasets.

3.3.2 Discussion

We carried out two type of experiments, i.e. 1) to check efficiency of
proposed WS layers with simple activation functions and 2) combin-
ing it with pooling and using advance rectification functions. There-
fore, for the first case we used a network with two WS layers and
a fully connected layer to classify among ten classes. The output of
each WS layer is passed through an activation function i.e. sigmoid
or tangent and than normalized throughout the network learning.
Initial learning is not smooth and it takes around 450 epochs to con-
verge. This provide accuracy of 80% on training set and 70% on
testing set.

As in most deep models, pooling plays an important role by pro-
viding translation invariance as well as reducing the dimensions. In
addition, for faster convergence, avoiding local minima, and improve-
ment in performance; an extension of rectified linear unit known as
leaky rectified linear units (LReLu) [106] is used. This LReLu in
contrast to ReLu shown in Eq. 3.59 and 2.18 respectively, allow a
small non-zero gradient when the neuron is less than or equal to zero.

CHAPTER 3. A 3D STRICTLY PYRAMIDAL NEURAL NETWORK 99

This property overcomes the limitation of ReLU i.e. not updating
weights if it stuck with zeros.

f(x) =

{
x ifx > 0

0.01x otherwise
(3.59)

Therefore, in 3DPyraNet model, we adopted pooling rather tempo-
ral 3D pooling represented by (L2P), and LReLu in combination to
WS layers. This results in high accuracy i.e. 87% and 80.5% re-
spectively for training and testing along with faster convergence, i.e.
within 200 epochs. In addition, learning behavior during training is
quite smooth compare to the previous model. Further, when we use
voting scheme for classification of videos based on classified action
sequences, result increased by two to three percent.

3DPyraNet is being compared with deeper models that have five
to eight hidden layers. To better evaluate our model, we reported the
mean accuracy on five splits of training and testing datasets selected
from same Weizmann database as done for evaluation of several other
models.

We followed same recommended strategy for retaining train and
test dataset. However, to cross validate the results, we randomized
the data in same proportion keeping in mind that equal number of se-
quences should exist for the small number of sequences, e.g. ’skip’ or
’running’. We achieved 90.9% accuracy for considering all ten classes
in the dataset as shown in Tab. 3.3 (a). However, videos containing
action ’skip’ are very short. Many authors in literature didn’t use
this category in their experiments, e.g. [107]. Our model is unable to
learn and classify skip category in proper manner due to lack of train-
ing data. In case of ’pjump’, it faces the same problem of having less
training sequences that results in poor performance. Therefore, if we
neglect the skip category, accuracy increases to 92.46% as shown in
Tab. 3.3 (b). However, for the rest of categories, 3DPyraNet shows
optimal results in both sequence and video classification shown on
left of Fig. 3.6.

CHAPTER 3. A 3D STRICTLY PYRAMIDAL NEURAL NETWORK100

Results on Weizmann is comparable with the state-of-the-art model
3DCNN reported in [60], which is impressive considering fewer num-
ber of hidden layers and having no sophisticated pre-processing for
extracting hard coded features.

Table 3.3: (a) Mean accuracy of five random data setups, (b) Proposed Vs. Others for
Weizmann and KTH datasets

(a)

SetUp Accuracy(%)

1 90.5

2 92

3 90

4 90.5

5 91.3

Mean 90.9

(b)

Model(classes) Weizmann (%) KTH(%) Layers

3DCNN 88.26[60] 90.2 [13] 6

3DPyraNet (all) 90.9 72 4

3DPyraNet (all-1) 92.46 74.23 4

ST-DBN - 85.2 4

GRBM - 90.0 -

Schuldt [16] - 71.7 -

Dollar [108] - 81.2 -

Alexandros [107](all) 90.32 - -

Alexandros [107](all-1) 92.77 - -

The second database used in our experiments is KTH. We used
same criteria that took 9 out of 25 persons videos for testing as
stated in literature. We randomly selected a total of 200 sequences
from them having size of 13×64×48. It should be noted that in our
initial experiments, we faced the same problem for running videos,
i.e. having less frames than minimum requirement of 13 due to fast
movement of the person or camera zooming scenarios. We achieved
72% over six classes. If we remove running class due to less number of
training data, our sequence accuracy becomes 74.23% (see confusion
matrix on right of Fig. 3.6).

CHAPTER 3. A 3D STRICTLY PYRAMIDAL NEURAL NETWORK101

Tab. 3.3 (b) shows comparison of proposed model with state-
of-the-art models reported in literature for Weizmann and KTH
datasets. In case of Weizmann, we overcome reported best result
of 88.26% with an average of 91.07% from ten tests in [60, 109]. We
used same dataset and same number of consecutive input frames as
used in [60, 109]. On the other hand for KTH dataset, 3DPyraNet
didn’t show better result as provided by 3DCNN [13], but still it
shows comparable results to some of complex models. One of most
plausible reason is that deep models need more data to have better
understanding of their respective problem. Secondly, unlike 3DCNN
[13], where they use ROI sequences extracted and classified by an-
other CNN based methodology. We use only background subtraction
for extracting the human as ROI. This ROI may contain half, not in
centered, or un-aligned person as input. This can greatly affect the
learning process and may have high impact in reducing the classifi-
cation rate compare to 3DCNN.

Tab. 3.4 also shows result for DSR datasets, i.e. YUPENN and
MaryLand-in-the-Wild. In addition it also shows number of parame-
ters. It shows that 3DPyraNet outperforms even in case of dynamic
scene understanding/dynamic scene recognition (DSU/DSR) prob-
lem as well as in reducing number of parameters. However, these are
discussed in detail in the coming chapter.

3.3.2.1 Computation Time

We are using Matlab version 2014b on an Intel(R) Xeon(R) CPU
E5-2620 v3 @ 2.40GHz system. Our model with input batch size of
80 × 100 × 13 × 100 takes approximately 1.757034 minutes. Based
on that, a clip of size 80×100×13 takes approximately 1.05 seconds
for complete forward and backward computation. The majority of
time is taken by back-propagation in the pooling layer.

CHAPTER 3. A 3D STRICTLY PYRAMIDAL NEURAL NETWORK102

Table 3.4: Accuracies for Action (Weizmann and KTH) and Scene (YUPENN and Mary-
Land) datasets, Layers represents main layers, Parameters are in million, and
size is in MB

Model(classifier) Weizmann KTH YUPENN MaryLand Layers
Parameters
in Millions

(Size in MB)

3D-ConvNet
[60]

88.26 89.40 - - 7
0.01717
(0.31)

3DCNN [13] - 90.2 - - 6
0.00511
(0.09)

3DHOG [110] 84.3 91.4 - - - -
Cuboids [111] - 90 - - - -

Gabor3D+HOG3D
(SVM) [112]

- 93.5 - - - -

3DSIFT (SVM)
[113]

82.6 - - - - -

HOG+HOF+MBH
+Trajectories
(SVM) [114]

- 94.2 - - - -

C3D (SVM) [23] - - 98.1 87.7 15
17.5

(305.14)

ImageNet [23] - - 96.7 87.7 8
17.5

(305.14)
ST-DBN [57] - 85.2 - - 4 -

Schuldt (SVM) [16] - 71.7 - - - -
Dollar (SVM) [108] - 81.2 - - - -

3DHOG+Local
weighted

SVM [115]
100 92.4 - - - -

3DPyraNet 90.9 72 45 67 4
0.83

(14.58)

3DPyraNet (all-1) 92.46 74.23 - - 4
0.83

(14.58)

3.4 Chapter Summary

To conclude this chapter, we have proposed a generalized 3D pyra-
midal neural network architecture for recognition in videos. It gets
raw input frames from videos as input. The approach is able to learn
features in fewer layers due to pyramid structure. It provided bet-
ter results in case of Weizmann and comparable results with KTH
datasets. We are verifying the generality of our model by testing

CHAPTER 3. A 3D STRICTLY PYRAMIDAL NEURAL NETWORK103

it on recent larger and challenging datasets like UCF sports, YU-
PENN, MaryLand and UT-Interaction datasets. This will help in
presenting benefits of using strictly pyramidal structure instead of
non-pyramidal structure for learning a powerful model. Since, the
model is aimed to obtain good performance despite the complexity
and diversity of these datasets.

3.5 Related Publications

• Ihsan Ullah and Alfredo Petrosino. A Strict Pyramidal Deep
Neural Network for Action Recognition, in Proceedings of Inter-
national Conference on Image Analysis and Processing (ICIAP-
15), pages 236-245, 07-11 Sep, 2015.

• Ihsan Ullah and Alfredo Petrosino. A Deep Pyramidal Neural
Network for Spatiotemporal Features Learning, To be Submitted
in IEEE Transaction on Neural Network and Learning System,
2016.

CHAPTER 3. A 3D STRICTLY PYRAMIDAL NEURAL NETWORK104

(a)

(b)

Figure 3.6: (a) Confusion Matrix for best case Weizmann without Skip (b) Current Best
KTH without Running

Chapter 4
Spatiotemporal Feature Learning with
3DPyraNet

Our Contribution:

• Presenting an effective approach for spatiotemporal feature learn-
ing using deep 3DPyraNet.

• It analyzes spatial and temporal properties of a naturally occur-
ring dynamic scene in a short video clip. The reciprocality of
these properties is refined and preserved through all layers.

• Findings are twofold: 1) The proposed 3D weighting scheme is
more suitable for feature learning in dynamic scenes captured
by moving cameras compared to other hand crafted and feature
learning approaches; 2) Our model shows improvement in both
classification and containing a smaller number of parameters.

• In comparison to other recent techniques, our globally learned
features with a linear classifier, result in competitive accuracy on
first dataset and outperform on the second benchmark dataset.

105

CHAPTER 4. SPATIOTEMPORAL FEATURE LEARNING WITH
3DPYRANET 106

4.1 Motivation

DSR is a key area of interest for automated video understanding.
The capability to classify dynamic scene plays vital role in video
surveillance, robot-navigation, video segmentation, etc. due to the
reason that it provides key features about the presence or absence
of an action, surface, or objects. As an example, a dynamic forest
scene most probably comprise of static/non-static trees, animals or
birds, whereas, a dynamic scene from a street mostly contains cars or
pedestrians etc. moving in some specific direction [2]. Similarly, the
presence of any movement or relation among the objects or actions
may help to distinguish a specific scene. A set of dynamic patterns
and their spatial layout with the passage of time describe a dynamic
scene in a short recorded clip. For example, a combination of slowly
moving clouds at the top from one side to the other, mid-scene water
waves moving in forward and then backwash, and a foreground of
static sandy texture describe a beach scene [2, 3, 4].

In the last decade, significant research has been done for scene
recognition in still images. Several large scale datasets have been
collected for better understanding of dynamic natural scenes. The
SUN dataset contains 899 categories including 130,519 images [69].
Whereas, the Places dataset have 7,076,580 images from 476 scene
categories and is the largest at the time of this writing [70]. Scene
recognition from images involve classifying an image into one of the
several given class categories. Traditional CV feature extraction such
as LBP, HOG, GIST, and variations of SIFT have demonstrated
good performance over previously mentioned datasets [69, 36, 116,
117]. (DL) approaches such as CNN have dominated image scene
classification by obtaining high accuracy as compared to other state-
of-the-art traditional approaches. Traditional CV and DL models
have taken into consideration only the spatial description of the scene
present in an image. Whereas, a dynamic scene classification in a
video categorizes a specific scene according to the semantic labels

CHAPTER 4. SPATIOTEMPORAL FEATURE LEARNING WITH
3DPYRANET 107

[117] derived from the scene. For example, a generic dynamic scene is
classified ’whirlpool’ if there occurs: a circular movement of water in
a river or sea, causing a hole in the center towards the bottom where
objects may be drawn, and not just based on the spatial attributes
of the scene.

The recording of scene can be done with either stationary or mov-
ing cameras; thus, while scene motion is a feature, it is not exclusive
of camera generated motion. In contrast, dynamic textures [118, 119]
face problem due to complicated dynamic patterns, even in simple
setup such as with a static camera and the peripheral field being to-
tally occupied by the precise compound dynamic pattern [67]. Cur-
rently, there is an intense interest in spatiotemporal analysis at vari-
ous levels of complexity, ranging from optical flow and dynamic tex-
ture analysis to high-level analysis in terms of scenes of particular
events in a video. However, motion sometime establish relation with
effects that can be investigated as problems or artifacts such as vari-
ations in light, specular effects etc. To deal with these problems,
mainly two type of techniques are adopted, i.e. handcrafted descrip-
tors or learned features in combination with a specific classifier.

Handcrafted descriptors used in the CV community such as SOE,
MSOE, HOF+GIST or Chaos+GIST [3, 2, 67] or many others show
good result for DSR. Despite advances in image recognition, classifi-
cation of scene from one frame poses a unique challenge as it contains
insufficient information for a scene recognition. The best way to en-
hance the performance is to incorporate temporal information in a
framework. Some of the well-known handcrafted temporal models
are reported in [67, 13, 19, 18].

In [120], proposed SWLD descriptor used simple classifier to achieve
better performance than techniques that use sophisticated classifiers,
e.g. SVM. Feature descriptor/extraction technique has more impor-
tance for achieving good results as compared to a sophisticated clas-
sifier in a recognition system. This importance is due to the discrim-
inative power and less number of features extracted by the feature

CHAPTER 4. SPATIOTEMPORAL FEATURE LEARNING WITH
3DPYRANET 108

descriptor that can be classified by any linear classifier. However,
descriptors are limited with certain scenarios, e.g. orientation, tex-
ture, flow etc. Therefore, it is more beneficial to automatically learn
all type of discriminative features from the input data that can be
classified by any simple linear classifier such as SVM, KNN etc.

In this regards, recent NN based methods have been proposed by
going deeper for learning more discriminative and varied features for
scene recognition [23, 12, 24]. These deep models received great at-
tention due to their huge success on large scale datasets [12] or based
on the idea that they perform well for scene recognition from videos
[23, 24]. D. Tran et al. in [23] also emphasized on the importance
of learned features compared to a classifier. They showed that even
with a simple linear classifier their C3D features report good results
on different dynamic scene and action recognition datasets.

As previously discussed in Chapter. 2 and 3, an important aspect
of convolutional DL models is their weight sharing concept. This
scheme reduces the number of parameters compared to other con-
ventional fully connected NN models, but increases the chance to
reduce the discriminative power of the parameters, considering the
huge amount of data from videos. For this reason, recent DL models
increases the number of maps at each higher layer, resulting in large
number of trainable parameters. In addition, it avoids faster conver-
gence and result in over training. In its response, certain techniques
are proposed such as dropout [12], or a sophisticated technique that
learn connections rather than parameters in the fully connected lay-
ers [30], or re-parametarizing the matrix-vector multiplication in the
fully connected layer while training the model [121]. Further, the
increase in maps as the network goes deeper, does not maintain the
strict/pure biological plausible pyramidal structure. ’Strict’ mean
reducing/refining feature maps / information and their size as the
network goes deeper.

On the contrary, in the past, most models were all pyramidal and
were following the biological plausible structure [11, 14, 33]. In our

CHAPTER 4. SPATIOTEMPORAL FEATURE LEARNING WITH
3DPYRANET 109

previous work, we proposed 3DPyraNet model that follows the bio-
logical concept of NN structure by doing refinement from layer one
to the final layer. 3DPyraNet model uses a new weighting scheme
that extracts discriminative spatial and temporal information from
the video. Therefore, we extend the model in two ways: 1) proposing
an extension of the (3DPyraNet) model by enlarging the architecture
to learn features from big raw input data; 2) in order to observe dis-
criminative power of learned features, a separate classification layer
is introduced to classify the learned features. Our model can be
applied in a wide spectrum of application scenarios (with slight tun-
ing) due to absence of requirements of the handcrafted features. In
the next section, the extended model is explained. However, the
3DPyraNet model is already explained in Chapter. 3, therefore, it is
not explained in depth.

4.2 Proposed 3DPyraNet-F

Selecting an optimal architecture is a challenging problem since it
depends on the specific application. A generalized model is shown in
Fig. 4.1. It consists of two 3DCorr layers, a 3DPOOL, a FC layer,
and a linear-SVM classifier layer. In coming subsections, the main
layers are being discussed. Whereas, once convergence is achieved,
features from the last NORM6 layer are extracted and fused in a
single column feature vector. This global/early fusion model is a
balanced mix between the spatial and temporal information. These
are incorporated in such a way that global information in both spa-
tial and temporal dimensions are progressively accessed by the SVM
layer. Finally, SVM layer trained model is used in testing phase to
classify the feature vectors extracted using 3DPyraNet. One-vs-All
criteria is used for the classification of video clips.

CHAPTER 4. SPATIOTEMPORAL FEATURE LEARNING WITH
3DPYRANET 110

4.2.1 Architecture

We call our model 3DPyraNet-F because we fuse all the highest layer
learned features provided by 3DPyraNet into a single feature vector.
The model is almost similar to 3DPyraNet but the difference arises
in three points:

• At an architecture level due to different input size.

• ’RF’, and ’O’ that result in a new big network architecture as
well as due to the inclusion of the ’SVM ’ classifier layer.

• Changing the learning parameter update rules for achieving faster
convergence and better performance.

Each layer of the network is shortly explained here.
3D Correlation Layer:

A dynamic scene can be recognized in a frame by similar structure
or objects, e.g. a beach scene might be recognized by combination
of moving clouds, waves, static sandy texture, and may have some
human beings playing or lying on the sand. Therefore, a correlation
layer at the beginning is most appropriate for learning the similarity
present in small receptive fields of consecutive frames or clips of a
scene in a video. Note that in this model we changed the notations
for each layer, e.g. weighted sum layer (L1WS) is represented by
’3DCorr1 ’. However, the mechanism is the same.

The first phase of 3DPyraNet-F uses its 3D structure to incor-
porate the spatial as well as temporal information from the given
input frames. The 3D weight matrix is of equal size to the input
image/feature map where for each output neuron we have a fixed
small unique 3D kernel (as discussed in previous Sec. 3.2.1). It
performs Corr operation among the given neurons and their respec-
tive weights in a receptive field of a frame and corresponding weight
matrix as shown in Eq. 4.1. This weight matrix generates sparse
features as compared to a convolutional kernel. It is trained using

CHAPTER 4. SPATIOTEMPORAL FEATURE LEARNING WITH
3DPYRANET 111

Figure 4.1: Proposed model 3DPyraNet-F (It becomes simple 3DPyraNet if we remove
SVM). Blue represents Correlation layers (weighted sum), gray represents
normalization, brown represents pooling, and bright blue represents fully
connected layer

CHAPTER 4. SPATIOTEMPORAL FEATURE LEARNING WITH
3DPYRANET 112

updated BP (explained and derived in Sec. 3.2.3) with mini-batch
SGD approach.

Several sets of these 3D matrices are used to extract varied fea-
tures. We randomly initialize these weight parameters on each layer.
However, we take care of recommended initialization techniques stated
in literature [122, 123]. The activated resulting map is normalized
before passing it as input to the next layer. The normalization not
only helps in enhancing accuracy but also helps in faster convergence
of the network.

ylnu,v,z = fln

 D∑
d=1

∑
(i,j,m)∈Rln,d

(u,v,z)

((
wln

(i,j,d) . y
ln−1
(i,j,m)

)
+ bln(u,v,z)

) (4.1)

here fln represents activation function used at current layer ln. (ylnu,v,z)
directs us to output neuron location at ′z′, where (u, v, z) represents
the current neuron (u, v) at output map that is generated by set
of input maps (represented by ′m′) in temporal direction. ′m′ is
calculated by (d + z − 1) from layer ′l′n−1 as shown in Eq. 4.2 third
row. W ln

(i,j,d) represents current weight parameter at position (i, j) of

matrix ′d′. In our experiments, at each layer we have dlow = 1 and
dhigh = D where ’D’ is the kernel temporal depth, i.e. D = 3. The
set of neurons of a receptive field, i.e. (i, j) in the current map ′m′

at lower layer is calculated by Eq. 4.2. Where, Rln,m
(u,v,z) represents

receptive field for each neuron (u, v) in ′z′ output map. Here, rln in
the Eq. represents the size of receptive field, i.e. ′RF ′ at that layer
ln. b

ln
(u,v,z) represents the bias for the current layer.

Rln,d
(u,v,z) =


(i, j,m) | (u− 1) + 1 ≤ i ≤ (u− 1) + rln;

(v − 1) + 1 ≤ j ≤ (v − 1) + rln;
(dlow + z − 1) ≤ m ≤ (dhigh + z − 1)

 (4.2)

Unlike CNNs, we does not use one bias for each output feature map,
rather we use one bias for each neuron in an output feature map.

CHAPTER 4. SPATIOTEMPORAL FEATURE LEARNING WITH
3DPYRANET 113

Further, similar to 3DCNN, our model also extracts more type of
features from the same spatial position of the input image/map by
using multiple 3D weight sets. However, a 3DCNN increase their
set of kernels at each higher layer, whereas, a 3DPyraNet-F keeps
it fixed after starting layer and at each upper layer, the maps are
decreased by two maps. Initialization with multiple kernels help our
model not only in increasing different types of feature maps, but
also, as a consequence of continuous reduction of maps, maintain a
pyramidal structure of our model. Consequently, the model have less
number of refined feature maps and parameters at the higher layer
that help in faster convergence and avoiding over training.

(RF) and (O) are tuned for handling the performance. In this
model, we use size of (RF,O) as (4,3) and (4,3) in 3DCorr1 and
3DCorr5, respectively. After passing the feature maps through an
activation function, same regularization approach of saturation with
simple zero mean and unit variance is applied on the feature maps.
This approach of normalization helps in faster convergence and in-
crease in performance.

3D Temporal Pooling Layer The weight matrix approach has
a slight deficiency of not learning translation and scale invariant fea-
tures. Therefore, 3DPyraNet introduced a temporal pooling layer
to overcome these limitations. 3DPyraNet performs 3D temporal
pooling that is represented by 3DPOOL. 3DPOOL helps in learning
translation and scale invariant features. It also helps in reducing the
dimensionality not only in spatial domain but also in the temporal
domain. This spatio-temporal reduction help 3DPyraNet-F in main-
taining its pyramidal structure. Max-pooling is used as it returns the
maximum of the maximum values of the three receptive fields. It is
helpful in removing non-maximum values that reduce computation
on higher layers as well as provide translation invariance and robust-
ness.

Traditional pooling layers in a deep CNN does not contain weight
and bias parameters. However, our model consists of a weight pa-

CHAPTER 4. SPATIOTEMPORAL FEATURE LEARNING WITH
3DPYRANET 114

rameter for each output maximum value among the three referenced
fields. Each maximum value is multiplied with a weight parameter
and then added with a bias. In this layer, we have only one bias for
each output feature map. In the end, the resultant value is passed
through an activation function as shown in Eq. 4.3.

ylnu,v,z=fln

((
wln
u,v . max

1≤d≤D

(
max

(i,j,m)∈ R
ln−1,d
u,v,z

(
y
ln−1
i,j,m

)))
+ blnu,v,z

)
(4.3)

In Eq. 4.3, Rln,m
u,v,z calculates the range for (i, j,m) indices, i.e. ilow,

jlow, ihigh, jhigh, mlow and mhigh as being calculated by Eq. 4.2 in
previous layer. The size of the receptive field (RF also represented
as ’rln’ in Eq. 4.2) is different than the receptive field of 3DCorr
layer. (RF,O) is taken as (2,0) in layer 3DPOOL3.

Fully Connected Layer Output of correlation (3DCorr5) layer
is normalized at (NORM6) layer. The resultant normalized discrim-
inative feature maps are converted into a 1D column vector that
consist of motion information encoded in multiple adjacent frame. It
is used as a fully connected layer for classification. It can be extended
to multiple 1D FC layers, depending on the complexity of the target
application area. In addition, the size of this vector depends on the
input size, total number of layers (L), RF, O, and D.

ylnu,v,z = fln

 jhigh∑
j=jlow

((
W ln

(i,j,m) . y
ln−1
(i,j,m)

)
+ bln(u,v,z)

) (4.4)

Eq. 4.4 is similar to Eq. 4.1. However in 1D case the u and z are 1.
Only v is more than one. Therefore, ((i, d)low, (i, d)high) are 1 due to
u and z being 1. If ln = L than it means that it is the final output
layer otherwise, it is a 1D fully connected layer that is given as input
to calculate output. Weight update is done based on the equations
derived in previous chapter Sec. 3.2.3.

CHAPTER 4. SPATIOTEMPORAL FEATURE LEARNING WITH
3DPYRANET 115

Linear SVM Layer:
3DPyraNet-F works mainly in two stages. First stage is to train
it similar to 3DPyraNet. Once its convergence is achieved, in the
second stage, features from the last NORM6 layer are extracted and
fused in a single column feature vector. These are incorporated in
such a way that global information in both spatial and temporal
dimensions are progressively accessed by the SVM. Finally, SVM
layer trained model is used in testing phase to classify the feature
vectors extracted from testing set. One-vs-All criteria is used for the
classification of video clips.

4.2.2 3DPyraNet-F Training

A fast training algorithm must be devised to learn recognition task ef-
ficiently. The objective of 3DPyraNet-F training is to gradually mini-
mize an error function that is defined in terms of our network outputs
and their respective desired outputs. It is similar to 3DPyraNet. It
uses the same CE error function. Therefore, we adopt CE that calcu-
lates the posterior probabilities membership for each scene category.
Delta rule given in Eq. 4.5 is used to update the weight parameters.

wln,new
u,v,d = wln,old

u,v,d − ε
∂E

∂ wln
u,v,d

(4.5)

Where ε is the learning rate that controls the oscillation during train-
ing. We start with ε = 0.000015 and reduce it by multiplying it with
0.9 after each 4 epochs. Batch size of 100 is used in all experiments.

4.2.3 3DPyraNet-F M

The difference between 3DPyraNet-F and 3DPyraNet-F M is in the
construction of feature vectors. After the network convergence, rather
than just concatenating all the feature in one column vector, this
model first converts feature maps of the same set in one single col-
umn vector. Then, the resultant feature vectors are summed together

CHAPTER 4. SPATIOTEMPORAL FEATURE LEARNING WITH
3DPYRANET 116

Model 3DCORR 3DPOOL 3DCORR FC Output
3DPyraNet-F 61× 45× 11× 3 30× 22× 9× 3 27× 19× 7× 3 10773 6/10

3DPyraNet-F M 61× 45× 11× 3 30× 22× 9× 3 27× 19× 7× 3 3591 6/10
3DPyraNet-F 77× 97× 11× 3 38× 48× 9× 3 35× 45× 7× 3 33075 13/14

Table 4.1: Network Structure used for Action (Weizmann(10) and KTH(6) shown in first
two rows) and Scene (MaryLand (13) and YUPENN(14)) datasets. Feature
map size at main Layers is shown for each model as well as the number of
output classes

and divided by the number of weight sets to derive their mean vec-
tor. This results in a smaller feature vector compared to the previous
model resulting in faster processing. These features have a local im-
pact due to their addition with other features maps. The rest of the
model and network architecture is similar to 3DPyraNet-F.

Beside these two models, the third variation of 3DPyraNet-F can
be the size of the network. This difference exists due to different
size input images of AR and SR datasets. Network structures for all
models are given in Tab. 4.1.

4.3 Results & Discussion

We analyze the performance of 3DPyraNet-F with both AR and
DSR tasks. The networks and their sizes being used are shown in
Tab. 4.1. We evaluate AR with same KTH and Weizmann datasets.
Whereas, DSR with the help of YUPENN and MaryLand-in-the-wild
dataset. These datasets are discussed in coming sub-section whereas
datasets for AR are already being discussed in previous chapter Sec.
3.3.1. Training is done in the same way as done for simple 3DPyraNet
(already discussed in previous section). However, in this model, the
learning rate is updated more frequently.

Each model is trained on its respective dataset. Tab. 4.1 shows a
feature map size in the form of w × h ×m × s. Where ’w’, ’h’, ’m’
and ’s’ represents width, height, number of maps, and weight sets,
respectively. KTH and Weizmann have similar input size, i.e. 64×
48×13 with leave one frame out. Whereas, YUPENN and MaryLand

CHAPTER 4. SPATIOTEMPORAL FEATURE LEARNING WITH
3DPYRANET 117

has 80× 100× 13 with an overlap of 7 images for each clip. Training
is done by SGD with mini batch size of 200 and 100 clips for AR and
SR datasets, respectively. Further, an additional key advantage of
the proposed model (i.e. it’s fewer trainable parameters) is discussed
in the end of this section.

4.3.1 DSR Evaluation Datasets

Dynamic scenes are categorized by a collection of dynamic patterns
and their spatial layout, as recorded in small video clips. For ex-
ample, a beach scene might be characterized by water waves and at
the front a static sandy texture. Other examples include iceberg col-
lapse, volcano eruption, whirlpool, boiling water and traffic scenes.
These dynamic scenes may be taken with either static or moving
cameras; thus, while scene motion is a characteristic, it is not sep-
arate from camera induced motion. Indeed, dynamic scene recog-
nition from moving cameras has proven to be more challenging as
compare to static cameras. YUPENN and MaryLand (also referred
as ’MaryLand-in-the-wild’) are two DSR benchmarks recorded with
a static and a moving camera, respectively.

4.3.1.1 YUPENN

This dataset consists of short time videos having emphasizes on scene
specific temporal information. It does not contain camera induced
motion, rather the videos are stabilized. It consists of 14 scene cat-
egories. It consists of 420 videos having 30 videos of same size per
class, i.e. beach, city street, elevator, forest fire, fountain, highway,
lighting storm, ocean, railway, rushing river, sky-clouds, snowing,
waterfall, and windmill farm. The number of frames and their size
in a video is 250× 370(pixels)× 145(frames). They are taken with
a Canon HFS20 camcorder and online video repositories, such as
YouTube, BBC Motion Gallery and Getty Images.

CHAPTER 4. SPATIOTEMPORAL FEATURE LEARNING WITH
3DPYRANET 118

4.3.1.2 MaryLand-in-the-wild

Similarly, MaryLand consists of 130 videos of 13 scene categories
collected from video hosting websites like ’Youtube’. The videos are
recorded in totally uncontrolled environment, therefore the dataset
has large variations in terms of illumination, rate, view, scale and
camera dynamics. Each class contains 10 videos of varying size.
These categories are Avalanche, Boiling water, Chaotic Traffic, For-
est Fire, Fountain, Iceberg collapse, Land Slide, Smooth Traffic, Tor-
nado, Volcano Eruption, Waterfall, Waves and Whirlpool. Fig. 4.2
shows sample images from YUPENN and MaryLand dataset. Both
of these datasets are quite complex having similar appearance even
for different classes as well as large difference even in the same cate-
gories.

One point to highlight is that there is large intra-class variation
in these classes. Without temporal information, randomly chosen
frames from these videos may cause confusion, e.g. ’chaotic traffic’
and ’smooth traffic’, ’avalanche’ and ’iceberg’, etc. Similarly, only
using temporal information without use of spatial information may
cause confusion between classes like, e.g. ’avalanche’ and ’landslide’,
or ’tornado’ and ’whirlpool’, etc. This make it a difficult task for
many algorithms to classify these videos in their respective cate-
gories.

4.3.2 AR Performance

KTH and Weizmann are easy for an in-depth study due to less data
and more classes, however, challenging as well due to less data for
training a deep model. Features form the Norm6 layer of our trained
model are extracted and fed to a linear-SVM classifier. It classifies
each class similar to what is done in [124, 16, 108]. However, we per-
form two types of extraction, i.e. local and global fusion of features
as in [24]. In first case, i.e. 3DPyraNet-F feature vector becomes
10733. Whereas, in second case, i.e. 3DPyraNet-F M, the dimen-

CHAPTER 4. SPATIOTEMPORAL FEATURE LEARNING WITH
3DPYRANET 119

Figure 4.2: Samples images from YUPENN (1st row from left to right (Beach, Waterfall,
Ocean)) and MaryLand (2nd row from left to right (Waterfall, Fountain,
Boiling Water)

sion of vector consist of 3591 features. 3DPyraNet-F achieved mean
accuracy of 93.42% from the binary classifications of one-vs-all sce-
nario. Further, (3DPyraNet-F M) enhances the overall performance
by 0.67%. Similarly to [16, 13, 108], despite fewer training exam-
ples, global fusion (3DPyraNet-F) achieved optimal accuracy. In
comparison to handcrafted features, our learned feature with SVM
gets better results than 3DHOG, Cuboids, and Gabor3D+HOG3D,
whereas, almost equal performance is achieved when compared to
the combination of HOG, HOF, MBH, and Trajectories descriptors
[114], highlighting more discriminative power of our learned features.

We adopt the trained model on full Weizmann dataset and pre-
process it as we did for KTH. The 3DPyraNet-F and 3DPyraNet-F M
models are applied. However, despite more classes, optimal results
are achieved compare to state-of-the-art models as shown in Tab.4.2.
(SVM) in Tab.4.2 shows that this model uses binary SVM classifier
for one-vs-all classification. 3DPyraNet-F enhances previous results
of 3DPyraNet for Weizman by 8.09% whereas, 3DPyraNet-F M en-

CHAPTER 4. SPATIOTEMPORAL FEATURE LEARNING WITH
3DPYRANET 120

hances it further with an additional 0.14%. Only in the case of com-
bination of (HOG + HOF + MBH + Trajectories), 3DPyraNet-F M
have a lower accuracy of 0.87%. Similarly, 3DPyraNet-F increases
the accuracy for KTH dataset by 20% which is further increased
(0.67%) by 3DPyraNet-F M.

4.3.3 DSR Performance

In [2], rather than using a filter over the whole image they use it
over sub-regions to maintain and understand the spatial layout of
the scene. Similarly, our model learns the whole mask rather than a
specific portion of the image. As discussed in Sec. 3.2, 3DPyraNet
weight matrix is of equal size to input image/feature map. Therefore,
it could be an ideal case for maintaining spatiotemporal layout for
scene recognition in videos. It can also be used as a hint in other
recognition tasks. The model for these datasets has a bigger input
size compared to previous datasets of action recognition, i.e. 80 ×
100× 13 resulting in feature vector of size 33075. We have taken an
overlap of 7 frames, considering a small number of frames compared
to previous models [23, 2, 19] - for instance, [23] uses 128× 171× 16
frames in a clip from which 112×112×16 random crops are extracted
for data augmentation purpose.

In case of the YUPENN dataset, our model achieves a better
accuracy of 96.2134% after 25 epochs. However, it achieves mean
accuracy of 93.67% for a one-vs-all classification. Although, its ac-
curacy is better at huge margin than the accuracy achieved by models
in [2, 125, 18], still it does not report state-of-the-art performance
by 5.33% less accuracy compare to model in [67] as shown in Tab.
4.2. The reason could be that the state-of-the-art model [67] com-
bines several complex pre-processing and feature encoding techniques
(PCA, LLC, GMM, IFV, static pooling and their proposed dynamic
spacetime pyramid pooling in SPM) resulting in achieving higher ac-
curacy than the one achieved by deep C3D model. Further, a worth
mentioning fact is that the C3D [124] is pre-trained on Sports 1-

CHAPTER 4. SPATIOTEMPORAL FEATURE LEARNING WITH
3DPYRANET 121

Million videos dataset [24], having high resolution and more frames
in a clip, and using data augmentation (as previously mentioned).
Whereas, we train our model on the same small dataset, having
smaller image size and less number of frames in a clip, and without
data augmentation in order to show that a good architecture can
learn and give good performance, despite limited data. Although,
our model is less competitive compare to C3D and Imagenet, still
3DPyraNet-F achieves comparable results on a smaller dataset, i.e.
93.67%; a good starting point for future work to test 3DPyraNet-F
on very large scale dataset. Christoph et al. model [19] performance,
as shown in Tab. 4.2 is better than ours by 1.5% but their results are
based on majority voting for video classification. Unlike ours, where
we classify each clip individually.

In order to further evaluate strength of 3DPyraNet-F, unlike YU-
PENN, we test it with a more complex dataset, i.e. MaryLand that
include camera motion. Despite camera motion, we achieve state-of-
the-art accuracy of 94.83% as shown in Tab. 4.2, highlighting the dis-
criminative power of the proposed model. 3DPyraNet-F outperforms
the state-of-the-art learned C3D features [124] by 7.13%. Whereas,
the state-of-the-art model [67] by 14.83% (in-terms of YUPENN
dataset). Classes such as boiling water, fountain, iceberg collapse,
whirlpool show slight poor performance. One of the reason could be
that all these categories contain some sort of similarity, i.e. water
which make them ambiguous for correct classification. The perfor-
mance of 3DPyraNet (multiclass) in Tab. 4.2, i.e. 45% for YUPENN
dataset shows that when the features are not learned properly, the
classifier does not give good performance.

Tab. 4.3 shows a comparison per class between our model and the
state-of-the-art feature learner and handcrafted model. Some of the
models achieved 100% accuracy, but in other categories our model
outperformed them. Similarly, Tab. 4.4 shows per class comparison
of our model with the state-of-the-art on YUPENN dataset. One of
the surprising factors that we analyze is that 3DPyraNet-F shows

CHAPTER 4. SPATIOTEMPORAL FEATURE LEARNING WITH
3DPYRANET 122

better performance when there is camera movement, which is quite
unfamiliar. The reason for this behavior could be that our model
weighting and the pyramidal scheme can learn motion from camera
dynamics more appropriately. It is also considered that the current
model architecture may not be fully tuned for YUPENN dataset.
Therefore, it is expected that further tuning of the model may per-
form better for YUPENN dataset.

4.3.4 Parameters Reduction

After the strong success of ImageNet [12, 23], models became deeper
that resulted in a large number of trainable parameters. A separate
consideration should be made about the reduction of parameters.
The number of parameters is unarguably a substantial issue in ap-
plication space and the memory cost increases due to the large size
of trained models on the disk [12, 23, 30, 96].

Network in Network (NiN) [96] highlighted the issue of reduc-
ing parameters, but they achieved it at a greater computation cost.
As most of the parameters are in fully connected (FC) layers, C.
Szegedy et al. [31] uses sparsity reduction complex methodologies
for refining those trained models. S. Han et al. [30] tries to learn
connections in each layer instead of weights and then the network
is trained again to reduce the number of parameters. Whereas, Z.
Yang et al. [121] in the deep fried network reparametarize their fully
connected layer matrix-vector multiplication. This technique results
in reducing memory and computational cost, i.e. from O(nd) to
O(n) and O(nlogd). 3DCNN model have less parameters than ours,
but based on the performance and lack of preprocssing give an edge
for our model. Secondly, C3D model has about 17.5M parameters.
Due to our proposed 3D weighting scheme, however, our model has
less than a million parameters, i.e. 0.83M parameters for YUPENN
and MaryLand datasets. Disk occupancy is almost negligible com-
pared to the model trained by C3D ; this is of great help in embedded
systems and mobile devices where the memory usage is a problem.

CHAPTER 4. SPATIOTEMPORAL FEATURE LEARNING WITH
3DPYRANET 123

4.4 Chapter Summary

An extension of 3D pyramidal neural network approach has been
proposed that learns spatiotemporal features from raw gray level in-
put frames of a given video clip. Due to the proposed weighting
scheme, the number of parameters are far less in our model as com-
pare to other deeper models. In addition, it is ideally suitable for
learning scenes due to the equal size of an input image/frame and
a weight matrix that preserves spatio-temporal layout. Further, we
show that our fusion model is capable of learning powerful motion
features by refining the sparse learned features, achieving competi-
tive results with respect to current best methods on different video
analysis benchmarks for scene recognition. We show that even with
limited data, a good architecture can achieve competitive accura-
cies. Furthermore, a dynamic scene recognition system can provide
relevant contextual information in many other applications of video
analysis, e.g., scene context can improve human action recognition.
In the future, we are verifying the generality of our model by going
deeper and testing it on the same, as well as more recent larger and
challenging datasets.

4.5 Related Publications

• Ihsan Ullah and Alfredo Petrosino. Spatiotemporal Features
Learning with 3DPyraNet, Accepted in Advanced Concepts for
Intelligent Vision Systems (ACIVS-16), pages 236-245, 24-27
Oct, 2016.

• Ihsan Ullah and Alfredo Petrosino. A Deep Pyramidal Neural
Network for Spatiotemporal Features Learning, To be Submitted
in IEEE Transaction on Neural Network and Learning System,
2016.

CHAPTER 4. SPATIOTEMPORAL FEATURE LEARNING WITH
3DPYRANET 124

Table 4.2: Accuracies for Action (Weizmann and KTH) and Scene (YUPENN and Mary-
Land) datasets, Layers represents main layers, Parameters are in million, and
size is in MB

Model(classifier) Weizmann KTH YUPENN MaryLand Layers
Parameters
in Millions

(Size in MB)

3D-ConvNet
[60]

88.26 89.40 - - 7
0.01717
(0.31)

3DCNN [13] - 90.2 - - 6
0.00511
(0.09)

3DHOG [110] 84.3 91.4 - - - -
Cuboids [111] - 90 - - - -

Gabor3D+HOG3D
(SVM) [112]

- 93.5 - - - -

3DSIFT (SVM)
[113]

82.6 - - - - -

HOG+HOF+MBH
+Trajectories
(SVM) [114]

- 94.2 - - - -

C3D (SVM) [23] - - 98.1 87.7 15
17.5

(305.14)

ImageNet [23] - - 96.7 87.7 8
17.5

(305.14)
ST-DBN [57] - 85.2 - - 4 -

Schuldt (SVM) [16] - 71.7 - - - -
Dollar (SVM) [108] - 81.2 - - - -

3DHOG+Local
weighted

SVM [115]
100 92.4 - - - -

3DPyraNet 90.9 72 45 67 4
0.83

(14.58)

3DPyraNet (all-1) 92.46 74.23 - - 4
0.83

(14.58)

3DPyraNet-F 98.99 93.42 93.67 94.83 4
0.83

(14.58)

3DPyraNet-F M 99.13 94.083 - - 4
0.83

(14.58)
Christoph (SVM)

[67]
- - 99 80 - -

Christoph (SVM)
[19]

- - 96.2 77.7 - -

Christoph (SVM)
[18]

- - 86.0 67.7 - -

Theriault (SVM)
[125]

- - 85.0 74.6 - -

CHAPTER 4. SPATIOTEMPORAL FEATURE LEARNING WITH
3DPYRANET 125

Table 4.3: MaryLand dataset per class Accuracies vs state-of-the-art models

Class C3D [124, 67] DPCF [67] 3DPyraNet-F

Avalanche 90 90 93

Boiling Water 90 60 97

Chaotic Traffic 90 100 97

Forest Fire 80 90 90

Fountain 60 80 99

Iceberg Collapse 60 50 97

Landslide 70 80 96

Smooth Traffic 80 70 98

Tornado 80 80 91

Volcanic Eruption 90 90 94

Waterfall 40 70 98

Waves 100 100 97

Whirlpool 80 80 85

Overall 78 80 95

Table 4.4: YUPENN dataset per Class Accuracies vs state-of-the-art models

Class C3D [124] DPCF [67] 3DPyraNet-F

Beach 97 100 92

Elevator 100 100 94

Forest Fire 100 97 94

Fountain 83 93 93

Highway 97 100 93

Lightning Storm 93 100 99

Ocean 100 100 98

Railway 97 100 93

Rushing River 100 100 100

Sky-Clouds 97 100 86

Snowing 97 97 93

Street 100 100 93

Waterfall 97 97 93

Windmill Farm 100 100 90

Overall 97 99 94

Chapter 5
Adopting Strictly Pyramidal Architecture
in Deep CNN

Our Contribution:

• Reporting a strict pyramidal convolutional neural network based
on the concept of biological and image pyramid structure.

• We introduced a generalized statement over convolutional lay-
ers from input till fully connected layer that helps further in
understanding deep architecture.

• It can be applied to all deep models if it provides pyramid struc-
ture in reverse that will result in reducing ambiguity, number of
parameters, and their size on disk without degrading overall ac-
curacy.

• In comparison to other recent techniques, our model result in
competitive accuracy on five benchmark datasets.

5.1 Motivation

CNN based models play a significant role in raising deep learning
society. However, all these models use the same concept of produc-
ing feature maps in convolutional layer followed by a pooling layer

126

CHAPTER 5. ADOPTING STRICTLY PYRAMIDAL ARCHITECTURE
IN DEEP CNN 127

to reduce the dimension of the map. Models such as Alexnet [12],
GoogleNet [31], VGG [126] and many others [58, 127, 128, 129] [130]
asserts that the deeper you go, the more the network performs well.
In addition to going deeper, the models slightly changed the concept
for avoiding vanishing of gradients by using class inference in consec-
utive convolution layers and max pooling layer, or using a layer wise
softmax layer that re-boosts the vanishing gradients [31, 126, 62].
Others used new activation functions, weight updates regularization
methods, class inferences, layer wise pre-training in supervised ap-
proaches which showed very promising results [127, 130].

Increasing number of layers means increasing number of param-
eters in a network. With the introduction of Network in Network
(NIN) model [96], the issue of reducing parameters is further high-
lighted once again. However, it tends toward greater computation.
As most of parameters exist in fully connected (FC) layers, therefore,
C. Szegedy et al. [31] use sparsity reduction complex methodologies
for refining the trained models. S. Han et al. [30] tried to learn
connections in each layer instead of weights and than retraining the
network for reducing number of parameters. Unfortunately, these
aforementioned models are not suitable for real world mobile devices
because: 1) since these models enormously rises the computational
operations, 2) the number of parameters is unarguably a substantial
issue in application space which increases the memory cost due to
large size of trained models on the disk.

Biological studies lead to the idea of Image pyramids (IP’s) [131].
IP’s shown to be an efficient data and processing structure for digital
images in a variety of vision applications e.g. object, digit recogni-
tion [131]. IP’s as well as NN are massively parallel in structure.
Pyramids at their simplest are like stack of filtered images with ex-
ponentially reduced dimensions. Pyramids have a long relation with
ML and CV.

Several models have been proposed based on the concept of pyra-
mids e.g. Neocognitron, early LENET, Pyramidal neural network,

CHAPTER 5. ADOPTING STRICTLY PYRAMIDAL ARCHITECTURE
IN DEEP CNN 128

spatial pyramids, and several others [132, 14, 36] being discussed in
Sec. 2.2. In some recent works, pyramid structure is used only in
one layer like the Spatial Pyramid Matching (SPM) [36] for pool-
ing layer. H. Fan et al. [37] tried to use pyramid structure in its
last Conv layer of CNN for face recognition on LFW and showed
97.5% accuracy. P. Wang et al. [38] utilizes pyramid structure bet-
ter than the aforementioned work. They applied temporal pyramid
pooling to enhance and use the temporal structure of videos just like
spatial pyramids in [133] where, they incorporated weak spatial infor-
mation of local features. Their pyramidal temporal pooling method
showed better results than the state-of-the-art two-stream model [39]
on HMDB1 dataset. On the other hand, models like PyraNet [14],
I-PyraNet [87], LIPNET [88] and their extended models emphasized
strict pyramidal structure from input till output. Their objective is
to show that following strict pyramidal structure can enhance per-
formance as compared to unrestricted models.

We have explored and proposed some basic hints about the main
questions regarding CNN for image classification problem. The ques-
tions we have identified to answer are: impact of reversing number
of kernels in a convolutional layer?, does reversing a model work in
every case?, impact of strict pyramidal structure?, how to reduce
number of parameters without complex rules and loss of accuracy?.
To answer these questions we have utilized some well-known state-
of-the-art models e.g. LENET [132], AlexNet and its modified ref-
erenced model BVLC Reference Caffe [12]. We have shown that the
same number of filters can be used in different but pyramidal order
without affecting the performance of the base network.

5.2 Background

There are four key ideas behind CNN’s that take advantage of the
properties of an image: local connections, shared weights, pooling
and use of many layers. Deep models or specifically CNN exploit

CHAPTER 5. ADOPTING STRICTLY PYRAMIDAL ARCHITECTURE
IN DEEP CNN 129

the compositional hierarchies of the images; in which higher-level
features are obtained by composing lower-level ones. For example,
local combinations of edges form motifs, motifs assemble into parts,
and parts form objects. The role of the convolutional layer is to de-
tect local conjunctions of features from the previous layer i.e. edges,
axons, etc.; whereas, pooling layers not only reduces dimensional-
ity, but also merges semantically similar features into one. This
helps in providing translation and scale invariance to small shifts
and distortions. Y. Lecun’s [132] early CNN followed strict pyrami-
dal approach. In addition, its weight sharing concept helped neural
networks to reduce burden of large amount of trainable parameters.
However, recent CNN’s doesn’t follow strict structure, although they
reduced feature map size at each higher layer but increases number
of maps as well resulting in further increase in total trainable param-
eters. Some of the well known models such as; AlexNet [12] that won
ILSVRC had 60M parameters, DeepFace model with 120M parame-
ters resulted in best face recognition accuracy, or a recent very deep
model [126] that contains 133-144M parameters for getting about 24-
30% top-1 error on ILSVRC-12 dataset starts from 96 feature maps
and ends at 512 or more maps at a higher layer.

Therefore, some recent works like [134] and [96] highlighted the
issue of memory usage in deep networks by reducing number of pa-
rameters. M. Lin et al. [96] proposed a unlikelier local patch mod-
eling in CNN by replacing linear convolutions in each layer with
convolving the input with a micro-network filter. This micro filter
works like a multilayer perceptron. This technique is extended and
used in inception model [31] as a micro-network modules. It works as
dimensionality reduction to remove computational bottlenecks and
reduce storage costs. Collins and Kohli [134] used sparsity-inducing
regularizers during training to encourage zero-weight connections in
the Conv and FC layers. T. Sanath et al. [135] exploited low-rank
matrix factorization to reduce network parameters in FC layers. M.
Denil et al. [136] tried to predict parameters from other parameters.

CHAPTER 5. ADOPTING STRICTLY PYRAMIDAL ARCHITECTURE
IN DEEP CNN 130

Strict pyramidal models [14, 137, 138] takes large amount of data
as an input, refine it layer by layer in-order to reduce unwanted fea-
tures and to enhance the final decision based on most likely and less
number of unambiguous features. This gave base to many feature
extraction and selection process in CV and ML. In CV, SPM with
SIFT+FV technique dominated ILSVRC classification and detection
competitions until AlexNet arrived [12]. Lazebnik et al. [36] intro-
duces spatial pyramids technique which are mostly used for object
recognition before deep CNNs. J. Masci et al. [139] used multi-scale
pyramid pooling layer to get a fixed size input feature vector. Re-
cently, a much deeper model is introduced having inspiration from
both [36] and [139]. This spatial pyramid pooling (SPP) [129] ap-
proach provides multiple fixed size inputs to FC layer with the help
of pyramid pooling, and shows better results than normal fixed size
input models, e.g. Overfeat, AlexNet etc.

5.3 Proposed Model

Despite success of CNN, there is no principled way of finding good
performing CNN architectures other than naive exploration of the
architecture space. This is a question that many newcomers ask: how
to arrange filters in each layer for modeling a good network? Less
reasoning has been given other than; increasing number of maps as
the network go deeper will give good results. Therefore, we have
introduced simple rule of thumb when designing a CNN architecture
based on the study of pyramidal neurons in the brain and human
nature, highlighting this main question.

”If a deep CNN architecture with specific number of layers and fil-
ters works on a specific task, while keeping the number of layers same
and reversing the number of filters, provided that it forms pyramidal
structure, the resultant pyramidal architecture will result in same or
better performance?”

This question highlights two main aspects. We ask if a network

CHAPTER 5. ADOPTING STRICTLY PYRAMIDAL ARCHITECTURE
IN DEEP CNN 131

still works, if reversed, and, secondly, does it works only with a pyra-
midal structure. In addition to pyramidal structure, hints about this
question is taken from a trick in PCA approach, where only changing
the order of the matrices in calculating covariance matrix, not only
reduce the time complexity but also avoided memory overflow issue
[75]. Answering this question thus helped in proposing a general
rule of modeling a network by reducing a constant factor ′f ′ of filters
from layer ′l′ compare to previous layer ′l − 1′, other than better
understanding the network behavior.

Based on this reduction factor ′f ′ of filters from the previous layer
we have investigated a strict pyramid network SPyr CNN architec-
ture as shown in Fig. 5.1. It starts from a big input/first layer and
then refining the features at each higher layer, until it achieves a re-
duced most discriminative set of features as being done in [14, 87, 88].
Imposing strict pyramidal structure should not only retain and im-
prove accuracy, but also retain/improve accuracy and reduce the
number of parameters which results in less number of memory space
on the disk. And this makes CNN’s more feasible for applications
where there is lack of memory. To achieve this goal, we will present
experimental evidences based on comparison with state-of-the-art
models and datasets in the following section.

5.4 Experimental Results

Our strictly pyramidal CNN architectures are evaluated in two ways.
First type of models provide empirical evidence in sub-sections 5.4.2,
5.4.3, 5.4.4, and 5.4.5 that a SPyr CNN on small to large bench-
mark datasets MNIST, CIFAR-10, CIFAR-100 and ImageNet-12
performs similarly or better than complex state-of-the-art deep CNN
models despite reduction in parameters. Whereas, in the second type
we used a version of Siamese network for person re-identification
problem applied on VIPER dataset in sub-section 5.4.6. We showed
that the strict pyramid structure imposed on Siamese network re-

CHAPTER 5. ADOPTING STRICTLY PYRAMIDAL ARCHITECTURE
IN DEEP CNN 132

Figure 5.1: Strictly Pyramidal Architecture for CNN (SPyr CNN).

C1=384x3x11x11

C2=320x5x5
C3=256x3x3

C4=224x3x3
C5=192x3x3

F6=4096

F7=3840

Out

1000

Input

duces ambiguity and enhances Rank-1 performance in identification
of a person, crucial for surveillance applications.

5.4.1 Datasets

5.4.1.1 MNIST

MNIST is a well-known 10 class hand written digits recognition
dataset [140]. It consists of 60000 training and 10000 testing im-
ages. Each class have 5000 training images and 1000 testing images.

5.4.1.2 CIFAR-10

Cifar-10 is an object recognition dataset [141]. It consists of 60000
colour images with 6000 images per class. In each class 5000 images
are used for training where as remaining 1000 images are used for

CHAPTER 5. ADOPTING STRICTLY PYRAMIDAL ARCHITECTURE
IN DEEP CNN 133

testing. Similar to MNIST, each class have 5000 training images
and 1000 testing images. We have used these datasets to perform
an in depth study of different models based on comparison with
state-of-the-art, since the CNN can be easily trained and tested with
reasonable computing and time cost.

5.4.1.3 CIFAR-100

Cifar-100 is also an object recognition dataset having 100 classes
but same number of images as Cifar-10 [141]. However, due to less
images per class that results in less training data, it is considered
medium size challenging dataset.

5.4.1.4 ImageNet-12

ImageNet-2012 dataset consist of 1000-classes [29]. It comprises of
1.2 million training images and 50,000 validation images (used as
testing set). The results are measured by top- 1 and top-5 error
rates. We have only used the provided data for training; all the
results are evaluated on the validation set. Top-5 error rate is the
metric officially used to rank the methods in the classification chal-
lenge. We perform two different experiments in order to evaluate
power of pyramidal networks, i.e. with full training sets and with
reduced training sets. Hence, we reduce 10% and 20% randomly se-
lected images from Cifar-100 and ILSVRC-12 training dataset. To
generalize a common rule of selecting number of filters in each layer
of a deep network, we use Cifar-10 and ILSVRC-12 for examining
the best decrement factor for a successful model. These models are
explored in the up-coming sections.

Strict pyramidal models will be represented by SPyr in begin-
ning of each model. We have implemented these SPyr CNN mod-
els on widely deployed Caffe [58] framework. The hyper-parameters
for training setup are all same as AlexNet model and its variant
BVLC Refference Caffe (BVLC Ref) model in Caffe [58] i.e. weight

CHAPTER 5. ADOPTING STRICTLY PYRAMIDAL ARCHITECTURE
IN DEEP CNN 134

decay as 0.0005, momentum as 0.9, and dropout of 0.5 is used in FC
layers. In pre-processing nothing sophisticated has been done. We
only used off-the-shelf normalization method available with Caffe.
However, the learning parameters vary according to the dataset and
respective state-of-the-art method being used in literature. To calcu-
late number of parameters for each layer we adopted number of pa-
rameters as R1×R2×C×M , where R1 and R2 are rows and column
size of kernel, C is number of channels in that layer, and M repre-
sents number of kernels for upper layer that will results in M output
feature maps.

5.4.1.5 VIPeR

VIPeR dataset [142] is a person re-identification benchmark dataset.
We used it in our experiments by dividing it in training and testing
set, similar to the work being done in [142, 143, 144]. It contains 632
target subjects, each having 2 images from 2 different camera views
(camera A and camera B). We took 11 sets by randomly selecting 316
disjoint subjects for training and remaining 316 for testing set. The
first split called Dev. view or training set is used selecting optimal
parameters while the other 10 splits called Test view are used for
reporting the results. This dataset is used in Sec. 5.4.6 to show that
our model reduces ambiguity and enhances Rank-1 performance.

5.4.2 Impact of Pyramidal Structure

Few standard CNN architectures are examined for the impact of
reversing and imposing a pyramidal structure to the networks. The
optimal result for MNIST and Cifar -10 is shown respectively by
Caffe LENET and C10 in Tab. 5.1. Caffe LENET has 20 filters in
first convolutional layer (C1) and 50 filters in second convolutional
layer (C2). If we reverse it, i.e. C1 = 50 and C2 = 20, we call it
SPyr Rev LENET and it resulted in competitive accuracy as shown
in Tab. 5.1. Same is the case for Cifar-10 i.e. SPyr Rev C10. Cifar-

CHAPTER 5. ADOPTING STRICTLY PYRAMIDAL ARCHITECTURE
IN DEEP CNN 135

100 consisted of 50 images per class consisting of 50000 training
images. This makes it really challenging and we faced a 0.37% loss
in overall accuracy as shown in Tab. 5.1. SPyr Rev C100.

BVLC Ref is similar to AlexNet but with a slight change in order
of pooling and normalization layer [58]. BVLC Ref model in reverse
does not provide a pyramidal structure i.e. Rev BVLC Ref has 256,
384, 384, 256, and 96 kernels at C1, C2, C3, C4, and C5, respectively.
As expected, it does not learn. Therefore, we rearranged it, not only
with the aim to provide a pyramidal structure but also maintaining
the same number of filters. Hence, Tab. 5.1. SPyr Rev BVLC gets
352 kernels in C1 and C2, followed by 256 kernels in C3 and C4.
Finally, C5 layer gets 160 kernels due to adding 32 kernels from C1
and C2. As shown, reverse SPyr models helped each standard CNN
model in increasing and retaining overall performance. However, in
big networks we learned one important point: if the reverse of a
model doesn’t result in pyramidal structure, the performance will
drop or the network will not learn at all; this is true in the case of
Rev BVLC Ref model.

The question of how many kernels one should have at first layer or
at each layer is still not fully theoretically asserted and is an open re-
search problem. However, in our experiments with SPyr CNN’s, we
experimented that the size of last ’conv’ (C5) layer has high impact
on overall accuracy. Therefore, we concluded that there should be
enough number of filters at first layer (C1), so that, after reduction in
several layers, the last convolutional layer could get almost 40-60% of
the filters in C1. Otherwise, there would be a 1-3% increase in error
rate, or in worse case, it will not learn at all, e.g. Rev BVLC Ref.

This is achieved reducing the number of kernels by a factor ′f ′ =
10, 15, 20% from each layer to the next one, as shown in Tab. 5.2.
This ensures pure pyramid structure unlike SPyr Rev BVLC where
we had two layers having the same number of kernels. We also tested
the model on Cifar-10 and ImageNet. Cifar-10 shows that with 10-
15% reductions in kernel number gets almost the same performance.

CHAPTER 5. ADOPTING STRICTLY PYRAMIDAL ARCHITECTURE
IN DEEP CNN 136

Whereas, with a 20% reduction, accuracy decreases by 0.86%. In
big models like ImageNet, our SPyr BVLC Ref** with 10% reduc-
tion in each layer including FC’s layers improves accuracy by 0.59%
and 0.61% compared to our SPyr BVLC Ref and BVLC Ref, respec-
tively (see Tab. 5.2). Whereas, models with 20% reduction got bad
results or did not learn due to few kernels in ’C5’. Further, BVLC Ref
[58] results in maximum accuracy at 313000 iteration, whereas, we
reported at 393000. However, at the end of 450000 iterations our
SPyr BVLC Ref** achieved 0.61% accuracy.

5.4.3 Parameter Reduction & Size on Disk

Another big impact of SPyr approach is its reduction of parame-
ters. It results in less size of trained model on disk as can be seen in
Tab. 5.3. We did a number of experiments with MNIST to see how
much we can reduce parameters. At first glance, SPyr Rev LENET
reduced 55.5% parameters and enhanced performance by 0.02%. This
reduction in parameters resulted in less space on disk i.e. with 431K
parameters it needs 1.685MB whereas, later it took 0.749MB space
on disk. We examined it further and designed SPyr LENET with
80% reduction in parameters. It resulted in 0.03% enhancement over
Caffe LENET. However, when we reduced more than 90% of param-
eters from convolutional and FC layers, it retained same accuracy
as shown in Tab. 5.3. SPyr LENET*. SPyr LENET** shows that
if we concern about accuracy instead of memory space, than SPyr
models can perform much better. Similarly for Cifar-10 and Cifar-
100, reverse models in Tab. 5.3 not only reduces parameters but also
gave competitive result.

In case of ImageNet, the size of the BVLC Ref trained model is
238MB. Whereas, our SPyr BVLC Ref and SPyr Rev BVLC have
198MB for better results and 160MB for 1% less accuracy, respec-
tively. This is due to proper model selection having 10− 20 million
fewer parameters resulting in reduction of ambiguity. Reduction is
not only in ’Conv’ layers but also from ’FC’ due to less maps con-

CHAPTER 5. ADOPTING STRICTLY PYRAMIDAL ARCHITECTURE
IN DEEP CNN 137

Table 5.1: Results for Referenced Models vs. their reversed model according to our
statement

MNIST
Caffe LENET = 20-50-500-10

SPyr Rev LENET = 50-20-500-10
Model Train Loss Test Loss Accuracy

Caffe LENET 0.003735 0.029231 99.1
SPyr Rev LENET 0.003547 0.025142 99.13

——
CIFAR-10

C10 = 32-32-64-10
SPyr Rev C10 = 64-32-32-10

Model Train Loss Test Loss Accuracy

C10 0.331029 0.532539 81.65
SPyr Rev C10 0.321514 0.537438 81.67

——
CIFAR-100

C100 = 150-170-200-100
SPyr Rev C100 = 200-170-150-100

Model Train Loss Test Loss Accuracy

C100 0.53676 1.5585 58.64
SPyr Rev C100 0.63625 1.5549 58.27

——
ILSVRC-12

BVLC Ref=96-256-384-384-256-4096-4096
Rev BVLC Ref=256-384-384-256-96-4096-4096

SPyr Rev BVLC=352-352-256-256-160-4096-4096
Model Train Loss Test Loss Accuracy

BVLC Ref 1.21952 1.840 57.03
Rev BVLC Ref Does Not Learn
SPyr Rev BVLC 1.34997 1.842 56.81

—–

CHAPTER 5. ADOPTING STRICTLY PYRAMIDAL ARCHITECTURE
IN DEEP CNN 138

Table 5.2: Reduction in Kernels by Factor ′f ′ along with their accuracies

Cifar-10
Model ′f ′ Params Accuracy %

(A) 64-58-52-10 10 245306 83.43
(B) 64-54-44-10 15 197111 83.36
(C) 64-52-40-10 20 158623 82.57

——
ILSVRC-12

(D) SPyr BVLC Ref**= 384-346-308-270-232-4096-3687-1000
(E) 384-346-308-270-232-4096-4096-1000
(F) 384-326-270-212-156-4096-3687-1000
(G) 384-326-270-212-156-4096-4096-1000
(H) 384-308-232-156-80-4096-3277-1000
Model ′f ′ Params top-1% top-5%

(D) 10 58M 57.64 80.68
(E) 10 60M 57.62 80.64
(F) 15 46M 56.38 79.67
(G) 15 48M 56.61 79.76
(H) 20 33M - -

nected to neurons. These results showed that this approach can pro-
vide significant difference in specific real world application, where
lack of memory storage is an issue.

S. Han et al. [30] reduced parameters with a time consuming
three step process. Rather than training weights, they learn those
connections which are more important at first step, followed by prun-
ing those connections, and retraining the remaining connection and
their weights at final step. They achieved 99.23% accuracy with
12x reduction in parameters but consumed 2x more time than nor-
mal, as shown in Tab. 5.3 Caffe LENET. In addition, they applied
complex regularization and loss functions to find the optimal re-
sults. However, SPyr LENET** achieved 99.24% accuracy with
about 50% reduction in parameters and almost same amount of time
(i.e. 47.6s ± 1 on NVIDIA Quadro K4200 GPU) as Caffe LENET
(other simulations were also running on same computer) as shown
in Tab. 5.3. Further, our reduction is not only done in ’FC’ layers

CHAPTER 5. ADOPTING STRICTLY PYRAMIDAL ARCHITECTURE
IN DEEP CNN 139

Table 5.3: Parameters and their size on disk for base and pyramidal architectures along
with their accuracies

MNIST
(A) Caffe LENET = 20-50-500-10

(B) SPyr Rev LENET = 50-20-500-10
(C) SPyr LENET = 35-15-500-10

(D) SPyr LENET* = 25-15-100-10
(E) SPyr LENET** = 100-68-100-10

Model Parameters Size in MB Accuracy

(A) 431080 1.685MB 99.1
(B) 191830 0.749MB 99.13
(C) 48910 0.191MB 99.14
(D) 35150 0.137MB 99.1
(E) 219250 0.857MB 99.24

——
CIFAR-10

(F) C10 = 32-32-64-10
(G) SPyr Rev C10 = 64-32-32-10

(H) SPyr C10 = 38-30-24-10
(I) SPyr C10 = 84-64-44-10

Model Parameters Size in MB Accuracy

(F) 87978 0.335MB 81.65
(G) 83658 0.319MB 81.67
(H) 51392 0.189MB 80.9
(I) 214142 0.837MB 83.04

——
CIFAR-100

(J) C100 = 150-170-200-100
(K) SPyr Rev C100 = 200-170-150-100

(L) SPyr C100 = 200-128-64-100
Model Parameters Size in MB Accuracy

(J) 1811870 6.917 MB 58.64
(K) 1733120 6.616MB 58.27
(L) 952692 3.637MB 57.23

——
ILSVRC-12

(M) BVLC Ref [58]=96-256-384-384-256-4096-4096
(N) SPyr BVLC Ref=384-320-256-224-192-4096-3840
(O) SPyr Rev BVLC=352-352-256-256-160-4096-4096
(P) SPyr BVLC Ref*=352-352-256-256-160-3840-2840

(Q) SPyr BVLC Ref**=384-346-308-270-232-4096-3687-1000
Model Parameters Size in MB Accuracy

(M) 62378344 238.15MB 57.03
(N) 54046920 198.26MB 57.05
(O) 43065448 160.93MB 56.81
(P) 40867904 151.71MB 56.40
(Q) 58741371 224.2MB 57.64

—–

CHAPTER 5. ADOPTING STRICTLY PYRAMIDAL ARCHITECTURE
IN DEEP CNN 140

Table 5.4: Best Strictly Pyramidal Models and their Accuracies
(A) MNIST Caffe LENET = 20-50-500-10

(B) SPyr C10 = 52-42-32-10
(C) SPyr Rev C100 = 200-170-150-100

(D) SPyr BVLC Ref=384-320-256-224-192-4096-3840
Model Parameters Train Loss Accuracy

(A) 48910 0.00994945 99.14
(B) 94756 0.319729 81.94
(C) 1733120 0.445774 58.27
(D) 54046920 1.24036 57.05

——

but also in ’Conv’ layers unlike the LeNet-5 Pruned Tab. 5.3. (F)
[30] which reduced parameters mainly in ’FC’ layer. Alexnet Pruned
[30] achieved same result with 6.7M parameters, but their model
took about 700K to 1000K iterations. Whereas, we achieved same
results with simple techniques, 10M reduction in parameters and
same number of 450K iterations. However, due to more maps in
initial layer, our model takes slightly more time than BVLC Ref.
In Fig. 5.3, D100 Model 1 shows one of our pyramidal models that
reduced 30.9623% parameters with only 0.0142% degradation in per-
formance compared to reference model. Tab. 5.4 summarizes the best
models in-terms of parameters and accuracy for MNIST, Cifar-10,
Cifar-100 and ILSVRC-12.

5.4.4 Performance of Pyramidal Models with Less data

One of the questions raised against CNN is that it doesn’t work
if small datasets are available. Therefore, we tested SPyr CNN’s
with reduced data. We divided Cifar-100 and ILSVRC-12 in two
new random training sets, i.e. 90% and 80% of the original one.
Despite reduction of 150K and 300K randomly selected images for
test1 and test2, respectively, we got only 1% gradual degradation in
overall accuracy (see Tab. 5.5). So, if we properly understand CNNs,
we can model such architectures in order to provide optimal results
even with small training datasets. Our top-1 accuracy even with

CHAPTER 5. ADOPTING STRICTLY PYRAMIDAL ARCHITECTURE
IN DEEP CNN 141

Table 5.5: Evaluating generalization power of Strictly Pyramidal networks with reduc-
tion of training Data medium and large datasets. top-1 and top-5 represents
error.

SPyr C100 = 200-170-128-100
Data Train Loss Test Loss top-1 top-5

100% 0.636249 1.57851 41.93 -
90% 0.615743 1.64351 42.66 -
80% 0.407365 1.72381 44.14 -

——
SPyr BVLC Ref=384-320-256-224-192-4096-3840

Data Train Loss Test Loss top-1 top-5

100% 0.449904 1.55493 42.9 19.7
90% 1.32812 1.88455 44.0 20.7
80% 1.25612 1.95334 45.1 21.4

——

90% data is better than reported in [134] by 0.4%. However, when
we reduced data other than 10%, the performance drops down below
0.7%.

Performance of our SPyr CNN C100 with reduced data while train-
ing is shown in Fig. 5.2 (with 100%, 90% and 80% training data).
Not only the model with 100% training data, but also the mod-
els with 90% and 80% data learn smoothly. Similarly, to see the
training behavior of ILSVRC-12 with reduced data, Fig. 5.4 shows
its learning behavior during training. Whereas, their performance
through out the training process is shown in Fig. 5.3. The behavior
for SPyr BVLC Ref with 100% (D100 percent), 90% (D90 percent)
and 80% (D80 percent) is almost smooth without any big falls or
degradation. Curves shows almost similar nature despite less train-
ing data.

5.4.5 Comparison with State-of-the-art

We compared the pyramidal structure mainly with Caffe reference
models i.e. AlexNet and BVLC Ref as well as some state-of-the-art
models as can be seen in Tab. 5.6. Our SPyr LENET model for
MNIST outperformed based model as discussed in Sec. 5.4.3. We

CHAPTER 5. ADOPTING STRICTLY PYRAMIDAL ARCHITECTURE
IN DEEP CNN 142

Figure 5.2: Performance evaluation based on Accuracy for CIFAR-100 with reduction in
training data for total of 70000 iterations

Figure 5.3: Comparison of Validation Accuracy with less data after each 10000 iterations
for total of 450000 iterations

achieved comparable results in case of Cifar-10 and Cifar-100 from
the base models, i.e. 81.65% vs 83.34% or 58.64% vs 58.27%. How-
ever, in comparison to models like [145, 96], our results are 5 − 8%
less accurate. By observing their model, unlike ours, they contain a
million parameters as well as results from sophisticated and complex
models whereas, we achieved with following our assumption of re-
versing and imposing a SPyr structure. Hence, if we neglect memory
and increase parameters by increasing the SPyr network, the perfor-
mance improves. In case of large scale dataset, the results are quite

CHAPTER 5. ADOPTING STRICTLY PYRAMIDAL ARCHITECTURE
IN DEEP CNN 143

Figure 5.4: Training Loss with 10000 iterations difference for total of 450000 iterations

promising in terms of accuracy. However, it took slightly more time
due to more maps at initial layers. This limitation can be avoided
by selecting a proper model. As SPyr LENET* shows that SPyr
models can provide better or competitive results even with smaller
number of kernels. In terms of reduction of parameters, recent mod-
els i.e. Tab. 5.6. (F) [134] and (G) [30] reduce far more parameters
than our models Tab. 5.6. (C) and (D), but they achieve less top-1
and top-5 error for ILSVRC-12.

Some researchers are trying to avoid fully connected layers as ma-
jority of parameters are from those layers. Though, it should be
noticed that these layers have great impact on over all accuracy.
These are highly dependent on 2D or 3D layers. Therefore, one of
the solution is to reduce the size of the last convolutional layer as-
well-as number of neurons in specific order. Pyramidal structure is
quite feasible for this scenario. We used pyramid structure in FC
layers as can be seen in Tab. 5.3. (N), (O), and (Q). Tab. 5.3 (N)
shows better result by following SPyr structure while Tab. 5.3 (O)
fallback with only 0.63%, whereas, Tab. 5.3 (Q) gives the best result
by reducing kernels and neurons at a constant factor of 10. To visu-
alize and understand the output of our trained model, we have shown
output maps resulted by first layer of trained BVLC Ref model and
our SPyr BVLC Ref in Fig. 5.5 and 5.6, respectively. The maps pro-

CHAPTER 5. ADOPTING STRICTLY PYRAMIDAL ARCHITECTURE
IN DEEP CNN 144

Table 5.6: Comparison with Stat-of-the-art in-terms of Error% and Less number of
Parameters

Model Cifar-100 Error %

C100 44.49
Stochastic Pooling [133] 42.51
SPyr C100 41.73
NIN [96] 35.68
Deeply Supervised Networks [145] 34.57

——
ILSVRC-12

(A) Alexnet [58]
(B) BVLC Ref [58]

(C) SPyr BVLC Ref**
(D) SPyr BVLC Ref
(E) SPyr BVLC Ref*

(F) Sparse MemoryBounded [134]
(G) Alexnet Pruned [30]

Model Params top-1 % top-5%

(A) 60M 42.9 19.8
(B) 60M 42.6 19.6
(C) 58M 42.3 19.3
(D) 50M 42.9 19.7
(E) 40M 43.2 19.9
(F) 15M 44.4 19.6
(G) 7M 42.8 19.7

duced by our model are more clear, smooth and understandable as
compare to the maps produced by referenced model. This shows that
how better and fine grained information is extracted from real input
image. Still, a more detailed analysis is desired to precisely assess
the effect of SPyr architectures on new deep models and ImageNet
datasets. Such a comprehensive quantitative study using multiple
networks is extremely time demanding and it is in our focus for fu-
ture work.

CHAPTER 5. ADOPTING STRICTLY PYRAMIDAL ARCHITECTURE
IN DEEP CNN 145

Figure 5.5: Output maps of first convolutional layer of Caffe trained model

5.4.6 Reducing Ambiguity

Person re-identification (PRe-ID) is an open and recently introduced
problem in CV trying to answer questions like: ”Have I seen this
person before? or Is this the same person?”. Formally, it is about
identifying an individual in varying locations, views, and lighting
conditions over a set of non-overlapping camera views in a small res-
olution images, e.g. 48× 128 pixels. These factors make it very hard

CHAPTER 5. ADOPTING STRICTLY PYRAMIDAL ARCHITECTURE
IN DEEP CNN 146

Figure 5.6: Output maps of 1st convolutional layer of our SPyr BVLC Ref trained model

and an important task of CV with applications ranging in many
contexts from intelligent video surveillance, people tracking and be-
havior analysis due to its ability to recognize a subject without its
physical interaction with the system.

Cumulative matching characteristic (CMC) curve [146, 147] is a
commonly used performance measure in evaluating PRe-ID. The
CMC curve represents results of an identification task by plotting

CHAPTER 5. ADOPTING STRICTLY PYRAMIDAL ARCHITECTURE
IN DEEP CNN 147

the probability of correct identification (y-axis) against the number of
candidates returned (x-axis). The faster the CMC curve approaches
one, the better is the PRe-ID algorithm. In a PRe-ID, a better rank-
1 recognition rate is often preferred [148]. Therefore, following [148]
our aim is also to improve the Rank-1 recognition rate among the k
best candidates, e.g., k < 20, crucial for many real-world surveillance
applications. In this work, all the experiments are done on VIPeR
dataset explained in Sec. 5.4.1.5.

Recently, Improved Deep Metric Learning (Improved-DML) model
[144] combines feature extraction and metric learning in a unified
framework, like the Siamese CNN. An image is divided into three
parts (head, abdomen, and foot region) that is given as input to
Improved-DML. We enhanced this model and propose two variants
of this model, i.e. One with strict pyramid structure (SP-Improved-
DML) and the other without pyramid structure (Non-SP-Improved-
DML). The SP-Improved-DML results in a strictly pyramidal Siamese
CNN that enhances the Rank-1 performance in all the cases having
fewer number of parameters than the non pyramidal model.

5.4.6.1 SP-Improved-DML

A Siamese architecture takes an image pair as input and the output
is binary value, revealing if the two images comes from the same sub-
ject, or not. The weights between the two sub-networks in Siamese
architecture can be shared or not. For person re-identification prob-
lem, the best choice is clearly sharing parameters, to find out the pe-
culiarity of an individual in different pose, or from images acquired by
different views. Our architecture, is composed by two siamese strict
pyramidal CNN blocks, B1 and B2, a connection function, C and a
cost function, J. Driven by a common objective function, this model
can learn, simultaneously, both the features and an optimal metric
to compare them. The strictly pyramidal CNN block is composed
by 2 convolutional layers, C1 and C3.

The model imposes strict pyramidal structure on the the Improved-

CHAPTER 5. ADOPTING STRICTLY PYRAMIDAL ARCHITECTURE
IN DEEP CNN 148

DML (SP-Improved-DML) for enhancing Rank1 performance. In
first phase we use a CNN as shown in Fig. 5.8 which is composed
by 2 convolutional layers, 2 max pooling layers and a full connected
layer. This is similar to the one used by Improved-DML, however
the difference among the two is their input size, structure and batch
arrangement. This differences consist of:

• not using cross-channel normalization unit.

• using full image picture rather dividing image in three parts and
giving as input to three parallel CNN’s.

• using shared parameters in both sub-networks rather non shared
which is good for general PRe-ID problem where the change is
in the pose.

• using simple hyperbolic tangent function instead of ReLU [12]
as activation function for each layer.

• Imposing our strict pyramid structure that reduce ambiguous
features.

Our Non-SP-Improved-DML has all the above differences compare
to the base Improved-DML model other than not imposing pyramid
structure in the model. It will show the role of pyramid structure in
increasing rank-1 performance and reducing the number of param-
eters. The SP-Improved-DML is shown in Fig. 5.7, the number of
kernels in convolutional and pooling layer shows the difference. The
pyramid structure starts with more filters/kernels in first layer (C1),
i.e. 32 having kernel size of 7 × 7. It is followed by a pooling layer
that further reduces its spatial dimension and than another convolu-
tion layer (C3) with 25 kernels of size 5×5. In the end, it contains a
fully connected layer that outputs a vector of 500 dimensions. This
pyramid structure not only extract several type of features from the
real input, but it refined them as it goes deeper and deeper by re-
ducing redundant and ambiguous features. Finally, it provides fewer

CHAPTER 5. ADOPTING STRICTLY PYRAMIDAL ARCHITECTURE
IN DEEP CNN 149

number of features but highly discriminative for classification pur-
pose. This structure reduced the number of features by more than
50% and provided better rank-1 performance on almost all ranks.

An important factor in this model is the use of connection func-
tion. High level features of all parts are fused at F5 layer by sum rule.
Then, the similarity of fused features are evaluated by the connection
function (5.1) as used in [149].

Scos(x, y) =

∑
i xiyi√∑

i xixi
√∑

i yiyi
(5.1)

Here cos represent cosine function, x, y belongs to the feature vector
of dimentsion 500 obtained by f5 layer of blocks, B1 and B2. The
advantage of the cosine function is that its derivative is simple to
be calculated; Furthermore, the similarity value is between −1 and
+1, where -1 indicates not equal vectors and +1 indicates that the
two vectors are equal. It is driven by a common cost function de-
rived from binomial deviance, in which combined features contribute
equally and jointly to the training process. The cost function is given
below:

Jdev =

bi,j∑
a

W ◦ ln(eα(S−β)◦M + 1) (5.2)

Where ◦ is the dot product between the matrices, and Si,j is simi-
larity between the two samples ’i’ and ’j’, M as mask matrix for ’i’
and ’j’, and W as weight of that connection, given as

S = [Si,j]nxn, where Si,j = S(xi, xj), (5.3)

M = [Mi,j]n×n, where Mi,j =


1 for + ive pair
−c for − ive pair
0 for neglected pair

(5.4)

CHAPTER 5. ADOPTING STRICTLY PYRAMIDAL ARCHITECTURE
IN DEEP CNN 150

Figure 5.7: Strictly Pyramidal CNN (SP-CNN)

W = [Wi,j]n×n, where Wi,j =


1
n1

for + ive pair
1
n2

for − ive pair

0 for neglected pair

(5.5)

Here Mi,j denotes either they are the same subject or not. The
number of positive and negative pairs are denoted by n1 and n2, re-
spectively. These negative and positive pairs are deeply separated
by minimizing Eq. 5.2. In the end, traditional mini-batch stochastic
gradient decent is used to update the shared weight parameters dur-
ing training phase. ’c’ represents asymmetry cost on the label mask
in Mi,j on each positive and negative pairs. It regularize the net-
work e.g. 1 for +ive and 2 for −ive pair. This regularization shows
promising enhancement in overall performance of the network.

5.4.6.2 SP-Improved-DML Performance

To evaluate the performance, we used the same architecture as our
Non-SP-Improved-DML. But used more filters at initial layers and
reduced it gradually in higher layers. We tried to examine it in two
scenarios. First to check it with same number of filters as used in
Non-SP-Improved-DML i.e. 128 (64+64). We adopted three combi-
nations i.e. (96,32), (80,48), and (70,58). Secondly we used a small
combination of kernels, to see the power of this pyramid approach

CHAPTER 5. ADOPTING STRICTLY PYRAMIDAL ARCHITECTURE
IN DEEP CNN 151

Figure 5.8: Structure of SP-Improved-DML

for which we have taken filters combination of only 32 and 25. This
is more than 50% reduction of filters as compared to Improved-DML
and Non-SP-Improved-DML. The results achieved with these set of
filters on VIPeRare shown in Fig. 5.9 and Fig. 5.10. Fig. 5.9
shows the best optimal results interms of Rank-1 and least number
of filters and parameters. In which SP-Improved-DML outperforms
Improved-DML and Non-SP-Improved-DML by 2.17%. However, the
performance after Rank-4 gradually decrease compare to other two
methodologies. In real world scenarios, Rank-1 is more important
and acceptable as many reported it with great emphasis in literature.
It is necessary to establish the identity of a person in times as short
as possible. In fact, the ’Rank-1 re-identification’ require a compu-
tational time equal to O(n), while the ’re-identificaition’ higher rank
requires at least O(nlogn). Our model shows an edge over tradi-
tional model in this regards by showing almost similar results with
only 50% of the parameters compare to previously mentioned. The
training time has been reduced from 3 hours and 31 minutes to 2
hours and 40 minutes.

Fig. 5.10 shows results for different pyramid structures. In all
of them, one can notice that all sets of pyramid structures gives
better results than stat-of-the-art for Rank-1 to Rank-4. However
later the performance decreases gradually. In addition the Rank-1
further increases with increase in number of filters at C1 layer. The
best Rank-1 with equal number of filters i.e. 128 gives more higher

CHAPTER 5. ADOPTING STRICTLY PYRAMIDAL ARCHITECTURE
IN DEEP CNN 152

Figure 5.9: CMC Rank-1 accuracy for Improved-DML, Non-SP-Improved-DML and SP-
Improved-DML

rank, i.e. 20.2% increasing the rank by nearly 3%. This clarifies
that pyramidal structure does refine the features, reduces ambiguity
that provide higher Rank-1 results compare to other conventional
non-strict pyramidal architectures.

5.5 Conclusion

We have demonstrated empirically that giving pyramidal structure
to CNN’s can lead a scale down in the number of parameters as well
as less solver memory consumption on disk, hence producing com-
petitive results. Our experimental analysis are carried out on five
standard datasets, which showed the effectiveness of the pyramidal
structure. Training with reduced training data shows similar and
smooth learning with slight decrease in overall accuracy, i.e. about
0.5−1% decrease with each 10% reduction. A suggestion for selecting
number of kernels in each layer, especially first and last convolutional

CHAPTER 5. ADOPTING STRICTLY PYRAMIDAL ARCHITECTURE
IN DEEP CNN 153

Figure 5.10: Rank-1 for SP-Improved-DML models by using different number of filters
combinations

CHAPTER 5. ADOPTING STRICTLY PYRAMIDAL ARCHITECTURE
IN DEEP CNN 154

layer is given. In a sense, it makes it even more surprising that sim-
ple strict pyramidal model outperforms many existing sophisticated
approaches. This pyramidal structure reduces ambiguity, hence in-
creases Rank-1 performance for PRe-ID as well as other recognition
problems.

5.6 Related Publications

• Ihsan Ullah and Alfredo Petrosino. About Pyramid Structure in
Convolutional Neural Networks, in Proceedings of International
Joint Conference on Neural Network (IJCNN-16), pages 236-245,
24-29 Jul, 2016.

• Sara Iodice, Alfredo Petrosino and Ihsan Ullah. Strict Pyra-
midal Deep Architecture for Person Re-Identification, in Book:
Advances in Neural Networks, pp: 179-186, 2016.

Chapter 6
Conclusion

In first part of this thesis, our aim is to highlight pyramidal neural
networks. We give intuition for following strictly biological plausi-
ble pyramidal structures of the decision making in human brain. It
should rather be assumed as an attempt to search for a minimum
necessary ingredient for designing a deep architecture. We present
a simple idea of pyramidal structure based on internal structure of
pyramidal cell in brain and a hint from PCA. A strict 3D pyramidal
neural network and a strictly pyramidal CNN architecture have been
proposed in this thesis.

In the second part, first we propose a model that gets raw input
frames from videos as input and learn features in fewer layers hav-
ing fewer parameters due to its pyramid structure. It is evaluated
for action and dynamic scene recognition applications. It provides
better results in case of Weizmann (AR) and MaryLand-in-the-wild
(DSR) datasets. Whereas, shows comparable results with KTH (AR)
and YUPENN (DSR) datasets. In our future focus, we are fur-
ther verifying the generality of this model by evaluating it on recent
larger and challenging datasets like UCF sports, Youtube action, and
UT-Interaction datasets. This will help in proving benefits of using
strictly pyramidal structure instead of non-pyramidal structure for
learning a powerful model, since the model is aimed to obtain good
performance despite the complexity and diversity of these datasets.

155

CHAPTER 6. CONCLUSION 156

We extend 3DPyraNet model to learn spatio-temporal features
and classifying it with a linear-SVM classifier. Further, we show
that the utilized fusion model is capable of learning powerful motion
features by refining the sparse learned features, achieving competi-
tive results with respect to current best methods on different video
analysis benchmarks for action/scene recognition. A DSR system
can provide relevant contextual information in many other applica-
tions of video analysis, e.g., scene context can improve human action
recognition. Our future focus is on verifying the generality of our
model by going deeper and testing it on the same as well as more
recent larger and challenging datasets.

In the third part, we show the impact and power of pyramidal
structure in a CNN model, by imposing it on state-of-the-art deep
architecture i.e. BVLC Reference Caffe. This shows that, pyramid
structure can enhance performance of state-of-the-art models as well
as reduces not only number of parameters but also reduces solver
memory size on disk for almost same or better results. In addition, a
generalized criteria for designing a deep CNN architecture has been
given which can be used as a starting point by many new researchers.
Deep CNN has been deeply analyzed and we found that the last
convolution layer has high impact. This approach can provide great
difference in specific applications.

Performance on several datasets depict the impact and impor-
tance of pyramidal structure in CNN and 3DPyraNet. We also want
to stress that the results of all models evaluated in this thesis could
potentially be improved by increasing the overall model size or a
more thorough search for hyper kernels and neurons in fully con-
nected layers. In a sense, this fact makes it even more surprising
that the simple strict pyramidal model outperforms many existing
approaches.

Another promising direction of our future research could be op-
timization of our 3DPyraNet. It will assure the power by testing it
with more real world datasets e.g. Sports 1Million videos dataset.

Acronyms

AR Action Recognition

BNN Biological Neural Network

BSC Body Surface Context

CNN Convolutional Neural Network

CRBM Convolutional Restricted Boltzman Machine

convGRBM Convolutional Gated Restricted Boltzman Machine

CV Computer Vision

CMC Cummulative Matching Characteristic

C3D Deep 3DCNN Features

CG Conjugate Gradient

CE Cross Entropy

DBN Deep Belief Network

DL Deep Learning

DSC Dynamic Scene Classification

DSR Dynamic Scene Recognition

DSU Dynamic Scene Understanding

157

CHAPTER 6. CONCLUSION 158

FV Feature Vector

GD Gradient Descent

GMM Gaussian Mixture Model

GPU Graphical Processing Unit

GIST Gradient

GRBM Gated Restricted Boltzman Machine

GDMV Gradient Descent with Momentum and Variable Learning
rate

GMC Grand Mother Cells

HMM Hidden Markov Model

HoF Histogram of Optical Flow

HoG Histogram of Oriented Gradient

IFV Improve feature vector

I-PyraNet Inhibatory Pyramidal Neural network

ILSVRC ImageNet Large Scale Visual Recognition Challenge

IP Image Pyramids

LBP Local Binary Patterns

LDA Linear Discriminant Analysis

LGN Lateral Geniculate Nucleaus

LFW Labeled Faces in the Wild

LIPNet Lateral Inhibation Neural Network

LLC Local Linear Coding

LM Leveberg Marquadrt

CHAPTER 6. CONCLUSION 159

LSTM Long Short Term Memory Network

LTRC Long Term Recurrent Convolutional Network

LNCP Locally Connected Neural Pyramid

ML Machine Learning

MSE Mean Square Error

mAP Mean Average Precision

MBH Motion Boundary Histogram

NN Neural Network

NIN Network-in-Network

OR Object Recognition

PCA Principal Component Analysis

PRe-ID Person Re-Identification

PNN Pyramidal Neural Networks

VPNN Variable Pyramidal Neural Network

VPNN-EA Variable Pyramidal Neural Network with Evolutionary
Algorithm

PVC Primary Visual Cortex

PyraNet S. L Phung and A. Bouzerdoum Pyramidal Neural network

RBM Restricted Boltzmann Machine

RNN Recurrent Neural Network

RPROP Resilient Back Propagation

SA Statistical Aggregation

SOE Spatiotemporal Oriented Energy Features

CHAPTER 6. CONCLUSION 160

SGD Stochastic Gradient Descent

SIFT Scale-invariant Feature Transform

STIP Space-time interest points

STRF Spatio-Temoral Regularity based Features

STPSC Spatio-Temoral Pyramid Sparse Coding

SPM Spatial Pyramid Matching

SPP Spatial Pyramid Pooling

SURF Speeded Up Robust Features

SVM Support Vector Machine

SWLD Spatial Weber’s Local Descriptor

SCRF Segmentation and Classification with Receptive Field

ToSP Trajectory of Surface Patch

VLAD Vector of Locally Aggregated Descriptors

VC vector quantization

WS Weighted Sum

3DPyraNet 3D Pyramidal Neural network

3DCNN 3D Convolutional Neural network

Bibliography

[1] Zeiler, M., Fergus, R.: Visualizing and understanding convo-
lutional networks. Computer Visionâ“ECCV 2014 (nov 2014)
xiv, 55, 62, 63, 64, 68

[2] Derpanis, K.G., Lecce, M., Daniilidis, K., Wildes, R.P.: Dy-
namic scene understanding: The role of orientation features in
space and time in scene classification. 2012 IEEE Conference
on Computer Vision and Pattern Recognition (2012) 1306–1313
2, 3, 19, 20, 106, 107, 120

[3] Theriault, C., Thome, N., Cord, M.: Dynamic scene classifi-
cation: Learning motion descriptors with slow features analy-
sis. Proceedings of the IEEE Computer Society Conference on
Computer Vision and Pattern Recognition (2013) 2603–2610 2,
3, 106, 107

[4] Feichtenhofer, C., Pinz, A., Wildes, R.P.: Spacetime forests
with complementary features for dynamic scene recognition.
In: BMVC. (2013) 2, 106

[5] Shroff, N., Turaga, P., Chellappa, R.: Moving vistas: Ex-
ploiting motion for describing scenes. Proceedings of the IEEE
Computer Society Conference on Computer Vision and Pattern
Recognition (2010) 1911–1918 2, 20

161

BIBLIOGRAPHY 162

[6] Laptev, I., Pérez, P.: Retrieving actions in movies. In: Pro-
ceedings of the IEEE International Conference on Computer
Vision. (2007) 3

[7] Schindler, K., Van Gool, L.: Action Snippets: How many
frames does human action recognition require? 26th IEEE
Conference on Computer Vision and Pattern Recognition,
CVPR (2008) 3

[8] Yang, X., Tian, Y.: Action Recognition Using Super Sparse
Coding Vector with Spatio-temporal Awareness. In: Computer
Vision – ECCV 2014. Volume 8690. (2014) 727–741 3

[9] Liu, W., Wang, Z., Tao, D., Yu, J.: Hessian Regularized Sparse
Coding for Human Action Recognition. In: 21st International
Conference, MMM 2015, Sydney, NSW, Australia, January 5-7,
2015, Proceedings, Part II. (2015) 502–511 3

[10] Melfi, R., Kondra, S., Petrosino, A.: Human activity modeling
by spatio temporal textural appearance. Pattern Recognition
Letters 34(15) (November 2013) 1990–1994 3, 57, 78

[11] Cantoni, V., Petrosino, a.: Neural recognition in a pyramidal
structure. IEEE transactions on neural networks / a publi-
cation of the IEEE Neural Networks Council 13(2) (January
2002) 472–80 3, 6, 24, 26, 28, 29, 31, 41, 42, 74, 108

[12] Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet Clas-
sification with Deep Convolutional Neural Networks. In: Ad-
vances in Neural Information Processing Systems. (2012) 1097–
1105 3, 4, 17, 18, 43, 44, 46, 47, 50, 51, 55, 60, 62, 108, 122,
127, 128, 129, 130, 148

[13] Ji, S., Yang, M., Yu, K.: 3D convolutional neural networks
for human action recognition. IEEE transactions on pattern
analysis and machine intelligence 35(1) (2013) 221–31 3, 4, 16,
54, 59, 74, 78, 100, 101, 102, 107, 119, 124

BIBLIOGRAPHY 163

[14] Phung, S.L., Bouzerdoum, A.: A pyramidal neural network
for visual pattern recognition. IEEE transactions on neural
networks / a publication of the IEEE Neural Networks Council
18(2) (March 2007) 329–43 3, 7, 31, 41, 42, 43, 108, 128, 130,
131

[15] a.a. Efros, a.C. Berg, Mori, G., Malik, J.: Recognizing action at
a distance. Proceedings Ninth IEEE International Conference
on Computer Vision (2003) 3

[16] Schüldt, C., Laptev, I., Caputo, B.: Recognizing human ac-
tions: A local SVM approach. Proceedings - International Con-
ference on Pattern Recognition 3 (2004) 32–36 3, 97, 100, 102,
118, 119, 124

[17] Ballan, L., Bertini, M., Del Bimbo, A., Seidenari, L., Serra,
G.: Effective codebooks for human action representation and
classification in unconstrained videos. IEEE Transactions on
Multimedia 14(4 PART 2) (2012) 1234–1245 3

[18] Feichtenhofer, C.: Spacetime Forests with Complementary Fea-
tures for Dynamic Scene Recognition. Bmvc2013 (2013) 2012
3, 21, 107, 120, 124

[19] Feichtenhofer, C., Pinz, A., Wildes, R.: Bags of spacetime en-
ergies for dynamic scene recognition. In: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion. (2014) 2681–2688 3, 107, 120, 121, 124

[20] Taylor, G.W., Fergus, R., LeCun, Y., Bregler, C.: Convolu-
tional learning of spatio-temporal features. Lecture Notes in
Computer Science (including subseries Lecture Notes in Arti-
ficial Intelligence and Lecture Notes in Bioinformatics) 6316
LNCS(PART 6) (2010) 140–153 3, 15

BIBLIOGRAPHY 164

[21] Freitas, N.D.: Deep Learning of Invariant Spatioâˆ’ Temporal
Features from Video. In: Workshop on Deep Learning and
Unsupervised Feature Learning in NIPS. (2010) 1–9 3, 16

[22] Le, Q.V., Zou, W.Y., Yeung, S.Y., Ng, A.Y.: Learning hierar-
chical invariant spatio-temporal features for action recognition
with independent subspace analysis. Proceedings of the IEEE
Computer Society Conference on Computer Vision and Pattern
Recognition (2011) 3361–3368 3, 16

[23] D. Tran, L. Bourdev, R.F.L.T., Paluri, M.: Learning Spa-
tiotemporal Features with 3D Convolutional Networks. In:
ICCV, IEEE (jun 2015) 1725–1732 3, 18, 22, 59, 102, 108,
120, 122, 124

[24] Karpathy, A., Toderici, G., Shetty, S., Leung, T., Sukthankar,
R., Fei-Fei, L.: Large-Scale Video Classification with Convolu-
tional Neural Networks. 2014 IEEE Conference on Computer
Vision and Pattern Recognition (June 2014) 1725–1732 3, 15,
17, 59, 108, 118, 121

[25] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based
learning applied to document recognition. Proceedings of the
IEEE 86(11) (1998) 2278–2324 3, 7, 41, 42, 43, 45

[26] Sermanet, P., LeCun, Y.: Traffic sign recognition with multi-
scale Convolutional Networks. The 2011 International Joint
Conference on Neural Networks (2011) 2809–2813 3

[27] CireÅŸan, D., Meier, U., Masci, J., Schmidhuber, J.: Multi-
column deep neural network for traffic sign classification. Neu-
ral Networks 32 (aug 2012) 333–338 3

[28] He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification.
CoRR abs/1502.01852 (2015) 4

BIBLIOGRAPHY 165

[29] Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma,
S., Huang, Z., Karpathy, A., Khosla, A., Bernstein, M., Berg,
A.C., Fei-Fei, L.: ImageNet Large Scale Visual Recognition
Challenge. International Journal of Computer Vision (IJCV)
115(3) (2015) 211–252 4, 46, 47, 133

[30] Han, S., Pool, J., Tran, J., Dally, W.J.: Learning both
weights and connections for efficient neural networks. CoRR
abs/1506.02626 (2015) 5, 6, 108, 122, 127, 138, 140, 143, 144

[31] Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov,
D., Erhan, D., Vanhoucke, V., Rabinovich, A.: Going deeper
with convolutions. In: IEEE Conference on Computer Vision
and Pattern Recognition, CVPR 2015, Boston, MA, USA, June
7-12, 2015. (2015) 1–9 6, 122, 127, 129

[32] Essen, D.C.V., Gallant, J.L.: Neural mechanisms of form and
motion processing in the primate visual system. Neuron 13(1)
(1994) 1 – 10 6

[33] Fukushima, K.: Neocognitron: A hierarchical neural network
capable of visual pattern recognition. Neural Networks 1(2)
(January 1988) 119–130 6, 7, 24, 25, 26, 108

[34] Yeh, C.I., Xing, D., Shapley, R.M.: ”Black” Responses Dom-
inate Macaque Primary Visual Cortex V1. Journal of Neuro-
science 29(38) (sep 2009) 11753–11760 6

[35] Hubel, D.H., Wiesel, T.N.: Receptive fields and functional ar-
chitecture of monkey striate cortex. The Journal of physiology
195(1) (1968) 215–43 6

[36] Lazebnik, S., Schmid, C., Ponce, J.: Beyond Bags of Features:
Spatial Pyramid Matching for Recognizing Natural Scene Cat-
egories. 2006 IEEE Computer Society Conference on Com-
puter Vision and Pattern Recognition - Volume 2 (CVPR’06)
2 (2006) 2169–2178 7, 106, 128, 130

BIBLIOGRAPHY 166

[37] Fan, H., Cao, Z., Jiang, Y., Yin, Q., Doudou, C.: Learning
deep face representation. CoRR abs/1403.2802 (2014) 7, 128

[38] Wang, P., Cao, Y., Shen, C., Liu, L., Shen, H.T.: Temporal
pyramid pooling based convolutional neural networks for action
recognition. CoRR abs/1503.01224 (2015) 7, 128

[39] Simonyan, K., Zisserman, A.: Two-stream convolutional net-
works for action recognition in videos. In Ghahramani, Z.,
Welling, M., Cortes, C., Lawrence, N., Weinberger, K., eds.:
Advances in Neural Information Processing Systems 27. Cur-
ran Associates, Inc. (2014) 568–576 7, 128

[40] Laptev, I., Lindeberg, T.: Space-time interest points. IEEE In-
ternational Conference on Computer Vision (ICCV 03) (2003)
32 – 439 12

[41] Soomro, K., Zamir, A.R., Shah, M.: UCF101: A dataset of
101 human actions classes from videos in the wild. CoRR
abs/1212.0402 (2012) 13

[42] Wang, H., Ullah, M.M., Klaser, A., Laptev, I., Schmid,
C.: Evaluation of local spatio-temporal features for ac-
tion recognition. In: Proc. BMVC. (2009) 124.1–124.11
doi:10.5244/C.23.124. 13

[43] Schindler, K., Gool, L.J.V.: Action snippets: How many frames
does human action recognition require? In: CVPR, IEEE
Computer Society (2008) 13

[44] Muhammad Muneeb Ullah, Sobhan Naderi Parizi, I.L.: Im-
proving bag-of-features action recognition with non-local cues.
International Conference on Computer Vision (ICCV 03)
(2010) 1–8 13

[45] Song, Y., Zheng, Y.T., Tang, S., Zhou, X., Zhang, Y., Lin,
S., Chua, T.S.: Localized multiple kernel learning for realistic

BIBLIOGRAPHY 167

human action recognition in videos. Circuits and Systems for
Video Technology, IEEE Transactions on 21(9) (Sept 2011)
1193–1202 13

[46] Song, Y., Liu, S., Tang, J.: Describing trajectory of surface
patch for human action recognition on rgb and depth videos.
Signal Processing Letters, IEEE 22(4) (April 2015) 426–429 13

[47] Song, Y., Tang, J., Liu, F., Yan, S.: Body surface context:
A new robust feature for action recognition from depth videos.
IEEE Transactions on Circuits and Systems for Video Technol-
ogy 24(6) (June 2014) 952–964 14

[48] Yu, G., Liu, Z., Yuan, J.: Discriminative orderlet mining for
real-time recognition of human-object interaction. In: Com-
puter Vision - ACCV 2014 - 12th Asian Conference on Com-
puter Vision, Singapore, Singapore, November 1-5, 2014, Re-
vised Selected Papers, Part V. (2014) 50–65 14

[49] Zhang, X., Zhang, H., Cao, X.: Action recognition based on
spatial-temporal pyramid sparse coding. In: Pattern Recog-
nition (ICPR), 2012 21st International Conference on. (Nov
2012) 1455–1458 14

[50] Muhammad Muneeb Ullah, Sobhan Naderi Parizi, I.L.: The
representation and recognition of human movement using tem-
poral templates. IEEE International Conference on Computer
Vision and Pattern Recognition (CVPR’97) (1997) 928â“934
14

[51] Blank, M., Gorelick, L., Shechtman, E., Irani, M., Basri, R.:
Actions as space-time shapes. In: Tenth IEEE International
Conference on Computer Vision (ICCV’05) Volume 1. (2005)
1395–1402 Vol. 2 14

[52] Wang, L., Leckie, C.: Encoding actions via the quantized vo-
cabulary of averaged silhouettes. IEEE International Confer-

BIBLIOGRAPHY 168

ence on Computer Vision and Pattern Recognition (CVPR-10)
(2010) 3657–3660 14

[53] Shao, L., Chen, X.: Histogram of body poses and spectral
regression discriminant analysis for human action categoriza-
tion. in Proceedings of the British Machine Vision Conference
(BMVC) (2010) 3657–3660 14

[54] H. Qu, L.W., Leckie, C.: Action recognition using space-time
shape difference images. in Pattern Recognition (ICPR), 2010
20th International Conference on. IEEE (2010) 3661 14

[55] X. Sun, M.C., Hauptmann, A.: Action recognition via local
descriptors and holistic features. in IEEE Computer Society
Conference in Computer Vision and Pattern Recognition Work-
shops (2009) 58–65 14

[56] Bengio, Y., Lecun, Y. In: Scaling learning algorithms towards
AI. MIT Press (2007) 15

[57] Chen, B., Marlin, B.M., Ting, J.a.: Deep Learning of Invariant
Spatio-Temporal Features from Video. NIPS Workshop (Au-
gust) (2010) 1–9 15, 102, 124

[58] Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Gir-
shick, R., Guadarrama, S., Darrell, T.: Caffe: Convolutional
architecture for fast feature embedding. In: Proceedings of the
ACM International Conference on Multimedia. MM ’14, New
York, NY, USA, ACM (2014) 675–678 15, 50, 51, 127, 133,
135, 136, 139, 144

[59] Hyvärinen, A., Hoyer, P.: Emergence of phase- and shift-
invariant features by decomposition of natural images into inde-
pendent feature subspaces. Neural Comput. 12(7) (July 2000)
1705–1720 16

[60] Baccouche, M., Mamalet, F., Wolf, C.: Sequential deep learn-
ing for human action recognition. Proc. Int. Conf. Human Be-

BIBLIOGRAPHY 169

havior Understanding (HBU) (2011) 29–39 16, 18, 60, 100, 101,
102, 124

[61] Ji, S., Xu, W., Yang, M., Yu, K.: 3d convolutional neural
networks for human action recognition. In: In ICML. (2010)
16

[62] Zeiler, M.D., Fergus, R.: Visualizing and understanding con-
volutional networks. In: Computer Vision - ECCV 2014 - 13th
European Conference, Zurich, Switzerland, September 6-12,
2014, Proceedings, Part I. (2014) 818–833 17, 127

[63] Simonyan, K., Zisserman, A.: Two-Stream Convolutional Net-
works for Action Recognition in Videos. (June 2014) 1–11 18,
59, 60

[64] Donahue, J., Hendricks, L.A., Guadarrama, S., Rohrbach, M.,
Venugopalan, S., Saenko, K., Darrell, T., Austin, U.T., Low-
ell, U., Berkeley, U.C.: Long-term Recurrent Convolutional
Networks for Visual Recognition and Description. Cvpr (2015)
1–14 18, 60

[65] Ng, J., Hausknecht, M.: Beyond Short Snippets: Deep Net-
works for Video Classification. arXiv preprint arXiv: . . . (2015)
4694–4702 18, 60

[66] Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov,
D., Erhan, D., Vanhoucke, V., Rabinovich, A.: Going Deeper
with Convolutions. (sep 2014) 1–12 18, 51, 55, 60, 62, 69

[67] Feichtenhofer, C., Pinz, A., Wildes, R.: Dynamic Scene Recog-
nition with Complementary Spatiotemporal Features. Pat-
tern Analysis and Machine Intelligence, IEEE Transactions on
PP(99) (2016) 1 19, 21, 59, 107, 120, 121, 124, 125

[68] Marszalek Marcin. Laptev Ivan, S.C.: Actions in Context. (i)
(2009) 2929–2936 19, 20

BIBLIOGRAPHY 170

[69] Xiao, J., Hays, J., Ehinger, K.A., Oliva, A., Torralba, A.: Sun
database: Large-scale scene recognition from abbey to zoo. In:
Computer Vision and Pattern Recognition (CVPR), 2010 IEEE
Conference on. (June 2010) 3485–3492 19, 106

[70] Zhou, B., Lapedriza, A., Xiao, J., Torralba, A., Oliva, A.:
Learning deep features for scene recognition using places
database. In Ghahramani, Z., Welling, M., Cortes, C.,
Lawrence, N., Weinberger, K., eds.: Advances in Neural Infor-
mation Processing Systems 27. Curran Associates, Inc. (2014)
487–495 19, 106

[71] Quattoni, A., Torralba, A.: Recognizing indoor scenes (2009)
19

[72] Vaughan, C.L., Davis, B.L., O’Connor, J.C.: Dynamics of hu-
man gait. Human Kinetics Publishers, Leeds (England) (1992)
20

[73] Feichtenhofer, C., Pinz, A., Wildes, R.P.: Bags of spacetime en-
ergies for dynamic scene recognition. Proceedings of the IEEE
Computer Society Conference on Computer Vision and Pattern
Recognition (2014) 2681–2688 21

[74] Gangopadhyay, A., Tripathi, S.M., Jindal, I., Raman, S.: SA-
CNN: Dynamic Scene Classification using Convolutional Neu-
ral Networks. (2015) 1–25 22

[75] Turk, M., Pentland, A.: Face recognition using eigenfaces. In:
Computer Vision and Pattern Recognition, 1991. Proceedings
CVPR ’91., IEEE Computer Society Conference on. (Jun 1991)
586–591 23, 131

[76] D. Blei, A.N., Jordan, M.: Latent dirichlet allocation. in
Journal of Machine Learning Research 3 (2003) 993–1022 23

BIBLIOGRAPHY 171

[77] Hyvarinen, A., Hoyer, P.O.: Topographic independent compo-
nent analysis as a model of v1 organization and receptive fields.
in Journal of Neurocomputing 38(40) (2001) 1307–1315 23

[78] Hoyer, P.O.: Topographic independent component analysis as
a model of V1 organization and receptive ” elds. 40 (2001)
1307–1315 24, 28, 29

[79] Bischof, H., Kropatsch, W.G.: Neural Networks vs Image Pyra-
mids. Artificial Neural Nets and Genetic Algorithms 43(222)
(1993) 24

[80] Fukushima, K.: Neocognitron for handwritten digit recogni-
tion. Neurocomputing 51 (April 2003) 161–180 26

[81] Fukushima, K.: Artificial vision by multi-layered neural net-
works: neocognitron and its advances. Neural networks : the
official journal of the International Neural Network Society 37
(January 2013) 103–19 27, 42, 43

[82] Mcquoid, M.R.: Neural ensembles: Simultaneous recognition
of multiple 2-D visual objects. Neural Networks 6(7) (jan 1993)
907–917 28

[83] Springenberg, J.T., Dosovitskiy, A., Brox, T., Riedmiller,
M.: STRIVING FOR SIMPLICITY: THE ALL CONVOLU-
TIONAL NET. (2015) 1–14 31

[84] cuda convnet: Locally-connected layer with unshared weights
(May 2015) 32

[85] Fernandes, B.J.T., Cavalcanti, G.D.C., Ren, T.I.: A receptive
field based approach for face detection. In: International Joint
Conference on Neural Networks, IEEE (jun 2009) 803–810 39,
42, 43

[86] Rizzolatti, G., Camarda, R.: Inhibition of visual responses
of single units in the cat visual area of the lateral suprasylvian

BIBLIOGRAPHY 172

gyrus (clare-bishop area) by the introduction of a second visual
stimulus. Brain Research 88(2) (1975) 357–361 39

[87] Fernandes, B.J.T., Cavalcanti, G.D.C., Ren, T.I.: Nonclassical
receptive field inhibition applied to image segmentation. Neural
Network World 19(1) (2009) 21–36 40, 42, 43, 128, 131

[88] Fernandes, B.J.T., Cavalcanti, G.D.C., Ren, T.I.: Lateral inhi-
bition pyramidal neural network for image classification. IEEE
transactions on cybernetics 43(6) (dec 2013) 2082–91 40, 42,
43, 128, 131

[89] Soares, A.M., Fernandes, B.J.T., Bastos-Filho, C.J.A.: Pyra-
midal neural networks with evolved variable receptive fields.
Neural Computing and Applications (2016) 40

[90] Uetz, R., Behnke, S.: Locally-connected hierarchical neural
networks for gpu-accelerated object recognition. NIPS 2009
Workshop on Large-Scale Machine Learning: Parallelism and
Massive Datasets, Whistler, Canada, December (December)
(2009) 10–13 41, 42, 43

[91] Bengio, Y., Courville, A., Vincent, P.: Representation Learn-
ing: A Review and New Perspectives. (1993) (June 2012) 1–30
44

[92] Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature
hierarchies for accurate object detection and semantic segmen-
tation. (nov 2013) 49, 65

[93] Sermanet, P., Eigen, D., Zhang, X., Mathieu, M., Fergus, R.,
LeCun, Y.: OverFeat: Integrated Recognition, Localization
and Detection using Convolutional Networks. arXiv preprint
arXiv (2013) 1312.6229 49

[94] Oquab, M., Bottou, L., Laptev, I., Sivic, J.: Learning and
Transferring Mid-level Image Representations Using Convolu-

BIBLIOGRAPHY 173

tional Neural Networks. 2014 IEEE Conference on Computer
Vision and Pattern Recognition (June 2014) 1717–1724 49

[95] Oquab, M., Laptev, I., Learning, J.S., Mid-level, T., Bottou,
L.: Learning and Transferring Mid-Level Image Representa-
tions using Convolutional Neural Networks To cite this version
: Learning and Transferring Mid-Level Image Representations
using Convolutional Neural Networks. In: IEEE conferenc eon
computer Vision and Pattern Recognition. (2014) 49

[96] Lin, M., Chen, Q., Yan, S.: Network in network. CoRR
abs/1312.4400 (2013) 50, 51, 55, 122, 127, 129, 142, 144

[97] Lee, C.Y., Xie, S., Gallagher, P., Zhang, Z., Tu, Z.: Deeply-
Supervised Nets. (sep 2014) 1–10 50, 55

[98] : Internet Meme: we-need-to-go-deeper 52

[99] Le, Q.V., Ngiam, J., Chen, Z., Chia, D., Koh, P.W., Ng, A.Y.:
Tiled convolutional neural networks. Advances in Neural In-
formation Processing Systems 23 (2010) 1279–1287 55

[100] Wu, R., Yan, S., Shan, Y., Dang, Q., Sun, G.: Deep Image:
Scaling up Image Recognition. Arxiv (2015) 12 55

[101] Maddalena, L., Petrosino, A.: The 3dSOBS+ algorithm for
moving object detection. Computer Vision and Image Under-
standing 122 (May 2014) 65–73 57

[102] DiCarlo, J.J., Zoccolan, D., Rust, N.C.: How does the brain
solve visual object recognition? Neuron 73(3) (February 2012)
415–34 62

[103] Ba, J., Caruana, R.: Do deep nets really need to be deep?
In Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N.D.,
Weinberger, K.Q., eds.: Advances in Neural Information Pro-
cessing Systems 27. Curran Associates, Inc. (2014) 2654–2662
62

BIBLIOGRAPHY 174

[104] Agrawal, P., Girshick, R., Malik, J.: Analyzing the Perfor-
mance of Multilayer Neural Networks for Object Recognition.
(July 2014) 62, 65, 66

[105] Gorelick, L., Blank, M., Shechtman, E., Irani, M., Basri, R.:
Actions as space-time shapes. Transactions on Pattern Analysis
and Machine Intelligence 29(12) (December 2007) 2247–2253
97

[106] Maas, A.L., Hannun, A.Y., Ng, A.Y.: Rectifier nonlinearities
improve neural network acoustic models. In: Proc. ICML. Vol-
ume 30. (2013) 98

[107] Chaaraoui, A.A., Climent-Perez, P., Florez-Revuelta, F.:
Silhouette-based human action recognition using sequences of
key poses. Pattern Recognition Letters 34(15) (2013) 1799 –
1807 Smart Approaches for Human Action Recognition. 99,
100

[108] Dollár, P., Rabaud, V., Cottrell, G., Belongie, S.: Behavior
recognition via sparse spatio-temporal features. Proceedings -
2nd Joint IEEE International Workshop on Visual Surveillance
and Performance Evaluation of Tracking and Surveillance, VS-
PETS 2005 (2005) 65–72 100, 102, 118, 119, 124

[109] Mukerjee, A.P.D.T.K.: Human Action Classification using 3D-
Convolutional Neural Network. Technical report, Indian Insti-
tute of Technology Kanpur, Kanpur (2012) 101

[110] Klaser, A., Marszalek, M., Schmid, C.: A Spatio-Temporal
Descriptor Based on 3D-Gradients. Proceedings of the British
Machine Conference (2008) 99.1–99.10 102, 124

[111] Wang, H., Ullah, M.M., Klaser, A., Laptev, I., Schmid, C.:
Evaluation of local spatio-temporal features for action recogni-
tion. BMVC 2009 - British Machine Vision Conference (2009)
124.1–124.11 102, 124

BIBLIOGRAPHY 175

[112] Maninis, K., Koutras, P., Maragos, P.: Advances on action
recognition in videos using an interest point detector based
on multiband spatio-temporal energies. In: 2014 IEEE Inter-
national Conference on Image Processing (ICIP), IEEE (oct
2014) 1490–1494 102, 124

[113] Scovanner, P., Ali, S., Shah, M.: A 3-dimensional sift descriptor
and its application to action recognition. Proceedings of the
ACM International Conference on Multimedia (MM 2007) (c)
(2007) 357 102, 124

[114] Wang, H., Klaser, A., Schmid, C., Liu, C.L.: Action recogni-
tion by dense trajectories. In: CVPR 2011, IEEE (jun 2011)
3169–3176 102, 119, 124

[115] Weinland, D., Özuysal, M., Fua, P.: Making action recognition
robust to occlusions and viewpoint changes. Lecture Notes in
Computer Science (including subseries Lecture Notes in Arti-
ficial Intelligence and Lecture Notes in Bioinformatics) 6313
LNCS(PART 3) (2010) 635–648 102, 124

[116] Perona, P.: A Bayesian Hierarchical Model for Learning Natu-
ral Scene Categories. 2005 IEEE Computer Society Conference
on Computer Vision and Pattern Recognition (CVPR’05) 2
524–531 106

[117] Vogel, J., Schiele, B.: Semantic modeling of natural scenes for
content-based image retrieval. International Journal of Com-
puter Vision 72(2) (2007) 133–157 106, 107

[118] Szummer, M., Picard, R.: Temporal texture modeling. In:
Proceedings of 3rd IEEE International Conference on Image
Processing. Volume 3., IEEE 823–826 107

[119] Doretto, G., Chiuso, A., Wu, Y.N., Soatto, S.: Dynamic tex-
tures. International Journal of Computer Vision 51(2) (2003)
91–109 107

BIBLIOGRAPHY 176

[120] Ullah, I., Hussain, M., Muhammad, G., Aboalsamh, H., Bebis,
G., Mirza, A.M.: Gender Recognition from Face Image with
Local WLD Descriptor. 19th International Conference on Sys-
tems, Signals and Image Processing (IWSSIP) (April) (2012)
11–13 107

[121] Yang, Z., Moczulski, M., Denil, M., de Freitas, N., Smola, A.,
Song, L., Wang, Z.: Deep Fried Convnets. Iccv (2015) 1–10
108, 122

[122] Glorot, X., Bengio, Y.: Understanding the difficulty of training
deep feedforward neural networks. In: In Proceedings of the In-
ternational Conference on Artificial Intelligence and Statistics
(AISTATS’10). Society for Artificial Intelligence and Statistics.
(2010) 112

[123] Bengio, Y.: Practical recommendations for gradient-based
training of deep architectures. In: Neural Networks: Tricks
of the Trade. Springer (2012) 437–478 112

[124] Tran, D., Bourdev, L., Fergus, R., Torresani, L., Paluri, M.:
Learning Spatiotemporal Features with 3D Convolutional Net-
works. Proceedings in International Conference on Computer
Vision (2015) 118, 120, 121, 125

[125] Theriault, C., Thome, N., Cord, M.: Dynamic scene classifica-
tion: Learning motion descriptors with slow features analysis.
In: Computer Vision and Pattern Recognition (CVPR), 2013
IEEE Conference on. (June 2013) 2603–2610 120, 124

[126] Simonyan, K., Zisserman, A.: Very deep convolutional net-
works for large-scale image recognition. CoRR abs/1409.1556
(2014) 127, 129

[127] Wan, L., Zeiler, M., Zhang, S., Cun, Y.L., Fergus, R.: Regular-
ization of neural networks using dropconnect. In Dasgupta, S.,

BIBLIOGRAPHY 177

Mcallester, D., eds.: Proceedings of the 30th International Con-
ference on Machine Learning (ICML-13). Volume 28., JMLR
Workshop and Conference Proceedings (May 2013) 1058–1066
127

[128] Mairal, J., Koniusz, P., Harchaoui, Z., Schmid, C.: Convolu-
tional kernel networks. In Ghahramani, Z., Welling, M., Cortes,
C., Lawrence, N., Weinberger, K., eds.: Advances in Neural
Information Processing Systems 27. Curran Associates, Inc.
(2014) 2627–2635 127

[129] He, X., Luo, S., Tao, D., Xu, C., Yang, J., Hasan, M.A., eds.:
MultiMedia Modeling. Volume 8936 of Lecture Notes in Com-
puter Science. Springer International Publishing, Cham (2015)
127, 130

[130] Kaiming, H., Xiangyu, Z., Shaoqing, R., Jian, S.: Delving
deep into rectifiers: Surpassing human-level performance on
imagenet classification. In: The IEEE International Conference
on Computer Vision (ICCV). (December 2015) 127

[131] Bischof, H., Kropatsch, W.: Neural networks versus image
pyramids. In Albrecht, R., Reeves, C., Steele, N., eds.: Ar-
tificial Neural Nets and Genetic Algorithms. Springer Vienna
(1993) 145–153 127

[132] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based
learning applied to document recognition. In: Proceedings of
the IEEE. (1998) 2278–2324 128, 129

[133] Zeiler, M.D., Fergus, R.: Stochastic pooling for regularization
of deep convolutional neural networks. CoRR abs/1301.3557
(2013) 128, 144

[134] Collins, M.D., Kohli, P.: Memory bounded deep convolutional
networks. CoRR abs/1412.1442 (2014) 129, 141, 143, 144

BIBLIOGRAPHY 178

[135] Sainath, T.N., Kingsbury, B., Sindhwani, V., Arisoy, E., Ram-
abhadran, B.: Low-rank matrix factorization for deep neu-
ral network training with high-dimensional output targets. In:
2013 IEEE International Conference on Acoustics, Speech and
Signal Processing. (May 2013) 6655–6659 129

[136] Denil, M., Shakibi, B., Dinh, L., Ranzato, M., de Freitas, N.:
Predicting Parameters in Deep Learning. (2013) 1–9 129

[137] Fukushima, K.: Neocognitron: A hierarchical neural network
capable of visual pattern recognition. Neural Networks 1(2)
(1988) 119 – 130 130

[138] Hubel, D.H.: The visual cortex of the brain. Sci. Amer. 209
(1963) 54â“62 130

[139] Masci, J., Meier, U., Fricout, G., Schmidhuber, J.: Ob-
ject Recognition with Multi-Scale Pyramidal Pooling Networks.
arxiv (jul 2012) 130

[140] LeCun, Y., Cortes, C.: MNIST handwritten digit database.
(2010) 132

[141] Krizhevsky, A.: Learning multiple layers of features from tiny
images. Technical report (2009) 132, 133

[142] Gray, D., Brennan, S., Tao, H.: Evaluating appearance models
for recognition, reacquisition, and tracking. In: 10th IEEE
International Workshop on Performance Evaluation of Tracking
and Surveillance (PETS). (09/2007 2007) 134

[143] Vezzani, R., Baltieri, D., Cucchiara, R.: People reidentification
in surveillance and forensics: A survey. ACM Comput. Surv.
46(2) (December 2013) 29:1–29:37 134

[144] Yi, D., Lei, Z., Liao, S., Li, S.Z.: Deep metric learning for
person re-identification. In: ICPR. (2014) 134, 147

BIBLIOGRAPHY 179

[145] Lee, C., Xie, S., Gallagher, P.W., Zhang, Z., Tu, Z.: Deeply-
supervised nets. In: Proceedings of the Eighteenth Inter-
national Conference on Artificial Intelligence and Statistics,
AISTATS 2015, San Diego, California, USA, May 9-12, 2015.
(2015) 142, 144

[146] Gray, D., Brennan, S., Tao, H.: Evaluating appearance models
for recognition, reacquisition, and tracking. In: In IEEE In-
ternational Workshop on Performance Evaluation for Tracking
and Surveillance, Rio de Janeiro. (2007) 146

[147] Xu, Y., Lin, L., Zheng, W.S., Liu, X.: Human re-identification
by matching compositional template with cluster sampling. In:
Proceedings of the IEEE International Conference on Com-
puter Vision. (2013) 3152–3159 146

[148] Zhao, R., Ouyang, W., Wang, X.: Learning mid-level filters
for person re-identification. Proceedings of the IEEE Computer
Society Conference on Computer Vision and Pattern Recogni-
tion (2014) 144–151 147

[149] Wang, Y., Lu, W.F., Fuh, J.Y.: Sampling Strategies for
3D Partial Shape Matching and Retrieval Using Bag-of-Words
Model. Computer-Aided Design and Applications 11(1) (Jan-
uary 2014) 43–48 149

