Model-Based Reinforcement Learning

Chelsea Finn

UC Berkeley Google Brain Stanford



real tii

Finn, Goodfellow, Levine, NIPS ‘16 Ebert*, Finn*, Dasari, Xie,
Finn & Levine, ICRA‘17 Lee, Levine, ‘18

autohomous execution
V== s
Sl

Our Method

autonomous execution real-time

it o

Levine*, Finn*, Darrell, Abbeel, JMLR'16
Finn, Tan, Duan, Darrell, Levine, Abbeel, ICRA‘16

Abbeel, Levine, Finn, ‘18

Yu*, Finn*, Xie, Dasari, Zhang, Abbeel, Levine, RS5'18



Outline

1. Why use model-based reinforcement learning?
2. Main model-based RL approaches

3. Using local models & guided policy search
4. Handling high-dimensional observations



Outline

1. Why use model-based reinforcement learning?



Why use model-based reinforcement learning?

- a model enables you to plan
- sample efficiency
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Why use model-based reinforcement learning?

- a model enables you to plan
- sample efficiency
- transferability & generality

A model can be reused for achieving different tasks.
[more examples later]
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2. Main model-based RL approaches



he Anatomy of a Reinforcement Learning Problem

fit a model to
estimate return

generate samples
(i.e. run the policy)

compute Q = Zt _, 7" ~try (MC policy gradient)

fit Qy(s,a) (actor-critic, Q-learning)
estimate p(s’[s,a) (model-based)

0 <— 0+ aVyJ(0) (policy gradient)
= argmax (4(s,a) (Q-learning)
optlmlze mg(als) (model-based)

Slide from S. Levine



Model-Based Reinforcement Learning

A R estimate p(s’[s,a) (model-based)
estimate return
supervised learning

mmz 1£o(si,2:) — silI°

optimize mg(als) (model-based)

generate samples
(i.e. run the policy)




Backprop through model to optimize policy

r(s,a) r(s,a)

// // //7"(57 a) backpropagate
fo(s,a) fo(s,a)——=F4(s,a) A Z r(se, at)
t

AN

Ty (S) o (s)

Algorithm vO:
1. run base policy mg(as|s:) (e.g., random policy) to collect D = {(s,a,s’);}
2. learn model f4(s,a) to minimize Z || Fs(si,a:) — st

(2
3. backpropagate through f4(s,a) to choose actions.
or into policy to optimize mg(as|s:).



Does it work? Yes!

e Essentially how system identification works in classical robotics
« Some care should be taken to design a good base policy

o Particularly effective if we can hand-engineer a dynamics
representation using our knowledge of physics, and fit just a few

parameters

Slide adapted from S. Levine



Does it work? Nol!

1. run base policy m(at|st) (e.g., random policy) to collect D = {(s,a,s’);}
2. learn model fy(s,a) to minimize Z |filsias)— 2|2
3. backpropagate through f,(s,a) into policy to optimize my(as|s;)

er!

D¢ (St) 75 Prg (St)

e State distribution mismatch, problem becomes exacerbated as we use
more expressive model classes

Slide adapted from S. Levine



Can we do better?

can we make pr,(St) = pr,(st) ?

need to collect data from pr,(s¢)

Algorithm v1:

1. run base policy mp(as|s¢) (e.g., random policy) to collect D = {(s,a,s’);}
2. learn model f4(s,a) to minimize Z | £5(s:,a5) — si||*

(2
3. backpropagate through f4(s,a) into policy to optimize mg(at|s¢)
4. run my(a¢|s;), appending visited tuples (s, a,s’) to D



What if we make a mistake?
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Can you correct the mistake?

. | S
LB & (it MODEL ERROE

Algorithm v2a:

every N steps

1. run base policy mo(a¢|s;) (e.g., random policy) to collect D = {(s,a,s’);}

2. learn model fy(s,a) to minimize Z | fs(s3,a5) — s |°
i

3. backpropagate through f;(s,a) to choose actions.
4. execute the first planned action, observe resulting state s’

5. append (s,a,s’) to dataset D
model-predictive control (MPC)



every N steps

An alternative way to choose actions

1. run base policy mo(a¢|s;) (e.g., random policy) to collect D = {(s,a,s’);}
2. learn model f;(s,a) to minimize Z | fs(s3,a5) — st |°

3. backpropagate through f,(s,a) to choose actions.

4. execute the first planned action, observe resulting state s’
5. append (s,a,s’) to dataset D

Can instead sample to choose actions:

A. Sample action sequences from some distribution
(e.g. uniformly at random)

- |
B. Run actions through model to prediction future ’ %.- _fi

Nagabandi et al. ICRA‘18

C. Choose action leading to the best future



Summary so far

« Version 0: collect random samples, train dynamics, plan
« Pro: simple, no iterative procedure
« Con:distribution mismatch problem

« Version 1: iteratively collect data, refit model
« Pro: simple, solves distribution mismatch
« Con: still might make mistakes with imperfect model

« Version 2: iteratively collect data using MPC (replan at each step)
« Pro:robust to small model errors
« Con: computationally expensive, but have a planning algorithm available

Two ways to optimize policy w.r.t. model:
- backprop through model into policy
- sampling-based optimization



What kind of models can we use?

Gaussian process

1
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GP with input (s,a) and output s’

Pro: very data-efficient

Con: not great with non-smooth dynamics

Con: very slow when dataset is big

Slide adapted from S. Levine

neural network

image: Punjani & Abbeel ‘14

Input is (s,a) and output is s’
Euclidean training loss corresponds
to Gaussian p(s’ | s,a)

More complex losses, e.g. output
parameters of Gaussian mixture

Pro: very expressive, can use
lots of data

Con: not so great in low data
regimes
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GMM over (s,a,s’) tuples
Train on (s,a,s’), condition to get p(s’ | s, a)
For i*® mixture element, p;(s,a) gives region

where the mode p;(s’ | s,a) holds

other classes: domain-specific models
(e.g. physics parameters)

video prediction?
more on this later



Outline

3. Using local models & guided policy search



The trouble with global models

Global model: f,(s:,a;) represented by a big neural network

1. run base policy mg(as|s;) (e.g., random policy) to collect D = {(s,a,s’);}
2. learn model f;(s,a) to minimize Z | f5(s:, @;) — 85|

3. backpropagate through f,(s,a) into pohcy to optimize mg(a;|st)
4. run me(a¢|s;), appending visited tuples (s,a,s’) to D

« Planner will seek out regions where the model is erroneously optimistic

« Need to find a very good model in most of the state space to converge on
a good solution

Slide adapted from S. Levine



Do we need to model everything?

What it we know where our model is good and where it is bad?
.e, model uncertainty

1. run base policy m(a¢|s¢) (e.g., random policy) to collect D = {(s,a,s’);}
2. learn model f4(s,a) to minimize Z | fi(s:,0:) — s

1
3. backpropagate through f,(s,a) to choose actions.
4. execute the first planned action, observe resulting \state s’

5. append (s, a,s’) to dataset D

Take actions that lead to high reward in expectation.
helps avoid model exploitation  *Caveat: still need to explore

To get model uncertainty: - Gaussian Processes

- Bayesian neural networks
D y
p(gb[ ) - Bootstrap ensembles



Do we need to model everything?

In some tasks, the model is much more complex than the policy

Slide adapted from S. Levine



| ocal models

r(s,a) r(s,a r(s,a
// /.'/( ) //( ) backpropagate
RN St
; A
o(S)\ 6 (s)\ o (s) t

need df df \dr dr
dSt, dat’ dSt, dat



| ocal models

df df \dr dr
dSt, dat’ dSt, dat

need

df d
idea: just fit —f, —f,around current trajectory or policy!
dSt dat

~ p(a¢ | s¢) — time-varying linear-Gaussian controller

can execute on the robot!

“local policy”

Slide adapted from S. Levine



| ocal models

p(siy1 | st ar) = N(f(se,ar),X)
f(st,ar) =~ Aisy + Biay

df df
A_ = — B = —
t dSt t dat

Slide adapted from Sergey Levine
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How to fit the dynamics?

fit dynamics
p(Si41 | s¢,ap) =

{(St, ai, St+1)z‘}
Version 1.0: fit p(s;11 | s¢,a¢) at each time step using linear regression

d d
p(SH‘l | St,a) = N(Atst + Bia; +¢¢, Ny) A= d_it B; ~ d—j:t

Can we do better?

Version 2.0: fit p(s¢11 | 8¢, a¢) using Bayesian linear regression
Use your favorite global model as prior (GP, deep net, GMM)

Slide adapted from S. Levine



What if we go too far?
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Slide adapted from S. Levine



How to stay close to old controller?

S IMPIove g g o
P(at | St) J’

T

p(T) = p(s1) Hp(at | st)p(St+1 | st, ar)

What if the new p(7) is “close” to the old one p(7)?7
If trajectory distribution is close, then dynamics will be close too!

What does “close” mean? Dxr,(p(7)||p(7)) < €

Slide adapted from S. Levine



Local Models Approach Summary
Levine & Abbeel NIPS ‘14

1. run base policy mg(as|s:) to collect D = {(s,a,s’);}
2. learn local model f(s,a) to minimize Z || fs(si,a5) — s;||2
. e.g. using linear regression

3. update local policy mg(a¢|s;) using local model f, with KL constraint.
4. run mg(as|s;), putting visited tuples (s, a,s’) in D\

e.g. using iterative LQR



Case study: local models & iterative LOR

4 )
run p(a; | s¢)

Learning Contact-Rich Manipulation Skills with Guided Policy Search
on robot
Sergey Levine, Nolan Wagener, Pieter Abbeel COHeCt D — {Tz}
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autonomous execution







Case study: local models & iterative LOR

linear-Gaussian controller learning curves
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Local Models Approach Summary

Levine & Abbeel NIPS ‘14

1. run base policy mg(as|s:) to collect D = {(s,a,s’);}
2. learn local model f(s,a) to minimize Z || fs(si,a5) — Al
' e.g. using linear regression

3. update local policy mg(a¢|s;) using local model f, with KL constraint.
4. run mg(as|s;), putting visited tuples (s, a,s’) in D\

e.g. using iterative LQR

Guided policy search: supervise one global policy using multiple local policies



Case study: guided policy search

Training time Test time

3
} ‘
-
4 =l
. - | "
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target pose known



Case study: guided policy search

Training time

- take samples for each target position

........
..........

- fit local model and solve for local policy
for each target position

- use supervision from local policies to train
global neural network policy w/ vision



Guided Policy Search: learning
(Levine*, Finn*, et al. JMLR '16)

10x real time iteration 1



Guided Policy Search: learned behaviors
(Levine*, Finn*, et al. JIMLR "16)

B VAR
< 300 trials = 25 min of robot time (per task)

CEIRNE -
+ efficiently learn complex vision-based skills - requires state during training
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4. Handling high-dimensional observations



Only access to high-dimensional observations (i.e.images)?

also:no reward signal with only observations



Only access to high-dimensional observations (i.e.images)?

one option: provide image of goal

also: no reward signal with only observations

Approaches

1. Learn model in latent space

2. Learn model of observations (e.g. video)
3. Inverse models [won't cover]




Learning in Latent Space

Key idea:learn embedding ¢g(0; ), then learn model in latent space




Learning in Latent Space

Key idea:learn embedding s; = g(0;),then do model-based RL in latent space

Embed to Control: A Locally Linear Latent
Dynamics Model for Control from Raw Images

Manuel Watter™ Jost Tobias Springenberg* Martin Riedmiller
Joschka Boedecker Google DeepMind
University of Freiburg, Germany London, UK
{watterm, springj, jboedeck}@cs.uni-freiburg.de riedmiller@google.com

VAE wnljl slowness

NIPS 2015

Deep Spatial Autoencoders for Visuomotor Learning

Chelsea Finn, Xin Yu Tan, Yan Duan, Trevor Darrell, Sergey Levine, Pieter Abbeel

\" am-
- ~

t = 13 (0.655)

t = 60 (3.00s) t = 100 (5.00s)

Fig. 1: PR2 learning to scoop a bag of rice into a bowl with a
spatula (left) using a learned visual state representation (right).

ICRA 2016



Learning in Latent Space

. run base policy mo(as|o:) (e.g., exploratory policy) to collect D = {(0,a,0’);}
learn latent embedding of observation s; = g(o0;) and dynamics model 8" = f4(s, a)
use model f,(s,a) to optimize policy mp(as|s:)

. run mg(a¢|g(o¢)), appending visited tuples (o,a,o’) to D

oo

What is reward for optimizing policy?

reward signal: 7"(0, a) = r(a) 5 3 ||g(0) - g(ogoal)H

Aside: If you have reward observations (i.e. video
games), can simply fit a reward model instead.



Learning in Latent Space

. run base policy mo(a¢|s;) (e.g., exploratory policy) to collect D = {(0,a,0’);}
learn latent embedding of observation s; = g(0;) and dynamics model s’ = f4(s,a)

. use model f,(s,a) to optimize policy my(as|s:)

=~ W N =

. run my(as|g(oy)), appending visited tuples (o,a,0’) to D

How to optimize latent embedding g?

Watter et al.'15

learn embedding & model jointly embedding is smooth and structured



Learning in Latent Space

Goal state for trajectory optimization

~300 trials = ~25 min of robot time (per task) Watter et al. NIPS ‘15



Learning in Latent Space

O - current feaflire point
X - goal featur€ point

autonomous execution real-time

125 trials = 11 min of robot time (per task) Finn et al. ICRA'16



Learning in Latent Space

Pros:
+ Learn complex visual skills very efficiently
+ Structured representation enables effective learning

Cons:
- Reconstruction objectives might not recover the right representation



Aside: Low-dimensional embedding can also be useful for model-free approaches

model-free RL in latent space use embedding for reward function
Sermanet et al. RSS'17

video demonstration learned policy

—.= =@

FQIl in latent space
Lange et al."12

acquire reward using
ImageNet features

+ model-free RL

TRPO in latent space
Ghadirzadeh et al.”17

If you have a reward, you can predict it to form better latent space
Jaderberg et al. 17, Shelhamer et al. 17



Modeling directly in observation space
Recall MPC

1. run base policy mp(as|o;) (e.g., random policy) to collect D = {(o0,a,0’);}
2. learn model fy(0,a) to minimize Z | fo(0s,a;) — of]|?

4. execute the first planned action, observe resulting state o’

<3. backpropagate through f4(o,a) to choose actions.
5. append (0, a,0’) to dataset D

every N steps

action-conditioned video prediction

Finn et al. NIPS 16, Finn & Levine ICRA "17, Ebert et al.’18
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Models capture general purpose
knowledge about the world

Contrast to:

Use all of the available
supervision signal.



Planning with Visual Foresight

1. Consider potential action sequences 'J .

2. Predict the future for each action ”
segquence - e

3. Pick best future & execute ":P |

corresponding action
4. Repeat 1-3 toreplanin real time

"’:

g
-
i

"’.&!

¢

W F

visual “model-predictive control” (MPC)

Overall System: Collect data, Train predictive model, Plan to achieve goals



Which future is the best one?

Human specifies a goal by:

[ &

Selecting where Providing an image ~ Providing a few
pixels should move. of the goal. examples of success.

Finn & Levine ICRA 17
Ebert, Lee, Levine, Finn CoRL 18
Xie, Singh, Levine, Finn CoRL"18



Modeling directly in Observation Space

h:Specify goal Visual MPC execution

| | l
y
’7

Visual MPC
w.r.t. goal

y

~2 weeks of unsupervised robot time

— Only human involvement: programming initial
motions and providing objects to play with.

4

Ebert*, Finn*, Dasari, Xie, Lee, Levine.'18



Planning with a single mod

~

el for many tasks Video speed: 2
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Modeling directly in observation space

Pros:

+ Entirely self-supervised

+ Learn for a variety of tasks

+ More efficient than single-task model-free learning

Cons:
- Can't [yet] handle as complex skills as model-free methods



Predict alternative quantities

If | take a set of actions:

Pi .16 . .
ntoeta Will | collide?
‘ Kahn et al.’17

Dosovitskiy & Koltun‘17

1

L

v

___r'

Will | successfully grasp? What halt/damage/etc be?

Pros:
+ Only predict task-relevant quantities!

Cons:
- Need to manually pick quantities, must be able to directly observe them
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1. Why use model-based reinforcement learning?
2. Main model-based RL approaches

3. Using local models & guided policy search
4. Handling high-dimensional observations



Model-based RL Review

generate samples
(i.e. run the policy)
; improve the policy

Correcting for model errors:
refit model with new data, replan with MPC, use local models or uncertainty

estimate p(s’[s,a) using f4(s,a)
supervised learning

optimize mg(als) (model-based)
e.g., backprop through model

Model-based RL from raw observations:

learn latent space, typically with unsupervised learning, or
model &plan directly in observational space



Model-Based vs. Model-Free Algorithms

Models:
+ Easy to collect data in a scalable way (self-supervised)
+ Possibility to transfer across tasks
+ Typically require a smaller quantity of supervised data
- Models don't optimize for task performance
- Sometimes harder to learn than a policy
- Often need assumptions to learn complex skills (continuity, resets)
Model-Free:
+ Makes little assumptions beyond a reward function
+ Effective for learning complex policies
- Require a lot of experience (slower)
- Not transferable across tasks
Ultimately we will want both!



Challenges & Frontiers

Long-horizon prediction & planning Internal reward representations

- Structured latent representations w—.
need: - Uncertainty

- Compositionality t.‘ ;_;‘

5

Combining elements of
model-based & model-free

- use roll-outs from model as experience:

6 Sutton 90, Gu et al. ICML "16, Kurutach et al. ICLR 18
Janner, Levine, Freeman, Tenenbaum, Finn, Wu "18 - model-free policy with planning capabilities:
. Tamar et al. NIPS 16, Pascanu et al.”17
Exploration (models can help!) - model-based look-ahead: Guo et al. NIPS '14,

Stadie et al. arXiv 15, Oh et al. NIPS 16, Burda et al. '18 Silver et al. Nature ‘16, Buckman et al. NIPS‘18



Questions?



