Model-Based [Deep] Reinforcement Learning

Chelsea Finn

Deep RL Bootcamp

Outline

- 1. Why use model-based reinforcement learning?
- 2. Main model-based RL approaches
- 3. Using local models & guided policy search
- 4. Handling high-dimensional observations

Outline

1. Why use model-based reinforcement learning?

- 2. Main model-based RL approaches
- 3. Using local models & guided policy search
- 4. Handling high-dimensional observations

Why use model-based reinforcement learning?

- sample efficiency

gradient-free methods (e.g. NES, CMA, etc.)

10x

fully online methods (e.g. A3C)

10x

policy gradient methods (e.g. TRPO)

10x

replay buffer value estimation methods (Q-learning, DDPG, NAF, etc.)

10x

model-based deep RL (e.g. guided policy search)

10x

model-based "shallow" RL (e.g. PILCO)

Evolution Strategies as a Scalable Alternative to Reinforcement Learning

Tim Salimans 1 Jonathan Ho 1 Xi Chen 1 Ilya Sutskever 1

half-cheetah (slightly different version)

10,000,000 steps (10,000 episodes)

1,000,000 steps (1,000 episodes) (~ 3 hours real time)

Gu et al. '16

half-cheetah

about 20 minutes of experience on a real robot

100,000,000 steps

(100,000 episodes)

(~ 15 days real time)

Chebotar et al. '17 (note log scale)

Wang et al. '17

(~ 1.5 days real time)

Reacher3 (3-DoF/3-dim. Actions

	cart-pole	cart-double-pole	unicycle
state space	\mathbb{R}^4	\mathbb{R}^6	\mathbb{R}^{12}
# trials	≤ 10	20-30	≈ 20
experience	$\approx 20 \mathrm{s}$	$\approx 60 \mathrm{s} - 90 \mathrm{s}$	$\approx 20\mathrm{s}30\mathrm{s}$
parameter space	\mathbb{R}^{305}	\mathbb{R}^{1816}	\mathbb{R}^{28}

Slide from Sergey Levine

Why use model-based reinforcement learning?

- sample efficiency
- transferability & generality

A model can be reused for achieving different tasks.

[more examples later]

Outline

- 1. Why use model-based reinforcement learning?
- 2. Main model-based RL approaches
- 3. Using local models & guided policy search
- 4. Handling high-dimensional observations

The Anatomy of a Reinforcement Learning Problem

Model-Based Reinforcement Learning

Backprop through model to optimize policy

Algorithm v0:

- 1. run base policy $\pi_0(\mathbf{a}_t|\mathbf{s}_t)$ (e.g., random policy) to collect $\mathcal{D} = \{(\mathbf{s}, \mathbf{a}, \mathbf{s}')_i\}$
- 2. learn model $f_{\phi}(\mathbf{s}, \mathbf{a})$ to minimize $\sum_{i} ||f_{\phi}(\mathbf{s}_{i}, \mathbf{a}_{i}) \mathbf{s}'_{i}||^{2}$
- 3. backpropagate through $f_{\phi}(\mathbf{s}, \mathbf{a})$ into policy to optimize $\pi_{\theta}(\mathbf{a}_t | \mathbf{s}_t)$

Does it work? Yes!

- Essentially how system identification works in classical robotics
- Some care should be taken to design a good base policy
- Particularly effective if we can hand-engineer a dynamics representation using our knowledge of physics, and fit just a few parameters

Does it work?

No!

- 1. run base policy $\pi_0(\mathbf{a}_t|\mathbf{s}_t)$ (e.g., random policy) to collect $\mathcal{D} = \{(\mathbf{s}, \mathbf{a}, \mathbf{s}')_i\}$
- 2. learn model $f_{\phi}(\mathbf{s}, \mathbf{a})$ to minimize $\sum ||f_{\phi}(\mathbf{s}_i, \mathbf{a}_i) \mathbf{s}'_i||^2$
- 3. backpropagate through $f_{\phi}(\mathbf{s}, \mathbf{a})$ into policy to optimize $\pi_{\theta}(\mathbf{a}_t | \mathbf{s}_t)$

$$p_{\pi_f}(\mathbf{s}_t) \neq p_{\pi_0}(\mathbf{s}_t)$$

Distribution mismatch problem becomes exacerbated as we use more expressive model classes

Can we do better?

can we make $p_{\pi_0}(\mathbf{s}_t) = p_{\pi_f}(\mathbf{s}_t)$? need to collect data from $p_{\pi_f}(\mathbf{s}_t)$

Algorithm v1:

- 1. run base policy $\pi_0(\mathbf{a}_t|\mathbf{s}_t)$ (e.g., random policy) to collect $\mathcal{D} = \{(\mathbf{s}, \mathbf{a}, \mathbf{s}')_i\}$
- > 2. learn model $f_{\phi}(\mathbf{s}, \mathbf{a})$ to minimize $\sum_{i} ||f_{\phi}(\mathbf{s}_{i}, \mathbf{a}_{i}) \mathbf{s}'_{i}||^{2}$
 - 3. backpropagate through $f_{\phi}(\mathbf{s}, \mathbf{a})$ into policy to optimize $\pi_{\theta}(\mathbf{a}_t | \mathbf{s}_t)$
 - 4. run $\pi_{\theta}(\mathbf{a}_t|\mathbf{s}_t)$, appending visited tuples $(\mathbf{s},\mathbf{a},\mathbf{s}')$ to \mathcal{D}

What if we make a mistake?

Can we do better?

Algorithm v2a:

1. run base policy $\pi_0(\mathbf{a}_t|\mathbf{s}_t)$ (e.g., random policy) to collect $\mathcal{D} = \{(\mathbf{s}, \mathbf{a}, \mathbf{s}')_i\}$

- \gg 3. backpropagate through $f_{\phi}(\mathbf{s}, \mathbf{a})$ to choose actions.
 - 4. execute the first planned action, observe resulting state s'
- 5. append $(\mathbf{s}, \mathbf{a}, \mathbf{s}')$ to dataset \mathcal{D}

model-predictive control (MPC)

An alternative way to choose actions

- 1. run base policy $\pi_0(\mathbf{a}_t|\mathbf{s}_t)$ (e.g., random policy) to collect $\mathcal{D} = \{(\mathbf{s}, \mathbf{a}, \mathbf{s}')_i\}$
- 2. learn model $f_{\phi}(\mathbf{s}, \mathbf{a})$ to minimize $\sum ||f_{\phi}(\mathbf{s}_i, \mathbf{a}_i) \mathbf{s}'_i||^2$
- 3. backpropagate through $f_{\phi}(\mathbf{s}, \mathbf{a})$ to choose actions.
- 4. execute the first planned action, observe resulting state s'
- 5. append $(\mathbf{s}, \mathbf{a}, \mathbf{s}')$ to dataset \mathcal{D}

Can instead sample to choose actions:

- A. Sample action sequences from some distribution (e.g. uniformly at random)
- B. Run actions through model to prediction future
- C. Choose action leading to the best future

Nagabandi et al. arXiv'17

Summary so far

- Version 0: collect random samples, train dynamics, plan
 - Pro: simple, no iterative procedure
 - Con: distribution mismatch problem
- Version 1: iteratively collect data, refit model
 - Pro: simple, solves distribution mismatch
 - Con: might make mistakes with imperfect model
- Version 2: iteratively collect data using MPC (replan at each step)
 - Pro: robust to small model errors
 - Con: computationally expensive, but have a planning algorithm available

Two ways to optimize policy w.r.t. model:

- backprop through model into policy
- sampling-based optimization

What kind of models can we use?

Gaussian process

GP with input (s, a) and output s'

Pro: very data-efficient

Con: not great with non-smooth dynamics

Con: very slow when dataset is big

neural network

image: Punjani & Abbeel '14

Input is (\mathbf{s}, \mathbf{a}) and output is \mathbf{s}'

Euclidean training loss corresponds to Gaussian $p(\mathbf{s}' \mid \mathbf{s}, \mathbf{a})$

More complex losses, e.g. output parameters of Gaussian mixture

Pro: very expressive, can use lots of data

Con: not so great in low data regimes

other

GMM over $(\mathbf{s}, \mathbf{a}, \mathbf{s}')$ tuples

Train on $(\mathbf{s}, \mathbf{a}, \mathbf{s}')$, condition to get $p(\mathbf{s}' \mid \mathbf{s}, \mathbf{a})$

For i^{th} mixture element, $p_i(\mathbf{s}, \mathbf{a})$ gives region

where the mode $p_i(\mathbf{s}' \mid \mathbf{s}, \mathbf{a})$ holds

other classes: domain-specific models (e.g. physics parameters)

video prediction? more on this later

Outline

- 1. Why use model-based reinforcement learning?
- 2. Main model-based RL approaches
- 3. Using local models & guided policy search
- 4. Handling high-dimensional observations

The trouble with global models

Global model: $f_{\phi}(\mathbf{s}_t, \mathbf{a}_t)$ represented by a big neural network

- 1. run base policy $\pi_0(\mathbf{a}_t|\mathbf{s}_t)$ (e.g., random policy) to collect $\mathcal{D} = \{(\mathbf{s}, \mathbf{a}, \mathbf{s}')_i\}$
- 2. learn model $f_{\phi}(\mathbf{s}, \mathbf{a})$ to minimize $\sum_{i} ||f_{\phi}(\mathbf{s}_{i}, \mathbf{a}_{i}) \mathbf{s}'_{i}||^{2}$
 - 3. backpropagate through $f_{\phi}(\mathbf{s}, \mathbf{a})$ into policy to optimize $\pi_{\theta}(\mathbf{a}_t | \mathbf{s}_t)$
 - 4. run $\pi_{\theta}(\mathbf{a}_t|\mathbf{s}_t)$, appending visited tuples $(\mathbf{s},\mathbf{a},\mathbf{s}')$ to \mathcal{D}
- Planner will seek out regions where the model is erroneously optimistic
- Need to find a very good model in most of the state space to converge on a good solution

The trouble with global models

- Planner will seek out regions where the model is erroneously optimistic
- Need to find a very good model in most of the state space to converge on a good solution
- In some tasks, the model is much more complex than the policy

Local models

$$\operatorname{need}\left(\frac{df}{d\mathbf{s}_t}, \frac{df}{d\mathbf{a}_t}, \frac{dr}{d\mathbf{s}_t}, \frac{dr}{d\mathbf{a}_t}\right)$$

Local models

$$\operatorname{need}\left(\frac{df}{d\mathbf{s}_t}, \frac{df}{d\mathbf{a}_t}, \frac{dr}{d\mathbf{s}_t}, \frac{dr}{d\mathbf{a}_t}\right)$$

idea: just fit $\frac{df}{d\mathbf{s}_t}$, $\frac{df}{d\mathbf{a}_t}$, around current trajectory or policy!

Slide adapted from Sergey Levine

Local models

$$p(\mathbf{s}_{t+1} \mid \mathbf{s}_t, \mathbf{a}_t) = \mathcal{N}(f(\mathbf{s}_t, \mathbf{a}_t), \Sigma)$$
$$f(\mathbf{s}_t, \mathbf{a}_t) \approx \mathbf{A}_t \mathbf{s}_t + \mathbf{B}_t \mathbf{a}_t$$
$$\mathbf{A}_t = \frac{df}{d\mathbf{s}_t} \quad \mathbf{B}_t = \frac{df}{d\mathbf{a}_t}$$

How to fit the dynamics?

$$\{(\mathbf{s}_t, \mathbf{a}_t, \mathbf{s}_{t+1})_i\}$$

Version 1.0: fit $p(\mathbf{s}_{t+1} \mid \mathbf{s}_t, \mathbf{a}_t)$ at each time step using linear regression

$$p(\mathbf{s}_{t+1} \mid \mathbf{s}_t, \mathbf{a}_t) = \mathcal{N}(\mathbf{A}_t \mathbf{s}_t + \mathbf{B}_t \mathbf{a}_t + \mathbf{c}_t, \mathbf{N}_t) \quad \mathbf{A}_t \approx \frac{df}{d\mathbf{s}_t} \quad \mathbf{B}_t \approx \frac{df}{d\mathbf{a}_t}$$

Can we do better?

Version 2.0: fit $p(\mathbf{s}_{t+1} \mid \mathbf{s}_t, \mathbf{a}_t)$ using Bayesian linear regression

Use your favorite global model as prior (GP, deep net, GMM)

Slide adapted from Sergey Levine

What if we go too far?

How to stay close to old controller?

$$p(\tau) = p(\mathbf{s}_1) \prod_{t=1}^{T} p(\mathbf{a}_t \mid \mathbf{s}_t) p(\mathbf{s}_{t+1} \mid \mathbf{s}_t, \mathbf{a}_t)$$

What if the new $p(\tau)$ is "close" to the old one $\bar{p}(\tau)$?

If trajectory distribution is close, then dynamics will be close too!

What does "close" mean? $D_{\text{KL}}(p(\tau)||\bar{p}(\tau)) \leq \epsilon$

Local Models Approach Summary

Levine & Abbeel NIPS '14

- 1. run base policy $\pi_0(\mathbf{a}_t|\mathbf{s}_t)$ to collect $\mathcal{D} = \{(\mathbf{s}, \mathbf{a}, \mathbf{s}')_i\}$ 2. learn local model $f(\mathbf{s}, \mathbf{a})$ to minimize $\sum_i ||f_{\phi}(\mathbf{s}_i, \mathbf{a}_i) \mathbf{s}_i'||^2$ e.g. using linear regression

- 3. update local policy $\pi_{\theta}(\mathbf{a}_t|\mathbf{s}_t)$ using local model f_{ϕ} with KL constraint.
- 4. run $\pi_{\theta}(\mathbf{a}_t|\mathbf{s}_t)$, putting visited tuples $(\mathbf{s}, \mathbf{a}, \mathbf{s}')$ in \mathcal{D}

e.g. using iterative LQR

Case study: local models & iterative LQR

Case study: local models & iterative LQR

Local Models Approach Summary

Levine & Abbeel NIPS '14

- 1. run base policy $\pi_0(\mathbf{a}_t|\mathbf{s}_t)$ to collect $\mathcal{D} = \{(\mathbf{s}, \mathbf{a}, \mathbf{s}')_i\}$ 2. learn local model $f(\mathbf{s}, \mathbf{a})$ to minimize $\sum_i ||f_{\phi}(\mathbf{s}_i, \mathbf{a}_i) \mathbf{s}_i'||^2$ e.g. using linear regression

- 3. update local policy $\pi_{\theta}(\mathbf{a}_t|\mathbf{s}_t)$ using local model f_{ϕ} with KL constraint.
- 4. run $\pi_{\theta}(\mathbf{a}_t|\mathbf{s}_t)$, putting visited tuples $(\mathbf{s}, \mathbf{a}, \mathbf{s}')$ in \mathcal{D}

e.g. using iterative LQR

end result: single local policy

Guided policy search: supervise one global policy using multiple local policies

Case study: guided policy search

Training time

 $\mathbf{S}_t \longrightarrow \mathbf{a}_t$ target pose known

Test time

$$\mathbf{o}(\mathbf{s}_t) \longrightarrow \mathbf{a}_t$$

Case study: guided policy search

Training time

 $\mathbf{s}_t \longrightarrow \mathbf{a}_t$

- take samples for each target position
- fit local model and solve for local policy for each target position
- use supervision from local policies to train global neural network policy w/ vision

Guided Policy Search: learning

(Levine*, Finn*, et al. JMLR '16)

Guided Policy Search: learned behaviors

(Levine*, Finn*, et al. JMLR '16)

+ efficiently learn complex vision-based skills - requires state during training

Outline

- 1. Why use model-based reinforcement learning?
- 2. Main model-based RL approaches
- 3. Using local models & guided policy search
- 4. Handling high-dimensional observations

Only access to high-dimensional observations (i.e. images)?

also: no reward signal with only observations

Only access to high-dimensional observations (i.e. images)?

also: no reward signal with only observations

one option: provide image of goal

Approaches

- 1. Learn model in latent space
- 2. Learn model of observations (e.g. video)
- 3. Inverse models [won't cover]

Key idea: learn embedding $g(\mathbf{o}_t)$, then learn model in latent space

Key idea: learn embedding $\mathbf{s}_t = g(\mathbf{o}_t)$, then do model-based RL in latent space

Embed to Control: A Locally Linear Latent Dynamics Model for Control from Raw Images

Deep Spatial Autoencoders for Visuomotor Learning

Chelsea Finn, Xin Yu Tan, Yan Duan, Trevor Darrell, Sergey Levine, Pieter Abbeel

Fig. 1: PR2 learning to scoop a bag of rice into a bowl with a spatula (left) using a learned visual state representation (right).

NIPS 2015 ICRA 2016

- 1. run base policy $\pi_0(\mathbf{a}_t|\mathbf{o}_t)$ (e.g., exploratory policy) to collect $\mathcal{D} = \{(\mathbf{o}, \mathbf{a}, \mathbf{o}')_i\}$
- 2. learn latent embedding of observation $\mathbf{s}_t = g(\mathbf{o}_t)$ and dynamics model $\mathbf{s}' = f_{\phi}(\mathbf{s}, \mathbf{a})$
- 3. use model $f_{\phi}(\mathbf{s}, \mathbf{a})$ to optimize policy $\pi_{\theta}(\mathbf{a}_t | \mathbf{s}_t)$ 4. run $\pi_{\theta}(\mathbf{a}_t | g(\mathbf{o}_t))$, appending visited tuples $(\mathbf{o}, \mathbf{a}, \mathbf{o}')$ to \mathcal{D}

What is reward for optimizing policy?

reward signal: $r(\mathbf{o}, \mathbf{a}) = r(\mathbf{a}) + ||g(\mathbf{o}) - g(\mathbf{o}_{goal})||$

- 1. run base policy $\pi_0(\mathbf{a}_t|\mathbf{s}_t)$ (e.g., exploratory policy) to collect $\mathcal{D} = \{(\mathbf{o}, \mathbf{a}, \mathbf{o}')_i\}$
- 2. learn latent embedding of observation $\mathbf{s}_t = g(\mathbf{o}_t)$ and dynamics model $\mathbf{s}' = f_{\phi}(\mathbf{s}, \mathbf{a})$
- 3. use model $f_{\phi}(\mathbf{s}, \mathbf{a})$ to optimize policy $\pi_{\theta}(\mathbf{a}_t | \mathbf{s}_t)$
- 4. run $\pi_{\theta}(\mathbf{a}_t|g(\mathbf{o}_t))$, appending visited tuples $(\mathbf{o}, \mathbf{a}, \mathbf{o}')$ to \mathcal{D}

How to optimize latent embedding g?

learn embedding & model jointly

embedding is smooth and structured

125 trials = 11 min of robot time (per task)

Finn et al. ICRA'16

Pros:

- + Learn complex visual skills very efficiently
- + Structured representation enables effective learning

Cons:

- Reconstruction objectives might not recover the right representation

Aside: Low-dimensional embedding can also be useful for model-free approaches

model-free RL in latent space

FQI in latent space Lange et al. '12

TRPO in latent space Ghadirzadeh et al. '17

use embedding for reward function Sermanet et al. RSS '17

video demonstration

acquire reward using ImageNet features

learned policy

+ model-free RL

If you have a reward, you can predict it to form better latent space. (Jaderberg et al. '17, Shelhamer et al. '17)

very N steps

Modeling directly in observation space

Recall MPC

- 1. run base policy $\pi_0(\mathbf{a}_t|\mathbf{o}_t)$ (e.g., random policy) to collect $\mathcal{D} = \{(\mathbf{o}, \mathbf{a}, \mathbf{o}')_i\}$
- 2. learn model $f_{\phi}(\mathbf{o}, \mathbf{a})$ to minimize $\sum_{i} ||f_{\phi}(\mathbf{o}_{i}, \mathbf{a}_{i}) \mathbf{o}'_{i}||^{2}$
- >3. backpropagate through $f_{\phi}(\mathbf{o}, \mathbf{a})$ to choose actions.
 - 4. execute the first planned action, observe resulting state o'
- $\mathbf{>}$ 5. append $(\mathbf{o}, \mathbf{a}, \mathbf{o}')$ to dataset \mathcal{D}

action-conditioned video prediction

Planning with Visual Foresight

- 1. Consider potential action sequences
- Predict the future for each action sequence
- Pick best future & execute corresponding action
- 4. Repeat 1-3 to replan in real time

Modeling directly in observation space

Finn & Levine ICRA'17

<2 days of unsupervised robot time

Only human involvement: programming initial motions and providing objects to play with.

Modeling directly in observation space

model can be reused for different tasks

Ebert et al. '17

Modeling directly in observation space

Pros:

- + Entirely self-supervised
- + Learn for a variety of tasks
- + More efficient than single-task model-free learning

Cons:

- Can't [yet] handle as complex skills as model-free methods

Outline

- 1. Why use model-based reinforcement learning?
- 2. Main model-based RL approaches
- 3. Using local models & guided policy search
- 4. Handling high-dimensional observations

Model-based RL Review

Correcting for model errors:

refitting model with new data, replanning with MPC, using local models

Model-based RL from raw observations:

learn latent space, typically with unsupervised learning, or model & plan directly in observational space

Suggested Reading on Model-based RL

Tassa et al. IROS '12. Synthesis and Stabilization of Complex Behaviors. Good introduction to MPC with a known model

Levine*, **Finn*** et al. JMLR '16. End-to-End Learning of Deep Visuomotor Policies. Thorough paper on guided policy search for learning real robotic vision-based skills

Heess et al. NIPS '15. Stochastic Value Gradients. Backdrop through dynamics to assist model-free learner

Watter et al. NIPS '15. Embed-to-Control, Learn latent space and use model-baed RL in learned latent space to reach image of goal

Finn & Levine ICRA '17. Deep Visual Foresight for Planning Robot Motion. Plan using learned action-conditioned video prediction model

Further Reading on Model-based RL

Use known model: Tassa et al. IROS '12, Tan et al. TOG '14, Mordatch et al. TOG '14

Guided policy search: Levine*, Finn* et al. JMLR '16, Mordatch et al. RSS '14, NIPS '15

Backprop through model: Deisenroth et al. ICML '11, Heess et al. NIPS '15, Mishra et al. ICML

'17, Degrave et al. '17, Henaff et al. '17

Inverse models: Agrawal et al. NIPS '16

MBRL in latent space: Watter et al. NIPS '15, Finn et al. ICRA '16

MPC with deep models: Lenz et al. RSS '15, Finn & Levine ICRA '17

Combining Model-Based & Model-Free:

- use roll-outs from model as experience: Sutton '90, Gu et al. ICML '16
- use model as baseline: Chebotar et al. ICML'17
- use model for exploration: Stadie et al. arXiv '15, Oh et al. NIPS '16
- model-free policy with planning capabilities: Tamar et al. NIPS '16, Pascanu et al. '17
- model-based look-ahead: Guo et al. NIPS '14, Silver et al. Nature '16

Model-Based vs. Model-Free Algorithms

Models:

- + Easy to collect data in a scalable way (self-supervised)
- + Possibility to transfer across tasks
- + Typically require a smaller quantity of supervised data
- Models don't optimize for task performance
- Sometimes harder to learn than a policy
- Often need assumptions to learn complex skills (continuity, resets)

Model-Free:

- + Makes little assumptions beyond a reward function
- + Effective for learning complex policies
- Require a lot of experience (slower)
- Not transferable across tasks

Ultimately we will want both!

Closing Remarks

Model-based RL is an under-explored area of research

Two active, exciting areas:

- model-based approaches with high-dimensional observations
- combining elements of model-based planning & model-free policies

Questions?