Model-Based [Deep]
Reinforcement Learning

Chelsea Finn
Deep RL Bootcamp

%@Am

IIIIIIIIIIIIIIIIIIIIIIII GENCE RESEARCH



Outline

1. Why use model-based reinforcement learning?
2. Main model-based RL approaches

3. Using local models & guided policy search
4. Handling high-dimensional observations



Outline

1. Why use model-based reinforcement learning?



Why use model-based reinforcement learning?

- sample efficiency



gradient-free methods
(e.g. NES, CMA, etc.)

#

fully online methods
(e.g. A3Q)

#

policy gradient methods
(e.g. TRPO)

#

replay buffer value estimation methods
(Q-learning, DDPG, NAF, etc.)

#

model-based deep RL
(e.g. guided policy search)

#

model-based “shallow” RL
(e.g. PILCO)
Slide from Sergey Levine
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Why use model-based reinforcement learning?

- sample efficiency
- transferability & generality

A model can be reused for achieving different tasks.
[more examples later]
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2. Main model-based RL approaches



he Anatomy of a Reinforcement Learning Problem

fit a model to
estimate return

generate samples
(i.e. run the policy)

compute Q = Zt _, 7" ~try (MC policy gradient)

fit Qy(s,a) (actor-critic, Q-learning)
estimate p(s’[s,a) (model-based)

0 <— 0+ aVyJ(0) (policy gradient)
= argmax (4(s,a) (Q-learning)
optlmlze mg(als) (model-based)

Slide from Sergey Levine



Model-Based Reinforcement Learning

A R estimate p(s’[s,a) (model-based)
estimate return
supervised learning

mmz 1£o(si,2:) — silI°

optimize mg(als) (model-based)

generate samples
(i.e. run the policy)




Backprop through model to

r(s,a) r(s,a
f¢(57 a)

We] L)\ \(IS)\

o

Algorithm vO:

optimize policy

//7"(57 a) backpropagate

fo(s,a)——f4(s,a) né‘;LX Zt: T(St, at)

]

7T0(S)

1. run base policy mo(as|s¢) (e.g., random policy) to collect D = {(s,a,s’);}

2. learn model f4(s,a) to minimize Z

| fo(si,a;) — si||?

3. backpropagate through f4(s,a) into po!

icy to optimize mg(at|st)



Does it work? Yes!

e Essentially how system identification works in classical robotics
« Some care should be taken to design a good base policy

o Particularly effective if we can hand-engineer a dynamics
representation using our knowledge of physics, and fit just a few

parameters

Slide adapted from Sergey Levine



Does it work? Nol!

1. run base policy m(at|st) (e.g., random policy) to collect D = {(s,a,s’);}
2. learn model fy(s,a) to minimize Z |filsias)— 2|2
3. backpropagate through f,(s,a) into policy to optimize my(a|s;)

er!

D¢ (St) 7& Prg (St)

e Distribution mismatch problem becomes exacerbated as we use more
expressive model classes

Slide adapted from Sergey Levine



Can we do better?

can we make pr,(St) = pr,(st) ?

need to collect data from pr,(s¢)

Algorithm v1:

1. run base policy mp(as|s¢) (e.g., random policy) to collect D = {(s,a,s’);}
2. learn model f4(s,a) to minimize Z | £5(s:,a5) — si||*

(2
3. backpropagate through f4(s,a) into policy to optimize mg(at|s¢)
4. run my(a¢|s;), appending visited tuples (s, a,s’) to D



What if we make a mistake?




Can we do better?

Algorithm v2a:

every N steps

1. run base policy mo(a¢|s;) (e.g., random policy) to collect D = {(s,a,s’);}
2. learn model f;(s,a) to minimize Z | fs(s3,a5) — s |°

1

3. backpropagate through f,(s,a) to choose actions.
4. execute the first planned action, observe resulting state s’

5. append (s,a,s’) to dataset D
model-predictive control (MPC)



An alternative way to choose actions

1. run base policy mo(a¢|s;) (e.g., random policy) to collect D = {(s,a,s’);}
2. learn model f;(s,a) to minimize Z | fs(s3,a5) — st |°

3. backpropagate through f,(s,a) to choose actions.

4. execute the first planned action, observe resulting state s’
5. append (s, a,s’) to dataset D

every N steps

Can instead sample to choose actions:

A. Sample action sequences from some distribution
(e.g. uniformly at random)

\
B. Run actions through model to prediction future ?%.- _fi

Nagabandi et al. arXiv'17

C. Choose action leading to the best future



Summary so far

« Version 0: collect random samples, train dynamics, plan
« Pro:simple, no iterative procedure
« Con: distribution mismatch problem

« Version 1: iteratively collect data, refit model
« Pro:simple, solves distribution mismatch
« Con: might make mistakes with imperfect model

« Version 2: iteratively collect data using MPC (replan at each step)
« Pro: robust to small model errors
. Con: computationally expensive, but have a planning algorithm available

Two ways to optimize policy w.r.t. model:
- backprop through model into policy
- sampling-based optimization



What kind of models can we use?

Gaussian process

1

NN

0.5

-1t i i i 1
-1 -0.5 0 0.5 1

GP with input (s,a) and output s’

Pro: very data-efficient
Con: not great with non-smooth dynamics

Con: very slow when dataset is big

Slide adapted from Sergey Levine

neural network other
% 0:5 ! 0 Q
:5 0.0 1 0 4
'%""9.3 9 3.0 Ajnlgl;le ?rédlasn;sl 34 35 35 21 0 1Angl'2E [rm?ansla > 6
i : Punjani & Abbeel ‘14
image: Funjan ee GMM over (s,a,s’) tuples
Input is (s,a) and output is s’ Train on (s, a,s’), condition to get p(s’ | s, a)
Fuclidean training loss corresponds For i*" mixture element, pi(s,a) gives region
to Gaussian p(s’ | s,a) where the mode p;(s’ | s,a) holds
More complex losses, e.g. output other classes: domain-specific models

parameters of Gaussian mixture (e.g. physics parameters)

Pro: very expressive, can use

lots of data video prediction?

Con: not so great in low data more on this later

regimes
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3. Using local models & guided policy search



The trouble with global models

Global model: f,(s:,a;) represented by a big neural network

1. run base policy mg(a¢|s;) (e.g., random policy) to collect D = {(s,a,s’);}

2. learn model f4(s,a) to minimize Z | f5(s:, a;) — 842

2

3. backpropagate through f,(s,a) into policy to optimize my(as|s;)
4. run mg(as|s;), appending visited tuples (s,a,s’) to D

 Planner will seek out regions where the model is erroneously optimistic

 Need to find a very good model in most of the state space to converge
on a good solution

Slide adapted from Sergey Levine



The trouble with global models

 Planner will seek out regions where the model is erroneously optimistic

« Need to find a very good model in most of the state space to converge
on a good solution

* In some tasks, the model is much more complex than the policy

Slide adapted from Sergey Levine



. ocal models

r(s,a) r(s,a r(s,a
o )// " g]( ; : {/( ) backpropagate
»(S,a »\S,a p\S,a
T N R 2 2
o(s) \m(s) 7o (s) t

eed df df \dr dr
dSt, dat’ dSt, dat



| ocal models

df df \dr dr
dSt, dat’ dSt, dat

need

df d
idea: just fit —f, —f,around current trajectory or policy!
dSt dat

~ p(a¢ | s¢) — time-varying linear-Gaussian controller

can execute on the robot!

“local policy”

Slide adapted from Sergey Levine



. ocal models

/ N
run P(at | St)
on robot

collect D = {;
g )

p(sit1 | se,a:) = N(f(se,ar), X)

next /ﬁt d : )
/ (St7 at) ~ Ais: + Bia; iteration yHamics N
7N P(St41 | 8e,a8) ==

_df df N J

A, =— B;=—
t dSt t dat u

N

-

Slide adapted from Sergey Levine



How to fit the dynamics?

fit dynamics
p(Sit1 | sp,a) =

{(St, ai, St—l—l)z’}
Version 1.0: fit p(s;11 | s¢,a¢) at each time step using linear regression

d d
p(st-’rl | St, at) — N(Atst + Btat + C¢, Nt) A~ —f B; ~ —f

ds day
Can we do better?

Version 2.0: fit p(s;11 | 8¢, a;) using Bayesian linear regression

Use your favorite global model as prior (GP, deep net, GMM)
Slide adapted from Sergey Levine



What if we go too far?

‘====‘I-“.""

F'-' I"g'.l -----

*
100

’ 10

Slide adapted from Sergey Levine



How to stay close to old controller?

e 2

T

p(T) = p(s1) Hp(at | st)p(St+1 | st, ar)

What if the new p(7) is “close” to the old one p(7)?7
If trajectory distribution is close, then dynamics will be close too!

What does “close” mean? Dxr,(p(7)||p(7)) < €

Slide adapted from Sergey Levine



Local Models Approach Summary

Levine & Abbeel NIPS ‘14

1. run base policy mg(as|s:) to collect D = {(s,a,s’);}
2. learn local model f(s,a) to minimize Z || fa(si,a;) — s;||2
. e.g. using linear regression

3. update local policy mg(as|s:) using local model f, with KL constraint.
4. run mg(as|s;), putting visited tuples (s, a,s’) in D\

e.g. using iterative LQR



Case study: local models & iterative LOR

Learning Contact-Rich Manipulation Skills with Guided Policy Search

Sergey Levine, Nolan Wagener, Pieter Abbeel

4 )

run p(u|x;) J
on robot

|

next
1iteration

AN

\p

collect D = {7;
- { } J

fit dynamics =
P(Xep1|Xe,ug) “?@

{

improve ,¢3
ut |Xt ’




autonomous execution







Case study: local models & iterative LOR

linear-Gaussian controller learning curves
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Local Models Approach Summary

Levine & Abbeel NIPS ‘14

1. run base policy mg(as|s:) to collect D = {(s,a,s’);}
2. learn local model f(s,a) to minimize Z || fo(ss,a:) — Al
. e.g. using linear regression

3. update local policy mg(a¢|s;) using local model f, with KL constraint.
4. run mg(as|s;), putting visited tuples (s, a,s’) in D\

e.g. using iterative LQR

Guided policy search: supervise one global policy using multiple local policies



Case study: guided policy search

Training time Test time

3
} ‘
-
4 =l
. - | "
!

target pose known



Case study: guided policy search

Training time

- take samples for each target position

........
..........

- fit local model and solve for local policy
for each target position

- use supervision from local policies to train
global neural network policy w/ vision



Guided Policy Search: learning
(Levine*, Finn*, et al. JMLR '16)

10x real time iteration 1



Guided Policy Search: learned behaviors
(Levine*, inn*, etal. JMLR '16)

B VAR
< 300 trials = 25 min of robot time (per task)

CEIRNE -
+ efficiently learn complex vision-based skills - requires state during training
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4. Handling high-dimensional observations



Only access to high-dimensional observations (i.e.images)?

also:no reward signal with only observations



Only access to high-dimensional observations (i.e.images)?

one option: provide image of goal

also: no reward signal with only observations

Approaches

1. Learn model in latent space

2. Learn model of observations (e.g. video)
3. Inverse models [won't cover]




Learning in Latent Space

Key idea:learn embedding ¢g(0; ), then learn model in latent space




Learning in Latent Space

Key idea:learn embedding s; = g(0;),then do model-based RL in latent space

Embed to Control: A Locally Linear Latent
Dynamics Model for Control from Raw Images

Manuel Watter™ Jost Tobias Springenberg* Martin Riedmiller
Joschka Boedecker Google DeepMind
University of Freiburg, Germany London, UK
{watterm, springj, jboedeck}@cs.uni-freiburg.de riedmiller@google.com

VAE wnljl slowness

NIPS 2015

Deep Spatial Autoencoders for Visuomotor Learning

Chelsea Finn, Xin Yu Tan, Yan Duan, Trevor Darrell, Sergey Levine, Pieter Abbeel

\" am-
- ~

t = 13 (0.655)

t = 60 (3.00s) t = 100 (5.00s)

Fig. 1: PR2 learning to scoop a bag of rice into a bowl with a
spatula (left) using a learned visual state representation (right).

ICRA 2016



Learning in Latent Space

. run base policy mo(as|o:) (e.g., exploratory policy) to collect D = {(0,a,0’);}
learn latent embedding of observation s; = g(o;) and dynamics model s’ = f4(s,a)

use model f,(s,a) to optimize policy mp(as|s:)

oo

. run mg(a¢|g(o¢)), appending visited tuples (o,a,o’) to D

What is reward for optimizing policy?

reward signal: 7“(0, a) = r(a) I ||g(0) — g(ogoal)H



Learning in Latent Space

. run base policy mo(a¢|s;) (e.g., exploratory policy) to collect D = {(0,a,0’);}
learn latent embedding of observation s; = g(0;) and dynamics model s’ = f4(s,a)

use model f,(s,a) to optimize policy my(as|st)

o

. run my(as|g(oy)), appending visited tuples (o,a,0’) to D

How to optimize latent embedding g?

Watter et al. ‘15

learn embedding & model jointly embedding is smooth and structured



Learning in Latent Space

Goal state for trajectory optimization

~300 trials = ~25 min of robot time (per task) Watter et al. NIPS ‘15



Learning in Latent Space

O - current feaflire point
X - goal featur€ point

autonomous execution real-time

125 trials = 11 min of robot time (per task) Finn et al. ICRA‘16



Learning in Latent Space

Pros:
+ Learn complex visual skills very efficiently
+ Structured representation enables effective learning

Cons:
- Reconstruction objectives might not recover the right representation



Aside: Low-dimensional embedding can also be useful for model-free approaches

model-free RL in latent space use embedding for reward function
Sermanet et al. RSS'17

video demonstration learned policy

FQIl in latent space
Lange et al.’12

acquire reward using
ImageNet features

+ model-free RL

TRPO in latent space
Ghadirzadeh et al.”17

If you have a reward, you can predict it to form better latent space.
(Jaderberg et al. 17, Shelhamer et al. 17)



Modeling directly in observation space
Recall MPC

1. run base policy mp(as|o;) (e.g., random policy) to collect D = {(o0,a,0’);}
2. learn model fy(0,a) to minimize Z | fs(0s,a;) — o] |?

(]
3. backpropagate through f4(0,a) to choose actions.
4. execute the first planned action, observe resulting state o’
5. append (0, a,0’) to dataset D

l 2\ .ﬂ r
: | AE ¥

every N steps

@@ action-conditioned video prediction
‘e - ST | — “- e compositing

Finn et al. NIPS 16, Finn & Levine ICRA17



Planning with Visual Foresight

1. Consider potential action sequences

2. Predict the future for each action
sequence

3. Pick best future & execute
corresponding action

4. Repeat 1-3 toreplanin real time

Finn & Levine ICRA17



Modeling directly in observation space

" user specifies goalj

Finn &Levine I[CRA"17
<2 days of unsupervised robot time

Only human involvement: programming initial motions and providing objects to play with.



I\/\Odehng dwect\y N observann space

mbdel can be reused for differént tasks Ebert et al.’17



Modeling directly in observation space

Pros:

+ Entirely self-supervised

+ Learn for a variety of tasks

+ More efficient than single-task model-free learning

Cons:
- Can't [yet] handle as complex skills as model-free methods
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Model-based RL Review

generate samples
(i.e. run the policy)
; improve the policy

Correcting for model errors:
refitting model with new data, replanning with MPC, using local models

estimate p(s’[s,a) using f4(s,a)
supervised learning

optimize mg(als) (model-based)
e.g., backprop through model

Model-based RL from raw observations:
learn latent space, typically with unsupervised learning, or
model &plan directly in observational space



Suggested Reading on Model-based RL

Tassa et al. IROS "12. Synthesis and Stabilization of Complex Behaviors. Good
introduction to MPC with a known model

Levine*, Finn* et al. JMLR '16. End-to-End Learning of Deep Visuomotor Policies. Thorough
paper on guided policy search for learning real robotic vision-based skills

Heess et al. NIPS "15. Stochastic Value Gradients. Backdrop through dynamics to assist
model-free learner

Watter et al. NIPS '15. Embed-to-Control, Learn latent space and use model-baed RL in
learned latent space to reach image of goal

Finn & Levine ICRA ’17. Deep Visual Foresight for Planning Robot Motion. Plan using
learned action-conditioned video prediction model



Further Reading on Model-based RL

Use known model: Tassa et al. IROS '12, Tan et al. TOG '14, Mordatch et al. TOG ‘14
Guided policy search: Levine*, Finn* et al. IMLR '16, Mordatch et al. RSS '14, NIPS ‘15
Backprop through model: Deisenroth et al. ICML '11, Heess et al. NIPS "15, Mishra et al. ICML
17, Degrave et al. '17, Henaff et al. 17
Inverse models: Agrawal et al. NIPS 16
MBRL in latent space: Watter et al. NIPS '15, Finn et al. ICRA'16
MPC with deep models: Lenz et al. RSS ’15, Finn & Levine ICRA‘17
Combining Model-Based & Model-Free:
- use roll-outs from model as experience: Sutton ‘90, Gu et al. ICML 16
-use model as baseline: Chebotar et al. ICML17
-use model for exploration: Stadie et al. arXiv ‘15, Oh et al. NIPS '16
-model-free policy with planning capabilities: Tamar et al. NIPS '16, Pascanu et al.’17
- model-based look-ahead: Guo et al. NIPS '14, Silver et al. Nature ‘16



Model-Based vs. Model-Free Algorithms

Models:
+ Easy to collect data in a scalable way (self-supervised)
+ Possibility to transfer across tasks
+ Typically require a smaller quantity of supervised data
- Models don't optimize for task performance
- Sometimes harder to learn than a policy
- Often need assumptions to learn complex skills (continuity, resets)
Model-Free:
+ Makes little assumptions beyond a reward function
+ Effective for learning complex policies
- Require a lot of experience (slower)
- Not transferable across tasks
Ultimately we will want both!



Closing Remarks

Model-based RL is an under-explored area of research

Two active, exciting areas:
- model-based approaches with high-dimensional observations
- combining elements of model-based planning & model-free policies



Questions?



