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How did you accomplish this?

Through previous experience.



How might you get a machine to accomplish this task?

Fine-tuning from ImageNet features

SIFT features, HOG features + SVM

Modeling image formaKon

Geometry

???

Can we explicitly learn	priors	from	previous	experience 
that lead to efficient downstream learning?

Domain adaptaKon from other painters

Fewer human priors, 
more data -driven priors

Greater success.

Can	we	learn	to	learn?



What can meta-learning enable?

provided demo resulKng policy
Adap<ng	to	new	objects

Yu*, Finn*, Xie, Dasari, Zhang, Abbeel, Levine. One-Shot	
Imita.on	from	Observing	Humans. RSS 2018

Adap<ng	to	new	molecules

Nguyen et al. Meta-Learning	GNN	Ini.aliza.ons	for	Low-

Resource	Molecular	Property	Predic.on. 2020

Adap<ng	to	new	regions	of	the	world

Rußwurm, Wang, Körner, Lobell. Meta-Learning	for	Few-Shot	Land	

Cover	Classifica.on. CVPR 2020 EarthVision Workshop

Adapt	from	simula<on	to	real

Song, Yang, Choromanski, Caluwaerts, Gao, Finn, Tan. Rapidly	
Adaptable	Legged	Robots	via	Evolu.onary	Meta-Learning. IROS 2020



Can we deploy few-shot learning algorithms in the real world?

- the feedback problem

- can we approach the problem using meta-learning?

- can deploy the approach to real students?

- reflections on real-world meta-learning



Few-shot learning to give 
feedback to student code

Mike Wu, Chris Piech, Noah Goodman, Chelsea Finn



The Feedback Problem

Piech	&	Sahami	&	Zelenski,	
Stanford	University

Code-in-Place 2021: Free intro to CS course, 12,000+ students from 150+ countries

How can we give feedback on a diagnostic?
Submissions: open-ended Python code snippets

Estimated 8+ months of human labor



This problem isn’t unique to Code-in-Place.

What does feedback look like in MOOCs?



CodeAcademy



Code.org



Coursera



The Feedback Challenge

● Train a model to infer student misconceptions, y,  
from the student solution, x.

# print 1 to n w/ loop 

def my_solution(n) 

 print(1) 

 print(2) 

 print(3)

[x] Incorrect Syntax 

[x] Did not loop 

[ ] Uses “print” fn 

Predict!



Why is this a hard problem for ML? 

● Limited annotation: grading student work takes 
expertise and is very time consuming.  

Example: annotating 800 blockly codes took 25 hrs

The Feedback Challenge



Why is this a hard problem for ML? 

● Limited annotation: grading student work takes 
expertise and is very time consuming.  

● Long tailed distribution: students solve the same 
problem in many many ways. 

The Feedback Challenge
Generative Grading: Neural Approximate Parsing for Verifiable Automated Student Feedback (Malik et. al. 2020)



Why is this a hard problem for ML? 

● Limited annotation: grading student work takes 
expertise and is very time consuming.  

● Long tailed distribution: students solve the same 
problem in many many ways. 

● Changing curriculums: instructors constantly edit 
assignments and exams. Student solutions and 
instructor feedback look different year to year.  

The Feedback Challenge



Naive methods don’t work

● Crowdsourcing human labor: in 2014, Code.org got 
1000s of instructors to label 55k student solutions 
to “artist” problems. But this barely covered the 
distribution and new solutions were frequent.

https://code.org/hints



Naive methods don’t work

● Crowdsourcing human labor: in 2014, Code.org got 
1000s of instructors to label 55k student solutions 
to “artist” problems. 

● Supervised learning: dataset of a few 1000 examples 
(at best) + long tail make this really hard.

Block-based programming CS106A Graphics programming

free response

Generative Grading: Neural Approximate Parsing for Verifiable Automated Student Feedback (Malik et. al. 2020)



Can we use prior data & formulate this as a 
meta-learning problem?

Prior experience

10 years of feedback from 
Stanford midterms and finals

Give feedback on new 
problems with small amount 

of labeled examples

Meta-test task



CS106A Dataset

Contains 4 final exams and 4 midterm exams from CS106.  

● Total of 63 questions and 24.8k student solutions. 
● Every student solution has feedback via a rubric. 
● 10% of questions were annotated by more than 1 TA, 

which we use to compute human accuracy. 



CS106A Dataset

A rubric has several items, each describes a 
misconception. Each item has several options that an 
grader may pick to be true.  
● More than one option can be true.  
● Every problem has its own (possibly unique) rubric 

items and options. 



We treat every rubric option as a task. 
- Every task is a binary classification problem! 
- Total of 259 tasks (K = 10, Q = 10)

CS106A Dataset

Task

Also task

another task?!

Yet another task



Support and query sets:  

S = {(x1, y1), (x2, y2), ...,(xKxN, yKxN)} 

Q = {(x1*, y1*), (x2*, y2*), ...,(xQxN*, yQxN*)}

ProtoTransformer



Support and query sets:  

S = {(x1, y1), (x2, y2), ...,(xKxN, yKxN)} 

Q = {(x1*, y1*), (x2*, y2*), ...,(xQxN*, yQxN*)} 

Use the support set S to derive a prototype embedding 
for each class. Try to classify each example in query 
set Q by distance to each prototype.

ProtoTransformer

Prototypical Networks for Few-shot Learning (Snell et. al. 2017)



Support and query sets:  

S = {(x1, y1), (x2, y2), ...,(xKxN, yKxN)} 

Q = {(x1*, y1*), (x2*, y2*), ...,(xQxN*, yQxN*)} 

Use the support set S to derive a prototype embedding 
for each class. Try to classify each example in query 
set Q by distance to each prototype.

ProtoTransformer

Prototypical Networks for Few-shot Learning (Snell et. al. 2017)

pc is the average 
embedding over 
examples in the 
support set with 
label c.

temperature

L2 norm



ProtoTransformer

Prototypical Networks for Few-shot Learning (Snell et. al. 2017)

● We assume x = (x1, x2, ..., xT) a sequence of discrete 
tokens (e.g. code, language). 

● The embedding fӨ: X➝Rd is a RoBERTa model (stacked 
transformers) where non-padded token embeddings are 
averaged (single vector). 



ProtoTransformer

Prototypical Networks for Few-shot Learning (Snell et. al. 2017)

● We assume x = (x1, x2, ..., xT) a sequence of discrete 
tokens (e.g. code, language). 

● The embedding fӨ: X➝Rd is a RoBERTa model (stacked 
transformers) where non-padded token embeddings are 
averaged (single vector).  

● Applying this “out-of-the-box” fails. We needed 
several “tricks” to get past the small data size.   

Attention is not all you need.😮



Trick #1: Task Augmentation

259 is not a lot of tasks. Meta-learning often operates 
on 1000s of tasks. We apply the “data augmentation” idea 
to coding tasks!



Trick #2: Side Information

A task is only composed of 10 or 20 examples, leaving a 
lot of ambiguity. 

Suppose we have “side information” z = (z1, z2, ..., zT) 
about each task: rubric option name and question text. 
How do we add this side information into our embedding 
function fӨ?



Trick #2: Side Information

A task is only composed of 10 or 20 examples, leaving a 
lot of ambiguity.  

Suppose we have “side information” z = (z1, z2, ..., zT) 
about each task: rubric option name and question text. 
How do we add this side information into our embedding 
function fӨ?

Few-shot Sequence Learning with Transformers (Logeswaran et. al. 2020) 
Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks (Reimers and Gurevych 2019)

Prepend side information as a first token.

SBERT

Question Text



Trick #3: Code Pre-training 

Can we utilize large unlabeled datasets of code to help 
the model learn a good prior for code?  

In practice, we initialize the embedding network from 
pretrain weights and finetune top M layers.

CodeBERT: A Pre-Trained Model for Programming and Natural Languages (Feng et. al. 2020 
CodeSearchNet Challenge: Evaluating the State of Semantic Code Search (Husain et.al. 2020)





Results

Room to grow!



Ablations

Better

Better

Legend 

-task aug 
-preprocessing 
-architecture 
-side info 
-pretraining 
-meta algo 
-supervised 
-best



Embeddings

Visualize “prototype” embeddings to interpret student 
ability and question quality. 

Color shows the numeric grade (not used by model ever) 
given to student (darker is lower).



Can we deploy few-shot learning algorithms in the real world?

- the feedback problem

- can we approach the problem using meta-learning?

- can deploy the approach to real students?

- reflections on real-world meta-learning



Can we deploy this to Code-in-Place?

Piech	&	Sahami	&	Zelenski,	
Stanford	University

May 10th, 2021: Students took diagnostic.



Syntax error 
here would 
prevent unit 
tests from being 
useful

Algorithm uses 
attention to 
highlight where 
in the code the 
error comes from

AI generated 
feedback

Students 
evaluate the 
feedback

designed by Alan Cheng & Chris Piech



Effect size = 0.9pp 
p < 0.02

Blind, randomized trial evaluated by real students

Humans gave good feedback.  
ML model gave slightly better 
feedback.

Humans gave feedback ~1k 
answers. 
AI gave feedback on the 
remaining ~15k. 

~2k could be auto-graded and 
were not included in analysis.

Average holistic rating of usefulness by students was 4.6 ± 0.018 out of 5. 



No signs of bias by demographics



Can we deploy few-shot learning algorithms in the real world?

- the feedback problem

- can we approach the problem using meta-learning?

- can deploy the approach to real students?

- reflections on real-world meta-learning



A first for education A first for ML

* to the best of our knowledge

First successful deployment of 
ML-driven feedback to open 
ended student work

First successful deployment of 
prototypical networks in live 
application.



What was hard and different?

1. Limited meta-training tasks.

-> task augmentation can help

-> regularization may help

Also see: 
Bansal et al. SMLMT ’20 
Murty et al. DRECA ‘21

2. Where does the support set come from?

4. Domain shift between meta-training & deployment.

-> active learning? expert-designed support sets?

3. Can the model defer harder examples for the instructor?

-> calibration, selective classification

Also see: Yao et al. MLTI ‘21

Also see: Koh*, Sagawa* WILDS ’21



Want to learn more about meta-learning?
Stanford CS330: Deep Multi-Task and Meta Learning 

cs330.stanford.edu 
All lecture videos online!

Mike Wu Chris PiechNoah GoodmanAlan Cheng

http://cs330.stanford.edu

