
Contents

AerynOS

Overview

Philosophy

Stateless (aka hermetic /usr)

Atomic updates

Self healing

FAQ

Contributing

Financial contributions to AerynOS

Contributing to our codebases

Other contributions

Users

Getting Started

Requirements

Minimum System Requirements

Installer Requirements

Downloading AerynOS

Downloading the ISO

Verifying the Checksums

Creating the Live Environment

Creating a Bootable USB Drive

Booting the Live Environment

Booting from a USB Drive

Testing the Live Environment

System Management

Configuration Locations

System defaults

System overrides

User-level configuration

Where to look next

Manage Moss States and Packages

Check the current state

Activate a different state

Search for packages

Search for installed files

Install software

Update the system

Remove software

List currently installed software

Desktops

COSMIC

GNOME

Plasma

Window Managers

Sway

Packaging

Workflow

Prerequisites

Installing the build-essential package

Activating the AerynOS helper scripts

Adding /etc/subuid and /etc/subgid entries

Basic packaging workflow

Understanding moss-format repositories

Creating a local repository

Building recipes using the local-x86_64 profile

Updating the installed system state

Cleaning the local repository

Ending notes

Preparing for packaging

Update your clone of the recipes repository

Switch to a new git branch

Creating a new package recipe

Prepare your workspace

Scaffold the recipe directory

Fill the recipe step by step

Update/correct the monitoring.yaml file

Build and test the package

Updating an existing package recipe

Prepare your workspace

Simple updates to a package

Wider updates to a package

Build and test the package

Building and testing packages

Build the package

Submitting a PR

Naming Pull Requests

Content of Pull Request descriptions

Checking for package updates

Use ent to check for package updates

Recipes

Overview

A basic recipe

Upstreams

Plain sources

Git sources

Metadata

Mandatory keys

Monitoring

File layout

Release tracking

Security metadata

Where to find the data

Example templates

Build dependencies

$name - standard deps

binary() - Standard binaries

sysbinary() - System binaries

pkgconfig() - PkgConfig / pkgconf

pkgconfig32() - 32-bit PkgConf

cmake() - CMake modules

Package definitions

Package metadata

Defining a subpackage

Overriding defaults

Triggers

Overview

Basic mechanism

Capturing globs

Transaction triggers

Sample trigger

System Accounts

Groups

Example

Overview

Users

Example

Macros

autotools

%configure

%make

%make_install

%reconfigure

%autogen

cargo

%cargo_set_environment

%cargo_fetch

%cargo_build

%cargo_install

%cargo_test

cmake

%cmake

%cmake_unity

%cmake_build

%cmake_install

%cmake_test

meson

%meson

%meson_unity

%meson_build

%meson_install

%meson_test

Miscellaneous

%install_bin

%install_dir

%install_exe

%install_file

%patch

%tmpfiles

%sysusers

perl

%perl_setup

python

%python_setup

%python_install

%pyproject_build

%pyproject_install

%python_compile

Developers

Stone Format

Header

Fields

moss identifier

V1 Stone

V1 Header

Fields

The padding check

Types

AerynOS
AerynOS is an independent Linux-based operating system that diverges significantly

from traditional distributions whilst still aiming to provide a familiar and comfortable

environment. In this section of the documentation, you can find high level information

about the project itself and what sets it apart from other distributions.

Overview

Overview of the AerynOS project and its technologies

Philosophy

The philosophy of AerynOS

FAQ

Frequently asked questions

Contributing

Contributing to AerynOS

http://127.0.0.1:4321/aerynos/overview/
http://127.0.0.1:4321/aerynos/philosophy/
http://127.0.0.1:4321/aerynos/faq/
http://127.0.0.1:4321/aerynos/contribute/

Overview
AerynOS is a Linux-based operating system designed to eliminate years of technical

baggage. It is an engineering led effort in that the distribution is produced entirely by

the tooling we have developed. Every new feature, technology or enabling is carefully

considered, drawing on our own experiences and by studying the impact in similar

decision spaces in other projects.

Despite being heavily engineering led, we are not averse to design. We aim to provide

the best in class user experience atop a solid, innovative foundation, whilst ensuring

we have the scope and scalability to meet the needs of the future.

In essence, we’re producing a distribution based on sound technical principles, in order

to deliver a “daily driver” that truly looks after itself, getting out of the way when you

need it to, and providing the tools you need when you need them.

If anything, AerynOS is “operating-system-as-infrastructure”, providing a solid

foundation for your daily computing needs. We’re not just a distribution, we’re a

platform for the future.

Caution

Remember, AerynOS is still in development. Despite our goals, we must be clear

that we’ve deemed ourselves to be alpha quality software.

Philosophy

Stateless (aka hermetic /usr)

Most Linux distributions follow the Filesystem Hierarchy Standard which sets the

structure for all files and directories on a Unix-like system. In traditional FHS based

Linux distributions, package files can be installed to multiple directories, these can be

directories or files that users may interact with (such as config files).

In AerynOS, packages are forbidden from containing any files outside of /usr directory.

The /usr directory exclusively belongs to the system with the user not intended to

make any changes in this directory what-so-ever. Files written under the /usr directory

by a user will get removed (or reverted) the next time the system is updated.

In order to enable this, some packages and/or configurations are altered in AerynOS to

ensure they can operate in the absence of a user provided configuration. This forces

AerynOS to have sane defaults baked in at all levels, and eliminates 3-way merge

conflicts on package updates. There are no conflicts, because everything in /etc and

/var belongs to the user.

The stateless Linux concept was originally proposed by Red Hat in 2004 and the idea

has continued to evolve from there. AerynOS leans towards the approach developed by

Clear Linux, and we are refining it further.

However, it might still be necessary to create or update system configuration files in

lockstep with package installation. In AerynOS, the only way for files to get created or

updated under /etc or /var during package installation is via package “triggers”.

Triggers are small scripts that are run at the tail end of package installation. AerynOS

supports two forms of package triggers: Transaction triggers and System triggers.

Transaction Triggers

Transaction triggers are run at the end of a transaction in an ephemeral container

(Linux namespace) and may affect the contents of the transaction-specific /usr tree.

This is useful for interdependent packages that need to dynamically produce plugin

registries, for example.

System Triggers

https://refspecs.linuxfoundation.org/FHS_3.0/fhs-3.0.pdf

System triggers do not run in an isolated container, but instead are run in the context

of the host system after the transaction has been successfully built and applied. It is

these (minimally used) triggers that invoke systemd-tmpfiles, systemd-sysusers etc.

For these cases we take special care to ensure that our default configs are sane and

that a rebuild is always possible.

Atomic updates

An atomic update is a series of changes to a system that are treated as a single,

indivisible operation. If any part of this update fails, then the entire update is cancelled

with all prior parts of the incomplete update being rolled back. This means that either

an update completes fully as intended, or the system is left in the state it was in before

the update was attempted. This is important because partial updates often cause

significant issues such as bricked installs.

AerynOS’s approach to atomic updates is fairly different to the approach taken by other

Linux distributions, which mostly use an A/B switch model using specific read-only

filesystems to swap the whole system upon reboot. Atomic updates in AerynOS are

managed by its package manager moss (which we also refer to as a system state

manager). As such, AerynOS is not tied to using read-only filesystems and this allows for

the use of XFS, ext4 and F2FS.

As mentioned above, AerynOS utilises a stateless design where packages can only be

installed to the /usr directory. The knowledge that packages can only be installed to

this directory allows AerynOS to innovate in its approach to atomic updates.

AerynOS packages are packaged up as bespoke .stone moss-format files. Hence,

AerynOS does not use or rely on e.g. Debian .deb format package files or Fedora/RHEL

.rpm format package files. These .stone files contain a deduplicated set of hashed files

compressed using zstd. When a .stone file is installed via moss, the files are

decompressed and stored into a global, deduplicated content addressable store

under/.moss/. Relevant metadata about these files is also stored in a database under

/.moss/.

As part of the final stages of an atomic transaction, moss creates (or “blits”) a new /usr

directory based on hardlinks to the global content addressable store, and swaps this

new /usr directory into place using the renameat2 Linux kernel syscall with the

https://www.virtualcuriosities.com/articles/4507/how-hard-links-and-inodes-work-on-linux

RENAME_EXCHANGE flag, which allows for atomically exchanging an old path for a new

path.

As hardlinks do not take up any significant additional space on disk, and since the

global content addressable store is always deduplicated as part of every transaction,

moss stores every /usr directory from every transaction. This allows for retaining

system snapshots with minimal overhead and provides the ability to perform atomic

rollbacks to earlier states so long as the user does not prune those.

Self healing

As part of our boot management solution, every moss transaction ID is encoded into

the kernel command line and is picked up during early boot into our initramfs, before

/sysroot is pivoted to. Every kernel is correctly synchronised with the right rootfs

based on the moss transaction it was associated to. Given that every transaction

creates a new bootloader entry, AerynOS prunes all but the last 5 transactions from the

bootloader list to keep it manageable.

What are the implications of this?

On a Gnome based system, if you were to delete gtk3, GDM, and gnome-shell you would

not be able to log back into the gnome session (as you’ve just deleted some really

important part of the gnome session!). In this case, on boot you would be greeted by a

linux console login prompt, which would only let you log into your user’s command line

shell, which is less than ideal.

In AerynOS, instead of this scenario, you can enter the bootloader (by mashing your

spacebar) on reboot, and in the bootloader, you can select the second to last entry and

this will automatically switch to the /usr filesystem transaction where gtk3, GDM and

gnome-shell had not yet been deleted. On activating this entry with the Enter key, you

will boot back into a working GDM for a graphical user experience.

Taking this a step further, if you were to remove glibc, given how integral it is to the

functioning of AerynOS and how it specifically includes the renameat2 function used by

moss to complete transactions, the system would be left in a state where the atomic

update did not complete and the whole system would be broken. In a traditional Linux

distribution, this will be very difficult, if not impossible to resolve without resorting to a

fresh re-install.

In AerynOS, however, upon trying to boot into this last transaction, the system will

discover that there is an issue with the transaction and will atomically roll back to the

prior bootloader entry with the associated correct /usr directory that works. This

rollback process only takes around a second (or a couple seconds, depending on your

hardware) and you will automatically be dropped back into a live working AerynOS

system.

Could this happen?

Whilst it is unlikely that a user would ever knowingly delete these very important

packages (though it could happen), the more likely scenario on traditional Linux

distributions is that there is a partial update that may have deleted very important

aspects for a functioning system with the newer versions not having been yet installed

before the update stopped. By the design features mentioned above, this is impossible

on AerynOS.

FAQ

Caution

This section is a work in progress and will be expanded over time.

Project identity

What does AerynOS mean and how do I pronounce

it?

AerynOS is a stylised spelling of “Erin”, alluding to the project’s Irish roots. It is

pronounced exactly the same as “Erin” - “AIR-in” OS. It’s also a play on “aer” and the

phonetic “air” sound, indicative of our desire to produce an open, trusted and high-

performance operating system.

It’s pronounced as “AIR-in” OS.

What was Serpent OS?

Serpent OS is the former name of AerynOS. We announced our rebrand back in

February 2025, which culminated with the inaugural release of AerynOS 2025.03 on

March 25th, 2025. Per the announcement, our desire to rebrand was chiefly driven due

to effectively being lumbered with a hastily chosen name, that poorly reflected the

project’s goals and aspirations.

The project itself remains the same, with the same goals and aspirations, but with a

new name and a fresh coat of paint.

Installation Questions

Which CPUs does AerynOS support?

AerynOS is currently only compiled for the x86_64-v2 target architecture, which means

that it will run on CPUs supporting x86_64-v2 or greater psABI feature levels.

https://aerynos.com/blog/2025/02/14/evolve-this-os/

Checking the currently supported x86_64 psABI feature level of a system can be done

by executing the following snippet in a terminal as a normal user:

curl https://raw.githubusercontent.com/HenrikBengtsson/x86-64-

level/refs/heads/develop/x86-64-level | bash -s -- --verbose

Does AerynOS offer NVIDIA GPU support?

Due to the way NVIDIA distributes its drivers, maintaining them in a distro is labour

intensive and frustrating when they do not work as advertised.

Given AerynOS is in the Alpha development stage, only limited, best effort NVIDIA

enablement related to cards supported by the so-called nvidia-open-gpu-kernel-

modules is currently offered.

You can check the status of NVIDIA support in AerynOS/recipes#435

Does AerynOS support being installed alongside

another OS?

Officially? Not yet.

You can try, but there is no guarantee that AerynOS won’t eat your other OS.

You have been warned.

What is the recommended partition layout for

AerynOS?

In practice, we recommend that you install AerynOS to a separate drive with:

A >=256MB ESP FAT32 partition (type 1 in fdisk).

This must be manually formatted for the installer to recognise it.

A 4GB XBOOTLDR FAT32 partition (type 142 in fdisk, bls_boot in gparted).

This must be manually formatted for the installer to recognise it.

This partition is large, because it is where the AerynOS kernel+initramfs and

(in the future) rescue image files will be saved.

A >20 GB system xfs partition

This must be manually formatted for the installer to recognise it.

https://github.com/AerynOS/recipes/issues/435

The larger the xfs system (/ or root) partition is, the more OS /usr directory

rollback states it can support in /.moss/.

NB: Remember, there is nothing stopping you from creating an extra partition,

formatting it with a filesystem of your choice, and then configuring /etc/fstab to mount

it as /home after AerynOS has been installed, if you want to use a different filesystem

than xfs for your /home folders for whatever reason.

Why do you recommend the xfs filesystem for the

root partition?

Testing has shown that, due to how moss saves rollback states, xfs is by far the

quickest filesystem in practice for AerynOS root partition usage.

We currently do not recommend either ext4 or f2fs root partitions, because testing has

shown that they offer very poor performance on the first update (sudo moss sync -u)

ermo@virgil:~

❯ sudo fdisk -l /dev/nvme1n1

Disk /dev/nvme1n1: 931,51 GiB, 1000204886016 bytes, 1953525168 sectors

Disk model: Samsung SSD 980 PRO 1TB

Units: sectors of 1 * 512 = 512 bytes

Sector size (logical/physical): 512 bytes / 512 bytes

I/O size (minimum/optimal): 512 bytes / 512 bytes

Disklabel type: gpt

Disk identifier: ED391D3B-7BCC-4407-911F-FF7B2CECB45A

Device Start End Sectors Size Type

/dev/nvme1n1p1 2048 526335 524288 256M EFI System

/dev/nvme1n1p2 526336 8914943 8388608 4G Linux extended boot

/dev/nvme1n1p3 8914944 1953523711 1944608768 927,3G Linux root (x86-64)

ermo@virgil:~

❯ sudo lsblk -f /dev/nvme1n1

NAME FSTYPE FSVER LABEL UUID FSAVAIL

FSUSE% MOUNTPOINTS

nvme1n1

├─nvme1n1p1 vfat FAT32 CA93-B86A

├─nvme1n1p2 vfat FAT32 C837-2227

└─nvme1n1p3 xfs 569404f0-74ce-4c9e-936a-96aca25c7cd0 845,6G

9% /

ermo@virgil:~

https://github.com/AerynOS/os-tools/blob/main/moss-filesystem-performance.md

after a cold start of your computer compared to xfs.

Do you support installing AerynOS on ext4?

We currently strongly recommend that you use xfs on your root partition for the best

experience with moss and AerynOS.

Do you support installing AerynOS on f2fs?

We currently strongly recommend that you use xfs on your root partition for the best

experience with moss and AerynOS.

Do you support installing AerynOS on btrfs?

Not yet

Do you support installing AerynOS on bcachefs?

Not yet

Do you support installing AerynOS on ZFS?

Not at this stage. We may or may not decide to support it at some unspecified point in

the future, provided we can guarantee that we are legally in the clear to do so.

Usage Questions

How do I make my system check for updates and

install them?

sudo moss sync -u

This is a short hand form of:

update the local systems "view" of which packages are available

sudo moss repo update

synchronise the installed state against the list of available packages

sudo moss sync

Why don’t application icons for newly installed

apps show up in my current session after a sync or

install?

It is a known issue and we are working on a solution.

For now, log out and back in again and they will show up.

When do I need to reboot after updates?

Kernel updates require a reboot.

Some updates require you to log out of your desktop session and back in (see

above).

Most updates only require you to close the apps that were updated and start them

again.

How do I access the rollback feature at boot?

Hold down or mash your Space key repeatedly after your computer starts up.

How do I verify the integrity of my install states in

AerynOS?

sudo moss state verify

Tack on --help to see the options for verify.

How do I clean out older install states in

AerynOS?

sudo moss state prune

Tack on --help to see the options for prune.

How do I configure custom kernel command line

parameters applied at each boot?

See the blsforme repo readme for the expected format.

https://github.com/AerynOS/blsforme/?tab=readme-ov-file#filesystem-layout

Typically, it is necessary to change the installed system state with moss for command-

line snippets to take effect.

One way of doing that is to do a sudo moss remove nano -y && sudo moss install

nano -y, followed by sudo moss boot status to check if the new cmdline snippet is now

active.

Package Questions

How come your package repository is so small?

We are still in heavy development (“Alpha”) and are developing our back end and

associated automated rebuild processes.

If we discover that it is necessary for us to rebuild our entire repository, we would like

the ability to do so in the span of an afternoon (using multiple builders in parallel).

Once our back end story and our automated rebuild process story are both further

advanced, we will begin scaling out the repository to contain more packages.

Could you package (…) please?

See above.

For now, we encourage users to use flatpaks for the applications we do not yet carry in

our repository.

Currently, we are focusing on adding must-have packages for platform bring-up, for

things that give us a development edge, or for things that help us showcase AerynOS

capabilities.

If the use-case for the package you are proposing is in line with the ethos above, you

can make a package request here

Where can I learn how to package for AerynOS?

Consult the packaging documentation here.

In addition, consult the AerynOS recipes/ repository.

https://github.com/AerynOS/recipes/issues/new/choose
http://127.0.0.1:4321/packaging/
https://github.com/AerynOS/recipes

Finally, join the AerynOS Zulip space and make sure to join the #Onboarding channel in

the General - Public space.

Project Questions

Is it ok to share links to video content of AerynOS

in action in the Zulip rooms?

Yes! We absolutely love seeing people using AerynOS in the wild!

Please first share them as a post in the Show and Tell category,

Then, share a link to your post in the AerynOS Zulip space in the #Show-and-Tell

channel in the General - Public space so the link to the video doesn’t get lost in

the Zulip chat.

Which distribution is AerynOS derived from?

AerynOS has been bootstrapped and built from scratch and is not based on any other

distro.

This implies that AerynOS has its own:

package manager (moss)

package build tool (boulder)

build pipeline consisting of:

the package build dashboard and controller (summit)

the builder-as-a-service middleware (avalanche)

the package repository manager (vessel)

This also implies that AerynOS does NOT build upon or use either:

.rpm related tooling from Red Hat

.deb related tooling from the Debian Project

Arch-related tooling

When will AerynOS be considered stable?

https://aerynos.zulipchat.com/join/fuqokhsomj5mzqj6akqaiqlr/
https://github.com/orgs/AerynOS/discussions/categories/show-and-tell
https://aerynos.zulipchat.com/join/fuqokhsomj5mzqj6akqaiqlr/

AerynOS is taking on the ambitious task of creating a distribution from scratch, whilst

building its own tooling and solutions for this.

As such, there is no official ETA.

Now that the project has hit alpha status, you will see more frequent updates and

progress reports.

Contributing

Financial contributions to AerynOS

AerynOS is an independent effort run by a handful of volunteers. The team is currently

targeting an income of 500€ per month to cover:

1. Infrastructure and project costs

2. Repayment to project stakeholders for initial project seed funding

3. Build up a buffer for unexpected costs and future initiatives.

We currently accept donations via Ko-Fi.

Contributing to our codebases

AerynOS utilizes GitHub to manage code changes, including updates our our websites.

Each repository will have its own Readme that will include instructions on how to make

updates to it. They can be found here. To specifically make contributions to our

websites, you can visit the following repositories:

AerynOS.com site repo

AerynOS.dev site repo

Other contributions

The team is open to all forms of contribution, including any wallpapers or artwork that

you may wish to submit. The only requirement is that e.g. wallpapers or artwork are

licensed under an open license.

https://ko-fi.com/aerynos
https://github.com/orgs/AerynOS/repositories
https://github.com/AerynOS/dotdev
https://github.com/AerynOS/dotcom

Users

Caution

Currently we are in an alpha stage of development so please expect breakages

and bugs. We are working hard to get to a stable release.

Getting Started

Getting started with AerynOS

System Management

Keep an AerynOS system healthy with stateless configuration guidance and

moss lifecycle tasks.

Desktops

Desktop environments

http://127.0.0.1:4321/users/getting-started/
http://127.0.0.1:4321/users/system-management/
http://127.0.0.1:4321/users/desktops/

Getting Started

Requirements

Requirements for AerynOS

Downloading AerynOS

Downloading the AerynOS ISO file and verifying the checksums

Creating the Live Environment

Creating a live environment to boot into and run the AerynOS installer

Booting the Live Environment

Booting into the AerynOS Live Environment

http://127.0.0.1:4321/users/getting-started/requirements/
http://127.0.0.1:4321/users/getting-started/downloading/
http://127.0.0.1:4321/users/getting-started/creating-the-live-enviroment/
http://127.0.0.1:4321/users/getting-started/booting-the-live-environment/

Requirements

Minimum System Requirements

Caution

BIOS/CSM mode is not supported. Please ensure that your system is set to UEFI

mode.

Architecture: x86_64-v2

Firmware: UEFI (CSM Support must be disabled)

Processor (CPU): Quad-core processor with a minimum clock speed of 2GHz

System Memory (RAM): 4GB or more

Storage: Minimum of 40GB available space

Installer Requirements

To successfully create a bootable USB drive for installing AerynOS, the following

requirements must be met:

Network: An active internet connection is required for installation

USB Flash Drive: Ensure you have a USB flash drive with at least 4GB of free

space.

Danger

The process of flashing the ISO will completely erase all existing data on the

drive.

Note

It is advisable to use a high-quality USB drive to avoid potential issues during

the installation process.

Image Flashing Software: Utilize one of the following recommended tools to

flash the AerynOS ISO image onto the USB drive:

dd: A command-line utility available on most Linux distributions for creating

bootable USB drives.

Fedora Media Writer: A reliable and user-friendly tool for creating bootable

USB drives.

Rufus: A widely-used utility that provides advanced options for creating

bootable USB drives.

Balena Etcher: A simple and user-friendly tool for creating bootable USB

drives.

Additional Hardware: A physical keyboard, mouse, and monitor (or screen) are

required to interact with the installation process. Ensure that all these peripherals

are properly connected to the system before starting the installation.

Downloading AerynOS

Downloading the ISO

1. Visit the AerynOS download page.

2. Look for the latest release available for download, the official ISO files are named

AerynOS-<version>-<desktop>-<architecture>.iso.

Note

There may be multiple versions available with different desktop environments

denoted by AerynOS-<version>-<desktop>-<architecture>.iso where <desktop> is

the desktop environment.

3. Click on the download link to start downloading the ISO file and assiocated

checksums denoted by AerynOS-<version>-<desktop>-

<architecture>.iso.sha256sum.

Once the download is complete, you can proceed with creating a bootable USB drive or

burning the ISO to a DVD to install AerynOS on your machine.

Verifying the Checksums

Before creating a bootable USB drive or burning the ISO to a DVD, it’s important to

verify the checksums to ensure the integrity of the downloaded ISO file.

Caution

Using the ISO file without verifying the checksums can lead to boot failures,

installation issues, and potential security risks.

Linux

1. Open a terminal window and navigate to the directory where the ISO file is located

along with the checksums.

https://download.aerynos.com/

2. Run the following command to verify the checksums:

You should see a message indicating that the checksums match if the ISO file is valid.

If the checksums do not match, download the ISO file again and repeat the verification

process.

Windows

1. Open a Command Prompt window and navigate to the directory where the ISO file

is located along with the checksums.

2. Run the following command to verify the checksums:

This will give you the checksum of the file, compare this to the checksum found inside

the checksum file.

cd ~/Downloads

sha256sum -c <checksum_file>

AerynOS-2025.03-GNOME-x86_64.iso: OK

cd C:\Users\<username>\Downloads

certutil -hashfile aerynos-<version>.iso SHA256

Creating the Live Environment

Creating a Bootable USB Drive

Danger

Creating a bootable USB drive will erase all data on the USB drive. Make sure to

back up any important data before proceeding.

Caution

Ensure the USB drive is properly ejected after flashing the ISO to avoid data

corruption.

You’ll need your USB drive and the ISO file downloaded from the AerynOS download

page.

Linux

1. Insert your USB drive into an available USB port on your machine.

2. Open a terminal window and navigate to the directory where the ISO file is

located.

3. Identify the device name of your USB drive by running the following command:

Look for the device name of your USB drive, it will be something like /dev/sdX where X

is a letter representing the device.

cd ~/Downloads

lsblk

https://download.aerynos.com/
https://download.aerynos.com/

Caution

Do not confuse this with the partition name, which will be something like

/dev/sdX1.

4. Now run the following command to write the ISO file to the USB drive:

Caution

Ensure you are using the correct device name for your USB drive to avoid data

loss.

Note

This may take some time to complete depending on the size of the ISO file and the

speed of your USB drive.

This command will write the ISO file to the USB drive and you’ll see a progress indicator

as it completes.

5. To ensure the write process has completed successfully, run the following

command:

Once the command has run, you can safely remove the USB drive from your machine.

Windows

1. Insert your USB drive into an available USB port on your machine.

2. Download and install Rufus, a free and open-source tool for creating bootable USB

drives.

3. TODO: Add steps for using Rufus to create a bootable USB drive.

sudo dd if=aerynos-<version>.iso of=/dev/sdX bs=4M conv=fsync oflag=direct

status=progress

sudo sync

https://rufus.ie/

Booting the Live Environment

Booting from a USB Drive

Note

Ensure that your system is set to boot from the USB drive. You may need to access

the boot menu to select the USB drive as the boot device.

Caution

Currently NVIDIA Drivers are not implemented by the live environment and will

fallback to nouveau drivers.

1. Insert the bootable USB drive into your system and boot from the USB drive.

2. You should see the AerynOS boot process, and you will be presented with the live

environment.

Testing the Live Environment

Tip

The live environment may run slower than the installed system due to the

limitations of running from a USB drive.

Once you have booted into the live environment, you can test AerynOS without

installing it on your system.

Explore the desktop environment.

Test the pre-installed applications.

Check the system performance.

Verify the hardware compatibility.

Connect to the internet and browse the web.

System Management
Use this section to manage an installed system, from understanding where

configuration lives to operating moss states safely.

Configuration Locations

Understand where packages ship their default configuration and how to

override it on a stateless system.

Manage Moss States and Packages

Learn how to inspect and switch states, search for software, and keep an

AerynOS system up to date with moss.

http://127.0.0.1:4321/users/system-management/configuration-locations/
http://127.0.0.1:4321/users/system-management/moss-state-management/

Configuration Locations
AerynOS ships configuration in a stateless layout. Packages deliver defaults in

/usr/share/defaults, while administrator and user changes live elsewhere so updates

can proceed without overwriting your work.

System defaults

Default files mirror the traditional /etc hierarchy under /usr/share/defaults.

Purpose Default location Example

contents

Base system

settings

/usr/share/defaults/etc ld.so.conf, libnl,

tpm2-tss

PAM policies /usr/share/defaults/pam.d sudo, system-

login, polkit-1

Shell profiles /usr/share/defaults/profile and

/usr/share/defaults/profile.d

00-aeryn.sh,

interactive shell

tweaks

Service

defaults

/usr/share/defaults/environment.d Session-wide

environment

snippets

Sudo

configuration

/usr/share/defaults/sudo sudoers, drop-in

files

SSH defaults /usr/share/defaults/ssh ssh_config,

sshd_config

Packages may add more directories under /usr/share/defaults as required. The layout

always mirrors where the file would appear under /etc on a traditional filesystem.

System overrides

Place administrator overrides in /etc. Files in /etc shadow anything under

/usr/share/defaults and survive package updates. Use drop-in directories such as

/etc/pam.d or /etc/sudoers.d to keep customisations scoped and easy to audit.

When you need to revert to the shipped defaults, remove the override from /etc and

Moss will fall back to the matching file in /usr/share/defaults.

User-level configuration

Desktop and application settings follow the XDG Base Directory specification. Store per-

user changes in:

~/.config for configuration files

~/.local/share for data files

These paths override both /etc and /usr/share/defaults for the owning user.

Where to look next

Run the following command to explore the current defaults on your system:

Combine this with moss search-file to identify which package owns a specific default

file when you need to adjust or report an issue.

ls /usr/share/defaults

Manage Moss States and Packages
Moss keeps track of packaging-related operations that change the state of the /usr

directory by creating a new filesystem transaction (fstx) for each associated moss

operation, be it package installation, removal or upgrades.

Use the commands below to inspect and manage those states, discover software, and

keep your system current.

Check the current state

1. List the active state to confirm what is running right now.

2. Review the state history when you need context for a rollback.

Use the state ID (the number after State #) when you need to query or activate a

specific snapshot.

Activate a different state

Follow these steps to roll back or advance to another state safely.

1. Identify the target state ID with moss state list.

2. Activate that state.

3. Verify the change.

moss state active

moss state list

sudo moss state activate 128

Activating a state atomically swaps the currently active state’s /usr directory with the

new states’s /usr directory, using the Linux kernel renameat2 syscall.

On successful activation of the new state, it is recommended to reboot the system, so

that long-running services start with the expected binaries, libraries, and

configurations.

Search for packages

Use keyword searches to discover software by name or summary.

Add --installed (-i) if you only want to search software that is already present on the

system.

Search for installed files

Look up which package delivered a specific file when you troubleshoot or audit an

installation.

moss search-file scans files from installed packages only.

Install software

1. Refresh repository metadata when needed.

moss state active

sudo moss search fractional

sudo moss search-file libEGL.so

https://www.man7.org/linux/man-pages/man2/rename.2.html

2. Install one or more packages.

Moss creates a new state automatically. Confirm success with moss state active.

Update the system

Keep the entire system current with a sync operation.

--update (-u) pulls fresh repository metadata before applying upgrades. Moss records

the result as a new state, so you can roll back if something goes wrong.

Remove software

Uninstall packages you no longer need.

Moss snapshots the removal in a new state. Use moss state list to find the previous

state if you have to recover.

List currently installed software

sudo moss repo update

sudo moss install howdy-git

sudo moss sync --update

sudo moss remove howdy-git

moss list installed

Desktops

COSMIC

COSMIC Desktop

GNOME

GNOME Desktop

Plasma

KDE Plasma Desktop

Window Managers

Lightweight window manager environments

http://127.0.0.1:4321/users/desktops/cosmic/
http://127.0.0.1:4321/users/desktops/gnome/
http://127.0.0.1:4321/users/desktops/plasma/
http://127.0.0.1:4321/users/desktops/window-managers/

COSMIC
The COSMIC Desktop from System76 is a highly popular choice with AerynOS users.

COSMIC is notable for being written in Rust and using a modern multiprocess

architecture, while being Wayland-only. For many, this makes AerynOS and COSMIC an

ideal partnership.

Installing COSMIC on AerynOS

AerynOS currently only offers one iso with a GNOME live environment. However, lichen

is a net based installer that allows users to select their Desktop Environment at install

time. As such, you can install AerynOS COSMIC edition directly from the GNOME based

AerynOS installer iso.

If you are already using GNOME, you are able to install Cosmic Desktop side by side

and select which Desktop Environment to use in GDM at login. You do this by installing

one of three package sets:

The names are fairly self explanatory:

Minimal: The minimum number of packages required for a Cosmic Desktop session

Recommended: The minimal Cosmic Desktop session plus additional

recommended applications

Full: The recommended Cosmic Dekstop session plus additional optional

applications

Controlling the display manager

If you’ve installed COSMIC over the top of a GNOME install, you can still log into your

COSMIC session from gdm. You can also safely remove gdm and have cosmic-greeter

take over. Note: GNOME Shell still expects gdm for full functionality.

Installing cosmic-greeter

sudo moss install pkgset-aeryn-cosmic-minimal

sudo moss install pkgset-aeryn-cosmic-recommended

sudo moss install pkgset-aeryn-cosmic-full

https://system76.com/cosmic
https://system76.org/

Removing gdm

If you wish to remove gdm, you would use the following command:

sudo moss install cosmic-greeter

sudo moss remove gdm

GNOME
The default desktop environemnt for the AerynOS live environment and for installs

using lichen is GNOME. We utilise Wayland display server protocol and do not offer X11

(or any fork of X11).

GNOME has been chosen as the default environment due to our familiarity with the

GNOME software stack and therefore our ability to maintain it whilst we work on

fleshing out the AerynOS tooling and infrastructure.

It is recommended to install GNOME using lichen, rather than adding to an existing

install.

Gnome defaults

Terminal: ptyxis

Media Player: Celluloid

Software: Gnome Software

Document Viewer: Gnome Papers

System Monitor: Gnome Resources

Code editor: Zed

https://www.gnome.org/
https://gitlab.gnome.org/chergert/ptyxis
https://celluloid-player.github.io/
https://apps.gnome.org/en/Software/
https://apps.gnome.org/en/Papers/
https://apps.gnome.org/en/Resources/
https://zed.dev/

Plasma
AerynOS now offers KDE Plasma as a Desktop Environment though it is currently

considered beta status. You can track the progress of identifying and resolving Plasma

related issues on Github.

Installing Plasma on an existing AerynOS install

If you are already using GNOME, you are able to install KDE Plasma side by side and

select which Desktop Environment to use in GDM at login. You do this by installing one of

three package sets:

The names are fairly self explanatory:

Minimal: The minimum number of packages required for a Plasma desktop session

Recommended: The minimal Plasma desktop session plus additional

recommended applications

Full: The recommended Plasma desktop session plus all available KDE applications

Controlling the display manager

If you’ve installed Plasma over the top of a GNOME install, you can still log into your

Plasma session from gdm. You can also safely remove gdm and have either sddm or

plasma-login-manager take over. Note: GNOME Shell still expects gdm for full

functionality.

Installing either sddm or plasma-login-manager

or

sudo moss install pkgset-aeryn-plasma-minimal

sudo moss install pkgset-aeryn-plasma-recommended

sudo moss install pkgset-aeryn-plasma-full

sudo moss install sddm

https://kde.org/plasma-desktop/
https://github.com/AerynOS/recipes/issues/952

Removing gdm

If you wish to remove gdm, you would use the following command:

sudo moss install plasma-login-manager

sudo moss remove gdm

Window Managers

Sway

Sway Wayland window manager

http://127.0.0.1:4321/users/desktops/window-managers/sway/

Sway
Sway is a dynamic tiling window manager designed as a drop-in replacement for i3, but

built for Wayland. It offers a lightweight workflow that is well suited to machines where

users prefer keyboard driven navigation over graphical shell integrations.

Installing Sway on AerynOS

Sway is currently packaged as a single minimal session that you can add to any

existing AerynOS installation. Install the package set with moss:

After installation you can select the Sway session from your display manager, or start it

directly from a TTY with exec sway.

sudo moss install pkgset-aeryn-sway-minimal

sudo moss install branding-aeryn-sway

https://swaywm.org/

Packaging
Here you can find all of the packaging documentation.

Workflow

Understanding how moss and boulder make use of repositories in AerynOS

Recipes

The `stone.yaml` recipe format and `boulder` form the core of all package

builds in AerynOS

Macros

Tools to simplify life - macros

http://127.0.0.1:4321/packaging/workflow/
http://127.0.0.1:4321/packaging/recipes/
http://127.0.0.1:4321/packaging/macros/

Workflow

Prerequisites

Prerequisites for building packages on Aeryn OS

Basic packaging workflow

Building packages locally and testing them

Preparing for packaging

Preparing for packaging on AerynOS

Creating a new package recipe

Creating a new package recipe from scratch

Updating an existing package recipe

How to update an existing package recipe

Building and testing packages

How to build and test packages locally on your system

Submitting a PR

How to submit a PR into the AerynOS repository

Checking for package updates

How to check for package updates

http://127.0.0.1:4321/packaging/workflow/prerequisites/
http://127.0.0.1:4321/packaging/workflow/basic-workflow/
http://127.0.0.1:4321/packaging/workflow/preparing-for-packaging/
http://127.0.0.1:4321/packaging/workflow/creating-a-new-recipe/
http://127.0.0.1:4321/packaging/workflow/updating-an-existing-recipe/
http://127.0.0.1:4321/packaging/workflow/building-and-testing-packages/
http://127.0.0.1:4321/packaging/workflow/submitting-a-pr/
http://127.0.0.1:4321/packaging/workflow/checking-for-updates/

Prerequisites
To set up a AerynOS system to be able to build package recipes, a few prerequisites

need to be installed, and a new directory for storing local build artifacts needs to be set

up.

Installing the build-essential package

We maintain a build-essential metapackage that should contain the basics for getting

started with packaging on AerynOS.

Activating the AerynOS helper scripts

The easiest way to create a local repository is to use the helper script distributed with

the AerynOS recipe repository in the tools/ directory.

Start by cloning the recipes/ git repository:

After the recipes/ git repository has been cloned, symlink helpers.bash into

~/.bashrcd.d/:

Finally, execute the following in a new terminal tab:

sudo moss sync -u

sudo moss it build-essential

mkdir -pv repos/aerynos/

pushd repos/aerynos

git clone https://github.com/AerynOS/recipes

popd

mkdir -pv ~/.bashrc.d/

ln -sv ~/repos/aerynos/recipes/tools/helpers.bash ~/.bashrc.d/90-aerynos-

helpers.bash

If the helpers script has been correctly loaded, the gotoaosrepo command should

switch to the directory containing the recipes/ git repository clone.

Setting up git hooks and linters

The just command runner should have been installed as part of build-essential.

Run the following:

This will setup git hooks that will lint for the most common packaging errors upon git

commit, as well as fill out commit message templates for you to edit as appropriate.

Setting up git diff auto-conversion of

manifest.*.bin files

This will make it so you can view git diff output for binary manifest.*.bin files in

both git diff and git log -p . invocations.

Edit the recipe repo .git/config file to contain the following below the [core] section:

The recipe repo already contains the .gitattributes file that sets up the moss diff filter

referenced here.

Setting up the git gone alias

cd ~

gotoaosrepo

gotoaosrepo

just init

[diff "moss"]

 textconv = moss inspect

 binary = true

This will make it so that executing git gone will remove any local branches that no

longer exist upstream.

Edit your ~/.gitconfig file to contain the following:

Adding /etc/subuid and /etc/subgid

entries

Since boulder uses user-namespaces to set up isolated build roots, it is necessary to

set up a subuid and a subgid file for the relevant users first:

If /etc/subuid and /etc/subgid already exist, adapt the above as appropriate.

[alias]

 gone = "!f() { git fetch --all --prune; git branch -vv | awk '/:

gone]/{print $1}' | xargs git branch -D; }; f"

sudo touch /etc/sub{uid,gid}

sudo usermod --add-subuids 1000000-1065535 --add-subgids 1000000-1065535 root

sudo usermod --add-subuids 1065536-1131071 --add-subgids 1065536-1131071 "$USER"

Basic packaging workflow
Once the prerequisites have been handled, it is time to learn how to install newly built

local moss-format .stone packages.

Understanding moss-format repositories

When building and testing packages locally, boulder (and moss) can be configured to

consult a local moss-format repository containing moss-format .stone packages and a

stone.index local repository index.

stone.index files

The stone.index file is what both moss and boulder consult when they check which

packages are available to be installed into moss-maintained system roots.

Adding a moss-format repository is as simple as registering a new location from where

to fetch stone.index files, which will be shown in detail later on this page.

moss build roots

Every time a package is built, boulder calls out to moss to have it construct a pristine

build root directory (called a ‘buildroot’) with the necessary package build prerequisites

installed.

The packages in this buildroot are resolved from one or more moss stone.index files,

sorted in descending priority, such that the highest priority repository “wins” when

package providers are resolved.

The lowest priority repository will typically be the official AerynOS upstream package

repository.

If higher priority repositories are added, packages from these will in turn override the

packages available in the official AerynOS upstream package repository.

The next section deals with how to create and register a higher priority local moss-

format repository, which is colloquially referred to as a “local repo”.

http://127.0.0.1:4321/packaging/workflow/prerequisites/

Creating a local repository

After the helper script has been activated in bash, open a new tab or a new terminal,

and execute the following commands:

The just create-local invocation will set up an empty ~/.cache/local_repo/x86_64/

directory, and the just index-local invocation will create a stone.index file for the

directory.

Making boulder use the local repository

Boulder will need to have its list of “build profiles” be updated before it will consult the

~/.cache/local_repo/x86_64/stone.index moss-format repository index created

above:

create a new tab or open a new terminal

gotoaosrepo

just create-local

just index-local

Behind the scenes, boulder builds and saves an appropriately named build profile to

~/.config/boulder/profile.d/.

This is what local-x86_64.yaml should look like after the above commands have been

run successfully:

boulder profile list

output

default-x86_64:

 - volatile = https://build.aerynos.dev/volatile/x86_64/stone.index [0]

add new local-x86_64 build profile

note: ${HOME} will be replaced by the actual home directory of the user

invoking the command. In the example below, ${HOME} = /home/ermo

boulder profile add \

 --repo

name=volatile,uri=https://build.aerynos.dev/stream/volatile/x86_64/stone.index,pri

\

 --repo name=local,uri=file://${HOME}/.cache/local_repo/x86_64/stone.index,priori

\

 local-x86_64

boulder profile list

output

default-x86_64:

 - volatile = https://build.aerynos.dev/volatile/x86_64/stone.index [0]

local-x86_64:

 - volatile = https://build.aerynos.dev/stream/volatile/x86_64/stone.index [0]

 - local = file:///home/ermo/.cache/local_repo/x86_64/stone.index [100]

Making moss use the local repository

Listing and adding moss-format repositories containing stone.index files is done as

follows:

Package resolution order

In the above priority tower, each moss-format package would first get resolved via the

local repository (priority 100), then from the volatile repository (priority 10), and

local-x86_64:

 repositories:

 local:

 description: ''

 uri: file:///home/ermo/.cache/local_repo/x86_64/stone.index

 priority: 100

 active: true

 volatile:

 description: ''

 uri: https://build.aerynos.dev/stream/volatile/x86_64/stone.index

 priority: 0

 active: true

moss repo list

output

 - unstable = https://cdn.aerynos.dev/unstable/x86_64/stone.index [0]

add repositories

note: ${HOME} will be replaced by the actual home directory of the user

invoking the command. In the example below, ${HOME} = /home/ermo"

sudo moss repo add volatile

https://build.aerynos.dev/stream/volatile/x86_64/stone.index -p 10

sudo moss repo add local file://${HOME}/.cache/local_repo/x86_64/stone.index -p

100

moss repo list

output

 - unstable = https://cdn.aerynos.dev/unstable/x86_64/stone.index [0]

 - volatile = https://build.aerynos.dev/stream/volatile/x86_64/stone.index [10]

 - local = file:///home/ermo/.cache/local_repo/x86_64/stone.index [100]

finally from the unstable repository (priority 0), the latter of which is the official

upstream AerynOS moss-format .stone package repository.

Disabling moss-format repositories

Users of AerynOS should generally not have the volatile repository be enabled,

because this repository is where new .stone packages land right after being built,

which means the repository can potentially be in an undefined and volatile state when

building large build queues (hence the name).

Therefore, it can be useful to disable moss-format repositories without deleting their

definitions from the local system:

Enabling moss-format repositories

However, when testing locally built packages, they must be built against the local-

x86_64 boulder build profile, which in turns relies on the volatile repository via the

boulder local-x86_64 build profile.

Hence, when testing locally built packages, you may need to temporarily enable the

volatile repository for moss to resolve from.

sudo moss repo disable volatile

sudo moss repo disable local

moss repo list

output

 - unstable = https://cdn.aerynos.dev/unstable/x86_64/stone.index [0]

 - volatile = https://build.aerynos.dev/stream/volatile/x86_64/stone.index [10]

(disabled)

 - local = file:///home/ermo/.cache/local_repo/x86_64/stone.index [100]

(disabled)

Building recipes using the local-x86_64
profile

To actually build a recipe, it is recommended that new packagers start out by building

nano.

Note that the basic packaging workflow in AerynOS assumes that you are using a local

repository.

If you are building multiple package recipes, you will need to just build and just mv-

local for each package recipe sequentially.

sudo moss repo enable volatile

sudo moss repo enable local

moss repo list

output

 - unstable = https://cdn.aerynos.dev/unstable/x86_64/stone.index [0]

 - volatile = https://build.aerynos.dev/stream/volatile/x86_64/stone.index [10]

 - local = file:///home/ermo/.cache/local_repo/x86_64/stone.index [100]

Go into the root of the AerynOS recipe directory

gotoaosrepo

change to the directory holding the nano recipe

chpkg nano

bump the release number in the nano recipe

just bump

check the difference between the local state and the upstream recipe state

git diff

build the bumped nano recipe

just build

check the difference between the local state and the upstream recipe state

git status

move the newly built .stone build artifacts to the local repository

just mv-local

list the build artifacts present in the local repository

just ls-local

Updating the installed system state

Testing your package(s) is now as simple as:

Enabling (or disabling) the relevant moss-format repositories with:

Updating moss’ view of the enabled moss-format repository indices with:

Cleaning the local repository

Often, it will be prudent to clean out the local repository after the associated recipe PR

has been accepted upstream.

This will sync the the local system to a new installed system state made only from the

upstream unstable moss-format .stone package repository state.

This will effectively make the new system state “forget” the nano version installed from

the local repository in the previous system state.

Ending notes

If you have made it this far, congratulations! You should now understand the basic

workflow of packaging and managing repositories with AerynOS.

Tip: execute just -l to see a list of supported just ‘recipes’, which are common

actions that have been automated by the AerynOS developers.

sudo moss repo enable/disable <the repository>

sudo moss sync -u

gotoaosrepo

just clean-local

sudo moss repo disable volatile

sudo moss repo disable local

sudo moss sync -u

Preparing for packaging
This page details prerequisite steps required before either creating a new package

recipe or updating an existing package recipe. If you have not yet followed the

prerequisites steps and Basic Packaging Workflow, follow those steps first before

proceeding.

Update your clone of the recipes

repository

As a reminder, you want to ensure you have the volatile repository enabled and fully

updated on your system.

Whilst all the information can be found in the prior pages, to recap, the commands will

be:

Switch to a new git branch

When conducting any packaging work, it is a good idea to separate out your work in a

different branch. This allows you to isolate changes you make from one package in a

separate branch to changes you make to a different package in a second branch and so

on. This additionally is helpful as it keeps your work separate to any underlaying

changes made to the main recipes repository, more easily allowing you to rebase your

work if needed.

sudo moss repo enable volatile

sudo moss sync -u

gotoaosrepo

git switch main

gh repo sync yourusername/yourfork -b main

git pull

git checkout -b "branch-name"

http://127.0.0.1:4321/packaging/workflow/prerequisites/
http://127.0.0.1:4321/packaging/workflow/basic-workflow/

Change “branch-name” to whatever description you feel comfortable with. Our general

convention is to use the format add-packagename or update-packagename depending on

whether you are adding a new package or updating an existing one.

You can check what branch you are on and what branches you have in your repository

with the following command:

git branch -a

Creating a new package recipe
This guide details the process of creating a new package recipe that is not yet present

in the AerynOS repository. We will use Nano as the running example, but the same

steps apply to any new package.

Before creating the package recipe yourself, please double check that there isn’t

already an outstanding PR for the package you want to include. Please also check if

someone has created a new package request issue in the AerynOS recipes repository.

Prepare your workspace

Prior to starting, ensure you have followed the prerequisites set up process, the Basic

Packaging Workflow and updated your system in accordance with Preparing for

Packaging guide.

If you have not done this, follow those steps first before proceeding.

Scaffold the recipe directory

Prior to starting, you need to create the directory structure for your recipe. In our

example, we will create a recipe for the Nano text editor. Each recipe is stored in its

own directory within the recipes repository you already have downloaded to your

computer. In this case, we will create a directory called nano in the n directory:

Fill the recipe step by step

The rest of this guide shows how to create a recipe and to replace any missing

metadata by pulling information from upstream Nano.

Step 1 - Collect upstream metadata

gotoaosrepo

mkdir -p n/nano

cd n/nano

https://github.com/AerynOS/recipes
https://github.com/AerynOS/recipes
http://127.0.0.1:4321/packaging/workflow/prerequisites/
http://127.0.0.1:4321/packaging/workflow/basic-workflow/
http://127.0.0.1:4321/packaging/workflow/basic-workflow/
http://127.0.0.1:4321/packaging/workflow/preparing-for-packaging/
http://127.0.0.1:4321/packaging/workflow/preparing-for-packaging/

Search for “GNU Nano download” to locate the upstream homepage:

https://www.nano-editor.org/.

Note the latest release number (8.7 at the time of writing) and the canonical

download link.

Record any prerequisites listed in upstream build instructions—these become

candidates for builddeps later.

The Nano “bleeding edge” page lists the following tools you should keep in mind:

Package Minimum Version

autoconf 2.69

automake 1.14

autopoint 0.20

gcc 5.0

gettext 0.20

git 2.7.4

groff 1.12

make (any version)

pkg-config 0.22

texinfo 4.0

Step 1 - Use boulder to help create the recipe

We use boulder to help create the recipe using the boulder recipe new command. This

command will generate a skeleton recipe for you to fill in. boulder will read the

contents of the source code of the package you are trying to add and automatically

create a stone.yaml recipe file and a monitoring.yaml file.

boulder recipe new "upstream URL"

https://www.nano-editor.org/

In the example of Nano, to create a recipe based on version 8.7, you would use the

following command:

This command does the following:

1. Creates a new stone.yaml in your current directory for the package

Populates as many of the fields in the stone.yaml file as it can automatically

identify

Checks the Sha256sum of the source code and inputs this in the recipe

2. Creates a new monitoring.yaml file in your current directory for the package

Populates as many of the fields in the monitoring.yaml file as it can automatically

identify

Using Nano as an example, the generated stone.yaml file will look like this:

boulder recipe new https://www.nano-editor.org/dist/v8/nano-8.7.tar.xz

The second is a monitoring.yaml file which we will address later in this guide.

Step 2 - Add core metadata fields

The boulder recipe new command has already made an attempt to populate the name,

version, release and homepage. Please review these and correct them if necessary.

#

SPDX-FileCopyrightText: © 2025- AerynOS Developers

#

SPDX-License-Identifier: MPL-2.0

#

name : nano

version : 8.7

release : 1

homepage : https://www.nano-editor.org/dist/v8

upstreams :

 - https://www.nano-editor.org/dist/v8/nano-8.7.tar.xz :

afd287aa672c48b8e1a93fdb6c6588453d527510d966822b687f2835f0d986e9

summary : UPDATE SUMMARY

description : |

 UPDATE DESCRIPTION

license :

 - GFDL-1.2-invariants-or-later

 - GFDL-1.2-no-invariants-or-later

 - GFDL-1.2-or-later

 - GPL-3.0-or-later

 - GFDL-1.2-no-invariants-only

 - GFDL-1.2-invariants-only

 - GFDL-1.2-only

 - GPL-3.0-only

builddeps :

 - pkgconfig(ncurses)

 - pkgconfig(ncursesw)

setup : |

 %configure

build : |

 %make

install : |

 %make_install

In this case, the following changes need to be made:

Correct the homepage to https://www.nano-editor.org/.

Update the summary to reflect the GNU Text Editor.

Fill in the description field with a brief description of Nano.

Release numbering

Keep release at 1 when you introduce a brand-new package. We subsequently

incrementally increase it by 1 each time we submit an update to our recipe

repository.

Step 3 - Declare / correct the license

Find the license in upstream’s repository (often COPYING, LICENSE, or package

metadata). Convert it to an SPDX identifier.

Nano uses GPL-3.0-or-later.

name : nano

version : 8.7

release : 1

homepage : https://www.nano-editor.org/

upstreams :

 - https://www.nano-editor.org/dist/v8/nano-8.7.tar.xz :

afd287aa672c48b8e1a93fdb6c6588453d527510d966822b687f2835f0d986e9

summary : GNU Text Editor

description : |

 Nano is a small and simple text editor for use on the terminal.

 It copied the interface and key bindings of the Pico editor but

 added several missing features: undo/redo, syntax highlighting,

 line numbers, softwrapping, multiple buffers, selecting text by

 holding Shift, search-and-replace with regular expressions, and

 several other conveniences.

license :

 - GPL-3.0-or-later

https://spdx.org/licenses/

SPDX Licence identifier

The SPDX License List is a list of commonly found licenses and exceptions used in

free and open or collaborative software, data, hardware, or documentation. The

SPDX License List includes a standardized short identifier, the full name, the

license text, and a canonical permanent URL for each license and exception.

The purpose of the SPDX License List is to enable efficient and reliable

identification of such licenses and exceptions in an SPDX document, in source files

or elsewhere.

Step 4 - Translate prerequisites into build

dependencies

Map each upstream requirement to the package name that exists in AerynOS. Use pkg-

config() helpers when libraries provide .pc files. Toolchain components like gcc and

make are already available inside the build environment, so you do not have to list

them.

Upstream prerequisite Recipe build dependency

ncurses pkgconfig(ncursesw)

zlib pkgconfig(zlib)

libmagic pkgconfig(libmagic)

autoconf, automake already provided by the sandbox

Add them to builddeps:

Step 5 · Fill in build steps

builddeps :

 - pkgconfig(libmagic)

 - pkgconfig(ncursesw)

 - pkgconfig(zlib)

Nano follows the GNU autotools flow, so uses the standard macros (%configure, %make,

%make_install). These have already been populated by boulder recipe new so do not

need to be adapted. You can consult the macros documentation for variations and

additional guidance.

Step 6 · Review the finished recipe

Combining all the prior steps gives you a complete stone.yaml:

#

SPDX-FileCopyrightText: © 2025- AerynOS Developers

#

SPDX-License-Identifier: MPL-2.0

#

name : nano

version : 8.7

release : 1

homepage : https://www.nano-editor.org/

upstreams :

 - https://www.nano-editor.org/dist/v8/nano-8.7.tar.xz :

afd287aa672c48b8e1a93fdb6c6588453d527510d966822b687f2835f0d986e9

summary : GNU Text Editor

description : |

 Nano is a small and simple text editor for use on the terminal.

 It copied the interface and key bindings of the Pico editor but

 added several missing features: undo/redo, syntax highlighting,

 line numbers, softwrapping, multiple buffers, selecting text by

 holding Shift, search-and-replace with regular expressions, and

 several other conveniences.

license :

 - GPL-3.0-or-later

builddeps :

 - pkgconfig(libmagic)

 - pkgconfig(ncursesw)

 - pkgconfig(zlib)

setup : |

 %configure

build : |

 %make

install : |

 %make_install

http://127.0.0.1:4321/packaging/macros/

Update/correct the monitoring.yaml file

Release monitoring keeps automated eyes on your package. More details around our

monitoring file can be found on our Monitoring page.

As mentioned earlier in this guide, the boulder recipe new command has already

attempted to create a monitoring.yaml file for you.

In the case of Nano, it wasn’t able to uniquely identify the project so the output was not

as valuable and needs to be corrected.

For reference, its output is as below:

http://127.0.0.1:4321/packaging/recipes/monitoring

releases:

 id: ~ # https://release-monitoring.org/ and use the numeric id in the url of

project

 rss: ~

security:

 cpe:

 - vendor: gnu

 product: nano

 - vendor: nano_arena_project

 product: nano_arena

 - vendor: viz

 product: nano_id

 - vendor: lenovo

 product: thinkpad_x1_nano_gen_1_firmware

 - vendor: nvidia

 product: jetson_nano

 - vendor: lenovo

 product: thinkpad_x1_nano_gen_2_firmware

 - vendor: lenovo

 product: thinkpad_x1_nano_gen_2

 - vendor: lenovo

 product: thinkpad_x1_nano_gen_1

 - vendor: nxp

 product: mifare_ultralight_nano_firmware

 - vendor: jtekt

 product: nano_cpu_tuc-6941_firmware

 - vendor: jtekt

 product: nano_10gx_tuc-1157_firmware

 - vendor: autelrobotics

 product: evo_nano_drone_firmware

 - vendor: jtekt

 product: nano_safety_rs01ip_tuu-1087

 - vendor: jtekt

 product: nano_safety_rs00ip_tuu-1086

 - vendor: netshieldcorp

 product: nano_25_firmware

 - vendor: ledger

 product: nano_x_firmware

 - vendor: ledger

 product: nano_s_firmware

 - vendor: jtekt

 product: nano_cpu_firmware

Update monitoring.yaml once you know the upstream identifiers:

1. Search for the project on https://release-monitoring.org/ and copy the numeric id.

2. Add an RSS or Atom feed URL if upstream publishes one; otherwise leave rss: ~.

3. Check the National Vulnerability Database for a CPE string

(https://nvd.nist.gov/products/cpe/search). If none exists, leave it as ~.

 - vendor: jtekt

 product: nano_2et_firmware

 - vendor: jtekt

 product: nano_10gx_firmware

 - vendor: nxp

 product: mifare_ultralight_nano

 - vendor: nxp

 product: i.mx_8m_nano

 - vendor: nvidia

 product: jetson_nano_2gb

 - vendor: jtekt

 product: nano_safety_tuc-1085

 - vendor: jtekt

 product: nano_cpu_tuc-6941

 - vendor: jtekt

 product: nano_2et_tuu-6949

 - vendor: jtekt

 product: nano_10gx_tuc-1157

 - vendor: autelrobotics

 product: evo_nano_drone

 - vendor: netshieldcorp

 product: nano_25

 - vendor: ledger

 product: nano_x

 - vendor: ledger

 product: nano_s

 - vendor: jtekt

 product: nano_cpu

 - vendor: jtekt

 product: nano_2et

 - vendor: jtekt

 product: nano_10gx

 - vendor: magzter

 product: nano_digest

https://release-monitoring.org/
https://nvd.nist.gov/products/cpe/search

Using this information we can correctly identify the id as 2046 and that there is no rss

feed or cpe string. The monitoring.yaml file should look like this:

Build and test the package

Once you have made the relevant changes to the package, you will need to build it

locally. Refer to the Building and Testing packages page on guidance of how to do this.

releases:

 id: 2046 # Release Monitoring ID for nano

 rss: ~ # Replace when upstream publishes a feed

security:

 cpe: ~ # Update if upstream changes identifiers

http://127.0.0.1:4321/packaging/workflow/building-and-testing-packages/

Updating an existing package

recipe
This guide details the process of updating a package that is already present in the

AerynOS repository. We will use GNU Nano as the running example, but the same steps

apply to any existing package.

Before updating the package yourself, please double check that there isn’t already an

outstanding PR for the update you want to make. Please also check if someone has

created an update request issue in the AerynOS recipes repository.

Prepare your workspace

Prior to starting, ensure you have followed the prerequisites set up process, the Basic

Packaging Workflow and updated your system in accordance with Preparing for

Packaging guide.

If you have not done this, follow those steps first before proceeding.

Simple updates to a package

To update a package to a newer available version, navigate to the relevant folder

within your local recipe repository on your system. If you have already navigated to the

local recipe repository, then by way of example, to navigate to the Nano package

folder, you would use the command:

Bumping a package

If there are changes to dependencies of a package, but not to the package itself, you

need to increase the release number within the stone.yaml recipe file by one. This will

allow you to rebuild the package and test it against the newer dependences to make

sure everything is working. You can do this by using the following command:

chpkg nano

https://github.com/AerynOS/recipes
https://github.com/AerynOS/recipes
http://127.0.0.1:4321/packaging/workflow/prerequisites/
http://127.0.0.1:4321/packaging/workflow/basic-workflow/
http://127.0.0.1:4321/packaging/workflow/basic-workflow/
http://127.0.0.1:4321/packaging/workflow/preparing-for-packaging/
http://127.0.0.1:4321/packaging/workflow/preparing-for-packaging/

which is a shortcut for

Please note each time you do this, you will increase the release number by one, so do

not use this command multiple times for one package update.

Updating a package version

If you need to update the package version itself, you can use the following command:

In the example of nano, to update to version 8.7, you would use the following

command:

This command does the following:

1. Updates the version of the package within the recipe

2. Updates the upstream location of the source code

3. Checks the Sha256sum of the source code and inputs this in the recipes

4. Bumps the release number by 1

Wider updates to a package

just bump

boulder recipe bump

boulder recipe update --ver "version name" --upstream "upstream URL"

stone.yaml -w

boulder recipe update --ver 8.7 --upstream https://www.nano-

editor.org/dist/v8/nano-8.7.tar.xz stone.yaml -w

If there are further changes required to the stone.yaml recipe file, you can either use a

text editor (such as Nano itself) or a code editor (such as Zed which is pre-installed on

AerynOS) to make changes those changes. Guidance on how to make changes to a

stone.yaml file are covered in the Creating a new package recipe page.

Build and test the package

Once you have made the relevant changes to the package, you will need to build it

locally. Refer to the Building and Testing packages page on guidance of how to do this.

http://127.0.0.1:4321/packaging/workflow/creating-a-new-recipe/
http://127.0.0.1:4321/packaging/workflow/building-and-testing-packages/

Building and testing packages
This guide will walk you through the process of building and testing packages locally on

your system, regardless of whether they come from new package recipes or existing

ones you are updating.

Build the package

Once you have created or updated a package recipe, you will need to build it locally. If

you are only updating one package, you can either keep your local repository disabled

prior to building the package. If you prefer to keep it enabled, make sure there are no

other packages indexed locally that could interfere with your new package build.

Note

Please ensure you have followed the steps in the Preparing for Packaging guide to

ensure you volatile repository is enabled.

The command to build the updated package is:

If the package is successfully built, you will need to move it to your local repository. You

can do this using the following command:

If you have not yet enabled the local repository, you do this with the following

command:

You will then need to sync the local repository using the command:

just build

just mv-local

sudo moss repo enable local

http://127.0.0.1:4321/packaging/workflow/preparing-for-packaging/

Note, if you already have an older version of the package installed, you will be asked if

you want to update to the new local version you have just built. If you have not yet

installed this package, you would install it as normal using the command:

Once you have tested the package, you can make a submission for including the

update in the repository.

How to submit pull requests

To find guidance on how to submit a pull request (PR), you can refer to our submit

a pull request page. s

sudo moss sync -u

sudo moss install "package name"

http://127.0.0.1:4321/packaging/workflow/submitting-a-pr
http://127.0.0.1:4321/packaging/workflow/submitting-a-pr

Submitting a PR

Submitting packages to AerynOS

repository

Once you have prepared your package, you can submit it to the AerynOS repository by

creating a pull request (PR). There are certain guidelines to follow when submitting a

PR:

Naming Pull Requests

To keep git summaries readable, AerynOS requires the following git summary format

name: Add at v<version>

name: Update to v<version>

name: Fix <...>

[NFC] name: <description of no functional change commit>

No Functional Change

NFC refers to “No Functional Change”, which means that the commit does not

introduce any new functionality or behavior, so a recipe does not need to be

rebuilt as part of the PR process.

Content of Pull Request descriptions

Git commits should be self-contained and self-explanatory. They serve as

documentation for the changes made to a codebase so that others can understand and

review them and also refer back to them later down the line. It is important to provide

high quality git commit messages so that you or other contributors can understand the

changes you are making and why.

While you know what you’re doing in the moment, other contributors may not, and as

time goes by, bisecting changes becomes more difficult if commit messages give you

no clue as to why you made a change or what regressions might be caused if you alter

it.

Commit message format

The recommendation for commit messages is:

Short summary written in the imperative mood

A few sentences or bullet points with the key changes this commit introduces

Link to full changelog (if applicable). If this commit updates the recipe several

versions, consider splitting the changelog out into version bullet point entries in

ascending order (newest change last).

Test plan demonstrating that you have actually confirmed the changes work on

your local system

If the change resolves an issue, include a Resolves line with the issue number

(Where issuenumber is the issue number of the package request/update).

The last point about the test plan is particularly important, as it ensures that the

changes have been tested and verified before being merged into the main codebase.

There is an explicit agreement that you take ownership of the quality of the

changes/updates you submit, and that you understand that if there are issues, you are

likely to be the first person consulted to fix said issues.

The imperative mood

Git commits should be written in the imperative mood. This means that the

commit message should start with a verb in the present tense, such as “Add”,

“Update”, or “Fix”. This makes the commit message more concise and easier to

understand.

Example commit message

An example commit message for the AerynOS recipe repository is structured as follows:

https://medium.com/@luka_78026/imperative-mood-makes-you-feel-good-1cad063d7014

brobdingnar: Update to v1.2.3

Write a suitable short summary of the changes if relevant, including potentially

a list of things like:

- foo

- bar

- baz

Full changelog [here](the.uri)

Test Plan:

- Build and install the updated package

- Confirm functionality of changes

Resolves:

(If applicable for the recipes repository) Resolves aerynos/recipes#issuenumber

Checking for package updates

Use ent to check for package updates

This guide will walk you through the process using ent, a tool built by the AerynOS

team to check for package updates. ent checks recipes against upstream sources to

determine whether updates are available.

ent is not installed on your system by default. To install ent using moss, use the

following command:

How ent works

ent scans the current directory and all subdirectories beneath it. It inspects each recipe

monitoring.yaml file and compares the referenced stone.yaml recipe upstreams to

determine whether newer versions are available.

Because ent operates relative to the directory in which it is executed, you can control

the scope of the update check by choosing where to run the command within the

recipes repository.

Running update checks

To check for updates across all recipes, run the following command from the root of the

recipes repository:

You can also run this command from more specific locations:

Repository root Checks all recipes in the repository.

sudo moss install ent

gotoaosrepo

ent check updates

Letter directory (for example, f/) Checks only recipes whose names start with

that letter.

Specific recipe directory (for example, f/firefox/) Checks only that single

recipe.

For example, running the command from f/firefox/ will check only the Firefox recipe

for available updates.

What is ent?

ent queries an upstream site for package release info every time you run it. Please

be mindful of not running it gratuitously so as to remain a good ecosystem citizen.

Recipes

Overview

Introduction to the `stone.yaml` format

Upstreams

Configuring where the recipe finds the 'sources' required for a build to work

Metadata

Keys and options to tweak the metadata for a recipe

Monitoring

Create and maintain monitoring.yaml so release automation and security alerts

stay accurate.

Build dependencies

Build dependency types

Package definitions

Manage dependencies, subpackages and more

Triggers

Triggers are system actions that run during package installation

System Accounts

Stateless management of packaging-based system accounts

http://127.0.0.1:4321/packaging/recipes/overview/
http://127.0.0.1:4321/packaging/recipes/upstreams/
http://127.0.0.1:4321/packaging/recipes/metadata/
http://127.0.0.1:4321/packaging/recipes/monitoring/
http://127.0.0.1:4321/packaging/recipes/build-deps/
http://127.0.0.1:4321/packaging/recipes/package-definition/
http://127.0.0.1:4321/packaging/recipes/triggers/
http://127.0.0.1:4321/packaging/recipes/system-accounts/

Overview
Simply put, a recipe is some metadata to describe a software package, and the

associated instructions required to build that package in a reproducible fashion. Doing

so allows us to automate builds, and provide software updates. At a surface level, our

stone.yml recipe format has an awful lot in common with other packaging systems.

A basic recipe

How might a stone.yml look like for a very trivial package, such as the Nano editor?

name : nano

version : 8.7

release : 38

homepage : https://www.nano-editor.org/

upstreams :

 - https://www.nano-editor.org/dist/v8/nano-8.7.tar.xz :

afd287aa672c48b8e1a93fdb6c6588453d527510d966822b687f2835f0d986e9

summary : GNU Text Editor

description : |

 Nano is a small and simple text editor for use on the terminal.

 It copied the interface and key bindings of the Pico editor but

 added several missing features: undo/redo, syntax highlighting,

 line numbers, softwrapping, multiple buffers, selecting text by

 holding Shift, search-and-replace with regular expressions, and

 several other conveniences.

license :

 - GPL-3.0-or-later

builddeps :

 - binary(msgfmt)

 - pkgconfig(libmagic)

 - pkgconfig(ncursesw)

 - pkgconfig(zlib)

setup : |

 %configure

build : |

 %make

install : |

 %make_install

https://nano-editor.org/

..It really is that simple. However, do not let the simplicity of the format fool you,

boulder has a lot of hidden powers.

Upstreams
The majority of packages are built using upstream release sources. While it is possible

to create packages manually from local assets, the bulk of packages take an upstream

tarball and build it.

Plain sources

A plain source is one that simply has an upstream URI and can be unpacked in some

fashion, i.e. a tarball. The hash must be provided for the upstream and accompanied by

the SHA256 sum.

Additional options

Key Type Description

hash string SHA256 of the upstream source

stripdirs string Number of directories to remove from archive root

unpack boolean Whether to automatically unpack archive or not

unpackdir string Force a different directory name when unpacking

Git sources

A git source may be used, when providing either a tag or ref. In AerynOS we forbid the

use of branch names in packaging, as they may mutate and break subsequent builds.

Ideally a full git ref should be used.

upstreams:

 - uri: $hash

upstreams

 - uri:

 hash: $hash

Caution

Git repositories do work well with boulder right now, however some submodule

based builds are under active testing.

Additional options

Key Type Description

ref string git ref when using git source

clonedir string Override clone target directory

upstreams:

 - git|uri: $ref

upstreams:

 - git|uri:

 ref: $ref

Metadata
Recipes provide basic metadata to support discovery and automation.

Certain data is purely for naming, others are purely functional and some are used for

our integration tooling. By having a well defined format with strongly typed keys, we’re

able to build in automatic update checking, for example. Most importantly, we need

users to be able to find the software!

Mandatory keys

The following metadata keys are absolutely essential.

name

Set the source name of the package. As closely as possible, this should match the

upstream name. This is used as the basename of the package when subpackages are

automatically generated, for example:

Could generate zlib, zlib-devel, zlib-dbginfo, etc.

version

This string tells users what version they are using, and isn’t used at all for any kind of

version comparison logic in the tooling. It is essentially a freeform string. It should be

identical to the upstream identifier so that we can detect new releases automatically of

the source project.

release

A monotonically incrementing integer. This field is bumped whenever we need to issue

a new build (“release”) of a package as an update to users. Without incrementing this

field, no build is scheduled.

homepage

name: zlib

Web presence for the upstream project.

license

Either a string or list of strings denoting all applicable licenses, using their SPDX

identifier. Required for basic compliance.

https://spdx.org/

Monitoring
Every recipe should ship a monitoring.yaml so our tooling can watch for upstream

releases and security issues. Use this reference to populate the file consistently and to

find the data required for each field.

File layout

A minimal monitoring file includes release tracking and optional security metadata:

Indent with two spaces and keep related comments inline so CI and reviewers can

follow your reasoning.

Release tracking

releases.id : Numeric identifier from release-monitoring.org (Anitya). Look up the

upstream project and note the number in the URL, for example https://release-

monitoring.org/project/300958 for Python.

releases.rss : URL to an Atom/RSS feed for new releases. Use ~ if no feed exists.

Common feed patterns

GitHub: https://github.com/<org>/<repo>/releases.atom or .../tags.atom

GitLab / KDE Invent: append /-/tags?format=atom to the project URL, for

example https://invent.kde.org/plasma/plasma-desktop/-/tags?format=atom

PyPI: no feed is required; prefer ~ and rely on the Anitya ID

Freedesktop GitLab: https://gitlab.freedesktop.org/<path>/-/tags?

format=atom

releases:

 id: 00000

 rss: https://example.com/project/releases.atom

security:

 cpe:

 - vendor: example

 product: project

https://release-monitoring.org/

Custom sites: many upstreams publish a releases.xml/atom.xml file; link directly

when available

Ignore patterns

Use releases.ignore to skip versions our repo does not track. Provide a short comment

and regular expressions that match the releases to drop.

Prefer anchored expressions (^ / $) to avoid false positives.

For reference, ^ means “begins with”, while $ means “ends with”.

Security metadata

security.cpe : List of Common Platform Enumeration entries to watch in the NVD feed.

Search nvd.nist.gov for vendor and product strings. Add every applicable CPE when

upstream ships multiple identifiers.

security.ignore : Optional list of CVE IDs or regexes our package should ignore (for

example, CVEs that only affect optional components).

If no CPE exists, set the value to ~ and add a dated comment noting the last time you

checked.

Assuming that the repository helper script has been sourced for your shell, you should

be able to use the cpesearch function to search for related CPEs for the package given

as the argument.

releases:

 id: 320206

 ignore:

 # Qt 6 builds are out of scope for qt5 packages

 - ^6\.

 rss: ~

security:

 cpe: ~

 # No known CPE as of 2024-09-01

https://nvd.nist.gov/products/cpe
http://127.0.0.1:4321/packaging/workflow/prerequisites/#activating-the-aerynos-helper-scripts

Example:

cpsearch urllib3

Where to find the data

1. Start with release-monitoring.org: search for the upstream name.

2. Collect feeds: confirm the releases.atom or /-/tags?format=atom URL opens in a

browser. Use curl or wget -qO- <feed> locally when you need to double-check.

3. Identify CPE strings: search the NVD catalog or reuse values from similar

recipes. Many projects share vendor IDs (for example, both upstream python and

the urllib3 package provide CPEs).

4. Document exceptions: add comments whenever you set ignore patterns or

leave fields empty so future maintainers understand the decision.

Example templates

GitHub project with security feed

GitLab project with prerelease filter

releases:

 id: 4078

 rss: https://github.com/urllib3/urllib3/releases.atom

security:

 cpe:

 - vendor: urllib3

 product: urllib3

 - vendor: python

 product: urllib3

No CPE available

Keep monitoring files in sync with upstream changes. When a project moves or

renames releases, update the ID and feed so our automated tooling continues to work.

releases:

 id: 5440

 ignore:

 # Track the current stable branch only

 - 258.*

 rss: https://gitlab.freedesktop.org/systemd/systemd/-/tags?format=atom

security:

 cpe:

 - vendor: systemd_project

 product: systemd

releases:

 id: 19755

 rss: ~

security:

 cpe: ~

 # No CPE published as of 2023-03-23

Build dependencies
Every build of a recipe by boulder will create an entirely new root, with only the

absolute minimum support dependencies in place. In order to build most software, you

will need to add to the builddeps key in stone.yml. Luckily, our tooling supports more

than one kind of dep.

Note that AerynOS packages are also capable of storing providers that make the

following kinds of dependencies work.

$name - standard deps

Simply listing a name will create a dependency on that package name. This is

discouraged as automatically resolved providers offer a far more resilient system.

binary() - Standard binaries

Got a hard requirement for an executable in /usr/bin, such as grep ?

sysbinary() - System binaries

Need an executable only found in /usr/sbin ?

pkgconfig() - PkgConfig / pkgconf

Trivially map package names to standard pkgconfig names (.pc files):

builddeps:

 - some-package

builddeps:

 - binary(grep)

builddeps:

 - sysbinary(mount)

pkgconfig32() - 32-bit PkgConf

Much like pkgconfig - specifically designed for .pc files installed to

/usr/lib32/pkgconfig in 32-bit builds:

cmake() - CMake modules

Work with many C++/CMake builds much more easily by using the CMake module

names

builddeps:

 - pkgconfig(ncurses)

 - pkgconfig(zlib)

builddeps:

 - pkgconfig32(x11)

builddeps:

 - cmake(Qt5OpenGL)

Package definitions
A recipe build can result in a number of packages being produced from a single source,

through an automatic splitting system. Certain subpackages are already defined in the

boulder project to ensure consistency of package splitting and names, whereas some

may be explicitly defined in a recipe to fine-tune the results.

Every recipe also contains a root package definition, i.e the default target. This is

merged with the standard metadata.

Package metadata

summary

A brief, one line description of the package based on its contents.

description

A more in depth description of the package, usually sourced from a README or project

description.

rundeps

A list of manually specified runtime dependencies. These may be added to ensure that

one split package depends on another, or to add a hard dependency that is not

accounted for by the automatic systems.

Example:

Defining a subpackage

Additional packages may be defined by extending the packages set, and matching a set

of paths to include in that subpackage.

rundeps:

 # Depend on subpackage in this set ending with `-devel`

 - "%(name)-devel"

 - filesystem

For example:

Note that automatic dependencies and providers still work with subpackages, so binary

deps will resolve without having to manually specify those.

Overriding defaults

To override splitting in the root package, for example, to avoid -devel subpackage

when building a headers-only package, you could do:

To add to a predefined package, such as -docs:

packages:

 - "%(name)-tools":

 summary: Cool tools package

 description: |

 Provides a cool set of tools!

 paths:

 - /usr/bin/extra-tool

paths:

 - /usr/include

packages:

 - "%(name)-docs":

 paths:

 - /usr/share/custom-docs

Triggers

Overview

Triggers match filesystem paths to actions

Transaction triggers

Transaction triggers run in confinement to finish package configuration tasks

http://127.0.0.1:4321/packaging/recipes/triggers/overview/
http://127.0.0.1:4321/packaging/recipes/triggers/tx-triggers/

Overview
AerynOS supports the use of triggers, or actions, that run at the end of package

installations. Given the significantly different architecture of AerynOS, these triggers

may not be quite what you are used to in other distributions or package managers.

Basic mechanism

After a new transaction is formed and moss has identified all of the paths used to

compose a filesystem, the staging tree is built as the basis of the new /usr. Any trigger

files (under /usr/share/moss/triggers) will be loaded, and any matching triggers will

be executed at the appropriate stage.

Note that trigger logic is based on glob-style path matches and are not incremental.

Our triggers were so designed to avoid the uncontrolled execution of arbitrary scripts,

instead relying on logical matching of patterns to handlers.

Capturing globs

Our triggers use special string tokens to permit capturing groups from a glob-style

string. At this stage we support * and ? glob characters only, compiling to a regex

internally. Support is planned for braces.

The parenthesis begin a non-greedy capture group named GROUP_NAME containing

pattern PATTERN. For example:

This creates a capture group identifed by name matching * in

/usr/share/icons/*/index.theme. As such, the path

/usr/share/icons/hicolor/index.theme. with name being set to hicolor.

 /usr/lib/(GROUP_NAME:PATTERN)/dir

 /usr/share/icons/(name:*)/index.theme

This is a powerful mechanism that allows us to control handler execution without

relying on interim scripts.

Consider this example:

This will only match lib*.so.* glob, and set libname to libz.so.1 for

/usr/lib32/libz.so.1, but will not match for /usr/lib64/libz.so.

These globs are then used for string substitution in the arguments passed to handlers.

 /usr/lib*/(libname:lib*.so.*)

Transaction triggers
Transactional scope triggers (tx triggers) are run after the new filesystem transaction

has been blitted to disk, and just before the new /usr tree is activated. These triggers

run within a specialised container and have read-write access to the new /usr tree, but

only have read-only access to the /etc directory.

Transaction triggers must be installed in /usr/share/moss/triggers/tx.d with a .yaml

suffix.

Sample trigger

This simple trigger will run depmod -a 6.6.15 when any files are installed to

/usr/lib/modules/6.6.15/. Note that identical commands (after expansion) will be

collapsed automatically to a single run.

To install this trigger in your recipe:

name: depmod

description: |

 Update kernel module dependencies

Define all of our handlers

handlers:

 depmod:

 # Run `depmod` with these arguments

 run: /usr/sbin/depmod

 args: ["-a", "$(version)"]

paths:

 # Set up a match

 "/usr/lib/modules/(version:*)/*" :

 # Run these handlers for this match.

 handlers:

 - depmod

 type: directory

%install_file %(pkgdir)/trigger.yaml %

(installroot)/usr/share/moss/triggers/tx.d/gdk_pixbuf.yaml

System Accounts

Groups

Stateless management of system group accounts

Overview

Stateless management of AerynOS user accounts

Users

Stateless management of system user accounts

http://127.0.0.1:4321/packaging/recipes/system-accounts/groups/
http://127.0.0.1:4321/packaging/recipes/system-accounts/overview/
http://127.0.0.1:4321/packaging/recipes/system-accounts/users/

Groups
Refer to the JSON Group Record documentation for information on all supported fields.

Example

Within the package tree ./pkg add gdm.group:

Note that these are the minimum required set of fields, and disposition should always

be set to system.

In your recipe’s install section, you must install the file by group name and by gid to

the %(libdir)/userdb directory:

{

 "groupName" : "gdm",

 "gid" : 21,

 "disposition" : "system"

}

 %install_file %(pkgdir)/gdm.group %(installroot)%

(libdir)/userdb/gdm.group

 ln -s gdm.group %(installroot)%(libdir)/userdb/21.group

https://systemd.io/GROUP_RECORD/

Overview
As a stateless distribution, AerynOS does not permit the modification of /etc/passwd

and co by packages or triggers. Instead, we integrate nss-systemd and userdb.

Caution

The use of nss means that user accounts and groups defined by this mechanism

are only available to packages using the correct glibc APIs. Statically linking with

musl or directly reading /etc/passwd, /etc/group, etc, will not reveal these

accounts.

The main benefit with this approach is ensuring that we do not directly mutate system

files, and that unlike the sysusers mechanism, removal of a package ensures these

system user and group definitions are no longer available.

Users
System accounts should always be marked as locked. Refer to the JSON User Record

documentation for information on all supported fields.

In AerynOS we only ship user definitions without privileged or signature fields.

Example

Within the package tree ./pkg add gdm.user:

Note that these are the minimum required set of fields, and disposition should always

be set to system. Also note that homeDirectory may need setting for some packages.

In your recipe’s install section, you must install the file by username and by uid to the

%(libdir)/userdb directory:

{

 "userName" : "gdm",

 "realName" : "GNOME Display Manager",

 "uid" : 21,

 "gid" : 21,

 "disposition" : "system",

 "locked" : true

}

 %install_file %(pkgdir)/gdm.user %(installroot)%(libdir)/userdb/gdm.user

 ln -s gdm.user %(installroot)%(libdir)/userdb/21.user

https://systemd.io/USER_RECORD/

Macros
Every stone.yaml build has access to a number of action and definition macros. With

these, we can ensure a greater degree of integration and consistency in our packaging,

and vastly simplify common tasks to reduce maintainer burden.

autotools

autotools macros

cargo

Rust project builds

cmake

cmake build system

meson

meson build system

Miscellaneous

misc helpers

perl

perl module packaging

python

python packaging

http://127.0.0.1:4321/packaging/macros/autotools/
http://127.0.0.1:4321/packaging/macros/cargo/
http://127.0.0.1:4321/packaging/macros/cmake/
http://127.0.0.1:4321/packaging/macros/meson/
http://127.0.0.1:4321/packaging/macros/misc/
http://127.0.0.1:4321/packaging/macros/perl/
http://127.0.0.1:4321/packaging/macros/python/

autotools
The autotools macros are used for projects that supply a Makefile, and potentially a

./configure script.

%configure

Perform ./configure with the default options

%make

Perform a make

%make_install

Install results of build to the destination directory

%reconfigure

Re autotools-configure a project without an autogen.sh script

%autogen

Run autogen.sh script, attempting to only configure once

cargo
When building “pure” Rust packages with the cargo build tool, ensure you use the

%cargo* macros to allow boulder to control the various tuning options and debuginfo

behaviour.

%cargo_set_environment

Set environmental variables for Cargo build

%cargo_fetch

Fetch dependencies

%cargo_build

Build the rust project

%cargo_install

Install the built binary

%cargo_test

Run tests

https://rust-lang.org/

cmake

%cmake

Perform cmake with the default options in a subdirectory

%cmake_unity

Perform cmake with unity build enabled

%cmake_build

Build the cmake project

%cmake_install

Install results of the build to the destination directory

%cmake_test

Run testsuite with ctest

meson

%meson

Run meson with the default options in a subdirectory

%meson_unity

Run meson with unity build enabled

%meson_build

Build the meson project

%meson_install

Install results of the build to the destination directory

%meson_test

Run meson test

Miscellaneous

%install_bin

Install files to %(bindir)

%install_dir

Create a new empty directory with the default permissions

%install_exe

Macro to install a file with default executable permissions

%install_file

Macro to install a file without executable permissions

%patch

Patch the upstream sources using an input patch file.

%install_bin nano

%install_dir %(installroot)%(datadir)/pkgname/docs

%install_file %(pkgdir)/helper.file %(installroot)%(datadir)/pkgname/pkgfile

%patch %(pkgdir)/${file}

If you need to override -p#, add it after ${file}

%patch %(pkgdir)/some.patch -p3

Example usage

Example usage

Example usage

Example usage

%tmpfiles

Create a tmpfiles.d file for the package with given content

%sysusers

Create a sysusers.d file for the package with given content

perl

%perl_setup

Setup perl with ExtUtils::MakeMaker from stdlib

python

%python_setup

Perform python setup and build with the default options

%python_install

Install python package to the destination directory

%pyproject_build

Build a wheel for python PEP517 projects

%pyproject_install

Install wheel to destination directory

%python_compile

Compile .pyc bytecode files from any miscellaneous .py files in the install directory.

Developers

Caution

This documentation is only a stub and serves as a placeholder for future content.

In time, the full format and payloads of of moss will be documented, along with

other technologies such as blsforme, os-info, etc.

AerynOS includes some bespoke technologies and formats that are used to package,

distribute, and introspect deployed software. This section of the documentation

provides an overview of these technologies and formats.

Stone Format

Binary stone format

http://127.0.0.1:4321/developers/stone/

Stone Format
The Stone format is a binary format used to package and distribute software in

AerynOS. It is designed to be type-safe and version-aware.

Header

Stone archive header format

V1 Stone

V1 Stone format

http://127.0.0.1:4321/developers/stone/header/
http://127.0.0.1:4321/developers/stone/v1/

Header
Stone archives are encoded with a version agnostic header, ensuring that version-

specific fields can be handled separately from version and format detection. This is a

32-byte header at the start of the archive.

Fields

Field Size Description

magic 4 bytes Always 0x006d6f73

data 24 bytes Version specific data

version 4 bytes Version number, i.e. 1

moss identifier

The “magic” is always recorded as NUL M O S, or:

pub const STONE_MAGIC: &[u8; 4] = b"\0mos";

V1 Stone
The V1 Stone Format is the format currently employed by AerynOS, and is the first

revision of our format. Over time we will continue to enhance the format and introduce

new features, gated explicitly to a version.

V1 Header

The v1 header of the stone format

http://127.0.0.1:4321/developers/stone/v1/header/

V1 Header
The v1 header contains 3 fields to denote the type of the .stone file as well as a count

of the payloads. These are contained within the 24-byte data field of the agnostic

header.

Fields

Field Size Description

num_payloads 2 bytes Number of all payloads within the archive

padding_chk 21 bytes Simple corruption check (fixed content)

type 1 byte Denotes the archive type

The padding check

While building the stone format, we built-in the .data field to permit future extensions

in subsequent stone versions. As of v1, the .padding_chk field contains a statically

initialised array as a mild corruption check.

Types

Name Value Description

Binary 1 Standard package

Delta 2 currently unused

Repository 3 A package repository index

const INTEGRITY_CHECK: [u8; 21] = [

 0, 0, 1, 0, 0, 2, 0, 0, 3, 0, 0, 4, 0, 0, 5, 0, 0, 6, 0, 0, 7,

];

Name Value Description

BuildManifest 4 A build-time artefact containing the yield potential of a

package

