Contents

e AerynOS
e Qverview

e Philosophy
o Stateless (aka hermetic /usr)

o Atomic updates

o Self healing
* FAQ

e Contributing
o Financial contributions to AerynQS

o Contributing_to our codebases

o QOther contributions

e Users

e Getting_Started

e Requirements

o Minimum System Requirements

o |nstaller Requirements

e Downloading AerynQS

o Downloading_the ISO

o Verifying_the Checksums

e Creating_ the Live Environment

o Creating_a Bootable USB Drive

e Booting_the Live Environment

o Booting_from a USB Drive

o Testing_the Live Environment

e System Management

e Configuration Locations

o System defaults

o System overrides

o User-level configuration

o Where to look next

e Manage Moss States and Packages
o Check the current state

[e]

o

Activate a different state

Search for packages

Search for installed files

Install software

Update the system

Remove software

List currently installed software

Desktops
COSMIC
GNOME
Plasma

Window Managers

e Sway

Packaging
Workflow

Prerequisites

o

[e]

o

Installing_the build-essential package

Activating the AerynQOS helper scripts

Adding_/etc/subuid and /etc/subgid entries

Basic packaging_workflow

[e]

o

[e]

o

[e]

o

Understanding_moss-format repositories

Creating_a local repository

Building_recipes using_the local-x86_64 profile

Updating_the installed system state

Cleaning_the local repository

Ending_notes

e Preparing_for packaging

o

o

Update your clone of the recipes repository

Switch to a new git branch

e Creating_a new package recipe

o

[e]

o

Prepare your workspace

Scaffold the recipe directory

Fill the recipe step by step

o Update/correct the monitoring.yaml file

o Build and test the package

e Updating_an existing_package recipe

o Prepare your workspace

o Simple updates to a package

o Wider updates to a package

o Build and test the package

e Building_and testing_packages

o Build the package

e Submitting_a PR
o Naming_Pull Requests

o Content of Pull Request descriptions

e Checking_for package updates

o Use ent to check for package updates

e Recipes

e QOverview
o A basic recipe
e Upstreams

o Plain sources

o Git sources

e Metadata
o Mandatory keys

e Monitoring
o File layout

o Release tracking

o Security metadata

o Where to find the data

o Example templates

e Build dependencies

o $name - standard deps

[¢]

binary()_- Standard binaries

(¢]

sysbinary()_- System binaries

[¢]

pkgconfig()_- PkgConfig / pkgconf
pkgconfig32()_- 32-bit PkgConf

(¢]

o cmake() - CMake modules

Package definitions

o Package metadata

o Defining_a subpackage

o Qverriding defaults

Triggers

Overview

o Basic mechanism

o Capturing_globs

Transaction triggers

o Sample trigger

System Accounts

Groups

Macros

autotools

o %configure
o %make

o %make_install

o %reconfigure

o %autogen

e cargo

o %cargo_set environment

o %cargo_fetch

o %cargo_build

o %cargo_install

o %cargo_test

¢ cmake

o %cmake

o %cmake unity

o %cmake build

o %cmake_install

o %cmake_test

* meson

o %meson

o Y%meson_unity

o %meson_build

o %meson_install

o %meson_test

e Miscellaneous

o %install_bin
o %install dir

o %install_exe

o %install file
o %patch
o %tmpfiles

o %sysusers

o

Y%nperl_setup

e python
o %python_setup

o %python_install

o %pyproject build

o %pyproject _install

o %python_compile

e Developers

e Stone Format

e Header
o Fields

o moss identifier

¢ V1 Stone
¢ V1 Header

o Fields

o The padding_check

o Types

AerynOS

AerynOS is an independent Linux-based operating system that diverges significantly
from traditional distributions whilst still aiming to provide a familiar and comfortable
environment. In this section of the documentation, you can find high level information
about the project itself and what sets it apart from other distributions.

Overview N

Overview of the AerynOS project and its technologies

Philosophy >
The philosophy of AerynOS

FAQ >

Frequently asked questions

Contributing >
Contributing to AerynOS

http://127.0.0.1:4321/aerynos/overview/
http://127.0.0.1:4321/aerynos/philosophy/
http://127.0.0.1:4321/aerynos/faq/
http://127.0.0.1:4321/aerynos/contribute/

Overview

AerynQOS is a Linux-based operating system designed to eliminate years of technical
baggage. It is an engineering led effort in that the distribution is produced entirely by
the tooling we have developed. Every new feature, technology or enabling is carefully
considered, drawing on our own experiences and by studying the impact in similar
decision spaces in other projects.

Despite being heavily engineering led, we are not averse to design. We aim to provide
the best in class user experience atop a solid, innovative foundation, whilst ensuring
we have the scope and scalability to meet the needs of the future.

In essence, we're producing a distribution based on sound technical principles, in order
to deliver a “daily driver” that truly looks after itself, getting out of the way when you

need it to, and providing the tools you need when you need them.

If anything, AerynQOS is “operating-system-as-infrastructure”, providing a solid
foundation for your daily computing needs. We're not just a distribution, we're a

platform for the future.

/\ Caution

Remember, AerynOS is still in development. Despite our goals, we must be clear

that we've deemed ourselves to be alpha quality software.

Philosophy

Stateless (aka hermetic /usr) &

Most Linux distributions follow the Filesystem Hierarchy Standard which sets the

structure for all files and directories on a Unix-like system. In traditional FHS based
Linux distributions, package files can be installed to multiple directories, these can be

directories or files that users may interact with (such as config files).

In AerynQS, packages are forbidden from containing any files outside of /usr directory.
The /usr directory exclusively belongs to the system with the user not intended to
make any changes in this directory what-so-ever. Files written under the /usr directory

by a user will get removed (or reverted) the next time the system is updated.

In order to enable this, some packages and/or configurations are altered in AerynOS to
ensure they can operate in the absence of a user provided configuration. This forces
AerynQS to have sane defaults baked in at all levels, and eliminates 3-way merge
conflicts on package updates. There are no conflicts, because everything in /etc and

/var belongs to the user.

The stateless Linux concept was originally proposed by Red Hat in 2004 and the idea
has continued to evolve from there. AerynOS leans towards the approach developed by
Clear Linux, and we are refining it further.

However, it might still be necessary to create or update system configuration files in
lockstep with package installation. In AerynQOS, the only way for files to get created or
updated under /etc or /var during package installation is via package “triggers”.
Triggers are small scripts that are run at the tail end of package installation. AerynOS
supports two forms of package triggers: Transaction triggers and System triggers.

Transaction Triggers &

Transaction triggers are run at the end of a transaction in an ephemeral container
(Linux namespace) and may affect the contents of the transaction-specific /usr tree.
This is useful for interdependent packages that need to dynamically produce plugin

registries, for example.

System Triggers &

https://refspecs.linuxfoundation.org/FHS_3.0/fhs-3.0.pdf

System triggers do not run in an isolated container, but instead are run in the context
of the host system after the transaction has been successfully built and applied. It is
these (minimally used) triggers that invoke systemd-tmpfiles, systemd-sysusers etc.
For these cases we take special care to ensure that our default configs are sane and
that a rebuild is always possible.

Atomic updates #

An atomic update is a series of changes to a system that are treated as a single,
indivisible operation. If any part of this update fails, then the entire update is cancelled
with all prior parts of the incomplete update being rolled back. This means that either
an update completes fully as intended, or the system is left in the state it was in before
the update was attempted. This is important because partial updates often cause
significant issues such as bricked installs.

AerynOS’s approach to atomic updates is fairly different to the approach taken by other
Linux distributions, which mostly use an A/B switch model using specific read-only
filesystems to swap the whole system upon reboot. Atomic updates in AerynOS are
managed by its package manager moss (which we also refer to as a system state
manager). As such, AerynQOS is not tied to using read-only filesystems and this allows for
the use of XFS, ext4 and F2FS.

As mentioned above, AerynOS utilises a stateless design where packages can only be
installed to the /usr directory. The knowledge that packages can only be installed to

this directory allows AerynOS to innovate in its approach to atomic updates.

AerynOS packages are packaged up as bespoke .stone moss-format files. Hence,
AerynQOS does not use or rely on e.g. Debian .deb format package files or Fedora/RHEL
.rpm format package files. These .stone files contain a deduplicated set of hashed files
compressed using zstd. When a .stone file is installed via moss, the files are
decompressed and stored into a global, deduplicated content addressable store
under/.moss/. Relevant metadata about these files is also stored in a database under

/ .moss/.

As part of the final stages of an atomic transaction, moss creates (or “blits”) a new /usr
directory based on hardlinks to the global content addressable store, and swaps this
new /usr directory into place using the renameat2 Linux kernel syscall with the

https://www.virtualcuriosities.com/articles/4507/how-hard-links-and-inodes-work-on-linux

RENAME_EXCHANGE flag, which allows for atomically exchanging an old path for a new
path.

As hardlinks do not take up any significant additional space on disk, and since the
global content addressable store is always deduplicated as part of every transaction,
moss stores every /usr directory from every transaction. This allows for retaining
system snapshots with minimal overhead and provides the ability to perform atomic
rollbacks to earlier states so long as the user does not prune those.

Self healing #

As part of our boot management solution, every moss transaction ID is encoded into
the kernel command line and is picked up during early boot into our initramfs, before
/sysroot is pivoted to. Every kernel is correctly synchronised with the right rootfs
based on the moss transaction it was associated to. Given that every transaction
creates a new bootloader entry, AerynOS prunes all but the last 5 transactions from the
bootloader list to keep it manageable.

What are the implications of this? #

On a Gnome based system, if you were to delete gtk3, GDM, and gnome-shell you would
not be able to log back into the gnome session (as you've just deleted some really

important part of the gnome session!). In this case, on boot you would be greeted by a
linux console login prompt, which would only let you log into your user’s command line

shell, which is less than ideal.

In AerynOS, instead of this scenario, you can enter the bootloader (by mashing your
spacebar) on reboot, and in the bootloader, you can select the second to last entry and
this will automatically switch to the /usr filesystem transaction where gtk3, GDM and
gnome-shell had not yet been deleted. On activating this entry with the Enter key, you

will boot back into a working GDM for a graphical user experience.

Taking this a step further, if you were to remove glibc, given how integral it is to the
functioning of AerynOS and how it specifically includes the renameat2 function used by
moss to complete transactions, the system would be left in a state where the atomic
update did not complete and the whole system would be broken. In a traditional Linux
distribution, this will be very difficult, if not impossible to resolve without resorting to a
fresh re-install.

In AerynOS, however, upon trying to boot into this last transaction, the system will
discover that there is an issue with the transaction and will atomically roll back to the
prior bootloader entry with the associated correct /usr directory that works. This
rollback process only takes around a second (or a couple seconds, depending on your
hardware) and you will automatically be dropped back into a live working AerynOS

system.

Could this happen? »

Whilst it is unlikely that a user would ever knowingly delete these very important
packages (though it could happen), the more likely scenario on traditional Linux
distributions is that there is a partial update that may have deleted very important
aspects for a functioning system with the newer versions not having been yet installed
before the update stopped. By the design features mentioned above, this is impossible
on AerynOS.

FAQ

/\ Caution

This section is a work in progress and will be expanded over time.

Project identity @

What does AerynOS mean and how do | pronounce
it? »

AerynQS is a stylised spelling of “Erin”, alluding to the project’s Irish roots. It is
pronounced exactly the same as “Erin” - “AlR-in” OS. It’s also a play on “aer” and the
phonetic “air” sound, indicative of our desire to produce an open, trusted and high-
performance operating system.

It's pronounced as “AlIR-in"” OS.

What was Serpent 0S? »

Serpent OS is the former name of AerynOS. We announced our rebrand back in
February 2025, which culminated with the inaugural release of AerynOS 2025.03 on
March 25th, 2025. Per the announcement, our desire to rebrand was chiefly driven due
to effectively being lumbered with a hastily chosen name, that poorly reflected the

project’s goals and aspirations.

The project itself remains the same, with the same goals and aspirations, but with a

new name and a fresh coat of paint.

Installation Questions &
Which CPUs does AerynOS support? »

AerynOS is currently only compiled for the x86_64-v2 target architecture, which means
that it will run on CPUs supporting x86_64-v2 or greater psABI feature levels.

https://aerynos.com/blog/2025/02/14/evolve-this-os/

Checking the currently supported x86 64 psABI feature level of a system can be done

by executing the following snippet in a terminal as a normal user:

curl https://raw.githubusercontent.com/HenrikBengtsson/x86-64-

level/refs/heads/develop/x86-64-1level | bash -s -- --verbose

Does AerynOS offer NVIDIA GPU support? »#

Due to the way NVIDIA distributes its drivers, maintaining them in a distro is labour

intensive and frustrating when they do not work as advertised.

Given AerynOS is in the Alpha development stage, only limited, best effort NVIDIA
enablement related to cards supported by the so-called nvidia-open-gpu-kernel-

modules is currently offered.

You can check the status of NVIDIA support in AerynQOS/recipes#435

Does AerynOS support being installed alongside
another 0OS? »#

Officially? Not yet.
You can try, but there is no guarantee that AerynOS won't eat your other OS.

You have been warned.

What is the recommended partition layout for
Aeryn0S? »

In practice, we recommend that you install AerynOS to a separate drive with:

e A >=256MB ESP FAT32 partition (type 1 in fdisk).
o This must be manually formatted for the installer to recognise it.

e A 4GB XBOOTLDR FAT32 partition (type 142 in fdisk, bls_boot in gparted).

o This must be manually formatted for the installer to recognise it.
o This partition is large, because it is where the AerynOS kernel+initramfs and
(in the future) rescue image files will be saved.

A >20 GB system xfs partition
o This must be manually formatted for the installer to recognise it.

https://github.com/AerynOS/recipes/issues/435

o The larger the xfs system (/ or root) partition is, the more OS /usr directory

rollback states it can support in /.moss/.

ermo@virgil:~

> sudo fdisk -1 /dev/nvmelni

Disk /dev/nvmelnl: 931,51 GiB, 1000204886016 bytes, 1953525168 sectors
Disk model: Samsung SSD 980 PRO 1TB

Units: sectors of 1 * 512 = 512 bytes

Sector size (logical/physical): 512 bytes / 512 bytes

I/0 size (minimum/optimal): 512 bytes / 512 bytes

Disklabel type: gpt

Disk identifier: ED391D3B-7BCC-4407-911F-FF7B2CECB45A

Device Start End Sectors Size Type

/dev/nvmelnipl 2048 526335 524288 256M EFI System
/dev/nvmelnlp2 526336 8914943 8388608 4G Linux extended boot
/dev/nvmelnlip3 8914944 1953523711 1944608768 927,3G Linux root (x86-64)
ermo@virgil:~

> sudo 1lsblk -f /dev/nvmelnl

NAME FSTYPE FSVER LABEL UUID FSAVAIL

FSUSE% MOUNTPOINTS

nvmelnl

F-nvmelnipl vfat FAT32 CA93-B86A

-nvmeinip2 vfat FAT32 C837-2227

L-nvme1n1p3 xfs 569404f0-74ce-4c9e-936a-96aca25c7cd0 845, 6G
9% /

ermo@virgil:~

NB: Remember, there is nothing stopping you from creating an extra partition,
formatting it with a filesystem of your choice, and then configuring /etc/fstab to mount
it as /home after AerynOS has been installed, if you want to use a different filesystem

than xfs for your /home folders for whatever reason.

Why do you recommend the xfs filesystem for the
root partition? »

Testing_has shown that, due to how moss saves rollback states, xfs is by far the

quickest filesystem in practice for AerynQOS root partition usage.

We currently do not recommend either ext4 or f2fs root partitions, because testing has

shown that they offer very poor performance on the first update (sudo moss sync -u)

https://github.com/AerynOS/os-tools/blob/main/moss-filesystem-performance.md

after a cold start of your computer compared to xfs.

Do you support installing AerynOS on ext4? »

We currently strongly recommend that you use xfs on your root partition for the best
experience with moss and AerynOS.

Do you support installing AerynOS on f2fs? »

We currently strongly recommend that you use xfs on your root partition for the best
experience with moss and AerynOS.

Do you support installing AerynOS on btrfs? »

Not yet

Do you support installing AerynOS on bcachefs? »

Not yet

Do you support installing AerynOS on ZFS? #

Not at this stage. We may or may not decide to support it at some unspecified point in

the future, provided we can guarantee that we are legally in the clear to do so.

Usage Questions &

How do | make my system check for updates and
install them? #

sudo moss sync -u

This is a short hand form of:

update the local systems "view" of which packages are available
sudo moss repo update
synchronise the installed state against the list of available packages

sudo moss sync

Why don’t application icons for newly installed
apps show up in my current session after a sync or
install? #

It is a known issue and we are working on a solution.

For now, log out and back in again and they will show up.

When do | need to reboot after updates? »~

e Kernel updates require a reboot.

 Some updates require you to log out of your desktop session and back in (see

above).

e Most updates only require you to close the apps that were updated and start them
again.

How do | access the rollback feature at boot? #

Hold down or mash your Space key repeatedly after your computer starts up.

How do | verify the integrity of my install states in
Aeryn0S? »

sudo moss state verify

Tack on --help to see the options for verify.

How do | clean out older install states in
Aeryn0S? #

sudo moss state prune

Tack on --help to see the options for prune.

How do | configure custom kernel command line
parameters applied at each boot? »

See the blsforme repo readme for the expected format.

https://github.com/AerynOS/blsforme/?tab=readme-ov-file#filesystem-layout

Typically, it is necessary to change the installed system state with moss for command-

line snippets to take effect.

One way of doing that is to do a sudo moss remove nano -y && sudo moss install
nano -y, followed by sudo moss boot status to check if the new cmdline snippet is now

active.

Package Questions ¢

How come your package repository is so small? »#

We are still in heavy development (“Alpha”) and are developing our back end and

associated automated rebuild processes.

If we discover that it is necessary for us to rebuild our entire repository, we would like

the ability to do so in the span of an afternoon (using multiple builders in parallel).

Once our back end story and our automated rebuild process story are both further

advanced, we will begin scaling out the repository to contain more packages.

Could you package (...) please? »#
See above.

For now, we encourage users to use flatpaks for the applications we do not yet carry in
our repository.

Currently, we are focusing on adding must-have packages for platform bring-up, for
things that give us a development edge, or for things that help us showcase AerynOS

capabilities.

If the use-case for the package you are proposing is in line with the ethos above, you

can make a package request here

Where can | learn how to package for AerynOS? #

Consult the packaging documentation here.

In addition, consult the AerynOS recipes/ repository.

https://github.com/AerynOS/recipes/issues/new/choose
http://127.0.0.1:4321/packaging/
https://github.com/AerynOS/recipes

Finally, join the AerynQOS Zulip space and make sure to join the #0nboarding channel in

the General - Public space.

Project Questions ¢

Is it ok to share links to video content of AerynOS
in action in the Zulip rooms? #

Yes! We absolutely love seeing people using AerynQOS in the wild!

e Please first share them as a post in the Show and Tell category,

e Then, share a link to your post in the AerynOS Zulip space in the #Show-and-Tell

channel in the General - Public space so the link to the video doesn’t get lost in
the Zulip chat.

Which distribution is AerynOS derived from? #

AerynQOS has been bootstrapped and built from scratch and is not based on any other

distro.
This implies that AerynOS has its own:

e package manager (moss)
» package build tool (boulder)

e build pipeline consisting of:
o the package build dashboard and controller (summit)

o the builder-as-a-service middleware (avalanche)

o the package repository manager (vessel)
This also implies that AerynOS does NOT build upon or use either:

e .rpm related tooling from Red Hat
e .deb related tooling from the Debian Project

e Arch-related tooling

When will AerynOS be considered stable? »

https://aerynos.zulipchat.com/join/fuqokhsomj5mzqj6akqaiqlr/
https://github.com/orgs/AerynOS/discussions/categories/show-and-tell
https://aerynos.zulipchat.com/join/fuqokhsomj5mzqj6akqaiqlr/

AerynQS is taking on the ambitious task of creating a distribution from scratch, whilst
building its own tooling and solutions for this.

As such, there is no official ETA.

Now that the project has hit alpha status, you will see more frequent updates and
progress reports.

Contributing
Financial contributions to AerynOS #

AerynQS is an independent effort run by a handful of volunteers. The team is currently

targeting an income of 500€ per month to cover:

1. Infrastructure and project costs
2. Repayment to project stakeholders for initial project seed funding

3. Build up a buffer for unexpected costs and future initiatives.

We currently accept donations via Ko-Fi.

Contributing to our codebases #

AerynQS utilizes GitHub to manage code changes, including updates our our websites.
Each repository will have its own Readme that will include instructions on how to make
updates to it. They can be found here. To specifically make contributions to our
websites, you can visit the following repositories:

e Aeryn0OS.com site repo

e AerynOS.dev site repo

Other contributions ¢

The team is open to all forms of contribution, including any wallpapers or artwork that
you may wish to submit. The only requirement is that e.g. wallpapers or artwork are

licensed under an open license.

https://ko-fi.com/aerynos
https://github.com/orgs/AerynOS/repositories
https://github.com/AerynOS/dotdev
https://github.com/AerynOS/dotcom

Users

/\ Caution

Currently we are in an alpha stage of development so please expect breakages
and bugs. We are working hard to get to a stable release.

Getting Started
Getting started with AerynOS

System Management

Keep an AerynOS system healthy with stateless configuration guidance and
moss lifecycle tasks.

Desktops

Desktop environments

http://127.0.0.1:4321/users/getting-started/
http://127.0.0.1:4321/users/system-management/
http://127.0.0.1:4321/users/desktops/

Getting Started

Requirements

Requirements for AerynOS

Downloading AerynOS
Downloading the AerynOS ISO file and verifying the checksums

Creating the Live Environment

Creating a live environment to boot into and run the AerynOS installer

Booting the Live Environment

Booting into the AerynQOS Live Environment

http://127.0.0.1:4321/users/getting-started/requirements/
http://127.0.0.1:4321/users/getting-started/downloading/
http://127.0.0.1:4321/users/getting-started/creating-the-live-enviroment/
http://127.0.0.1:4321/users/getting-started/booting-the-live-environment/

Requirements
Minimum System Requirements &

/\ Caution

BIOS/CSM mode is not supported. Please ensure that your system is set to UEFI
mode.

e Architecture: x86_64-v2

 Firmware: UEFI (CSM Support must be disabled)

* Processor (CPU): Quad-core processor with a minimum clock speed of 2GHz
e System Memory (RAM): 4GB or more

e Storage: Minimum of 40GB available space

Installer Requirements #

To successfully create a bootable USB drive for installing AerynOS, the following
requirements must be met:

e Network: An active internet connection is required for installation

e USB Flash Drive: Ensure you have a USB flash drive with at least 4GB of free
space.

(D Danger

The process of flashing the ISO will completely erase all existing data on the
drive.

@ Note

It is advisable to use a high-quality USB drive to avoid potential issues during
the installation process.

 Image Flashing Software: Utilize one of the following recommended tools to
flash the AerynOS ISO image onto the USB drive:

o dd: A command-line utility available on most Linux distributions for creating
bootable USB drives.

o Fedora Media Writer: A reliable and user-friendly tool for creating bootable
USB drives.

o Rufus: A widely-used utility that provides advanced options for creating
bootable USB drives.

o Balena Etcher: A simple and user-friendly tool for creating bootable USB
drives.

¢ Additional Hardware: A physical keyboard, mouse, and monitor (or screen) are
required to interact with the installation process. Ensure that all these peripherals

are properly connected to the system before starting the installation.

Downloading AerynOS
Downloading the ISO ¢

1. Visit the AerynOS download page.

2. Look for the latest release available for download, the official ISO files are named

Aeryn0S-<version>-<desktop>-<architecture>.1iso.

(@ Note

There may be multiple versions available with different desktop environments

denoted by Aeryn0S-<version>-<desktop>-<architecture>.iso where <desktop> is

the desktop environment.

3. Click on the download link to start downloading the ISO file and assiocated
checksums denoted by Aeryn0S-<version>-<desktop>-

<architecture>.iso.sha256sum.

Once the download is complete, you can proceed with creating a bootable USB drive or

burning the ISO to a DVD to install AerynOS on your machine.

Verifying the Checksums &

Before creating a bootable USB drive or burning the ISO to a DVD, it's important to
verify the checksums to ensure the integrity of the downloaded ISO file.

/\ Caution

Using the ISO file without verifying the checksums can lead to boot failures,

installation issues, and potential security risks.

Linux &

1. Open a terminal window and navigate to the directory where the ISO file is located

along with the checksums.

https://download.aerynos.com/

cd ~/Downloads

2. Run the following command to verify the checksums:

sha256sum -c <checksum_file>

You should see a message indicating that the checksums match if the I1SO file is valid.

Aeryn0S-2025.03-GNOME-x86_64.1s0: OK

If the checksums do not match, download the ISO file again and repeat the verification
process.

Windows #

1. Open a Command Prompt window and navigate to the directory where the ISO file
is located along with the checksums.

cd C:\Users\<username>\Downloads

2. Run the following command to verify the checksums:

certutil -hashfile aerynos-<version>.iso SHA256

This will give you the checksum of the file, compare this to the checksum found inside
the checksum file.

Creating the Live Environment
Creating a Bootable USB Drive ©#

(® Danger

Creating a bootable USB drive will erase all data on the USB drive. Make sure to

back up any important data before proceeding.

/\ Caution
Ensure the USB drive is properly ejected after flashing the ISO to avoid data

corruption.

You'll need your USB drive and the ISO file downloaded from the AerynOS download
page.

Linux &

1. Insert your USB drive into an available USB port on your machine.

2. Open a terminal window and navigate to the directory where the ISO file is

located.

cd ~/Downloads

3. Identify the device name of your USB drive by running the following command:

Lsblk

Look for the device name of your USB drive, it will be something like /dev/sdXx where X

is a letter representing the device.

https://download.aerynos.com/
https://download.aerynos.com/

/\ Caution

Do not confuse this with the partition name, which will be something like
/dev/sdX1.

4. Now run the following command to write the ISO file to the USB drive:

/\ Caution

Ensure you are using the correct device name for your USB drive to avoid data

loss.

(@ Note

This may take some time to complete depending on the size of the ISO file and the
speed of your USB drive.

sudo dd if=aerynos-<version>.iso of=/dev/sdX bs=4M conv=fsync oflag=direct

status=progress

This command will write the ISO file to the USB drive and you’ll see a progress indicator

as it completes.

5. To ensure the write process has completed successfully, run the following

command:

sudo sync

Once the command has run, you can safely remove the USB drive from your machine.

Windows #

1. Insert your USB drive into an available USB port on your machine.

2. Download and install Rufus, a free and open-source tool for creating bootable USB

drives.

3. TODO: Add steps for using Rufus to create a bootable USB drive.

https://rufus.ie/

Booting the Live Environment
Booting from a USB Drive ¢

@ Note

Ensure that your system is set to boot from the USB drive. You may need to access

the boot menu to select the USB drive as the boot device.

/\ Caution

Currently NVIDIA Drivers are not implemented by the live environment and will

fallback to nouveau drivers.

1. Insert the bootable USB drive into your system and boot from the USB drive.

2. You should see the AerynOS boot process, and you will be presented with the live

environment.

Testing the Live Environment #

&4 Tip
The live environment may run slower than the installed system due to the

limitations of running from a USB drive.

Once you have booted into the live environment, you can test AerynOS without

installing it on your system.

e Explore the desktop environment.

Test the pre-installed applications.

Check the system performance.

Verify the hardware compatibility.

Connect to the internet and browse the web.

System Management

Use this section to manage an installed system, from understanding where
configuration lives to operating moss states safely.

Configuration Locations

Understand where packages ship their default configuration and how to
override it on a stateless system.

Manage Moss States and Packages

Learn how to inspect and switch states, search for software, and keep an
AerynOS system up to date with moss.

http://127.0.0.1:4321/users/system-management/configuration-locations/
http://127.0.0.1:4321/users/system-management/moss-state-management/

Configuration Locations

AerynQS ships configuration in a stateless layout. Packages deliver defaults in
/usr/share/defaults, while administrator and user changes live elsewhere so updates

can proceed without overwriting your work.

System defaults

Default files mirror the traditional /etc hierarchy under /usr/share/defaults.

Purpose Default location Example
contents

Base system /usr/share/defaults/etc 1ld.so.conf, libn1,

settings tpm2-tss

PAM policies /usr/share/defaults/pam.d sudo, system-

login, polkit-1

Shell profiles /usr/share/defaults/profile and 00-aeryn.sh,
/usr/share/defaults/profile.d interactive shell

tweaks

Service /usr/share/defaults/environment.d Session-wide

defaults environment
snippets

Sudo /usr/share/defaults/sudo sudoers, drop-in

configuration files

SSH defaults /usr/share/defaults/ssh ssh_config,

sshd_config

Packages may add more directories under /usr/share/defaults as required. The layout

always mirrors where the file would appear under /etc on a traditional filesystem.

System overrides &

Place administrator overrides in /etc. Files in /etc shadow anything under
/usr/share/defaults and survive package updates. Use drop-in directories such as

/etc/pam.d or /etc/sudoers.d to keep customisations scoped and easy to audit.

When you need to revert to the shipped defaults, remove the override from /etc and

Moss will fall back to the matching file in /usr/share/defaults.

User-level configuration &

Desktop and application settings follow the XDG Base Directory specification. Store per-

user changes in:

e ~/.config for configuration files

e ~/.local/share for data files

These paths override both /etc and /usr/share/defaults for the owning user.

Where to look next #

Run the following command to explore the current defaults on your system:

1ls /usr/share/defaults

Combine this with moss search-file to identify which package owns a specific default

file when you need to adjust or report an issue.

Manage Moss States and Packages

Moss keeps track of packaging-related operations that change the state of the /usr
directory by creating a new filesystem transaction (fstx) for each associated moss

operation, be it package installation, removal or upgrades.

Use the commands below to inspect and manage those states, discover software, and

keep your system current.

Check the current state

1. List the active state to confirm what is running right now.

moss state active

2. Review the state history when you need context for a rollback.

moss state list

Use the state ID (the number after state #) when you need to query or activate a

specific snapshot.

Activate a different state ~

Follow these steps to roll back or advance to another state safely.

1. Identify the target state ID with moss state list.

2. Activate that state.

sudo moss state activate 128

3. Verify the change.

moss state active

Activating a state atomically swaps the currently active state’s /usr directory with the
new states’s /usr directory, using the Linux kernel renameat2 syscall.

On successful activation of the new state, it is recommended to reboot the system, so
that long-running services start with the expected binaries, libraries, and
configurations.

Search for packages »

Use keyword searches to discover software by name or summary.

sudo moss search fractional

Add --installed (-1) if you only want to search software that is already present on the
system.

Search for installed files #

Look up which package delivered a specific file when you troubleshoot or audit an
installation.

sudo moss search-file 1ibEGL.so

moss search-file scans files from installed packages only.

Install software #

1. Refresh repository metadata when needed.

https://www.man7.org/linux/man-pages/man2/rename.2.html

sudo moss repo update

2. Install one or more packages.

sudo moss install howdy-git

Moss creates a new state automatically. Confirm success with moss state active.

Update the system &

Keep the entire system current with a sync operation.

sudo moss sync --update

--update (-u) pulls fresh repository metadata before applying upgrades. Moss records

the result as a new state, so you can roll back if something goes wrong.

Remove software &

Uninstall packages you no longer need.

sudo moss remove howdy-git

Moss snapshots the removal in a new state. Use moss state list to find the previous

state if you have to recover.

List currently installed software ¢

moss list installed

Desktops

COSMIC
COSMIC Desktop

GNOME
GNOME Desktop

Plasma
KDE Plasma Desktop

Window Managers

Lightweight window manager environments

http://127.0.0.1:4321/users/desktops/cosmic/
http://127.0.0.1:4321/users/desktops/gnome/
http://127.0.0.1:4321/users/desktops/plasma/
http://127.0.0.1:4321/users/desktops/window-managers/

COSMIC

The COSMIC Desktop from System76 is a highly popular choice with AerynQOS users.

COSMIC is notable for being written in Rust and using a modern multiprocess
architecture, while being Wayland-only. For many, this makes AerynOS and COSMIC an
ideal partnership.

Installing COSMIC on AerynOS #

AerynQS currently only offers one iso with a GNOME live environment. However, lichen
is a net based installer that allows users to select their Desktop Environment at install
time. As such, you can install AerynOS COSMIC edition directly from the GNOME based
AerynOS installer iso.

If you are already using GNOME, you are able to install Cosmic Desktop side by side
and select which Desktop Environment to use in GDM at login. You do this by installing

one of three package sets:

sudo moss install pkgset-aeryn-cosmic-minimal
sudo moss install pkgset-aeryn-cosmic-recommended

sudo moss install pkgset-aeryn-cosmic-full

The names are fairly self explanatory:

e Minimal: The minimum number of packages required for a Cosmic Desktop session

e Recommended: The minimal Cosmic Desktop session plus additional
recommended applications

e Full: The recommended Cosmic Dekstop session plus additional optional

applications

Controlling the display manager #

If you've installed COSMIC over the top of a GNOME install, you can still log into your
COSMIC session from gdm. You can also safely remove gdm and have cosmic-greeter

take over. Note: GNOME Shell still expects gdm for full functionality.

Installing cosmic-greeter &

https://system76.com/cosmic
https://system76.org/

sudo moss install cosmic-greeter

Removing gdm ¢

If you wish to remove gdm, you would use the following command:

sudo moss remove gdm

GNOME

The default desktop environemnt for the AerynQOS live environment and for installs
using lichen is GNOME. We utilise Wayland display server protocol and do not offer X11
(or any fork of X11).

GNOME has been chosen as the default environment due to our familiarity with the
GNOME software stack and therefore our ability to maintain it whilst we work on
fleshing out the AerynQOS tooling and infrastructure.

It is recommended to install GNOME using lichen, rather than adding to an existing

install.

Gnome defaults »

e Terminal: ptyxis
* Media Player: Celluloid

e Software: Ghome Software

e Document Viewer: Ghome Papers

e System Monitor: Ghnome Resources

e Code editor: Zed

https://www.gnome.org/
https://gitlab.gnome.org/chergert/ptyxis
https://celluloid-player.github.io/
https://apps.gnome.org/en/Software/
https://apps.gnome.org/en/Papers/
https://apps.gnome.org/en/Resources/
https://zed.dev/

Plasma

AerynOS now offers KDE Plasma as a Desktop Environment though it is currently
considered beta status. You can track the progress of identifying and resolving Plasma

related issues on Github.

Installing Plasma on an existing AerynOS install »

If you are already using GNOME, you are able to install KDE Plasma side by side and
select which Desktop Environment to use in GDM at login. You do this by installing one of

three package sets:

sudo moss install pkgset-aeryn-plasma-minimal
sudo moss install pkgset-aeryn-plasma-recommended

sudo moss install pkgset-aeryn-plasma-full

The names are fairly self explanatory:

e Minimal: The minimum number of packages required for a Plasma desktop session

e Recommended: The minimal Plasma desktop session plus additional

recommended applications

e Full: The recommended Plasma desktop session plus all available KDE applications

Controlling the display manager #

If you've installed Plasma over the top of a GNOME install, you can still log into your
Plasma session from gdm. You can also safely remove gdm and have either sddm or

plasma-login-manager take over. Note: GNOME Shell still expects gdm for full

functionality.

Installing either sddm or plasma-login-manager ¢

sudo moss install sddm

or

https://kde.org/plasma-desktop/
https://github.com/AerynOS/recipes/issues/952

sudo moss install plasma-login-manager

Removing gdm ¢

If you wish to remove gdm, you would use the following command:

sudo moss remove gdm

Window Managers

Sway

Sway Wayland window manager

http://127.0.0.1:4321/users/desktops/window-managers/sway/

Sway
Sway is a dynamic tiling window manager designed as a drop-in replacement for i3, but
built for Wayland. It offers a lightweight workflow that is well suited to machines where

users prefer keyboard driven navigation over graphical shell integrations.

Installing Sway on AerynOS #

Sway is currently packaged as a single minimal session that you can add to any
existing AerynOS installation. Install the package set with moss:

sudo moss install pkgset-aeryn-sway-minimal
sudo moss install branding-aeryn-sway

After installation you can select the Sway session from your display manager, or start it

directly from a TTY with exec sway.

https://swaywm.org/

Packaging

Here you can find all of the packaging documentation.

Workflow

Understanding how moss and boulder make use of repositories in AerynOS

Recipes
The “stone.yaml” recipe format and "boulder™ form the core of all package
builds in AerynOS

Macros

Tools to simplify life - macros

http://127.0.0.1:4321/packaging/workflow/
http://127.0.0.1:4321/packaging/recipes/
http://127.0.0.1:4321/packaging/macros/

Workflow

Prerequisites

Prerequisites for building packages on Aeryn OS

Basic packaging workflow

Building packages locally and testing them

Preparing for packaging
Preparing for packaging on AerynOS

Creating a new package recipe

Creating a new package recipe from scratch

Updating an existing package recipe

How to update an existing package recipe

Building and testing packages

How to build and test packages locally on your system

Submitting a PR
How to submit a PR into the AerynOS repository

Checking for package updates

How to check for package updates

http://127.0.0.1:4321/packaging/workflow/prerequisites/
http://127.0.0.1:4321/packaging/workflow/basic-workflow/
http://127.0.0.1:4321/packaging/workflow/preparing-for-packaging/
http://127.0.0.1:4321/packaging/workflow/creating-a-new-recipe/
http://127.0.0.1:4321/packaging/workflow/updating-an-existing-recipe/
http://127.0.0.1:4321/packaging/workflow/building-and-testing-packages/
http://127.0.0.1:4321/packaging/workflow/submitting-a-pr/
http://127.0.0.1:4321/packaging/workflow/checking-for-updates/

Prerequisites

To set up a AerynOS system to be able to build package recipes, a few prerequisites
need to be installed, and a new directory for storing local build artifacts needs to be set
up.

Installing the build-essential package &

We maintain a build-essential metapackage that should contain the basics for getting

started with packaging on AerynQOS.

sudo moss sync -u

sudo moss it build-essential

Activating the AerynOS helper scripts #

The easiest way to create a local repository is to use the helper script distributed with
the AerynQOS recipe repository in the tools/ directory.

Start by cloning the recipes/ git repository:

mkdir -pv repos/aerynos/
pushd repos/aerynos
git clone https://github.com/Aeryn0S/recipes

After the recipes/ git repository has been cloned, symlink helpers.bash into
~/ .bashrcd.d/:

popd
mkdir -pv ~/.bashrc.d/

ln -sv ~/repos/aerynos/recipes/tools/helpers.bash ~/.bashrc.d/90-aerynos-
helpers.bash

Finally, execute the following in a new terminal tab:

cd ~

gotoaosrepo

If the helpers script has been correctly loaded, the gotoaosrepo command should

switch to the directory containing the recipes/ git repository clone.

Setting up git hooks and linters #

The just command runner should have been installed as part of build-essential.

Run the following:

gotoaosrepo

just init

This will setup git hooks that will lint for the most common packaging errors upon git
commit, as well as fill out commit message templates for you to edit as appropriate.

Setting up git diff auto-conversion of
manifest.*.bin files #

This will make it so you can view git diff output for binary manifest.*.bin files in

both git diff and git log -p . invocations.

Edit the recipe repo .git/config file to contain the following below the [core] section:

[diff "moss"]
textconv = moss inspect

binary = true

The recipe repo already contains the .gitattributes file that sets up the moss diff filter

referenced here.

Setting up the git gone alias #

This will make it so that executing git gone will remove any local branches that no

longer exist upstream.

Edit your ~/.gitconfig file to contain the following:

[alias]
gone = "If() { git fetch --all --prune; git branch -vv | awk '/:
gone]/{print $1}' | xargs git branch -D; }; f"

Adding /etc/subuid and /etc/subgid
entries &

Since boulder uses user-namespaces to set up isolated build roots, it is necessary to
set up a subuid and a subgid file for the relevant users first:

sudo touch /etc/sub{uid, gid}

sudo usermod --add-subuids 1000000-1065535 --add-subgids 1000000-1065535 root
sudo usermod --add-subuids 1065536-1131071 --add-subgids 1065536-1131071 "$USER"

If /etc/subuid and /etc/subgid already exist, adapt the above as appropriate.

Basic packaging workflow

Once the prerequisites have been handled, it is time to learn how to install newly built

local moss-format .stone packages.

Understanding moss-format repositories &

When building and testing packages locally, boulder (and moss) can be configured to
consult a local moss-format repository containing moss-format .stone packages and a

stone.index local repository index.

stone.index files #

The stone.index file is what both moss and boulder consult when they check which

packages are available to be installed into moss-maintained system roots.

Adding a moss-format repository is as simple as registering a new location from where

to fetch stone.index files, which will be shown in detail later on this page.

moss build roots #

Every time a package is built, boulder calls out to moss to have it construct a pristine
build root directory (called a ‘buildroot’) with the necessary package build prerequisites
installed.

The packages in this buildroot are resolved from one or more moss stone.index files,
sorted in descending priority, such that the highest priority repository “wins” when

package providers are resolved.

The lowest priority repository will typically be the official AerynOS upstream package
repository.

If higher priority repositories are added, packages from these will in turn override the
packages available in the official AerynOS upstream package repository.

The next section deals with how to create and register a higher priority local moss-
format repository, which is colloquially referred to as a “local repo”.

http://127.0.0.1:4321/packaging/workflow/prerequisites/

Creating a local repository &

After the helper script has been activated in bash, open a new tab or a new terminal,

and execute the following commands:

create a new tab or open a new terminal
gotoaosrepo
just create-local

just index-local

The just create-local invocation will set up an empty ~/.cache/local_repo/x86_64/
directory, and the just index-local invocation will create a stone.index file for the

directory.

Making boulder use the local repository #

Boulder will need to have its list of “build profiles” be updated before it will consult the
~/.cache/local_repo/x86_64/stone.index moss-format repository index created

above:

boulder profile 1list
output
default-x86_64:
- volatile = https://build.aerynos.dev/volatile/x86_64/stone.index [0]

add new local-x86_64 build profile
note: ${HOME} will be replaced by the actual home directory of the user
invoking the command. In the example below, ${HOME} = /home/ermo
boulder profile add \

--repo
name=volatile,uri=https://build.aerynos.dev/stream/volatile/x86_64/stone.index, pri
\

--repo name=local,uri=file://${HOME}/.cache/local_repo/x86_64/stone.index, priori

local-x86_64
boulder profile 1list
output
default-x86_64:
- volatile = https://build.aerynos.dev/volatile/x86_64/stone.index [0]
local-x86_64:
- volatile = https://build.aerynos.dev/stream/volatile/x86_64/stone.index [0]
- local = file:///home/ermo/.cache/local_repo/x86_64/stone.index [100]

Behind the scenes, boulder builds and saves an appropriately named build profile to
~/.config/boulder/profile.d/.

This is what local-x86_64.yaml should look like after the above commands have been

run successfully:

local-x86_64:
repositories:

local:
description: ''
uri: file:///home/ermo/.cache/local_repo/x86_64/stone.index
priority: 100
active: true

volatile:
description: ''
uri: https://build.aerynos.dev/stream/volatile/x86_64/stone.index
priority: 0

active: true

Making moss use the local repository #

Listing and adding moss-format repositories containing stone.index files is done as
follows:

moss repo list
output
- unstable = https://cdn.aerynos.dev/unstable/x86_64/stone.index [0]
add repositories
note: ${HOME} will be replaced by the actual home directory of the user
invoking the command. In the example below, ${HOME} = /home/ermo"
sudo moss repo add volatile
https://build.aerynos.dev/stream/volatile/x86_64/stone.index -p 10
sudo moss repo add local file://${HOME}/.cache/local_repo/x86_64/stone.index -p
100
moss repo list
output
- unstable = https://cdn.aerynos.dev/unstable/x86_64/stone.index [0]
- volatile = https://build.aerynos.dev/stream/volatile/x86_64/stone.index [10]
- local = file:///home/ermo/.cache/local_repo/x86_64/stone.index [100]

Package resolution order ¢

In the above priority tower, each moss-format package would first get resolved via the

local repository (priority 100), then from the volatile repository (priority 10), and

finally from the unstable repository (priority 0), the latter of which is the official

upstream AerynOS moss-format .stone package repository.

Disabling moss-format repositories &

Users of AerynQOS should generally not have the volatile repository be enabled,
because this repository is where new .stone packages land right after being built,
which means the repository can potentially be in an undefined and volatile state when
building large build queues (hence the name).

Therefore, it can be useful to disable moss-format repositories without deleting their

definitions from the local system:

sudo moss repo disable volatile
sudo moss repo disable local

moss repo list

output

- unstable = https://cdn.aerynos.dev/unstable/x86_64/stone.index [0]

- volatile = https://build.aerynos.dev/stream/volatile/x86_64/stone.index [10]
(disabled)

- local = file:///home/ermo/.cache/local_repo/x86_64/stone.index [100]
(disabled)

Enabling moss-format repositories &

However, when testing locally built packages, they must be built against the local-
x86_64 boulder build profile, which in turns relies on the volatile repository via the

boulder local-x86_64 build profile.

Hence, when testing locally built packages, you may need to temporarily enable the

volatile repository for moss to resolve from.

sudo moss repo enable volatile
sudo moss repo enable local
moss repo list
output
- unstable = https://cdn.aerynos.dev/unstable/x86_64/stone.index [0]
https://build.aerynos.dev/stream/volatile/x86_64/stone.index [10]

- volatile
- local = file:///home/ermo/.cache/local_repo/x86_64/stone.index [100]

Building recipes using the local-x86_64
profile &

To actually build a recipe, it is recommended that new packagers start out by building

nano.

Go into the root of the AerynOS recipe directory

gotoaosrepo

change to the directory holding the nano recipe

chpkg nano

bump the release number in the nano recipe

just bump

check the difference between the local state and the upstream recipe state
git diff

build the bumped nano recipe

just build

check the difference between the local state and the upstream recipe state
git status

move the newly built .stone build artifacts to the local repository

just mv-Tlocal

list the build artifacts present in the local repository

just 1s-local

Note that the basic packaging workflow in AerynOS assumes that you are using a local
repository.

If you are building multiple package recipes, you will need to just build and just mv-

local for each package recipe sequentially.

Updating the installed system state #
Testing your package(s) is now as simple as:

e Enabling (or disabling) the relevant moss-format repositories with:

sudo moss repo enable/disable <the repository>

e Updating moss’ view of the enabled moss-format repository indices with:

sudo moss sync -u

Cleaning the local repository &

Often, it will be prudent to clean out the local repository after the associated recipe PR

has been accepted upstream.

gotoaosrepo

just clean-local

sudo moss repo disable volatile
sudo moss repo disable local

sudo moss sync -u

This will sync the the local system to a new installed system state made only from the

upstream unstable moss-format .stone package repository state.

This will effectively make the new system state “forget” the nano version installed from

the local repository in the previous system state.

Ending notes &

If you have made it this far, congratulations! You should now understand the basic

workflow of packaging and managing repositories with AerynOS.

Tip: execute just -1to see a list of supported just ‘recipes’, which are common

actions that have been automated by the AerynQOS developers.

Preparing for packaging
This page details prerequisite steps required before either creating a new package

recipe or updating an existing package recipe. If you have not yet followed the
prerequisites steps and Basic Packaging Workflow, follow those steps first before

proceeding.

Update your clone of the recipes
repository &

As a reminder, you want to ensure you have the volatile repository enabled and fully

updated on your system.

Whilst all the information can be found in the prior pages, to recap, the commands will
be:

sudo moss repo enable volatile

sudo moss sync -u

gotoaosrepo

git switch main

gh repo sync yourusername/yourfork -b main

git pull

Switch to a new git branch ¢

When conducting any packaging work, it is a good idea to separate out your work in a
different branch. This allows you to isolate changes you make from one package in a
separate branch to changes you make to a different package in a second branch and so
on. This additionally is helpful as it keeps your work separate to any underlaying
changes made to the main recipes repository, more easily allowing you to rebase your

work if needed.

git checkout -b "branch-name"

http://127.0.0.1:4321/packaging/workflow/prerequisites/
http://127.0.0.1:4321/packaging/workflow/basic-workflow/

Change “branch-name” to whatever description you feel comfortable with. Our general
convention is to use the format add-packagename or update-packagename depending on

whether you are adding a new package or updating an existing one.

You can check what branch you are on and what branches you have in your repository

with the following command:

git branch -a

Creating a new package recipe

This guide details the process of creating a new package recipe that is not yet present
in the AerynQOS repository. We will use Nano as the running example, but the same

steps apply to any new package.

Before creating the package recipe yourself, please double check that there isn’t
already an outstanding PR for the package you want to include. Please also check if

someone has created a new package request issue in the AerynQS recipes repository.

Prepare your workspace &

Prior to starting, ensure you have followed the prerequisites set up process, the Basic

Packaging_ Workflow and updated your system in accordance with Preparing_for

Packaging guide.

If you have not done this, follow those steps first before proceeding.

Scaffold the recipe directory ¢

Prior to starting, you need to create the directory structure for your recipe. In our
example, we will create a recipe for the Nano text editor. Each recipe is stored in its
own directory within the recipes repository you already have downloaded to your
computer. In this case, we will create a directory called nano in the n directory:

gotoaosrepo
mkdir -p n/nano

cd n/nano

Fill the recipe step by step ¢

The rest of this guide shows how to create a recipe and to replace any missing

metadata by pulling information from upstream Nano.

Step 1 - Collect upstream metadata »

https://github.com/AerynOS/recipes
https://github.com/AerynOS/recipes
http://127.0.0.1:4321/packaging/workflow/prerequisites/
http://127.0.0.1:4321/packaging/workflow/basic-workflow/
http://127.0.0.1:4321/packaging/workflow/basic-workflow/
http://127.0.0.1:4321/packaging/workflow/preparing-for-packaging/
http://127.0.0.1:4321/packaging/workflow/preparing-for-packaging/

e Search for “GNU Nano download” to locate the upstream homepage:

https://www.nano-editor.org/.

* Note the latest release number (8.7 at the time of writing) and the canonical

download link.

e Record any prerequisites listed in upstream build instructions—these become

candidates for builddeps later.

The Nano “bleeding edge” page lists the following tools you should keep in mind:

Package Minimum Version
autoconf 2.69
automake 1.14

autopoint 0.20

gcc 5.0

gettext 0.20

git 2.7.4

groff 1.12

make (any version)

pkg-config 0.22

texinfo 4.0

Step 1 - Use boulder to help create the recipe #

We use boulder to help create the recipe using the boulder recipe new command. This
command will generate a skeleton recipe for you to fill in. boulder will read the
contents of the source code of the package you are trying to add and automatically

create a stone.yaml recipe file and a monitoring.yaml file.

boulder recipe new "upstream URL"

https://www.nano-editor.org/

In the example of Nano, to create a recipe based on version 8.7, you would use the
following command:

boulder recipe new https://www.nano-editor.org/dist/v8/nano-8.7.tar.xz

This command does the following:
1. Creates a new stone.yaml in your current directory for the package

e Populates as many of the fields in the stone.yaml file as it can automatically
identify

e Checks the Sha256sum of the source code and inputs this in the recipe
2. Creates a new monitoring.yaml file in your current directory for the package

e Populates as many of the fields in the monitoring.yaml file as it can automatically
identify

Using Nano as an example, the generated stone.yaml file will look like this:

#

SPDX-FileCopyrightText: © 2025- AerynOS Developers
#

SPDX-License-Identifier: MPL-2.0

#

name ! nano

version 1 8.7

release 1

homepage : https://www.nano-editor.org/dist/v8
upstreams

- https://www.nano-editor.org/dist/v8/nano-8.7.tar.xz
afd287aa672c48b8e1a93fdh6c6588453d527510d966822b68712835F0d986€9
summary : UPDATE SUMMARY
description : |

UPDATE DESCRIPTION
license

- GFDL-1.2-invariants-or-later

- GFDL-1.2-no-invariants-or-later

- GFDL-1.2-o0r-later

- GPL-3.0-or-later

- GFDL-1.2-no-invariants-only

- GFDL-1.2-invariants-only

- GFDL-1.2-only

- GPL-3.0-only
builddeps

- pkgconfig(ncurses)

- pkgconfig(ncursesw)
setup o

%configure
build D

%make
install T

%make_install

The second is a monitoring.yaml file which we will address later in this guide.

Step 2 - Add core metadata fields #

The boulder recipe new command has already made an attempt to populate the name,

version, release and homepage. Please review these and correct them if necessary.

In this case, the following changes need to be made:

e Correct the homepage to https://www.nano-editor.org/.
e Update the summary to reflect the GNU Text Editor.

e Fill in the description field with a brief description of Nano.

name ! nano
version : 8.7

release 1

homepage : https://www.nano-editor.org/
upstreams

- https://www.nano-editor.org/dist/v8/nano-8.7.tar.xz :
afd287aa672c48b8e1a93fdb6c6588453d527510d966822h68712835F0d986€9
summary : GNU Text Editor
description : |

Nano is a small and simple text editor for use on the terminal.

It copied the interface and key bindings of the Pico editor but

added several missing features: undo/redo, syntax highlighting,

line numbers, softwrapping, multiple buffers, selecting text by
holding Shift, search-and-replace with regular expressions, and

several other conveniences.

() Release numbering

Keep release at 1 when you introduce a brand-new package. We subsequently
incrementally increase it by 1 each time we submit an update to our recipe
repository.

Step 3 - Declare / correct the license

Find the license in upstream’s repository (often COPYING, LICENSE, or package

metadata). Convert it to an SPDX identifier.

Nano uses GPL-3.0-or-later.

license
- GPL-3.0-o0or-1later

https://spdx.org/licenses/

() SPDX Licence identifier

The SPDX License List is a list of commonly found licenses and exceptions used in
free and open or collaborative software, data, hardware, or documentation. The
SPDX License List includes a standardized short identifier, the full name, the
license text, and a canonical permanent URL for each license and exception.

The purpose of the SPDX License List is to enable efficient and reliable
identification of such licenses and exceptions in an SPDX document, in source files

or elsewhere.

Step 4 - Translate prerequisites into build
dependencies

Map each upstream requirement to the package name that exists in AerynOS. Use pkg-
config() helpers when libraries provide .pc files. Toolchain components like gcc and
make are already available inside the build environment, so you do not have to list

them.

Upstream prerequisite Recipe build dependency

ncurses pkgconfig(ncursesw)

zlib pkgconfig(zlib)

libmagic pkgconfig(libmagic)

autoconf, automake already provided by the sandbox

Add them to builddeps:

builddeps
- pkgconfig(libmagic)
- pkgconfig(ncursesw)

- pkgconfig(zlib)

Step 5 - Fill in build steps #

Nano follows the GNU autotools flow, so uses the standard macros (%configure, %make,
%make_install). These have already been populated by boulder recipe new so do not

need to be adapted. You can consult the macros documentation for variations and
additional guidance.

Step 6 - Review the finished recipe ¢

Combining all the prior steps gives you a complete stone.yaml:

#

SPDX-FileCopyrightText: © 2025- AerynOS Developers
#

SPDX-License-Identifier: MPL-2.0

#

name ! nano

version 1 8.7

release 1

homepage ! https://www.nano-editor.org/

upstreams

- https://www.nano-editor.org/dist/v8/nano-8.7.tar.xz
afd287aa672c48b8e1a93fdb6c6588453d527510d966822b68712835F0d986€9
summary : GNU Text Editor
description : |

Nano is a small and simple text editor for use on the terminal.

It copied the interface and key bindings of the Pico editor but

added several missing features: undo/redo, syntax highlighting,

line numbers, softwrapping, multiple buffers, selecting text by
holding Shift, search-and-replace with regular expressions, and
several other conveniences.

license

- GPL-3.0-or-later
builddeps

- pkgconfig(libmagic)

- pkgconfig(ncursesw)

- pkgconfig(zlib)
setup o

%configure
build D

%make
install o

%make_install

http://127.0.0.1:4321/packaging/macros/

Update/correct the monitoring.yaml file &

Release monitoring keeps automated eyes on your package. More details around our

monitoring file can be found on our Monitoring page.

As mentioned earlier in this guide, the boulder recipe new command has already

attempted to create a monitoring.yaml file for you.

In the case of Nano, it wasn’t able to uniquely identify the project so the output was not

as valuable and needs to be corrected.

For reference, its output is as below:

http://127.0.0.1:4321/packaging/recipes/monitoring

releases:

id: ~ # https://release-monitoring.org/ and use the numeric id in the url of
project

rss: -~
security:

cpe:

vendor: gnu
product: nano
- vendor: nano_arena_project

product: nano_arena
- vendor: viz

product: nano_id
- vendor: lenovo

product: thinkpad_x1_nano_gen_1_firmware
- vendor: nvidia

product: jetson_nano
- vendor: lenovo

product: thinkpad_x1_nano_gen_2_firmware
- vendor: lenovo

product: thinkpad_x1_nano_gen_2
- vendor: lenovo

product: thinkpad_x1_nano_gen_1
- vendor: nxp

product: mifare_ultralight_nano_firmware
- vendor: jtekt

product: nano_cpu_tuc-6941 firmware
- vendor: jtekt

product: nano_10gx_tuc-1157_firmware
- vendor: autelrobotics

product: evo_nano_drone_firmware
- vendor: jtekt

product: nano_safety rs@1ip_ tuu-1087
- vendor: jtekt

product: nano_safety_rs00ip_tuu-1086
- vendor: netshieldcorp

product: nano_25 firmware
- vendor: ledger

product: nano_x_firmware
- vendor: ledger

product: nano_s_firmware
- vendor: jtekt

product: nano_cpu_firmware

- vendor: jtekt
product: nano_2et_firmware
- vendor: jtekt
product: nano_10gx_firmware
- vendor: nxp
product: mifare_ultralight_nano
- vendor: nxp
product: i.mx_8m_nano
- vendor: nvidia
product: jetson_nano_2gb
- vendor: jtekt
product: nano_safety_tuc-1085
- vendor: jtekt
product: nano_cpu_tuc-6941
- vendor: jtekt
product: nano_2et_tuu-6949
- vendor: jtekt
product: nano_10gx_tuc-1157
- vendor: autelrobotics
product: evo_nano_drone
- vendor: netshieldcorp
product: nano_25
- vendor: ledger
product: nano_x
- vendor: ledger
product: nano_s
- vendor: jtekt
product: nano_cpu
- vendor: jtekt
product: nano_Z2et
- vendor: jtekt
product: nano_10gx
- vendor: magzter

product: nano_digest

Update monitoring.yaml once you know the upstream identifiers:

1. Search for the project on https://release-monitoring.org/ and copy the numeric id.
2. Add an RSS or Atom feed URL if upstream publishes one; otherwise leave rss: ~.

3. Check the National Vulnerability Database for a CPE string
(https://nvd.nist.gov/products/cpe/search). If none exists, leave it as ~.

https://release-monitoring.org/
https://nvd.nist.gov/products/cpe/search

Using this information we can correctly identify the id as 2046 and that there is no rss

feed or cpe string. The monitoring.yaml file should look like this:

releases:

id: 2046 # Release Monitoring ID for nano

rss: ~ # Replace when upstream publishes a feed
security:

cpe: ~ # Update if upstream changes identifiers

Build and test the package #

Once you have made the relevant changes to the package, you will need to build it
locally. Refer to the Building_and Testing_packages page on guidance of how to do this.

http://127.0.0.1:4321/packaging/workflow/building-and-testing-packages/

Updating an existing package
recipe

This guide details the process of updating a package that is already present in the

AerynQS repository. We will use GNU Nano as the running example, but the same steps

apply to any existing package.

Before updating the package yourself, please double check that there isn’t already an

outstanding PR for the update you want to make. Please also check if someone has

created an update request issue in the AerynQOS recipes repository.

Prepare your workspace #

Prior to starting, ensure you have followed the prerequisites set up process, the Basic

Packaging Workflow and updated your system in accordance with Preparing_for

Packaging guide.

If you have not done this, follow those steps first before proceeding.

Simple updates to a package &

To update a package to a newer available version, navigate to the relevant folder
within your local recipe repository on your system. If you have already navigated to the
local recipe repository, then by way of example, to navigate to the Nano package

folder, you would use the command:

chpkg nano

Bumping a package #

If there are changes to dependencies of a package, but not to the package itself, you
need to increase the release number within the stone.yaml recipe file by one. This will
allow you to rebuild the package and test it against the newer dependences to make

sure everything is working. You can do this by using the following command:

https://github.com/AerynOS/recipes
https://github.com/AerynOS/recipes
http://127.0.0.1:4321/packaging/workflow/prerequisites/
http://127.0.0.1:4321/packaging/workflow/basic-workflow/
http://127.0.0.1:4321/packaging/workflow/basic-workflow/
http://127.0.0.1:4321/packaging/workflow/preparing-for-packaging/
http://127.0.0.1:4321/packaging/workflow/preparing-for-packaging/

just bump

which is a shortcut for

boulder recipe bump

Please note each time you do this, you will increase the release number by one, so do
not use this command multiple times for one package update.

Updating a package version &

If you need to update the package version itself, you can use the following command:

boulder recipe update --ver "version name" --upstream "upstream URL"

stone.yaml -w

In the example of nano, to update to version 8.7, you would use the following

command:

boulder recipe update --ver 8.7 --upstream https://www.nano-

editor.org/dist/v8/nano-8.7.tar.xz stone.yaml -w

This command does the following:

1. Updates the version of the package within the recipe
2. Updates the upstream location of the source code
3. Checks the Sha256sum of the source code and inputs this in the recipes

4. Bumps the release number by 1

Wider updates to a package #

If there are further changes required to the stone.yaml recipe file, you can either use a
text editor (such as Nano itself) or a code editor (such as Zed which is pre-installed on
AerynOS) to make changes those changes. Guidance on how to make changes to a
stone.yaml file are covered in the Creating_a new package recipe page.

Build and test the package ©

Once you have made the relevant changes to the package, you will need to build it
locally. Refer to the Building_and Testing_packages page on guidance of how to do this.

http://127.0.0.1:4321/packaging/workflow/creating-a-new-recipe/
http://127.0.0.1:4321/packaging/workflow/building-and-testing-packages/

Building and testing packages

This guide will walk you through the process of building and testing packages locally on
your system, regardless of whether they come from new package recipes or existing
ones you are updating.

Build the package »

Once you have created or updated a package recipe, you will need to build it locally. If
you are only updating one package, you can either keep your local repository disabled
prior to building the package. If you prefer to keep it enabled, make sure there are no
other packages indexed locally that could interfere with your new package build.

() Note

Please ensure you have followed the steps in the Preparing_for Packaging guide to

ensure you volatile repository is enabled.

The command to build the updated package is:

just build

If the package is successfully built, you will need to move it to your local repository. You

can do this using the following command:

just mv-Tlocal

If you have not yet enabled the local repository, you do this with the following

command:

sudo moss repo enable local

You will then need to sync the local repository using the command:

http://127.0.0.1:4321/packaging/workflow/preparing-for-packaging/

sudo moss sync -u

Note, if you already have an older version of the package installed, you will be asked if
you want to update to the new local version you have just built. If you have not yet

installed this package, you would install it as normal using the command:

sudo moss install "package name"

Once you have tested the package, you can make a submission for including the
update in the repository.

&4 How to submit pull requests

To find guidance on how to submit a pull request (PR), you can refer to our submit
a pull request page. s

http://127.0.0.1:4321/packaging/workflow/submitting-a-pr
http://127.0.0.1:4321/packaging/workflow/submitting-a-pr

Submitting a PR
Submitting packages to AerynOS
repository &

Once you have prepared your package, you can submit it to the AerynOS repository by
creating a pull request (PR). There are certain guidelines to follow when submitting a
PR:

Naming Pull Requests #

To keep git summaries readable, AerynOS requires the following git summary format

e name: Add at v<version>
* name: Update to v<version>
e pname: Fix <...>

e [NFC] name: <description of no functional change commit>

() No Functional Change

NFC refers to “No Functional Change”, which means that the commit does not
introduce any new functionality or behavior, so a recipe does not need to be

rebuilt as part of the PR process.

Content of Pull Request descriptions &

Git commits should be self-contained and self-explanatory. They serve as
documentation for the changes made to a codebase so that others can understand and
review them and also refer back to them later down the line. It is important to provide
high quality git commit messages so that you or other contributors can understand the

changes you are making and why.

While you know what you're doing in the moment, other contributors may not, and as
time goes by, bisecting changes becomes more difficult if commit messages give you
no clue as to why you made a change or what regressions might be caused if you alter
it.

Commit message format »
The recommendation for commit messages is:

e Short summary written in the imperative mood

e A few sentences or bullet points with the key changes this commit introduces

e Link to full changelog (if applicable). If this commit updates the recipe several
versions, consider splitting the changelog out into version bullet point entries in
ascending order (newest change last).

e Test plan demonstrating that you have actually confirmed the changes work on
your local system

e |If the change resolves an issue, include a Resolves line with the issue number
(Where issuenumber is the issue number of the package request/update).

The last point about the test plan is particularly important, as it ensures that the
changes have been tested and verified before being merged into the main codebase.
There is an explicit agreement that you take ownership of the quality of the
changes/updates you submit, and that you understand that if there are issues, you are
likely to be the first person consulted to fix said issues.

() The imperative mood

Git commits should be written in the imperative mood. This means that the

commit message should start with a verb in the present tense, such as “Add”,
“Update”, or “Fix”. This makes the commit message more concise and easier to
understand.

Example commit message ¢

An example commit message for the AerynOS recipe repository is structured as follows:

https://medium.com/@luka_78026/imperative-mood-makes-you-feel-good-1cad063d7014

brobdingnar: Update to v1.2.3

Write a suitable short summary of the changes if relevant, including potentially
a list of things like:

- foo

- bar

- baz

Full changelog [here](the.uri)

Test Plan:

- Build and install the updated package

- Confirm functionality of changes

Resolves:

(If applicable for the recipes repository) Resolves aerynos/recipes#issuenumber

Checking for package updates
Use ent to check for package updates ~

This guide will walk you through the process using ent, a tool built by the AerynOS
team to check for package updates. ent checks recipes against upstream sources to

determine whether updates are available.

ent is not installed on your system by default. To install ent using moss, use the

following command:

sudo moss install ent

How ent works #

ent scans the current directory and all subdirectories beneath it. It inspects each recipe
monitoring.yaml file and compares the referenced stone.yaml recipe upstreams to

determine whether newer versions are available.

Because ent operates relative to the directory in which it is executed, you can control
the scope of the update check by choosing where to run the command within the

recipes repository.

Running update checks #

To check for updates across all recipes, run the following command from the root of the

recipes repository:
gotoaosrepo
ent check updates

You can also run this command from more specific locations:

 Repository root Checks all recipes in the repository.

* Letter directory (for example, f/) Checks only recipes whose names start with
that letter.

e Specific recipe directory (for example, f/firefox/) Checks only that single

recipe.

For example, running the command from f/firefox/ will check only the Firefox recipe

for available updates.

() What is ent?

ent queries an upstream site for package release info every time you run it. Please

be mindful of not running it gratuitously so as to remain a good ecosystem citizen.

Recipes

Overview

Introduction to the "stone.yaml™ format

Upstreams
Configuring where the recipe finds the 'sources' required for a build to work

Metadata

Keys and options to tweak the metadata for a recipe

Monitoring

Create and maintain monitoring.yaml so release automation and security alerts
stay accurate.

Build dependencies
Build dependency types

Package definitions

Manage dependencies, subpackages and more

Triggers

Triggers are system actions that run during package installation

System Accounts

Stateless management of packaging-based system accounts

http://127.0.0.1:4321/packaging/recipes/overview/
http://127.0.0.1:4321/packaging/recipes/upstreams/
http://127.0.0.1:4321/packaging/recipes/metadata/
http://127.0.0.1:4321/packaging/recipes/monitoring/
http://127.0.0.1:4321/packaging/recipes/build-deps/
http://127.0.0.1:4321/packaging/recipes/package-definition/
http://127.0.0.1:4321/packaging/recipes/triggers/
http://127.0.0.1:4321/packaging/recipes/system-accounts/

Overview

Simply put, a recipe is some metadata to describe a software package, and the
associated instructions required to build that package in a reproducible fashion. Doing
so allows us to automate builds, and provide software updates. At a surface level, our
stone.yml recipe format has an awful lot in common with other packaging systems.

A basic recipe ¢

How might a stone.ym1l look like for a very trivial package, such as the Nano editor?

name : nano
version 1 8.7

release : 38

homepage : https://www.nano-editor.org/
upstreams

- https://www.nano-editor.org/dist/v8/nano-8.7.tar.xz
afd287aa672c48b8e1a93fdh6c6588453d527510d966822b68712835T0d986€9
summary : GNU Text Editor
description : |

Nano is a small and simple text editor for use on the terminal.

It copied the interface and key bindings of the Pico editor but

added several missing features: undo/redo, syntax highlighting,

line numbers, softwrapping, multiple buffers, selecting text by
holding Shift, search-and-replace with regular expressions, and
several other conveniences.

license

- GPL-3.0-o0r-later
builddeps

- binary(msgfmt)

- pkgconfig(libmagic)

- pkgconfig(ncursesw)

- pkgconfig(zlib)
setup D

%configure
build o

%make
install o

%make_install

https://nano-editor.org/

..It really is that simple. However, do not let the simplicity of the format fool you,

boulder has a lot of hidden powers.

Upstreams

The majority of packages are built using upstream release sources. While it is possible
to create packages manually from local assets, the bulk of packages take an upstream
tarball and build it.

Plain sources &

A plain source is one that simply has an upstream URI and can be unpacked in some
fashion, i.e. a tarball. The hash must be provided for the upstream and accompanied by
the SHA256 sum.

upstreams:

- uri: $hash

upstreams
- uri:
hash: $hash

Additional options #

Key Type Description

hash string SHA256 of the upstream source

stripdirs string Number of directories to remove from archive root
unpack boolean Whether to automatically unpack archive or not
unpackdir string Force a different directory name when unpacking

Git sources #

A git source may be used, when providing either a tag or ref. In AerynOS we forbid the
use of branch names in packaging, as they may mutate and break subsequent builds.

Ideally a full git ref should be used.

/\ Caution

Git repositories do work well with boulder right now, however some submodule
based builds are under active testing.

upstreams:

- git|uri: $ref

upstreams:
- git|uri:
ref: $ref

Additional options ¢

Key Type Description
ref string git ref when using git source

clonedir string Override clone target directory

Metadata

Recipes provide basic metadata to support discovery and automation.

Certain data is purely for naming, others are purely functional and some are used for
our integration tooling. By having a well defined format with strongly typed keys, we’'re
able to build in automatic update checking, for example. Most importantly, we need

users to be able to find the software!

Mandatory keys &

The following metadata keys are absolutely essential.

name &

Set the source name of the package. As closely as possible, this should match the
upstream name. This is used as the basename of the package when subpackages are
automatically generated, for example:

name: z1lib

Could generate zlib, z1lib-devel, zlib-dbginfo, etc.

version &

This string tells users what version they are using, and isn’t used at all for any kind of
version comparison logic in the tooling. It is essentially a freeform string. It should be
identical to the upstream identifier so that we can detect new releases automatically of

the source project.

release &

A monotonically incrementing integer. This field is bumped whenever we need to issue
a new build (“release”) of a package as an update to users. Without incrementing this
field, no build is scheduled.

homepage &

Web presence for the upstream project.

license &

Either a string or list of strings denoting all applicable licenses, using their SPDX
identifier. Required for basic compliance.

https://spdx.org/

Monitoring

Every recipe should ship a monitoring.yaml so our tooling can watch for upstream
releases and security issues. Use this reference to populate the file consistently and to
find the data required for each field.

File layout #

A minimal monitoring file includes release tracking and optional security metadata:

releases:
id: 00000
rss: https://example.com/project/releases.atom
security:
cpe:
- vendor: example

product: project

Indent with two spaces and keep related comments inline so Cl and reviewers can

follow your reasoning.

Release tracking ¢

releases.id : Numeric identifier from release-monitoring.org (Anitya). Look up the

upstream project and note the number in the URL, for example https://release-

monitoring.org/project/300958 for Python.

releases.rss : URL to an Atom/RSS feed for new releases. Use ~ if no feed exists.

Common feed patterns »#

e GitHub: https://github.com/<org>/<repo>/releases.atomor .../tags.atom

e GitLab / KDE Invent: append /-/tags?format=atom to the project URL, for

example https://invent.kde.org/plasma/plasma-desktop/-/tags?format=atom
e PyPI: no feed is required; prefer ~ and rely on the Anitya ID

* Freedesktop GitLab: https://gitlab.freedesktop.org/<path>/-/tags?

format=atom

https://release-monitoring.org/

¢ Custom sites: many upstreams publish a releases.xml/atom.xml file; link directly

when available

Ignore patterns ¢

Use releases.ignore to skip versions our repo does not track. Provide a short comment

and regular expressions that match the releases to drop.

releases:
id: 320206
ignore:
Qt 6 builds are out of scope for qt5 packages
- A6\,

rss. -~

Prefer anchored expressions (» / $) to avoid false positives.

For reference, » means “begins with”, while $ means “ends with”.

Security metadata #

security.cpe : List of Common Platform Enumeration entries to watch in the NVD feed.
Search nvd.nist.gov for vendor and product strings. Add every applicable CPE when

upstream ships multiple identifiers.

security.ignore : Optional list of CVE IDs or regexes our package should ignore (for

example, CVEs that only affect optional components).

If no CPE exists, set the value to ~ and add a dated comment noting the last time you

checked.

security:
cpe: ~
No known CPE as of 2024-09-01

Assuming that the repository helper script has been sourced for your shell, you should

be able to use the cpesearch function to search for related CPEs for the package given

as the argument.

https://nvd.nist.gov/products/cpe
http://127.0.0.1:4321/packaging/workflow/prerequisites/#activating-the-aerynos-helper-scripts

Example:

cpsearch urllib3

Where to find the data ¢

1. Start with release-monitoring.org: search for the upstream name.

2. Collect feeds: confirm the releases.atom or /-/tags?format=atom URL opens in a

browser. Use curl or wget -q0- <feed> locally when you need to double-check.

3. ldentify CPE strings: search the NVD catalog or reuse values from similar
recipes. Many projects share vendor IDs (for example, both upstream python and
the ur11ib3 package provide CPEs).

4. Document exceptions: add comments whenever you set ignore patterns or

leave fields empty so future maintainers understand the decision.

Example templates ¢
GitHub project with security feed #

releases:
id: 4078
rss: https://github.com/ur1lib3/url1lib3/releases.atom
security:
cpe:
- vendor: urllib3
product: urllib3
- vendor: python

product: urllib3

GitLab project with prerelease filter »

releases:
id: 5440
ignore:
Track the current stable branch only
- 258.*
rss: https://gitlab.freedesktop.org/systemd/systemd/-/tags?format=atom
security:
cpe:
- vendor: systemd_project

product: systemd

No CPE available #

releases:
id: 19755
rss: ~
security:
cpe: -~
No CPE published as of 2023-03-23

Keep monitoring files in sync with upstream changes. When a project moves or
renames releases, update the ID and feed so our automated tooling continues to work.

Build dependencies

Every build of a recipe by boulder will create an entirely new root, with only the
absolute minimum support dependencies in place. In order to build most software, you
will need to add to the builddeps key in stone.yml. Luckily, our tooling supports more

than one kind of dep.

Note that AerynOS packages are also capable of storing providers that make the
following kinds of dependencies work.

$name - standard deps #

Simply listing a name will create a dependency on that package name. This is

discouraged as automatically resolved providers offer a far more resilient system.

builddeps:

- some-package

binary() - Standard binaries &

Got a hard requirement for an executable in /usr/bin, such as grep ?

builddeps:
- binary(grep)

sysbhinary() - System binaries &

Need an executable only found in /usr/sbin ?

builddeps:

- sysbinary(mount)

pkgconfig() - PkgConfig / pkgconf

Trivially map package names to standard pkgconfig names (. pc files):

builddeps:
- pkgconfig(ncurses)
- pkgconfig(zlib)

pkgconfig32() - 32-bit PkgConf »#

Much like pkgconfig - specifically designed for .pc files installed to
/usr/1ib32/pkgconfig in 32-bit builds:

builddeps:
- pkgconfig32(x11)

cmake() - CMake modules #

Work with many C++4/CMake builds much more easily by using the CMake module

names

builddeps:
- cmake(Qt50penGL)

Package definitions

A recipe build can result in a number of packages being produced from a single source,
through an automatic splitting system. Certain subpackages are already defined in the
boulder project to ensure consistency of package splitting and names, whereas some

may be explicitly defined in a recipe to fine-tune the results.

Every recipe also contains a root package definition, i.e the default target. This is
merged with the standard metadata.

Package metadata ¢~

summary &

A brief, one line description of the package based on its contents.

description &

A more in depth description of the package, usually sourced from a README or project
description.

rundeps &

A list of manually specified runtime dependencies. These may be added to ensure that
one split package depends on another, or to add a hard dependency that is not
accounted for by the automatic systems.

Example:

rundeps:
Depend on subpackage in this set ending with "-devel’
- "%(name)-devel"

- filesystem

Defining a subpackage #

Additional packages may be defined by extending the packages set, and matching a set

of paths to include in that subpackage.

For example:

packages:
- "%(name)-tools":
summary: Cool tools package
description: |

Provides a cool set of tools!

paths:
- /usr/bin/extra-tool

Note that automatic dependencies and providers still work with subpackages, so binary

deps will resolve without having to manually specify those.

Overriding defaults &

To override splitting in the root package, for example, to avoid -devel subpackage

when building a headers-only package, you could do:

paths:

- /usr/include
To add to a predefined package, such as -docs:

packages:
- "%(name)-docs":
paths:

- /usr/share/custom-docs

Triggers

Overview

Triggers match filesystem paths to actions

Transaction triggers
Transaction triggers run in confinement to finish package configuration tasks

http://127.0.0.1:4321/packaging/recipes/triggers/overview/
http://127.0.0.1:4321/packaging/recipes/triggers/tx-triggers/

Overview

AerynQOS supports the use of triggers, or actions, that run at the end of package
installations. Given the significantly different architecture of AerynQOS, these triggers
may not be quite what you are used to in other distributions or package managers.

Basic mechanism &

After a new transaction is formed and moss has identified all of the paths used to
compose a filesystem, the staging tree is built as the basis of the new /usr. Any trigger
files (under /usr/share/moss/triggers) will be loaded, and any matching triggers will

be executed at the appropriate stage.

Note that trigger logic is based on glob-style path matches and are not incremental.
Our triggers were so designed to avoid the uncontrolled execution of arbitrary scripts,

instead relying on logical matching of patterns to handlers.

Capturing globs #

Our triggers use special string tokens to permit capturing groups from a glob-style
string. At this stage we support * and ? glob characters only, compiling to a regex

internally. Support is planned for braces.

/usr/1ib/ (GROUP_NAME:PATTERN)/dir

The parenthesis begin a non-greedy capture group hamed GROUP_NAME containing

pattern PATTERN. For example:

/usr/share/icons/(name:*)/index.theme

This creates a capture group identifed by name matching * in
/usr/share/icons/*/index. theme. As such, the path

/usr/share/icons/hicolor/index. theme. with name being set to hicolor.

This is a powerful mechanism that allows us to control handler execution without

relying on interim scripts.

Consider this example:

/usr/1ib*/(libname: lib*.so.*)

This will only match 1ib*.so.* glob, and set 1ibname to 1ibz.so.1 for

/usr/1ib32/1ibz.so.1, but will not match for /usr/1ib64/1ibz. so.

These globs are then used for string substitution in the arguments passed to handlers.

Transaction triggers

Transactional scope triggers (tx triggers) are run after the new filesystem transaction
has been blitted to disk, and just before the new /usr tree is activated. These triggers
run within a specialised container and have read-write access to the new /usr tree, but

only have read-only access to the /etc directory.

Transaction triggers must be installed in /usr/share/moss/triggers/tx.d with a .yaml

suffix.

Sample trigger &

This simple trigger will run depmod -a 6.6.15 when any files are installed to
/usr/lib/modules/6.6.15/. Note that identical commands (after expansion) will be
collapsed automatically to a single run.

name: depmod
description: |

Update kernel module dependencies

Define all of our handlers
handlers:
depmod:
Run “depmod’ with these arguments
run: /usr/sbin/depmod

args: ["-a", "$(version)"]

paths:
Set up a match
"/usr/1lib/modules/(version:*)/*"
Run these handlers for this match.
handlers:
- depmod
type: directory

To install this trigger in your recipe:

%install_file %(pkgdir)/trigger.yaml %
(installroot)/usr/share/moss/triggers/tx.d/gdk_pixbuf.yaml

System Accounts

Groups

Stateless management of system group accounts

Overview

Stateless management of AerynOS user accounts

Users

Stateless management of system user accounts

http://127.0.0.1:4321/packaging/recipes/system-accounts/groups/
http://127.0.0.1:4321/packaging/recipes/system-accounts/overview/
http://127.0.0.1:4321/packaging/recipes/system-accounts/users/

Groups

Refer to the JSON Group Record documentation for information on all supported fields.

Example &

Within the package tree ./pkg add gdm.group:

{
"groupName" : "gdm",
"gid" : 21,
"disposition" : '"system"
3

Note that these are the minimum required set of fields, and disposition should always

be set to system.

In your recipe’s install section, you must install the file by group name and by gid to

the %(1ibdir)/userdb directory:

%install_file %(pkgdir)/gdm.group %(installroot)%
(libdir)/userdb/gdm.group
In -s gdm.group %(installroot)%(libdir)/userdb/21.group

https://systemd.io/GROUP_RECORD/

Overview

As a stateless distribution, AerynOS does not permit the modification of /etc/passwd

and co by packages or triggers. Instead, we integrate nss-systemd and userdb.

/\ Caution

The use of nss means that user accounts and groups defined by this mechanism
are only available to packages using the correct glibc APIs. Statically linking with
mus1 or directly reading /etc/passwd, /etc/group, etc, will not reveal these

accounts.

The main benefit with this approach is ensuring that we do not directly mutate system
files, and that unlike the sysusers mechanism, removal of a package ensures these

system user and group definitions are no longer available.

Users

System accounts should always be marked as locked. Refer to the JSON User Record

documentation for information on all supported fields.

In AerynOS we only ship user definitions without privileged or signature fields.

Example &

Within the package tree ./pkg add gdm.user:

{
"userName" : "gdm",
"realName" : "GNOME Display Manager",
"uid" : 21,
"gid" : 21,
"disposition" : "system",
"locked" : true
}

Note that these are the minimum required set of fields, and disposition should always

be set to system. Also note that homeDirectory may need setting for some packages.

In your recipe’s install section, you must install the file by username and by uid to the

%(libdir)/userdb directory:

%install_file %(pkgdir)/gdm.user %(installroot)%(libdir)/userdb/gdm.user
ln -s gdm.user %(installroot)%(libdir)/userdb/21.user

https://systemd.io/USER_RECORD/

Macros

Every stone.yaml build has access to a number of action and definition macros. With
these, we can ensure a greater degree of integration and consistency in our packaging,
and vastly simplify common tasks to reduce maintainer burden.

autotools >

autotools macros

cargo N
Rust project builds

cmake N

cmake build system

meson N

meson build system

Miscellaneous >

misc helpers

perl >

perl module packaging

python N
python packaging

http://127.0.0.1:4321/packaging/macros/autotools/
http://127.0.0.1:4321/packaging/macros/cargo/
http://127.0.0.1:4321/packaging/macros/cmake/
http://127.0.0.1:4321/packaging/macros/meson/
http://127.0.0.1:4321/packaging/macros/misc/
http://127.0.0.1:4321/packaging/macros/perl/
http://127.0.0.1:4321/packaging/macros/python/

autotools

The autotools macros are used for projects that supply a Makefile, and potentially a

./configure script.

%configure

Perform ./configure with the default options

% make

Perform a make

%make_install

Install results of build to the destination directory

%reconfigure

Re autotools-configure a project without an autogen.sh script

%autogen

Run autogen.sh script, attempting to only configure once

cargo
When building “pure” Rust packages with the cargo build tool, ensure you use the

%cargo* macros to allow boulder to control the various tuning options and debuginfo

behaviour.

%cargo_set _environment

Set environmental variables for Cargo build

%cargo_fetch

Fetch dependencies

%cargo_build

Build the rust project

%cargo_install

Install the built binary

%cargo_test

Run tests

https://rust-lang.org/

cmake
%cmake

Perform cmake with the default options in a subdirectory

%cmake_unity

Perform cmake with unity build enabled

%cmake build

Build the cmake project

%cmake _install

Install results of the build to the destination directory

%cmake_test

Run testsuite with ctest

meson
% meson

Run meson with the default options in a subdirectory

%meson_unity

Run meson with unity build enabled

%meson_build

Build the meson project

%meson_install

Install results of the build to the destination directory

%meson_test

Run meson test

Miscellaneous
%install_bin

Install files to %(bindir)

Example usage

%install_bin nano

%install_dir

Create a new empty directory with the default permissions

Example usage

%install_dir %(installroot)%(datadir)/pkgname/docs

%install_exe

Macro to install a file with default executable permissions
%install_file
Macro to install a file without executable permissions

Example usage

%install_file %(pkgdir)/helper.file %(installroot)%(datadir)/pkgname/pkgfile

%patch

Patch the upstream sources using an input patch file.
Example usage

%patch %(pkgdir)/${file}

If you need to override -p#, add it after ${file}
%patch %(pkgdir)/some.patch -p3

%tmpfiles

Create a tmpfiles.d file for the package with given content

%sysusers

Create a sysusers.d file for the package with given content

perl

%perl_setup

Setup perl with ExtUtils::MakeMaker from stdlib

python
%python_setup

Perform python setup and build with the default options

%python_install

Install python package to the destination directory

%pyproject_build

Build a wheel for python PEP517 projects

%pyproject_install

Install wheel to destination directory

%python_compile

Compile .pyc bytecode files from any miscellaneous .py files in the install directory.

Developers

/\ Caution

This documentation is only a stub and serves as a placeholder for future content.
In time, the full format and payloads of of moss will be documented, along with

other technologies such as blsforme, os-info, etc.

AerynQOS includes some bespoke technologies and formats that are used to package,
distribute, and introspect deployed software. This section of the documentation
provides an overview of these technologies and formats.

Stone Format >

Binary stone format

http://127.0.0.1:4321/developers/stone/

Stone Format

The Stone format is a binary format used to package and distribute software in

AerynOS. It is designed to be type-safe and version-aware,

Header

Stone archive header format

V1 Stone
V1 Stone format

http://127.0.0.1:4321/developers/stone/header/
http://127.0.0.1:4321/developers/stone/v1/

Header

Stone archives are encoded with a version agnostic header, ensuring that version-
specific fields can be handled separately from version and format detection. This is a

32-byte header at the start of the archive.

Fields ¢

Field Size Description

magic 4 bytes Always 0x006d6f73
data 24 bytes Version specific data
version 4 bytes Version number, i.e. 1

moss identifier #

The “magic” is always recorded as NULM O S, or:

pub const STONE_MAGIC: &[u8; 4] = b"\Omos";

V1 Stone

The V1 Stone Format is the format currently employed by AerynQOS, and is the first

revision of our format. Over time we will continue to enhance the format and introduce
new features, gated explicitly to a version.

V1 Header >

The v1 header of the stone format

http://127.0.0.1:4321/developers/stone/v1/header/

V1 Header

The v1 header contains 3 fields to denote the type of the .stone file as well as a count
of the payloads. These are contained within the 24-byte data field of the agnostic

header.

Fields »

Field Size Description

num_payloads 2 bytes Number of all payloads within the archive
padding_chk 21 bytes Simple corruption check (fixed content)
type 1 byte Denotes the archive type

The padding check &

While building the stone format, we built-in the .data field to permit future extensions
in subsequent stone versions. As of v1, the .padding_chk field contains a statically

initialised array as a mild corruption check.

const INTEGRITY_CHECK: [u8; 21] = [
e, ¢, 1, 0, 0, 2, 6, 0, 3, 0, 6, 4, 0, 0, 5, 0, 0, 6, 0, O, 7,
17

Types &

Name Value Description
Binary 1 Standard package
Delta 2 currently unused

Repository 3 A package repository index

Name Value Description

BuildManifest 4 A build-time artefact containing the yield potential of a
package

