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Abstract
In this study, we develop a stochastic model that captures the dynamics of HIV
infection, encompassing susceptible individuals, asymptomatic HIV-positive
individuals, and those exhibiting symptoms. Initially, we examine the existence and
stability of both disease-free and endemic equilibria within the deterministic version
of the model. Our analytical findings indicate that the basic reproduction number,R0,
is a pivotal factor in determining the uniqueness and global stability of these
equilibria. Furthermore, we explore the impact of environmental noise on the HIV
disease model, identifying two critical thresholds,Rs

1 andRs
2 (withRs

2 <Rs
1). IfRs

1 is
less than unity, the disease is likely to be eradicated; conversely, ifRs

2 exceeds unity,
the disease will persist, and a unique stationary distribution will emerge. Additionally,
our numerical simulations reveal that whenRs

2 < 1 <Rs
1, the disease may still face

extinction. From an epidemiological viewpoint, our observations suggest that a
decrease in environmental noise intensity results in a reduction of the oscillation
amplitude in the disease dynamics. Conversely, an increase in noise intensity is
associated with a lower mean of infectious individuals and a left-skewed distribution.

Keywords: Stochastic HIV disease model; Infection stages; Extinction; Stationary
distribution; Probability density function

1 Introduction
Human Immunodeficiency Virus (HIV) causes Acquired Immunodeficiency Syndrome
(AIDS) which is one of the infectious diseases that has been a threat to the public’s health.
Generally speaking, the disease is divided into four stages: acute infection stage (mainly
characterized by symptoms of colds); asymptomatic infection period (without any symp-
toms, but with the virus continuing to multiply in the body); symptomatic infection period
(symptoms related to AIDS begin to appear, showing persistent Lymphadenopathy, fever,
weight loss, and so on); and a period typical of AIDS (the immune system is severely dam-
aged, and various immune deficiencies, opportunistic infection, and malignant tumors
occur). How it evolves, how long it takes, and the impact it has on the individual is deter-
mined by various factors such as physical quality, lifestyle, environment, and so on.

To better understand HIV/AIDS epidemiology, establishing mathematical models that
conform to transmission characteristics based on its development stage and infection
mode has been widely investigated. In [1], the authors divided the total clinical stages
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into two phases, asymptomatic and symptomatic. Researchers [2] assessed the waiting
time distributions for increasing phases of HIV/AIDS infection, and they studied the
possibility of infection transmission between exposed and infected patients at various
stages of illness. Naresh et al. [3] developed an HIV disease classification system with four
subcategories—HIV-negative but susceptible, HIV-infected but unaware, HIV-positive,
and HIV-infected but conscious—and they looked into the effect of sexual activity records
on disease transmission. Huo et al. [4] established an HIV model that divided the popu-
lation into five compartments: susceptible patients, HIV-positive individuals, those with
full-blown AIDS but not receiving treatment, those being treated, and those who have
changed their sexual habits to become immune to HIV infection in order to study the ef-
fect of treatment on the transmission dynamics of the HIV/AIDS epidemic model. For
other HIV/AIDS models or another epidemic model, please see [5–10] and the references
cited therein.

Nature is full of complexity and spontaneous processes, and the development of the pop-
ulation does not always obey purely deterministic rules. Population density never attains
a fixed value over time but rather experiences oscillation around some average value [11].
Environmental noise is an inevitable factor that not only causes disturbance in the dynam-
ics, but may also be beneficial by causing resonances and enhancing stability [12]. Noise
can be classified into additive and multiplicative based on its source. Additive noise is not
controlled by the system and can be directly introduced, while multiplicative noise is re-
lated to system parameters and variables. It should be noted that in systems with additive
noise when the initial population density is very low, noise may result in negative solutions
in stochastic systems, which is unrealistic. However, multiplicative noise ensures the non-
negativity of the solution. Moreover, the presence of multiplicative noise is characterized
by the existence of an absorbing barrier at zero population density and the occurrence of
anomalous fluctuations [13]. In biological systems, noise is often caused by environmen-
tal fluctuations and is typically considered multiplicative white noise. Continuous-time
dynamics frequently focuses on white noise fluctuations and is modeled using a system
of stochastic differential equations (SDEs). It has been theoretically and computationally
documented [14–20] that environmental noise can impact the spread pattern of infec-
tion, and play an essential role in efforts to prevent or mitigate disease transmission. The
stochasticity in the model is usually induced by assuming that the stochastic perturbations
are directly proportional to each group in the population, which is a standard technique
in stochastic population modeling (refer to [21–25] and the references therein). For ex-
ample, in order to study a stochastic sex-structured HIV/AIDS epidemic model with ef-
fects of infective screening, Rathinasamy et al. [21] assumed that stochastic perturbations
are of the white noise type and are directly proportional to susceptible males, susceptible
females, infected males, infected females, and AIDS-class. Qi and Jiang [23] considered
the impact of random environmental disturbance on the deterministic HIV/AIDS model
with disease carrier screening and active seeking of treatment which divided the popula-
tion into seven clusters including susceptible individuals, infectious and symptomatic pri-
mary HIV-infected individuals, asymptomatic and infectious disease carriers, and so on.
By incorporating environmental noise into HIV/AIDS models, these authors captured the
dynamic behavior of these systems, including the possible existence of a stationary distri-
bution and the influence of white noise intensity on disease extinction and persistence. To
summarize, introducing environmental noise in stochastic models is crucial for capturing
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realistic system behavior, exploring emergent phenomena, quantifying uncertainty, and
more.

However, stochastic HIV disease modeling with different infection stages has received
little attention. Motivated by this, we mainly focus on how environmental fluctuations
impact the dynamics of an HIV model with a nonmonotone incidence rate and obscure
symptoms. This paper is organized as follows. Section 2 introduces some mathematical
models used in this paper. Section 3 gives some preliminary results. Section 4 derives the
stochastic extinction of the disease. An analysis of the stationary distribution is presented
in Sect. 5. By solving the Fokker–Planck equation, the expression of the probability density
function for the stationary distribution is obtained in Sect. 6. We display some numerical
simulations in Sect. 7. In Sect. 8, we briefly conclude. Finally, the detailed proofs of our
theoretical results are provided in the Appendix.

2 Model derivations
Following infection, HIV rapidly replicates in the body. Within a few days to weeks,
some patients experience flu-like symptoms such as headaches, fever, sore throat, and a
rash [26, 27]. However, at this stage, no special treatment is required and clinical symp-
toms will disappear on their own. Furthermore, considering that patients in a typical stage
of AIDS are almost incapable of infecting others and therefore have no influence on the
dynamics of the HIV infection, we only distinguish infected individuals into those who
are going through the asymptomatic stage and those who are going through the symp-
tomatic stage. Meanwhile, it is assumed that an infected individual in the symptomatic
phase cannot spread the disease since he/she has been diagnosed and no longer has the
ability to interact with other individuals in his/her everyday activities. The corresponding
mathematical model is as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

dS(t)
dt

= Λ – μS(t) – βS(t)g(Ia(t)),

dIa(t)
dt

= βS(t)g(Ia(t)) – (α + μ)Ia(t),

dIs(t)
dt

= αIa(t) – (μ + γ )Is(t),

(2.1)

with

X := R
3
+ = {(S(t), Ia(t), Is(t)) : S(t) > 0, Ia(t) > 0, Is(t) > 0}, (2.2)

where S is the susceptible group which could be infected with HIV, Ia is the infected pop-
ulation without obvious clinical symptoms, and Is is the infected population with obvious
clinical symptoms which is tested for HIV and diagnosed. All of the parameters Λ, μ, β , α,
and γ are positive constants: Λ denotes the constant birth rate, μ is the natural mortality
in the absence of HIV infection, β the power of infection that causes a new infection when
a susceptible and an infective in class Ia come into contact, α represents the diagnosis rate
of infections, and γ the disease-related mortality rate.

We are aware that incidence rates are critical in describing the interaction between sus-
ceptible and infected individuals within HIV/AIDS infection models, and that nonlinear
incidence rates are more generic and realistic [28–30]. In [31], the authors proposed an
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interactive expression g(Ia)S, where g is a nonlinear bounded map with saturation, and
it allows for the introduction of certain “psychological” effects: given a large number of
infectives, the infection forces g(Ia) may drop as Ia grows, since, in the presence of a large
number of infectives, the population may tend to limit the number of interactions per unit
time. This incidence rate g(Ia)S takes into account the behavioral changes and crowding
impact of infective individuals and avoids the contact rate from becoming unbounded by
selecting appropriate settings. Similar to [32], we adopt

g(Ia) =
Ia

1 + δI2
a

,

where g(Ia)
Ia

= 1
1+δI2

a
refers to the psychological or inhibiting influence of susceptible indi-

viduals’ behavioral changes when the number of infected individuals is relatively big and
δ > 0. Then the model (2.1) can be rewritten as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

dS(t)
dt

= Λ – μS(t) –
βS(t)Ia(t)
1 + δI2

a(t)
,

dIa(t)
dt

=
βS(t)Ia(t)
1 + δI2

a(t)
– (α + μ)Ia(t),

dIs(t)
dt

= αIa(t) – (μ + γ )Is(t).

(2.3)

Notably, variable Is in model (2.3) does not appear directly in the first two equations,
implying that the individuals in compartment Is do not spread the disease. The model (2.3)
can be simplified as follows when the equation for Is is not taken into account:

⎧
⎪⎪⎨

⎪⎪⎩

dS(t)
dt

= Λ – μS(t) –
βS(t)Ia(t)
1 + δI2

a(t)
,

dIa(t)
dt

=
βS(t)Ia(t)
1 + δI2

a(t)
– (α + μ)Ia(t).

(2.4)

Due to the significant effect of environmental noise on the dynamics of HIV infection, we
assume that stochastic perturbations are of the white noise type and directly proportional
to S and Ia. For Δt small, it is appropriate to consider X = (S, Ia) as a Markov process with
the following specifications:

E[S(t + Δt) – S(t)|X = x] ≈
[︃

Λ – μS(t) –
βS(t)Ia(t)
1 + δI2

a(t)

]︃

Δt,

E[Ia(t + Δt) – Ia(t)|X = x] ≈
[︃

βS(t)Ia(t)
1 + δI2

a(t)
– (α + μ)Ia(t)

]︃

Δt,

and

Var[S(t + Δt) – S(t)|X = x] ≈ σ 2
1 S2(t)Δt,

Var[Ia(t + Δt) – Ia(t)|X = x] ≈ σ 2
2 I2

a(t)Δt.
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Then the deterministic model (2.4) can be described in the following form:
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

dS(t) =
(︃

Λ – μS(t) –
βS(t)Ia(t)
1 + δI2

a(t)

)︃

dt + σ1S(t)dB(t),

dIa(t) =
(︃

βS(t)Ia(t)
1 + δI2

a(t)
– (α + μ)Ia(t)

)︃

dt + σ2Ia(t)dB(t),
(2.5)

and the terms σ1S(t)dB(t) and σ2Ia(t)dB(t) biologically reflect the contacts of the envi-
ronment and individuals involved in the process. The Brownian motion B(t) is described
across the whole probability space (R2

+, B(R2
+), {Ft}t≥0, P) with B(0) = 0, where B(R2

+) de-
notes the Borel σ -algebra on R

2
+, and a filtration {Ft}t≥0 satisfies the usual conditions (i.e.,

it is right continuous and increasing while F0 contains all P-null sets); σ 2
i > 0 (i = 1, 2) ex-

press the intensities of the white noise B(t). Other parameters are the same as in the ODE
model (2.3) and the SDE model’s (2.5) state space is X as well.

3 Preliminary results
The premise to ensure that our work can be carried out smoothly is to understand the
dynamics of the deterministic mode (2.3).

Without hesitation, it is necessary for us to provide a theorem on the positivity and
boundedness of the solution to model (2.3).

Theorem 3.1 All solutions (S(t), Ia(t), Is(t)) of the model (2.3) with any initial value
(S(0), Ia(0), Is(0)) ∈ X remain positive for all t ≥ 0, and are defined in the positive bounded
invariant set

Γ =
{︃

(S, Ia, Is) ∈X : S ≥ 0, Ia ≥ 0, Is ≥ 0, 0 < S + Ia + Is ≤ Λ

μ

}︃

⊂X. (3.1)

From now on, we mainly focus on the existence and stability of equilibria in the
model (2.3). Defining the basic reproduction number

R0 =
βS0

α + μ
=

βΛ

μ(α + μ)
, (3.2)

we can obtain the following theorems.

Theorem 3.2 For the model (2.3),
(i) there is always the disease-free equilibrium E0 = (S0, 0, 0), where S0 = Λ

μ
;

(ii) if R0 > 1, there exists a unique endemic equilibrium E∗ = (S∗, I∗
a , I∗

s ) with

S∗ =
(μ + α)(1 + δI∗

a
2)

β
, I∗

a =
√︁

β2 – 4μ2δ(1 – R0) – β

2μδ
, I∗

s =
α

μ + γ
I∗

a , (3.3)

where I∗
a is the positive root of the following equation:

H(Ia) := p2I2
a + p1Ia + p0 = 0,

with

p2 = (α + μ)δμ, p1 = β(α + μ), p0 = –Λβ + μ(α + μ).
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Remark 3.3 A simple computation reveals that

dIa

dδ
= –

dp2
dδ

I2
a + dp1

dδ
Ia + dp0

dδ

2p2Ia + p1
= –

μ(α + μ)I2
a

2δμ(α + μ)Ia + β(α + μ)
< 0.

This indicates that the number of infective individuals decreases due to the psychological
or inhibitory effect of susceptible individuals’ behavioral change.

Theorem 3.4 If R0 < 1, the disease-free equilibrium E0 = ( Λ
μ

, 0, 0) of the model (2.3) is
globally asymptotically stable in the domain Γ, while if R0 > 1, E0 is unstable.

Theorem 3.5 If R0 > 1, the model (2.3) admits a unique endemic equilibrium E∗ =
(S∗, I∗

a , I∗
s ) which is globally asymptotically stable in Γ.

Remark 3.6 Theorems 3.4 and 3.5 show that R0 is critical for determining whether or not
an endemic equilibrium exists for the model (2.3).

In addition, prior to initiating comprehensive research on the influence of environmen-
tal noise on the HIV infection dynamics, it is imperative to first provide an explanation
regarding the existence and boundedness of solutions for the stochastic model (2.5). Please
refer to the following theorems for specific details.

Theorem 3.7 For any t ≥ 0, the model (2.5) has a unique positive solution (S(t), Ia(t))
which will stay in X with probability one for any given initial value (S(0), Ia(0)) ∈X.

We skip the proof of Theorem 3.7 because it is standard and comparable to that of
Lemma 2.4 in [33].

Theorem 3.8 For any initial value X0 = (S(0), Ia(0)) ∈ X, the solutions of the model (2.5)
are stochastically ultimately bounded and permanent.

Here, the Markov process X(t) = (S(t), Ia(t)) of our stochastic model (2.5) is first shown
to be geometrically ergodic, implying that a stationary distribution exists.

Theorem 3.9 The Markov process X(t) = (S(t), Ia(t)) of the model (2.5), with an initial
value X0 = (S(0), Ia(0)) ∈X, exhibits V-geometric ergodicity.

For convenience, the proofs of the above results will be presented in the Appendix.

4 Disease stochastic extinction
In the context of infection models, we consistently assess the long-term possibility of dis-
ease eradication. The reproduction number is widely recognized as one of the most crucial
variables in epidemiology. This section provides an expression of the stochastic reproduc-
tion number

Rs
1 :=

βΛ

μ
(︂
α + μ + σ 2

2
2

)︂ , (4.1)
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and we then obtain the following theorem about the extinction of the disease for the
model (2.5).

Theorem 4.1 Assume that Rs
1 < 1, then the solution (S(t), Ia(t)) of the model (2.5) has the

following property:

lim sup
t→∞

1
t

∫︂ t

0
S(s)ds ≤ Λ

μ
a.s., lim sup

t→∞
log Ia(t)

t
< 0 a.s.

In other words, the disease dies out with probability one.

Proof By applying the comparison theorem for stochastic differential equations [34] and
the law of large numbers [35], we analyze the first equation of the model (2.5). Considering
the auxiliary equation below, which includes a stochastic perturbation

dS(t) = (Λ – μS(t))dt + σ1S(t)dB(t), (4.2)

with the initial value S(0) = S(0) > 0, and setting

g(S(t)) = Λ – μS(t), 𝝈 (S(t)) = σ1S(t), S(t) ∈ (0,∞),

we calculate that

∫︂ S

c0

g(u)

𝝈 2(u)
du =

∫︂ S

c0

1
σ 2

1 u2 (Λ – μu)du =
1
σ 2

1

(︂
–

Λ

S – μ lnS
)︂

+ C1,

where c0 is an arbitrary fixed positive constant and C1 is a constant determined by the
foregoing formula. It is evident that

∫︂ ∞

0

1
𝝈 2(S)

e2
∫︁S

c0
g(u)

𝝈2(u)
dudS =

∫︂ ∞

0

1
σ 2

1 S2 e
2
(︁

1
σ2

1
(– Λ

S –μ lnS)+C1
)︁

dS

=
e2C1

σ 2
1

∫︂ ∞

0
S

– 2μ

σ2
1

–2
e

– 2Λ

σ2
1 S dS < ∞,

thus, we obtain that the model (4.2) is ergodic with the ergodic distribution

k(S) =
e2C1

σ 2
1
S

– 2μ

σ2
1

–2
e

– 2Λ

σ2
1 S , S ∈ (0,∞),

where C2 ≜ e2C1
σ 2

1
is a constant such that

∫︁ ∞
0 k(S)dS = 1. It then follows that

lim
t→∞

1
t

∫︂ t

0
S(s)ds =

∫︂ ∞

0
Sk(S)dS a.s. (4.3)

and, from Theorem 3.1 of [36], we have
∫︁ ∞

0 Sk(S)dS = Λ
μ

.
Letting S(t) be the solution of (4.2) with the initial value S(0) = S(0) > 0, by the compar-

ison theorem for stochastic differential equations [34], we get

S(t) ≤ S(t) for any t ≥ 0 a.s. (4.4)
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Thus we have

lim
t→∞

1
t

∫︂ t

0
S(s)ds ≤ lim

t→∞
1
t

∫︂ t

0
S(s)ds =

Λ

μ
a.s. (4.5)

Applying Itô’s formula yields

d log Ia(t) =
(︃

βS(t)
1 + δI2

a(t)
– (α + μ) –

σ 2
2

2

)︃

dt + σ2dB(t). (4.6)

Hence, from Eq. (4.6), we derive the following equation by integrating both sides from 0
to t:

log Ia(t) = log Ia(0) +
∫︂ t

0

(︃
βS(s)

1 + δI2
a(s)

– (α + μ) –
σ 2

2
2

)︃

ds +
∫︂ t

0
σ2dB(s)

≤ log Ia(0) +
∫︂ t

0

(︃

βS(s) – (α + μ) –
σ 2

2
2

)︃

ds +
∫︂ t

0
σ2dB(s).

(4.7)

Setting ϕ(t) :=
∫︁ t

0 σ2dB(s), we have

⟨ϕ(t),ϕ(t)⟩
t

=
1
t

∫︂ t

0
σ 2

2 ds = σ 2
2 < +∞.

Hence, using the law of large numbers for martingales [11], we obtain lim sup
t→∞

ϕ(t)
t = 0 a.s.

It follows from (4.5) that dividing by t on both sides of (4.7) and letting t → ∞, we derive

lim sup
t→∞

log Ia(t)
t

≤ βΛ

μ
–
(︃

α + μ +
σ 2

2
2

)︃

=
(︃

α + μ +
σ 2

2
2

)︃

(Rs
1 – 1).

(4.8)

Therefore, under the condition Rs
1 < 1, one may claim that

lim sup
t→∞

log Ia(t)
t

< 0 a.s. □

Remark 4.2 Theorem 4.1 provides sufficient conditions for the disease to be eradicated
in the long run. Due to the fact that Rs

1 < R0, we are pleasantly surprised to discover a
scenario where R0 > 1 but Rs

1 < 1 such that the asymptomatic infected population Ia(t)
of the SDE model (2.5) becomes extinct exponentially, which is quite different from the
result of Theorem 3.5 for the deterministic model (2.3). This tells us that the impact of
environmental noises on disease dynamics must not be ignored.

5 Existence of ergodic stationary distribution
The other major concern in epidemiology is the long-term persistence of the disease. In
Theorem 3.9, we conclude that the Markov process of the SDE model (2.5), denoted as
X(t), possesses a stationary distribution for the initial value X0 = (S(0), Ia(0)) ∈X. We will
analyze the endemic stationary distribution of X(t) in the model (2.5).

Khasminskii [37] presented the following famous conclusion about the existence and
uniqueness of the stationary distribution of the stochastic process X(t).
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Lemma 5.1 ([37]) Suppose there exists a smooth boundary ∂Π that encloses a bounded
open domain Π ⊂R

2
+, which exhibits the following properties:

(i) In the domain Π and some neighborhood, the minimum eigenvalue of the diffusion
matrix J(X) is distant from zero;

(ii) If X ∈R
2
+ \ Π, the mean time τ for a path originating from X to reach the set Π is

finite, and sup
X∈V

Eτ < ∞ holds for every compact subset V ⊂R
2
+.

Then the Markov process X(t) starting from X0 ∈ R
2
+ possesses a unique stationary distri-

bution 𝝅(·). Furthermore, if f (·) is a function that can be integrated with respect to the
measure 𝝅 , then

P
{︃

lim
t→∞

1
T

∫︂ T

0
f (X(t))dt =

∫︂

R
2
+

f (Y )𝝅(dY )

}︃

= 1.

Denote

Rs
2 =

βΛ
(︂
μ + σ 2

1
2

)︂(︂
α + μ + σ 2

2
2

)︂ ,

then we obtain the following result.

Theorem 5.2 If Rs
2 > 1, then for the model (2.5) with an initial value X0 ∈ X, there is a

unique stationary distribution with the ergodicity property

P
{︃

lim
T→∞

1
T

∫︂ T

0
f (Xi(t))dt =

∫︂

Ω

Yi𝝅(dY1, dY2)

}︃

= 1.

Proof Since L is uniformly elliptic in X, (i) of Lemma 5.1 holds. To verify (ii), it is sufficient
to demonstrate that there are some neighborhood Π and a nonnegative C2-function V
such that LV is negative definite for X ∈ X \ Π.

Define the function

V (S, Ia) = MV1 + V2 + V3,

where

V1 = –
βΛ

(︂
μ + σ 2

1
2

)︂2 ln S – ln Ia, V2 =
1

m + 1
(S + Ia)m+1, V3 = – ln S.

Here, M > 0 is a sufficiently large constant satisfying

–M
(︂
α + μ + σ 2

2
2

)︂
(Rs

2 – 1) + ϒ2 ≤ –2,

where

ϒ2 = sup
(S,Ia)∈R2

+

{︃

Λ(S + Ia)m –
μ

2
Sm+1 –

α + μ

2
Im+1

a + μ +
σ 2

1
2

}︃

.
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It is easy to check that

lim inf
n→∞, (S,Ia)∈R2

+\Un
V (S, Ia) = +∞,

where Un = ( 1
n , n) × ( 1

n , n). Furthermore, V (S, Ia) is a continuous function. Hence, (S, Ia)

must have a minimum point (S̃0, Ĩa0) in the interior of R2
+. Then we define a nonnegative

function ˜︁V : R2
+ →R as follows:

˜︁V (S, Ia) = V (S, Ia) – V (S̃0, Ĩa0).

A simple calculation yields that

L(– ln S) = –
Λ

S
+ μ +

βIa

1 + δI2
a

+
σ 2

1
2

(5.1)

and

L(– ln Ia) = –
βS

1 + δI2
a

+
(︃

α + μ +
σ 2

2
2

)︃

. (5.2)

Set κ =
Λ

μ + σ 2
1
2

, then it follows from (5.2) that

L(– ln Ia) ≤ –βκ

(︃
S

κ(1 + δI2
a)

– 1
)︃

– βκ +
(︃

α + μ +
σ 2

2
2

)︃

≤ –βκ + βκ

(︃

1 –
S

κ(1 + δI2
a)

)︃

+
(︃

α + μ +
σ 2

2
2

)︃

≤ –βκ + βκ ln(1 + δI2
a) + βκ ln

κ

S
+
(︃

α + μ +
σ 2

2
2

)︃

≤ –2βκ + βκδI2
a +

βκ2

S
+
(︃

α + μ +
σ 2

2
2

)︃

.

Hence, we have

LV1 ≤ βΛ
(︂
μ + σ 2

1
2

)︂2

(︃

–
Λ

S
+ μ +

βIa

1 + δI2
a

+
σ 2

1
2

)︃

–
2βΛ

μ + σ 2
1
2

+
βδΛI2

a

μ + σ 2
1
2

+
βΛ2

(︂
μ + σ 2

1
2

)︂2
S

+
(︃

α + μ +
σ 2

2
2

)︃

= –
(︃

α + μ +
σ 2

2
2

)︃

(Rs
2 – 1) +

β2ΛIa
(︂
μ + σ 2

1
2

)︂2
(1 + δIa)

2
+

βδΛI2
a

μ + σ 2
1
2

.

By the Itô’s formula, we get

LV2 = (S + Ia)m(Λ – μS – (α + μ)Ia) +
m(S + Ia)m–1

2
(︁
σ 2

1 S2 + σ 2
2 I2

a
)︁

≤ Λ(S + Ia)m – μSm+1 – (α + μ)Im+1
a +

mσ 2
1

2
Sm+1 +

mσ 2
2

2
Im+1

a .
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Choosing m = min

{︃

1,
μ

σ 2
1

∧ α + μ

σ 2
2

}︃

, we have

LV2 ≤ Λ(S + Ia)m –
μ

2
Sm+1 –

α + μ

2
Im+1

a .

Thus,

LV ≤ –M
(︃

α + μ +
σ 2

2
2

)︃

(Rs
2 – 1) +

⎛

⎜
⎝

Mβ2Λ
(︂
μ + σ 2

1
2

)︂2 + β

⎞

⎟
⎠ Ia +

MβδΛI2
a

μ + σ 2
1
2

+Λ(S + Ia)m –
μ

2
Sm+1 –

α + μ

2
Im+1

a –
Λ

S
+ μ +

σ 2
1

2

Next, we construct the bounded closed set

Π :=
{︃

(S, Ia) : ϵ ≤ S ≤ 1
ϵ

, ϵ ≤ Ia ≤ 1
ϵ

}︃

,

where ϵ denotes a sufficiently small constant. We take ϵ based on the following conditions:

–
Λ

ϵ
+ ϒ1 ≤ –1,

–M
(︃

α + μ +
σ 2

2
2

)︃

(Rs
2 – 1) +

⎛

⎜
⎝

Mβ2Λ
(︂
μ + σ 2

1
2

)︂2 + β

⎞

⎟
⎠ ϵ +

MβδΛϵ2

μ + σ 2
1
2

+ ϒ2 ≤ –1,

–
μ

2ϵm+1 + ϒ1 ≤ –1,

–
α + μ

2ϵm+1 + ϒ1 ≤ –1,

where

ϒ1 = sup
(S,Ia)∈R2

+

⎧
⎪⎨

⎪⎩

⎛

⎜
⎝

Mβ2Λ
(︂
μ + σ 2

1
2

)︂2 + β

⎞

⎟
⎠ Ia +

MβδΛI2
a

μ + σ 2
1
2

+ Λ(S + Ia)m –
μ

4
Sm+1

–
α + μ

4
Im+1

a + μ +
σ 2

1
2

}︃

< ∞.

For the sake of convenience, we partition R
2
+\Π into four domains,

Π1 = {(S, Ia) ∈R
2
+, 0 < S < ϵ},

Π2 = {(S, Ia) ∈R
2
+, 0 < Ia < ϵ},

Π3 =
{︃

(S, Ia) ∈ R
2
+, S ≥ 1

ϵ

}︃

,

Π4 =
{︃

(S, Ia) ∈ R
2
+, Ia ≥ 1

ϵ

}︃

.

We will prove that L˜︁V (S, Ia) ≤ –1 on R
2
+\Π, which is equivalent to showing it on the above

four domains.
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Case 1: If (S, Ia) ∈ Π1, one obtains

L˜︁V ≤ –
Λ

S
+ ϒ1 ≤ –

Λ

ϵ
+ ϒ1 ≤ –1.

Case 2: If (S, Ia) ∈ Π2, one obtains

L˜︁V ≤ –M
(︃

α + μ +
σ 2

2
2

)︃

(Rs
2 – 1) +

⎛

⎜
⎝

Mβ2Λ
(︂
μ + σ 2

1
2

)︂2 + β

⎞

⎟
⎠ ϵ +

MβδΛϵ2

μ + σ 2
1
2

+ ϒ2 ≤ –1.

Case 3: If (S, Ia) ∈ Π3, one obtains

L˜︁V ≤ –
μ

2
Sm+1 + ϒ1 ≤ –

μ

2ϵm+1 + ϒ1 ≤ –1.

Case 4: If (S, Ia) ∈ Π4, one obtains

L˜︁V ≤ –
α + μ

2
Im+1

a + ϒ1 ≤ –
α + μ

2ϵm+1 + ϒ1 ≤ –1.

Hence we get L˜︁V (S, Ia) < 0 for (S, Ia) ∈ R
2
+ \ Π. Consequently, the model (2.5) has an

ergodic stationary distribution 𝝅(·).
For C > 0, the ergodicity property states that

lim
T→∞

1
T

∫︂ T

0
(Xi(t) ∧ C)dt =

∫︂

X

(Yi ∧ C)𝝅(dY1, dY2) a.s. (5.3)

In view of the dominated convergence theorem and E(Xi(t)) < C1 (i = 1, 2) (see Theo-
rem 3.8), we get

E
(︂

lim
T→∞

1
T

∫︂ T

0
(Xi(t) ∧ C)dt

)︂
= lim

T→∞
1
T

∫︂ T

0
E(Xi(t) ∧ C)dt ≤ C1

and

∫︂

X

(Yi ∧ C)𝝅(dY1, dY2) ≤ C1.

Letting C → ∞ results in
∫︁

X
Yi𝝅 (dY1, dY2) ≤ C1. Therefore, with respect to the measure

𝝅 (·), the function f (X) = X is integrable. □

Remark 5.3 Theorem 5.2 shows that the solution of the SDE model (2.5) can have an
asymptotically stationary distribution, suggesting stochastic stability. Furthermore, The-
orem 5.2 means that if the theorem’s conditions are satisfied, the solution of the model (2.5)
oscillates around the endemic equilibrium E∗ of the ODE model (2.3), and the model ex-
hibits ergodicity wherein the positive solution converges towards a unique stationary dis-
tribution. This demonstrates the disease’s persistence under certain conditions.
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6 Probability density function analysis
According to the aforementioned study, the global solution (S, Ia) of the model (2.5) has a
stationary distribution. Now, we calculate the distribution’s explicit local probability den-
sity function when Rs

2 > 1.
Letting (x1, x2)T = (ln S, ln Ia)T , we use Itô’s formula to obtain

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

dx1 =
(︃

Λe–x1 – μ –
βex2

1 + δe2x2
–

σ 2
1

2

)︃

dt + σ1dB(t),

dx2 =
(︃

βex1

1 + δe2x2
– (α + μ) –

σ 2
2

2

)︃

dt + σ2dB(t).
(6.1)

Then, we can know that the model (6.1) has a quasistable equilibrium E+ = (S+, I+
a ) :=

(ex+
1 , ex+

2 ) ∈R
2
+, where

S+ =
(α + μ + σ 2

2
2 )(1 + δI+

a
2)

β
, I+

a =

√︂

β2 + 4δ(μ + σ 2
1
2 )2(Rs

2 – 1) – β

2δ(μ + σ 2
1
2 )

. (6.2)

In light of the foregoing, let (y1, y2)T = (x1 – x+
1 , x2 – x+

2 ), where x+
1 = ln S+, x+

2 = ln I+
a , then

the corresponding linearized model (6.1) takes the form

⎧
⎨

⎩

dy1 = (–d11y1 – d12y2)dt + σ1dB(t),

dy2 = (d21y1 – d22y2)dt + σ2dB(t),
(6.3)

where

d11 = Λe–x+
1 > 0, d12 =

βex+
2 (1 – δe2x+

2 )

(1 + δe2x+
2 )2

,

d21 =
βex+

1

1 + δe2x+
2

> 0, d22 =
2βδex+

1 e2x+
2

(1 + δe2x+
2 )2

> 0.

(6.4)

Then, the local probability density function for the model (2.5) is described in the fol-
lowing theorem.

Theorem 6.1 Assuming that Rs
2 > 1, for any initial value (S(0), Ia(0)) ∈ R

2
+, the station-

ary distribution of the model (2.5) around E+ = (S+, I+
a ) has a unique log-normal density

function P(S, Ia), which is defined as

P(S, Ia) = (2π)–1|Σ|– 1
2 e

– 1
2

(︁
ln S

S+ , ln Ia
I+a

)︁
Σ–1

(︁
ln S

S+ , ln Ia
I+a

)︁T

, (6.5)
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where Σ = ϱ2
1Z–1

1 Σ10(Z–1
1 )T + ϱ2

2Z–1
2 Σ20(Z–1

2 )T is a positive definite matrix with ϱ1 =
d21σ1, ϱ2 = σ2,

Σ10 =

⎛

⎝

1
2(d11+d22) 0

0 1
2(d11+d22)(d11d22+d12d21)

⎞

⎠ ,

Σ20 =

⎛

⎝

d11d22+d12d21+d2
22

2(d11+d22)(d11d22+d12d21) – d12d22
2(d11+d22)(d11d22+d12d21)

– d12d22
2(d11+d22)(d11d22+d12d21)

d2
12

2(d11+d22)(d11d22+d12d21)

⎞

⎠ ,

and

Z1 =

(︄
d21 –d22

0 1

)︄

, Z2 =

⎛

⎝
– d21

d12
0

– d21
d12d22

1

⎞

⎠ .

Proof For simplicity, let Y = (y1, y2)T , Ĝ = diag(σ1,σ2), and

A =

(︄
–d11 –d12

d21 –d22

)︄

.

We then rewrite the model (6.3) as dY = AYdt + ĜdB(t). The density function P(Y)

around E+ = (S+, I+
a ), according to the theory in [38], fulfills the Fokker–Planck equation

as follows:

–
2∑︂

i=1

σ 2
i

2
∂2

∂y2
i
P +

∂

∂y1

[︁
(–d11y1 – d12y2)P

]︁
+

∂

∂y2

[︁
(d21y1 – d22y2)P

]︁
= 0, (6.6)

where P(Y) = ce– 1
2YWYT ,

∫︁

R
2
+
P(Y)dY = 1 ensures c > 0, and W is a real symmetric

matrix [39]. Then W obeys the algebraic equation WĜ2W + ATW + WA = 0. Letting
Σ = W–1, the following is an equivalent equation:

Ĝ2 + AΣ + ΣAT = 0. (6.7)

Using the concept of finite independent superposition [40], Eq. (6.7) is identical to putting
two equations together:

Ĝ2
i + AΣi + ΣiAT = 0, i = 1, 2,

where Ĝ1 = diag(σ1, 0), Ĝ2 = diag(0, σ2), Σ = Σ1 +Σ2, and Ĝ2 = Ĝ2
1 + Ĝ2

2. The characteristic
polynomial of A is

FA(λ) = λ2 + (d11 + d22)λ + d11d22 + d12d21 (6.8)

and, if d11d22 + d12d21 > 0, then all the real-parts of the eigenvalues are negative. To obtain
the specific expression for Σ of Eq. (6.7), two procedures must be completed.
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First, for the equation

Ĝ2
1 + AΣ1 + Σ1AT = 0, (6.9)

where Ĝ1 = diag(σ1, 0), we can calculate a matrix

B1 =

(︄
–d11 – d22 –d11d22 – d12d21

1 0

)︄

= Z1AZ–1
1 , (6.10)

where Z1 =

(︄
d21 –d22

0 1

)︄

. Equation (6.9) is changed to the following equation:

Z1Ĝ2
1ZT

1 + B1Z1Σ1ZT
1 + Z1Σ1ZT

1 BT
1 = 0,

which is equivalent to

G2
0 + B1Σ10 + Σ10BT

1 = 0,

where G0 = diag(1, 0), Σ10 = ϱ–2
1 Z1Σ1ZT

1 , ϱ1 = d21σ1, and we can derive

Σ10 =

⎛

⎝

1
2(d11+d22) 0

0 1
2(d11+d22)(d11d22+d12d21)

⎞

⎠ ,

which is positive definite. Thus, we obtain that Σ1 = ϱ2
1Z–1

1 Σ10(Z–1
1 )T is positive definite.

Second, consider the algebraic equation

Ĝ2
2 + AΣ2 + Σ2AT = 0, (6.11)

where Ĝ2 = diag(0, σ2). Similarly, we can get the following matrix:

B2 =

(︄
–d11 d21

–d12 –d22

)︄

= Z2AZ–1
2 , (6.12)

where Z2 =

(︄
– d21

d12
0

– d21
d12d22

1

)︄

. Equation (6.11) can then be changed to the following equation:

Z2Ĝ2
2ZT

2 + B2Z2Σ2ZT
2 + Z2Σ2ZT

2 BT
2 = 0,

which is equivalent to

G2
0 + B2Σ20 + Σ20BT

2 = 0,

where

Σ20 =

⎛

⎝

d11d22+d12d21+d2
22

2(d11+d22)(d11d22+d12d21) – d12d22
2(d11+d22)(d11d22+d12d21)

– d12d22
2(d11+d22)(d11d22+d12d21)

d2
12

2(d11+d22)(d11d22+d12d21)

⎞

⎠ = ϱ–2
2 Z2Σ2ZT

2 ,



Rao et al. Advances in Continuous and Discrete Models         (2025) 2025:38 Page 16 of 26

and ϱ2 = σ2, so we also have the positive definite matrix Σ2 = ϱ2
2Z–1

2 Σ20(Z–1
2 )T .

Thereupon, because Σ = Σ1 + Σ2 in Eq. (6.7) is positive definite, a locally and nearly
normal probability density function P(S, Ia) exists around the point E+. □

Remark 6.2 Theorems 5.2 and 6.1 show that if Rs
2 > 1, the unique ergodic stationary dis-

tribution of the model (2.5) admits the corresponding probability density function.

7 Simulation results
Several numerical simulations are performed to validate dynamical findings for the
model (2.5). We employ Milstein’s higher order method [41] to simulate and investigate the
impact of environmental fluctuations on disease spreading by studying the dynamics of
the stochastic HIV model in asymptomatic HIV-infected and symptomatic HIV-infected
individuals. The corresponding biological parameters and initial value of the model (2.5)
are shown in Table 1, and we fix the following parameters:

Λ = 5, α = 4, δ = 2, γ = 0.2, μ = 0.1, β = 0.1. (7.1)

Then we obtain R0 = βΛ

μ(α+μ) = 1.2195 > 1 and the endemic equilibrium E∗ = (43.2335,
0.165) which is globally asymptotically stable. Furthermore, there is an unstable disease-
free equilibrium E0 = ( Λ

μ
, 0) = (50, 0) in the model (2.5).

In Fig. 1(a), if we choose the environmental forcing intensities (σ1,σ2) = (0.05, 0.05),
then simple calculations show that Rs

1 = Λβ

μ(α+μ+
σ2

2
2 )

= 1.2191 > 1 and Rs
2 = Λβ

(μ+
σ2

1
2 )(α+μ+

σ2
2
2 )

=

1.2041 > 1. Based on Theorem 5.2, it can be inferred that the disease exhibits persistence.
The profiles displayed on the right of Fig. 1(a) demonstrate that the trajectory of Ia(t) fluc-
tuates in proximity to the deterministic steady state value of I∗

a = 0.165. Increasing (σ1,σ2)

to (0.1, 1.35), direct calculations yield Rs
2 = 0.9502 < Rs

1 = 0.9978 < 1 < R0 = 1.2195. From
Theorem 4.1, the infectious variable Ia(t) in the model (2.5) is almost certain to disap-
pear. Figure 1(b) indicates that large enough environmental noises cause the disease to die
out.

In Fig. 2, we adopt (σ1,σ2) = (0.05, 0.05) and (0.05, 0.1), respectively, and then Rs
1 and Rs

2

are larger than 1. For the model (2.5), Figs. 2(a) and 2(b) depict histograms of the proba-
bility density function for S(t) and Ia(t). At the epidemic equilibrium E∗ = (43.2335, 0.165)

of the deterministic model (2.4), the oscillations exhibit a symmetric distribution. Fur-
thermore, these fluctuations are represented in the stationary distributions of the model.

Table 1 Definitions of variables and parameters in model (2.5)

Parameters Description Value Resource

Λ A constant rate of recruitment population ≥ 0.5 [21, 42]
β Transmission rate of the susceptible individuals [0.005, 1] [21, 36]
μ Natural mortality rate of the population [0.05, 1] [21]
δ Psychological or inhibitory effects [0.001, 4] [16, 32]
α Diagnosis rate of infected population [0.01, 10] [7]
γ Disease mortality of the symptomatic infected individuals [0.1, 1] [1]
(S(0), Ia(0)) The initial value of the model (2.5) (30, 20) Assumed
σ1, σ2 The intensities of the noise Variables Estimated
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Figure 1 The paths of S(t) and Ia(t) for the model (2.5) with different noise intensities (σ1,σ2) and other
parameters taken as in (7.1)

In Fig. 3, we take (σ1,σ2) = (0.05, 0.05), (0.05, 0.1), and (0.1, 0.1), respectively, and the
valuess of Rs

1 and Rs
2 are all larger than 1. From Theorem 5.2, we see that Ia(t) is almost

certainly a persistent disease. Figures 3(a) and 3(b) depict how S(t) and Ia(t) mean values
get smaller and smaller as the intensity of random disturbance increases, while the Ia(t)
distribution has a higher negative skew.

Moreover, we also display how the graph of the probability density function for individ-
uals from S and Ia changes with respect to the psychological or inhibitory effect δ. Fig-
ures 4(a) and 4(b) illustrate graphs of U1(S, δ) and U2(Ia, δ) derived using noise intensities
σ1 = 0.05, σ2 = 0.05, and the other parameters taken as in (7.1), respectively. It is obvious
that a high psychological or inhibitory rate δ might reduce disease transmission.

Regrettably, Theorems 4.1 and 5.2 do not provide any information regarding the dis-
ease dynamics of the stochastic model (2.5) when Rs

2 < 1 < Rs
1. In Fig. 5, we present a

schematic of the SDE model’s (2.5) stochastic dynamics of extinction and endemic. In
other words, the disease is extinct if the parameters are in domain I; otherwise, the dis-
ease is persistent if the parameters are in domain II, and the model has an ergodic sta-
tionary distribution. In Fig. 6, when then parameters locate in domain III, we choose
(σ1,σ2) = (0.22, 0.05), (0.25, 0.05), (0.3, 0.1), and in the case of Rs

2 < 1 < Rs
1, we concen-

trate on the impact of σ1 and σ2 on the disease dynamics for the model (2.5). They show
that the infectious population Ia(t) will become extinct as soon as possible.
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Figure 2 Probability density function histogram for S(t) and Ia(t) at t = 1000 for the model (2.5) with two
different values of σ1 and σ2: (a) (σ1,σ2) = (0.05, 0.05) and (b) (σ1,σ2) = (0.05, 0.1), the probability density
functions of S(t) and Ia(t) are represented by the red smoothed curves, keeping other parameters the same as
in (7.1). The number of simulations for the frequency histogram fitting density curves of S(t) and Ia(t) of (2.5) is
1000000, and the run time of our code is about 5.386 seconds

Figure 3 The probability density functions of S and Ia for the model (2.5) with (σ1,σ2) = (0.05, 0.05), (0.05, 0.1),
and (0.1, 0.1), respectively. The other parameters are taken as in (7.1)
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Figure 4 Graphs of the probability density function: (a) U1(S, δ) and (b) U2(Ia , δ) with σ1 = 0.05, σ2 = 0.05,
and the other parameters taken as in (7.1)

Figure 5 Schematic of the SDE model’s (2.5) stochastic
dynamics of extinction and endemic

Figure 6 The path of Ia(t) for the model (2.5), with the other parameters set as in (7.1)

8 Conclusion
A stochastic model of the HIV infection including asymptomatic and symptomatic in-
fected individuals is presented in this paper. We assume the environmental fluctuations
are of the white noise variety and disrupt two populations, S and Ia. On the basis of this,
we investigate if the stochastic model (2.5) is stable and how environmental fluctuations
affect it to understand how the HIV disease might spread in the long run.
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Based on the mathematical analysis, the stochastic model (2.5) provides two random
equilibria: one with endemic disease and the other without the disease. We then derive
two threshold parameters, Rs

1 = βΛ

μ(α+μ+
σ2

2
2 )

and Rs
2 = βΛ

(μ+
σ2

1
2 )(α+μ+

σ2
2
2 )

, from the proofs of dis-

ease elimination in Theorem 4.1 and persistence in Theorem 5.2. That is, depending on
whether the values of Rs

1 and Rs
2 are less or larger than one, the disease will either become

extinct or continue to exist. If Rs
1 < 1, the disease of the model (2.5) will go extinct in the

long term (see Theorem 4.1); while if Rs
2 > 1, the disease will persist, and the model (2.5)

exhibits an ergodic stationary distribution (see Theorem 5.2). However, for the case of
Rs

2 < 1 < Rs
1 of the model (2.5), we give some numerical examples to find that when Rs

1

or both Rs
1 and Rs

2 are large, the random fluctuations have the potential to dampen dis-
ease outbreaks. Moreover, by solving the Fokker–Planck equation, we derive a log-normal
density function P(S, Ia) of the model (2.5), see Theorem 6.1.

The primary goal of this study is to examine the influence of environmental noise on
disease transmission dynamics within a model comprising susceptible and infected pop-
ulations. Our findings indicate that the population trajectories do not settle at their equi-
librium levels but instead fluctuate around these values. Notably, the results suggest that
stronger stochastic disturbances are required to accelerate the control of disease trans-
mission. Furthermore, the analysis reveals that increasing the intensity of environmental
noise over time can play a crucial role in effectively eradicating disease transmission. These
insights contribute to a deeper understanding of the interplay between deterministic and
stochastic models, shedding light on the complexities of disease dynamics under varying
levels of environmental variability.

Our model is built based on several simplifying assumptions, including homogeneous
interactions within the population, fixed parameter values, and a simplified representa-
tion of HIV infection stages. While these assumptions facilitate analytical tractability and
streamline the modeling process, they do not fully capture the complex and heteroge-
neous nature of HIV transmission and progression in real-world contexts. Additionally,
the model does not adequately account for external and environmental factors such as so-
cioeconomic conditions, behavioral diversity, and disparities in healthcare access. These
factors are critical drivers of HIV dynamics, and their omission may limit the model’s rele-
vance and applicability to practical scenarios. To address these limitations, future research
will focus on developing a more comprehensive model that incorporates coinfections (e.g.,
tuberculosis), diverse treatment strategies, and variations in healthcare accessibility. By
expanding the scope of the model, we aim to improve its ability to reflect real-world com-
plexities. Furthermore, integrating data-driven methodologies to parameterize stochastic
elements will enhance the model’s realism and predictive power, making it a more effective
tool for informing HIV prevention and control efforts.

Appendix
Proof of Lemma 3.1 It follows from the first equation of the model (2.3) that

dS(t)
dt

= Λ – μS(t) –
βS(t)Ia(t)
1 + δI2

a(t)
≥ –μS(t) –

βS(t)Ia(t)
1 + δI2

a(t)
, (A.1)
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thus

dS(t)
dt

+
(︃

μ +
βIa(t)

1 + δI2
a(t)

)︃

S(t) ≥ 0. (A.2)

Letting f (t) = μ + βIa(t)
1+δI2

a (t) and multiplying both sides of the latter inequality by e
∫︁ t

0 f (s)ds, we
obtain

e
∫︁ t

0 f (s)ds dS(t)
dt

+ f (t)e
∫︁ t

0 f (s)dsS(t) ≥ 0 (A.3)

and thus derive

d
dt

(︂
S(t)e

∫︁ t
0 f (s)ds

)︂
≥ 0. (A.4)

Integrating this inequality from 0 to t gives

∫︂ t

0

d
ds

(︄

S(t)e
∫︁ t

0

(︃

μ+ βIa(s)
1+δI2a (s)

)︃

ds
)︄

ds ≥ 0, (A.5)

hence

S(t) ≥ S(0)e
∫︁ t

0

(︃

μ+ βIa(s)
1+δI2a (s)

)︃

ds
, (A.6)

so that S(t) > 0.
Similarly, we can prove that Ia(t) ≥ 0 and Is(t) ≥ 0.
Summing up the three equations of the model (2.3) and letting N(t) = S(t) + Ia(t) + Is(t),

we obtain

Λ – (μ + γ )N(t) ≤ dN(t)
dt

= Λ – μN(t) – γ Is ≤ Λ – μN(t). (A.7)

By integration, we derive

Λ

μ + γ
+
(︃

N(0) –
Λ

μ + γ

)︃

e–(μ+γ )t ≤ N(t) ≤ Λ

μ
+
(︃

N(0) –
Λ

μ

)︃

e–μt .

Thus, if we take the limit as t → ∞, then Λ
μ+γ

≤ lim inf
t→∞ N(t) ≤ lim sup

t→∞
N(t) ≤ Λ

μ
. This im-

plies that for the model (2.3), the region Γ is a positively invariant set. □

Proof of Lemma 3.2 Setting the right-hand side of the model (2.3) equal to zero, we have

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Λ – μS(t) –
βS(t)Ia(t)
1 + δI2

a(t)
= 0,

βS(t)Ia(t)
1 + δI2

a(t)
– (α + μ)Ia(t) = 0,

αIa(t) – (μ + γ )Is(t) = 0.

Obviously, there exists a disease-free equilibrium E0 = (S0, 0, 0) = ( Λ
μ

, 0) and direct calcu-
lations show that the basic reproduction number is R0 = βΛ

μ(α+μ)
.
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We get the endemic equilibrium E∗ = (S∗, I∗
a , I∗

s ) if Ia(t) ≠ 0, where

S∗ =
(μ + α)(1 + δI∗

a
2)

β
, I∗

a =
√︁

β2 – 4μ2δ(1 – R0) – β

2μδ
, I∗

s =
α

μ + γ
I∗

a .

Hence, if R0 > 1, then E∗ =
(︁
S∗, I∗

a , I∗
s
)︁

exists and E0 = ( Λ
μ

, 0, 0) always exists. □

Proof of Theorem 3.4 Define the Lyapunov function

V (S, Ia, Is) =
1
2

(︃

S –
Λ

μ

)︃2

+ a1Ia + a2Is, (A.8)

where positive constants a1 and a2 will be decided later. Then the derivative of V along
the solution of the model (2.3) is provided by

dV
dt

=
(︃

S –
Λ

μ

)︃
dS
dt

+ a1
dIa

dt
+ a2

dIs

dt

= –μ

(︃

S –
Λ

μ

)︃2

–
(︃

S –
Λ

μ

)︃(︃
βIa

1 + δI2
a

(︃

S –
Λ

μ

)︃

+
ΛβIa

μ(1 + δI2
a)

)︃

+
a1βSIa

1 + δI2
a

– (a1(α + μ) – a2α)Ia – a2(μ + γ )Is

≤ –
(︃

μ +
βIa

1 + δI2
a

)︃(︃

S –
Λ

μ

)︃2

–
a1μ(α + μ)(1 – R0) – a2μα

μ(1 + δI2
a)

Ia – a2(μ + γ )Is.

(A.9)

Note that S, Ia, and Is are nonnegative. IfR0 < 1 and a1
a2

≥ α
(α+μ)(1–R0) , the right-hand side of

(A.9) contains only nonpositive terms, i.e., dV
dt ≤ 0, and if S = Λ

μ
, Ia = 0, Is = 0, then dV

dt = 0.
Hence, the singleton {E0} is the largest invariant set in

{︁
(S, Ia, Is) : dV

dt = 0
}︁

. Therefore, E0

is globally asymptotically stable if R0 < 1.
The Jacobian matrix of the model (2.3) evaluated at E0 is as follows:

J(E0) =

⎛

⎜
⎜
⎝

–μ –βS0 0

0 βS0 – (α + μ) 0

0 α –(μ + γ )

⎞

⎟
⎟
⎠ , (A.10)

which has three eigenvalues λ1 = –μ, λ2 = βS0 –(α+μ) = (α+μ)(R0 –1), and λ3 = –(μ+γ ).
Thus, when R0 > 1, E0 becomes unstable. □

Proof of Theorem 3.5 By adding all the equations of the model (2.3), we discover that the
whole population N(t) = S(t) + Ia(t) + Is(t) satisfies

dN
dt

= Λ – μN – γ Is. (A.11)
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Then the model (2.3) is equivalent to the following:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

dN
dt

= Λ – μN – γ Is,

dIa

dt
=

βIa

1 + δI2
a

(N – Ia – Is) – (α + μ)Ia,

dIs

dt
= αIa – (μ + γ )Is,

(A.12)

and N∗ = S∗ + I∗
a + I∗

s . Hence, if we can show the global stability of (N∗, I∗
a , I∗

s ), then the
conclusion of the theorem will be confirmed.

Consider the following function:

V (N , Ia, Is) =
1
2

(N – N∗)2 + c1

(︃

Ia – I∗
a – I∗

a log
Ia

I∗
a

)︃

+
1
2

c2(Is – I∗
s )2, (A.13)

where the positive constants c1 and c2 will be found subsequently, and

dV
dt

= (N – N∗)
dN
dt

+ c1
Ia – I∗

a
Ia

dIa

dt
+ c2(Is – I∗

s )
dIs

dt

= –μ(N – N∗)2 – γ (N – N∗)(Is – I∗
s ) + c2α(Is – I∗

s )(Ia –
I∗

a Is

I∗
s

)

+ c1(Ia – I∗
a )

(︃
β(N – Ia – Is)

1 + δI2
a

–
β(N∗ – I∗

a – I∗
s )

1 + δI∗
a

2

)︃

= –μ(N – N∗)2 –
(︂ d1β

1 + δI2
a

+
c1βδ(N∗ – I∗

a – I∗
s )(Ia + I∗

a )

(1 + δI2
a)(1 + δI∗

a
2)

)︂
(Ia – I∗

a )2

–
c2αI∗

a
I∗

s
(Is – I∗

s )2 +
c1β

1 + δI2
a

(N – N∗)(Ia – I∗
a ) – γ (N – N∗)(Is – I∗

s )

– (
c1β

1 + δI2
a

– c2α)(Ia – I∗
a )(Is – I∗

s ).

(A.14)

Letting c1β

1+δI2
a

= c2α and U = (N – N∗, Ia – I∗
a , Is – I∗

s )T yields

dV
dt

= –UT

⎛

⎜
⎜
⎜
⎜
⎝

μ – c2α

2
γ

2

– c2α

2 c2α
(︁
1 + δ(N∗–I∗a –I∗s )(Ia+I∗a )

1+δIa∗2

)︁
0

γ

2 0 c2αI∗a
I∗s

⎞

⎟
⎟
⎟
⎟
⎠

U ≜ –UTAU . (A.15)

Choosing c2 < min
{︂

4μ

α
, 4μδ(N∗–I∗a –Is)I∗a

β(1+δI∗a 2)

}︂
, it immediately follows from the positive-

definiteness of the matrix A that dV
dt < 0. We find that (N∗, I∗

a , I∗
s ) is globally asymptot-

ically stable [43]. As a result, E∗ = (S∗, I∗
a , I∗

s ) is globally asymptotically stable. □

Proof of Theorem 3.8 Let N(t) = S(t) + Ia(t) and

V (t) = N(t) +
1

N(t)
.
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Using Itô’s formula and (A.17), we have

E(eμtV (t)) = E(V (0)) + E(
∫︂ t

0
eμs(μV (s) + LV (s))ds)

≤ E(V (0)) + CE(
∫︂ t

0
eμsds)

= E(V (0)) +
C
μ

(eμt – 1).

It follows that

E(V (t)) ≤ e–μtE(V (0)) +
C
μ

(1 – e–μt)

≤ E(V (0)) +
C
μ

:= ˜︁C.

We choose a big enough constant ζ such that ˜︁C
ζ

< 1 and apply Chebyshev’s inequality to
obtain

P
{︂

N +
1
N

> ζ
}︂

≤ 1
ζ

E
(︂

N +
1
N

)︂
≤ ˜︁C

ζ
:= ε.

This implies

1 – ε ≤ P
{︂

N +
1
N

≤ ζ
}︂

≤ P
{︂ 1

ζ
≤ N ≤ ζ

}︂
.

Noting that N2 ≤ 2|X|2 ≤ 2N2, we have

P
{︂ 1√

2ζ
≤ N√

2
≤ |X| ≤ N ≤ ζ

}︂
≥ 1 – ε.

According to the definitions of stochastic ultimate boundedness and stochastic perma-
nence [44, 45], the SDE model (2.5) is stochastically bounded and permanent. □

Proof of Theorem 3.9 Letting N(t) = S(t) + Ia(t) and

V (X(t)) = N(t) +
1

N(t)
(A.16)

for X(t) ∈X, we then have V (X(t)) → ∞ as the norm |X| =
√︁

X2
1 + X2

2 → ∞. Applying Itô’s
formula, we derive

LV (X(t)) = Λ – μN – αIa –
Λ – μN – αIa

N2 +
σ 2

1 S2 + σ 2
2 I2

a
N3

≤ Λ – μ(N +
1
N

) +
2μ

N
–

Λ

N2 +
αIa

N2 +
σ 2

1 S2 + σ 2
2 I2

a
N3

≤ Λ –
Λ

N2 +
2μ + α + σ 2

1 + σ 2
2

N
– μ(N +

1
N

)

≤ C – μV (X),

(A.17)
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where C = 4Λ2+(2μ+α+σ 2
1 +σ 2

2 )2

4Λ
.

The model (2.5) is uniformly elliptic, thus there exists a jointly continuous function p :
(0,∞) ×X×X → (0,∞) such that pt(X0, Z) remains strictly positive for all (t, X0, Z), and
for every measure set A [46],

Pt(X0,A) =
∫︂

A

pt(X0, Z)dZ. (A.18)

For ω > 0, then inf{pt(X0, Z) : X0, Z ∈X, |X0|, |Z| ≤ ω} ≥ˆ︁C (a constant ˆ︁C = ˆ︁C(ω, t) > 0). For
any set A,

Pt(X,A) =
∫︂

A

pt(X0, Z)dZ ≥ˆ︁C Leb(A∩Bω(0)) = ˆ︁C Leb(Bω(0))p(A)

provides the minorization condition, where Leb denotes the Lebesgue measure and p(A) =
Leb(A∩Bω(0))/Leb(Bω(0)). This ends the proof. □
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