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Abstract
This study investigates strategies for accelerating mosquito population replacement
through the periodic release ofWolbachia-infected male mosquitoes using a
two-dimensional time-switching model. We obtain the existence and stability of
periodic solutions within this framework and establish several sufficient conditions for
eradicating wild mosquitoes by varying the release amounts of infected males. Our
results indicate that accelerated replacement is feasible as long as theWolbachia
infection is favorable. DespiteWolbachia infection brings a fitness costs, effective
population replacement can still be achieved if the release waiting time does not
exceed a certain threshold and the release amount is sufficient to match or surpass
the capacity of wild mosquitoes. However, when the release waiting time exceeds
this threshold, we identify a continuous, unbounded curve that separates two
boundary equilibrium points, with solutions originating from either side converging
to their respective boundary equilibrium points. Numerical simulations are presented
to validate our theoretical findings, highlighting the potential of this approach for
effective mosquito population control.

Mathematics Subject Classification: 34C25; 34D20; 34D23

Keywords: Wolbachia-infected male mosquitoes; Population replacement; Periodic
solutions; Global asymptotic stability

1 Introduction
Dengue fever, one of the most prevalent mosquito-borne diseases, is a viral infection trans-
mitted to humans through the bites of infected mosquitoes. Currently, about half of the
global population is at risk of infecting dengue. The WHO Americas region has reported
4.5 million cases and 2300 deaths, the number of cases in Asia was also high: Bangladesh
(321,000 cases), Malaysia (111,400 cases), Thailand (150,000 cases), and Vietnam (369,000
cases) [1]. So far, there is no effective vaccine that prevents dengue and other significant
mosquito-borne diseases [2, 3]. Therefore, controlling mosquito populations to cut off
transmission pathways remains crucial for preventing these diseases. The best way to con-
trol mosquito populations is through population suppression, commonly using chemical
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insecticides. However, this method has high costs, environmental pollution, increased re-
sistance, and unintended harm to non-target organisms [4].

A promising and environmentally friendly approach to controlling mosquito-borne dis-
eases involves using the endosymbiotic bacterium Wolbachia. Infection with Wolbachia
in Aedes aegypti can greatly reduce the mosquitoes’ dengue transmission potential [5]. In
mosquitoes, Wolbachia often causes cytoplasmic incompatibility (CI). This leads to early
embryonic death when Wolbachia-infected males mate with uninfected females [6, 7]. On
the contrary, Wolbachia-infected females can produce viable embryos after mating with
either infected or uninfected males, bringing them a reproductive advantage over unin-
fected females. To reduce or even eradicate the wild mosquito population, Wolbachia-
infected male mosquitoes are continuously released into control areas. This method in-
duces sterility and effectively suppresses target Aedes mosquito populations. Thus, it can
reduce the spread of mosquito-borne diseases.

Numerous publications have explored the dynamics of Wolbachia transmission using
different dynamical equations. Notable works include studies on population suppression
models [8–15] and population replacement models [16–24]. Among them, Huang and Su
[8, 20] considered Wolbachia-driven dynamics with mating competition and incomplete
CI; Liu and Zhang [10, 15] established delay differential equations with stage structure
to study the release strategies of sterile mosquitoes and bifurcation structures, respec-
tively; Farkas [16] developed an age-structured model and demonstrated significant differ-
ences in the existence and stability of equilibrium solutions compared to the unstructured
model; Hu and Yang [17, 21] developed stochastic differential equation models to study
Wolbachia invasion. Yu and Zheng [12, 23] established delay differential equation models
to study the suppression and replacement of mosquito populations. Additionally, Huang
[18] considered a reaction–diffusion model that describes the spatial dynamics of Wol-
bachia spread in a mixed population of infected and uninfected mosquitoes. They indi-
cated that diffusion can lower the threshold value of the infection frequency above which
Wolbachia can invade the entire population. Li [19] developed an impulsive mosquito
population model with general birth and death rate functions to study the cytoplasmic
incompatibility (CI) effect caused by the mating of Wolbachia-infected males and unin-
fected females. Yu and Zheng [22] formulated discrete dynamical models to study the per-
sistence of Wolbachia infection through the release of Wolbachia-infected mosquitoes,
which display rich dynamics, including bistable, semistable, and globally asymptotically
stable equilibria. Finally, there has been significant interest in periodic succession models
for mosquito suppression, as seen in works such as [11, 13, 14], along with other related
literature.

Furthermore, Wolbachia can trigger resistance in mosquito vectors to various human
pathogens [5, 25]. As a result, we can release Wolbachia-infected female mosquitoes into
control areas, gradually replacing the wild population through the reproductive advan-
tage conferred by CI. Subsequently, Wolbachia induces the host to express resistance to
pathogens, ultimately leading to the interruption of mosquito-borne disease transmis-
sion in the release area. Population replacement is similar to vaccinating vector insects.
Field applications of Wolbachia-based population replacement have been carried out in
15 countries, including Australia, Indonesia, Malaysia, Brazil, and Vietnam [26–28]. How-
ever, due to the limited resources in the production of Wolbachia-infected mosquitoes,
the possible shortage of labors and mosquito factories and the continued release of female
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mosquitoes raise the risk of mosquito bites for local residents, while male mosquitoes do
not bite humans. Therefore, we propose an innovative approach: initially release a small
number of infected females, which makes that there are both infected and uninfected
mosquitoes in the wild, then followed by the release of Wolbachia-infected males impul-
sively and periodically at discrete time points Tn = nT , n = 0, 1, 2, . . . . This will ultimately
achieve vaccination of the wild mosquito population (complete population replacement).

The primary objective of this study is based on the Wolbachia dynamic model, further
releasing infected male mosquitoes periodically to address the following inquiries: What is
the optimal frequency for releasing infected males, and how many should be released each
time to guarantee the successful completion of wild mosquito vaccination (population
replacement)?

Based on the aforementioned discussion and as mentioned earlier, in Sect. 2, we present
a periodic release policy derived from the population replacement model, aiming to accel-
erate the control of wild mosquitoes. In Sect. 3, we provide essential lemmas to establish
the global existence and uniqueness of the semitrivial steady states. We present our main
results in Sect. 4. To illustrate our findings, we provide numerical examples to validate our
theoretical analysis in Sect. 5. The paper ends with a discussion in Sect. 6 and an outlook
about future work.

2 Model formulation
Let R(t) be the numbers of Wolbachia-infected male mosquitoes at time t, R is the re-
lease rate, μi, i = 1, 2, are the density-independent death rates of the infected mosquitoes
and uninfected mosquitoes, respectively. Then the dynamic of newly released Wolbachia-
infected male mosquitoes is governed by

dR
dt

= R – μ1R(t), t > 0. (2.1)

We let

T(t) = Uf (t) + Um(t) + If (t) + Im(t)

denote the total population size that already is in the wild, with Uf (t), Um(t), If (t), and Im(t)
standing for the numbers of uninfected female mosquitoes, uninfected male mosquitoes,
infected female mosquitoes, and infected male mosquitoes at time t, respectively. Let
δi, i = 1, 2, be the density-dependent death rates of the infected mosquitoes and uninfected
mosquitoes, respectively. Let bI (resp. bU ) be the natural birth rate of infected (or unin-
fected) mosquitoes and 0 ≤ δ ≤ 1 be the proportion of individuals born female, thus the
proportion of male mosquitos born is 1–δ. As in [29, 30], here we assume that the released
infected male mosquitoes only affect the mating behavior of the wild healthy mosquitoes,
without impacting their other behaviors (i.e., ignoring interspecific and intraspecific com-
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petition). With perfect maternal transmission and complete CI [31–33], we have

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dIf

dt
= δbIIf – δ1If T(t) – μ1If ,

dIm

dt
= (1 – δ)bIIf – δ1ImT(t) – μ1Im,

dUf

dt
= δbUUf

Um

R + Im + Um
– δ2Uf T(t) – μ2Uf ,

dUm

dt
= (1 – δ)bUUf

Um

R + Im + Um
– δ2UmT(t) – μ2Um.

(2.2)

To reduce the dimension of the model, we set

x(t) = If + Im and y(t) = Uf + Um. (2.3)

There is equal sex determination, which means δ = 1/2 with If = Im and Uf = Um. Also,
for convenience, rename the system parameters as b1 = bI/2 and b2 = bU/2. Then (2.2) is
reduced to

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx
dt

= x
[︁
b1 – μ1 – δ1(x + y)

]︁
,

dy
dt

= y
[︂

b2
y

x+y+2R(t) – μ2 – δ2(x + y)
]︂

,

dR
dt

= R – μ1R(t).

(2.4)

Notice that female mosquitoes can survive for more than five months with sufficient
food, while the male mosquito life expectancy is only six to seven days in general [34].
Then the period during which a male mosquito can effectively mate a female mosquito is
very short compared with the life span of female mosquitoes. And the only role that the
Wolbachia-infected male mosquitoes released into the wild play in the interactive dynam-
ics is just to mate with wild uninfected females, so that the wild female mosquito that mates
with a Wolbachia-infected male mosquito either does not reproduce or produces eggs that
will not hatch. Thus the death of those released Wolbachia-infected male mosquitoes can
be ignored, and the number of released Wolbachia-infected male mosquitoes R(t) can be
treated as a known function. This idea is due to Yu and Li [13, 35], and later Zheng et al.
[36–38] extended this idea in mathematical modeling.

Considering the release cost, Wolbachia-infected male mosquitoes are released at reg-
ular intervals. Our main concerns here are the release period and the release amount: to
manage the release starts at time t = 0 such that R(t) = 0 for t ≤ 0, and that a constant
amount r/2 of Wolbachia-infected male mosquitoes are released after a constant waiting
period T so that infected males are released impulsively and periodically at discrete time
points Tn = nT , n = 0, 1, 2, . . . . Let T̄ be the sexual lifespan of Wolbachia-infected male
mosquitoes. Then there are three possible release strategies T < T̄ , T = T̄ , and T > T̄ . In
this paper, we consider focus on the case of T > T̄ .
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For the case of T > T̄ , R(t) becomes a piecewise constant, and a T-periodic function is
defined as

R(t) =

⎧
⎨

⎩

r/2, t ∈ [nT , nT + T̄),

0, t ∈ [nT + T̄ , (n + 1)T),
(2.5)

for n = 0, 1, 2, . . . , where r is a constant. Then system (2.4) becomes the following two
subsystems:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

dx
dt

= x
[︁
b1 – μ1 – δ1(x + y)

]︁
,

dy
dt

= y
[︃

b2
y

x + y + r
– μ2 – δ2(x + y)

]︃ (2.6)

for t ∈ [nT , nT + T̄), n = 0, 1, 2, . . . ,

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

dx
dt

= x
[︁
b1 – μ1 – δ1(x + y)

]︁
,

dy
dt

= y
[︃

b2
y

x + y
– μ2 – δ2(x + y)

]︃ (2.7)

for t ∈ [nT +T̄ , (n+1)T), n = 0, 1, 2, . . . . Here, we extend continuously to (0, 0) by the special
case

y
x + y

⃓
⃓
⃓
⃓
(0,0)

= 0,

and maintain this remediation in our following discussion without further notice. As we
examine the issue of mosquito population replacement, it is important to note that the
equilibrium point (0, 0) is always unstable. Define

κ1 =
b1 – μ1

δ1
, κ2 =

b2 – μ2

δ2
. (2.8)

κ1 and κ2 measure the carrying capacity for a single population of infected and uninfected
mosquitoes, respectively. If κ1 > κ2, we say that Wolbachia infection is favorable for in-
fected mosquitoes, or Wolbachia infection brings a fitness benefit. On the other hand, if
κ1 < κ2, we say that Wolbachia infection brings a fitness cost. Our main interest in this
paper is to study how often, and in what amount, should the Wolbachia-infected male
mosquitoes be released, so that the entire wild mosquito population can be accelerated
replaced by Wolbachia-infected mosquitoes. This is achieved if the solutions of systems
(2.6)–(2.7) approach steady-state (κ1, 0).

3 Useful lemmas and the main result of the subsystem of (2.6)–(2.7)
To process further and discuss the global asymptotic stability of (κ1, 0), we need to first
study the stability of semitrivial T-periodic steady state (0, ŷ(t)) of (2.6)–(2.7), where ŷ(t)
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is a T-periodic solution of the following equations:

⎧
⎪⎪⎨

⎪⎪⎩

dy
dt

= y
[︃

b2
y

y + r
– μ2 – δ2y

]︃

, for t ∈ [nT , nT + T̄),

dy
dt

= y
[︁
b2 – μ2 – δ2y

]︁
, for t ∈ [nT + T̄ , (n + 1)T),

(3.1)

where n = 0, 1, 2, . . . .
If the release period equals the sexual lifespan of infected males, i.e., T = T̄ , model (3.1)

becomes

dy
dt

= y
[︃

b2
y

y + r
– μ2 – δ2y

]︃

,∀t > 0. (3.2)

For the equilibria of system (3.2), besides E0 = 0, its component satisfies

y2 + (r – κ2)y +
μ2r
δ2

= 0. (3.3)

The corresponding discriminant for (3.3) is

Δr = r2 –
2(b2 + μ2)

δ2
r + κ2

2 . (3.4)

It is easy to see that

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Δr = 0, if r = r∗
1 or r = r∗

2 ,

Δr > 0, if 0 ≤ r < r∗
1 or r > r∗

2 ,

Δr < 0, if r ∈ (r∗
1 , r∗

2),

(3.5)

where

r∗
1 =

(b2 + μ2) – 2
√

b2μ2

δ2
, r∗

2 =
(b2 + μ2) + 2

√
b2μ2

δ2
.

With the above preparation, we summarize the existence and stability results for the equi-
libria of system (3.2).

Lemma 3.1
(1) If 0 < r < r∗

1 , then system (3.2) has the trivial equilibrium E0 = 0 and two positive
equilibria

E1(r) =
(κ2 – r) –

√
Δr

2
, E2(r) =

(κ2 – r) +
√

Δr

2
.

Furthermore, E0 and E2 are both asymptotically stable and E1 is unstable;
(2) If r = r∗

1 , then system (3.2) has the trivial equilibrium E0 = 0 and a unique positive
equilibrium E∗(r) = κ2–r

2 . The equilibrium E0 = 0 is asymptotically stable and E∗ is
semistable, i.e., stable from the right side and unstable from the left side;
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(3) If r > r∗
1 , then E0 = 0 is the only nonnegative steady-state of system (3.2) and is

globally asymptotically stable.

From Lemma 3.1, we know that the wild mosquito population goes to extinction as long
as the number of released infected mosquitoes remains greater than r∗

1 , i.e., r > r∗
1 . Hence,

in this paper, to achieve the goal of accelerated population replacement, we focus on the
case of

T > T̄ , r > r∗
1 . (3.6)

Let y(T) = y(T ; 0, v) = v, then y(t) = y(t; 0, v) is a T-periodic solution of model (3.1). To
find such a periodic solution of model (3.1), we only need to find an initial value v > 0 such
that y(T ; 0, v) = v. To further process, we denote

h(v) := y(T ; 0, v), h̄(v) := y(T̄ ; 0, v). (3.7)

Then h(v) and h̄(v) are two continuously differentiable functions in v and h(0) = h̄(0) = 0.
For every v > 0, define two function series {hn} and {h̄n} by

hn(v) := y(nT ; 0, v), h̄n(v) := y(nT + T̄ ; 0, v), n = 0, 1, 2, . . . . (3.8)

By induction, we have

hn+1(v) = y(T ; 0, hn(v)) = h(hn(v)), h̄n(v) = h̄(hn(v)), n = 0, 1, 2, . . . . (3.9)

Before proceeding further, we first need to solve the initial value problem (3.1) with
y(0) = v. That is,

dy
dt

=

[︄
b2y

y + r
– μ2 – δ2y

]︄

y =
– δ2y

[︄

(y – E∗(r))2 –
Δr

4

]︄

y + r
. (3.10)

Then, (3.10) is equivalent to

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

[︃
α
y + β(y–E∗(r))

(y–E∗(r))2– Δr
4

+ γ

(y–E∗(r))2– Δr
4

]︃

dy = –δ2dt for Δr < 0,

[︂
α
y + ν

y–E1(r) + σ
y–E2(r)

]︂
dy = –δ2dt for Δr > 0,

[︂
α
y + β

y–E∗(r) + γ

(y–E∗(r))2

]︂
dy = –δ2dt for Δr = 0,

(3.11)

where

α =
δ2

μ2
, β = –α = –

δ2

μ2
, γ = 1 + αE∗(r) = 1 – βE∗(r) =

√︄
b2

μ2
,

ν =
r + E1(r)

E1(r)(E1(r) – E2(r))
, σ = –

r + E2(r)

E2(r)(E1(r) – E2(r))
.
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To this end, we study the following equivalent problem for the case Δr < 0:

d

⎛

⎜
⎝ln

⎛

⎜
⎝yα

(︃

(y – E∗(r))2 –
Δr

4

)︃ β
2

e
γ√︂

– Δr
4

tan–1
(︄

y–E∗(r)
√︂

– Δr
4

)︄⎞

⎟
⎠

⎞

⎟
⎠ = –δ2dt. (3.12)

Integrating (3.12) from 0 to T̄ , we see

h̄α(v)

(︃

(h̄(v) – E∗(r))2 –
Δr

4

)︃ β
2

e
γ√︂

– Δr
4

tan–1
(︄

h̄(v)–E∗(r)√︂

– Δr
4

)︄

= vα

(︃

(v – E∗(r))2 –
Δr

4

)︃ β
2

e
γ√︂

– Δr
4

tan–1
(︄

v–E∗(r)√︂

– Δr
4

)︄

e–δ2T̄ . (3.13)

By similar computation as above, one can conclude that if Δr > 0, then (3.13) becomes

[︄
h̄(v)

v

]︄α [︄
h̄(v) – E1(r)

v – E1(r)

]︄ν [︄
h̄(v) – E2(r)

v – E2(r)

]︄σ

= e–δ2T̄ . (3.14)

And for the case Δr = 0, (3.13) becomes

h̄α(v)
(︁
h̄(v) – E∗(r)

)︁β e– γ

h̄(v)–E∗(r) = vα
(︁
v – E∗(r)

)︁β e– γ

v–E∗(r) e–δ2T̄ . (3.15)

Moreover, for t ∈ (T̄ , T], we need to solve the initial value problem (3.1) with y(T̄+) = y(T̄).
By a series of calculations, we can verify that

h(v)

κ2 – h(v)
=

(︄
h̄(v)

κ2 – h̄(v)

)︄

eκ2δ2(T–T̄). (3.16)

It follows from (3.13)–(3.15) and (3.16) that function h(v) is implicitly determined.
Since h(v) → 0, h̄(v) → 0 as v → 0, we have, from (3.13), (3.14), or (3.15),

lim
v→0

h̄(v)

v
= e– δ2T̄

α , (3.17)

and from (3.16) that

lim
v→0

h(v)

h̄(v)
= eκ2δ2(T–T̄).

Therefore

lim
v→0

h(v)

v
= lim

v→0

(︄
h(v)

h̄(v)
· h̄(v)

v

)︄

= eκ2δ2(T–T∗), (3.18)

where T∗ = b2
b2–μ2

T̄ .

Lemma 3.2 Assume that T > T∗. If r > r∗
1 , then system (3.1) has a unique T-periodic solu-

tion.
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Proof From (3.18) we see that lim
v→0

h(v)
v > 1 for T > T∗. Hence, there is a sufficiently small

ϵ > 0 such that

h(v) > v for v ∈ (0, ϵ). (3.19)

Since solution y(t) = y(t; 0,κ2) is strictly decreasing for t ∈ (0, T̄], we have h̄(κ2) < κ2, and
so h(κ2) < κ2. Therefore, there must be v0 ∈ (ϵ,κ2) such that

h(v0) = v0, h′(v0) ≤ 1, and h(v) > v for v ∈ (0, v0). (3.20)

This means y(t; 0, v0) is a T-periodic solution of equation (3.1).
Now we prove the uniqueness of the T-periodic solution of equation (3.1) by contradic-

tion. Assume that equation (3.1) has another T-periodic solution v1 ∈ (v0,κ2) such that

h(v1) = v1, h′(v1) ≤ 1, and h(v) < v for v ∈ (v1,κ2). (3.21)

It follows from (3.20) that there exists v2 ∈ [v0, v1] such that one of the following cases
holds:

case 1: h′(v0) ≤ 1, h′(v2) ≥ 1, and h′(v1) ≤ 1. (3.22)

case 2: v0 = v2 and h′(v0) = 1; furthermore, h′(v1) ≤ 1. (3.23)

case 3: h′(v0) ≤ 1; furthermore, v1 = v2 and h′(v1) = 1. (3.24)

case 4: h′(v0) = h′(v2) = 1 and h′(v1) ≤ 1. (3.25)

case 5: h′(v0) = 1, h′(v2) ≤ 1, and h′(v1) = 1. (3.26)

case 6: h′(v0) ≤ 1 and h′(v2) = h′(v1) = 1. (3.27)

Note that we have assumed r > r∗
1 . We first show that cases (3.22)–(3.27) would not

happen separately in three regions, namely r ∈ (r∗
1 , r∗

2), r = r∗
2 , and r > r∗

2 . See Table 1 for
specific parameter symnols in different cases.

I) For the case r ∈ (r∗
1 , r∗

2), we know Δr < 0. Set

F(v) = vα

(︃

(v – E∗(r))2 –
Δr

4

)︃ β
2

e
γ√︂

– Δr
4

tan–1
(︄

v–E∗(r)√︂

– Δr
4

)︄

.

Table 1 Symbols for the three cases I), II), III)

r l1 l2 l3 = P1(0) P1(κ2)

(r∗1 ,κ2) > 0 < 0 > 0 < 0
κ2 > 0 < 0 = 0 < 0
(κ2, r∗2 ) < 0 > 0 < 0 < 0

r ˜︁l1 ˜︁l2 ˜︁l3 = P2(0) –

r∗2 > 0 > 0 < 0 –

r q1 q2 q3 = P3(0) –

r > r∗2 > 0 > 0 < 0 –
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Simple calculation yields

F ′(v) =

(︄
α

v
+

β(v – E∗(r)) + γ

((v – E∗(r))2 – Δr
4 )

)︄

F(v).

Then equation (3.13) becomes

F(h̄(v)) = F(v)e–δ2T̄ . (3.28)

Taking the derivative with respect to v in (3.28) yields

F ′(h̄(v))h̄′(v) = F ′(v)e–δ2T̄ ,

which implies that

(︄
α

h̄(v)
+

β(h̄(v) – E∗(r)) + γ

((h̄(v) – E∗(r))2 – Δr
4 )

)︄

h̄′(v) =

(︄
α

v
+

β(v – E∗(r)) + γ

((v – E∗(r))2 – Δr
4 )

)︄

,

or, equivalently,

h̄′(v) =
h̄(v)((h̄(v) – E∗(r))2 – Δr

4 )(v + r)

v((v – E∗(r))2 – Δr
4 )(h̄(v) + r)

.

Taking the derivative with respect to v in (3.16), we obtain

h′(v)

h(v)(κ2 – h(v))
=

h̄′(v)

h̄(v)(κ2 – h̄(v))
.

h̄(v) =
mκ2h(v)

(m – 1)h(v) + κ2
.

h̄(v) – E∗(r) =
(mκ2 – E∗(r)(m – 1))h(v) – κ2E∗(r)

(m – 1)h(v) + κ2
.

h̄(v) + r =
(mκ2 + (m – 1)r)h(v) + rκ2

(m – 1)h(v) + κ2
.

κ2 – h̄(v) =
κ2(κ2 – h(v))

(m – 1)h(v) + κ2
.

By simple algebra, we see

h′(v) =
h(v)

[︂
((mκ2 – E∗(r)(m – 1))h(v) – κ2E∗(r))2 – Δr

4 (κ2 + (m – 1)h(v))2
]︂

(v + r)

vκ2
[︂
(v – E∗(r))2 – Δr

4

]︂
[κ2r + (mκ2 + r(m – 1))h(v)]

, (3.29)
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where m = e–κ2δ2(T–T̄). We further obtain

h′(v0) =
[︁
((mκ2 – E∗(r)(m – 1)) v0 – κ2E∗(r))2 – Δr

4 (κ2 + (m – 1)v0)2]︁ (v0 + r)

κ2
[︁
(v0 – E∗(r))2 – Δr

4
]︁

[κ2r + (mκ2 + r(m – 1))v0]
,

h′(v1) =
[︁
((mκ2 – E∗(r)(m – 1)) v1 – κ2E∗(r))2 – Δr

4 (κ2 + (m – 1)v1)2]︁ (v1 + r)

κ2
[︁
(v1 – E∗(r))2 – Δr

4
]︁

[κ2r + (mκ2 + r(m – 1))v1]
,

h′(v2) =
[︁
((mκ2 – E∗(r)(m – 1)) v2 – κ2E∗(r))2 – Δr

4 (κ2 + (m – 1)v2)2]︁ (v2 + r)

κ2
[︁
(v2 – E∗(r))2 – Δr

4
]︁

[κ2r + (mκ2 + r(m – 1))v2]
.

(3.30)

Set

P1(v) = l1v2 + l2v + l3, (3.31)

where

l1 =
(︃

E∗(r)2 –
Δr

4

)︃

(1 – m) + (2mκ2E∗(r) + rκ2 – mκ2
2 ), (3.32)

l2 =
[︃

r
(︃

E∗(r)2 –
Δr

4

)︃

– 2rκ2E∗(r)

]︃

(1 – m)

–
[︃

rκ2
2 (m + 1) + 2κ2

(︃

E∗(r)2 –
Δr

4

)︃]︃

,
(3.33)

l3 = (κ2
2 – rκ2)

(︃

E∗(r)2 –
Δr

4

)︃

+ 2rκ2
2 E∗(r). (3.34)

Then cases 1–6 can be equivalently written as follows:

P1(v0) ≤ 0, P1(v1) ≤ 0, P1(v2) ≥ 0.

P1(v0) = 0, P1(v1) ≤ 0.

P1(v0) ≤ 0, P1(v1) = 0.

P1(v0) = 0, P1(v1) ≤ 0, P1(v2) = 0.

P1(v0) = 0, P1(v1) = 0, P1(v2) ≤ 0.

P1(v0) ≤ 0, P1(v1) = 0, P1(v2) = 0.

We see that

P1(κ2) = –
(︃

E∗(r)2 –
Δr

4

)︃

mκ2
2 – rmκ2

(︃

E∗(r)2 –
Δr

4

)︃

+ (mκ3
2 + rmκ2

2 )(–κ2 + 2E∗(r)).
(3.35)

Since r ∈ (r∗
1 , r∗

2), we see –κ2 +2E∗(r) = –r < 0, E∗(r)2 – Δr
4 = b2

δ2
r > 0. Hence, we have P1(κ2) <

0.
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Next, we subdivide the condition r ∈ (r∗
1 , r∗

2) into three cases:

r ∈ (r∗
1 ,κ2), r = κ2, and r ∈ (κ2, r∗

2).

I1) r ∈ (r∗
1 ,κ2). In this case, P1(0) > 0 and P1(κ2) < 0. It is easy to see case 1, cases 3–6 are

impossible. We now focus on case 2.
Let λ > 1 be small enough such that

λm < 1, r <

[︂
κ2μ2
δ2

+ κ2
2

]︂
(1 – λm)

λμ2
δ2

(1 – m) + κ2(1 – λm)
,

and h(v) – λv has three roots ṽ1, ṽ2, and ṽ3 with

0 < ṽ1 < v0 < ṽ2 < ṽ3 < v1

and

h′(ṽ1) ≤ λ, h′(ṽ2) ≥ λ, h′(ṽ3) ≤ λ.

From (3.29), we have

h′(ṽi) =
λ
[︁
((mκ2 – E∗(r)(m – 1))λṽi – κ2E∗(r))2 – Δr

4 (κ2 + (m – 1)λṽi)2]︁ (ṽi + r)

κ2
[︁
(ṽi – E∗(r))2 – Δr

4
]︁ [︁

κ2r + (mκ2 + r(m – 1))λṽi
]︁ ,

i = 1, 2, 3.

(3.36)

Set

Pλ(v) = l1(λ)v2 + l2(λ)v + l3(λ), (3.37)

where

l1(λ) =
(︃

E∗(r)2 –
Δr

4

)︃

(1 – m)2λ2 + λmκ2
2 (λm – 1)

– 2E∗(r)λ2κ2m(m – 1) – λκ2r(m – 1),

l2(λ) =
(︃

E∗(r)2 –
Δr

4

)︃
(︁
rλ2(m – 1)2 + 2λκ2(m – 1)

)︁
+ κ2

1 r(λ2m2 – 1)

+ 2λrE∗(r)κ2(m – 1)(1 – λm),

l3(λ) =
(︃

E∗(r)2 –
Δr

4

)︃

[κ2
2 (1 – λm) + rλκ2(m – 1)] + 2E∗(r)rκ2

2 (1 – λm).

Thus, from h′(ṽ1) ≤ λ, h′(ṽ2) ≥ λ, h′(ṽ3) ≤ λ, we obtain

l1(λ)ṽ2
1 + l2(λ)ṽ1 + l3(λ) ≤ 0,

l1(λ)ṽ2
2 + l2(λ)ṽ2 + l3(λ) ≥ 0,

l1(λ)ṽ2
3 + l2(λ)ṽ3 + l3(λ) ≤ 0.

(3.38)
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As r <

[︂
κ2μ2
δ2

+ κ2
2

]︂
(1 – λm)

λμ2
δ2

(1 – m) + κ2(1 – λm)
, we have

Pλ(0) = l3(λ) > 0. (3.39)

And from (3.38) we see

Pλ(ṽ1) ≤ 0, Pλ(ṽ2) ≥ 0, Pλ(ṽ3) ≤ 0. (3.40)

It thus follows that the quadratic polynomial Pλ(v) has a root in each of the three intervals
(0, ṽ1], (ṽ1, ṽ2], and (ṽ2, ṽ3]; this is impossible, thus gives a contradiction.

I2) r = κ2. In this case we know l3 = 0, which implies that P1(0) = 0. Combined with the
fact P1(κ2) < 0, we immediately know that cases 1–6 are impossible.

I3) r ∈ (κ2, r∗
2). In this case P1(0) = l3 < 0 and P1(κ2) < 0, it is easy to see case 5 is impos-

sible. For the cases 1–4 and case 6, we obtain that P1(v) is a convex quadratic polynomial,
hence l1 < 0, l2 > 0, and l3 < 0. It is easy to see that

0 > rl1 – l2 = 2rκ2
2 + 2κ2(E∗(r)2 –

Δr

4
) > 0,

which leads to a contradiction.
II) For the case r = r∗

2 , derivation (3.15) with respect to u gives

(︃
α

h̄(v)
+

β

(h̄(v) – E∗(r))
+

γ

(h̄(v) – E∗(r))2

)︃

h̄′(v)

=
(︃

α

v
+

β

(v – E∗(r))
+

γ

(v – E∗(r))2

)︃

,
(3.41)

or, equivalently,

h̄′(v) =
h̄(v)(h̄(v) – E∗(r))2(v + r)

v(v – E∗(r))2(h̄(v) + r)
.

By simple algebra, we see that

h′(v) =
h(v) [(mκ2 – E∗(r)(m – 1))h(v) – κ2E∗(r)]2 (v + r)

vκ2 [v – E∗(r)]2 [κ2r + (mκ2 – r(1 – m))h(v)]
. (3.42)

Similar to (3.31), we have

P2(v) =˜︁l1v2 +˜︁l2v +˜︁l3, (3.43)

where

˜︁l1 = E∗(r)2(1 – m) + (2mκ2E∗(r) + rκ2 – mκ2
2 ),

˜︁l2 = [rE∗(r)2 – 2rκ2E∗(r)](1 – m) – [rκ2
2 (m + 1) + 2κ2E∗(r)2], (3.44)

˜︁l3 = –rκ2E∗(r)2 + 2κ2
2 E∗(r)r + κ2

2 E∗(r)2 < 0 when r = r∗
2 .
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We obtain that P2(v) is a convex quadratic polynomial, hence˜︁l1 > 0,˜︁l2 > 0, and˜︁l3 < 0.
Thus, it is easy to see that cases 1–2 and cases 4–6 are impossible. Case 3 can get the
contradiction using the perturbation method similar to the proof I1).

III) For the case r > r∗
2 , set

˜︁F(v) = vα(v – E1(r))ν(v – E2(r))σ . (3.45)

Then

˜︁F ′(v) = [
α

v
+

ν

v – E1(r)
+

σ

v – E2(r)
]˜︁F(v). (3.46)

From (3.14), we see

˜︁F(h̄(v)) =˜︁F(v)e–δ2T̄ . (3.47)

Taking the derivative with respect to v in (3.47) yields

˜︁F ′(h̄(v))h̄′(v) =˜︁F ′(v)e–δ2T̄ ,

which implies that

[︄
h̄(v) + r

h̄(v)(h̄(v) – E1(r))(h̄(v) – E2(r))

]︄

h̄′(v) =
[︃

v + r
v(v – E1(r))(v – E2(r))

]︃

.

Similarly, a direct calculation gives

h′(v) =
h(v)(v + r)[(mκ2 + (1 – m)E1(r))h(v) – κ2E1(r)][(mκ2 + (1 – m)E2(r))h(v) – κ2E2(r)]

vκ2(v – E1(r))(v – E2(r))[rκ2 + (mκ2 – r(1 – m))h(v)]
. (3.48)

In addition, set

P3(v) = q1v2 + q2v + q3, (3.49)

where

q1 = –κ2
2 m + mκ2(E1(r) + E2(r)) + (1 – m)E1(r)E2(r) + rκ2, (3.50)

q2 = –rκ2
2 (m + 1) – rκ2(1 – m)(E1(r) + E2(r)) + [r(1 – m) – 2κ2]E1(r)E2(r), (3.51)

q3 = κ2(κ2 – r)E1(r)E2(r) + rκ2
2 (E1(r) + E2(r)). (3.52)

Since r > r∗
2 , we easily see

q3 = 2rκ2

(︃

κ2 + 2
μ2

δ2

)︃

(κ2 – r) < 0. (3.53)

Hence, we obtain that P3(v) is a convex quadratic polynomial with q1 > 0, q2 > 0, and q3 <
0. Same as case II). Hence, cases 1–2 and cases 4–6 cannot happen. Case 3 can get the
contradiction using the perturbation method similar to the proof I1). □
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Lemma 3.3 Assume that T = T∗. Then
1. If r∗

1 < r < κ2, then equation (3.1) has a unique T-periodic solution;
2. If r ≥ κ2, then h(v) < v for all v > 0.

Proof 1. Since r∗
1 < r < κ2, then Δr < 0. Hence, from (3.16) and (3.13), we see

h(v)

v
=

κ2 – h(v)

κ2 – h̄(v)
·

(︁
(v – E∗(r))2 – Δr

4
)︁ β

2α e
γ

α

√︂

– Δr
4

tan–1
(︄

v–E∗(r)√︂

– Δr
4

)︄

(︁
(h̄(v) – E∗(r))2 – Δr

4
)︁ β

2α e
γ

α

√︂

– Δr
4

tan–1
(︄

h̄(v)–E∗(r)√︂

– Δr
4

)︄ . (3.54)

Set

G(v) = (κ2 – v)α
(︃

(v – E∗(r))2 –
Δr

4

)︃ β
2

e
γ√︂

– Δr
4

tan–1
(︄

v–E∗(r)√︂

– Δr
4

)︄

> 0 for v ∈ (0,κ2). (3.55)

Clearly, we have h(v) = v if and only if G(v) = G(h̄(v)), where v ∈ (0,κ2).
Taking the derivative of G(v), we obtain

G′(v) =

[︄

–
α

κ2 – v
+

β(v – E∗(r)) + γ

(v – E∗(r))2 – Δr
4

]︄

G(v)

=

[︄

–
α

κ2 – v
–

α

v
+

v + r
v[(v – E∗(r))2 – Δr

4 ]

]︄

G(v)

=
1
v

[︄

–
ακ2

κ2 – v
+

v + r
(v – E∗(r))2 – Δr

4

]︄

G(v)

=
–(1 + ακ2)(v – v̄)

(κ2 – v)[(v – E∗(r))2 – Δr
4 ]

G(v),

(3.56)

where v̄ = κ2 – r, and v̄ > 0 for r∗
1 < r < κ2, v̄ = 0 for r = κ2, v̄ < 0 for κ2 < r < r∗

2 .This also
implies

G′(v) > 0 for 0 < v < v̄ and G′(v) < 0 for v ∈ (v̄,κ2). (3.57)

This shows that G(v) is strictly increasing for v ∈ (0, v̄), and G(v) > G(h̄(v)) for v ∈ (0, v̄).
Thus (3.19) holds and equation (3.1) has at least one T-periodic solution. Then, there must
be v0 ∈ (0,κ2) such that

h(v0) = v0 and h(v) > v for v ∈ (0, v0). (3.58)

Now we prove the uniqueness of the T-periodic solution of equation (3.1) by contradic-
tion. Assume that equation (3.1) has another T-periodic solution v1 ∈ (v0,κ2) such that

h(v1) = v1 and h(v) < v for v ∈ (v1,κ2). (3.59)

Based on the properties of the function G(v) and h̄(v), we can obtain the following fact:

v̄ < v0 < v1 and v̄ > h̄(v0) > h̄(v1). (3.60)
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Following from (3.57), we then obtain

G(v0) > G(v1) = G(h̄(v1)) > G(h̄(v0)) = G(v0), (3.61)

which leads to a contradiction. Thus the uniqueness is confirmed.
2. Since v̄ = 0 for r = κ2 and v̄ < 0 for κ2 < r < r∗

2 , G(v) is strictly decreasing for all v ∈
(0,κ2). Hence, from the above proof we have G(v) < G(h̄(v)) and

h(v)

v
=

κ2 – h(v)

κ2 – v
·
(︃

G(v)

G(h̄(v))

)︃ 1
α

<
κ2 – h(v)

κ2 – v
, (3.62)

which implies that h(v) < v for v ∈ (0,κ2).
If r > r∗

2 , then from (3.14) we see

h(v)

v
=

κ2 – h(v)

κ2 – h̄(v)
·
(︃

v – E1(r)

h̄(v) – E1(r)

)︃ ν
α

·
(︃

v – E2(r)

h̄(v) – E2(r)

)︃ σ
α

. (3.63)

Set

G1(v) = (κ2 – v)α (v – E1(r))ν (v – E2(r))σ > 0 for v ∈ (0,κ2). (3.64)

Taking the derivative of G1(v), we obtain

G′
1(v) =

[︃

–
α

κ2 – v
+

γ

(v – E1(r))
+

σ

(v – E2(r))

]︃

G1(v)

=
–(1 + ακ2)(v – v̄)

(κ2 – v)[(v – E∗(r))2 – Δr
4 ]

G1(v).
(3.65)

Since r > r∗
2 , we have v̄ < 0, which implies that G′

1(v) < 0 for all v ∈ (0,κ2). By similar analysis
as (3.62), we have h(v) < v.

The rest of the proof of the case r = r∗
2 can be dealt with in the same spirit of the case

r∗
1 < r < κ2, and so we omit the details here. The proof therefore is complete. □

Lemma 3.4 Assume T < T∗. If r ≥ κ2, then h(v) < v for all v > 0.

Proof It follows from (3.18) that lim
v→0

h(v)
v < 1 for T < T∗. Hence, there is sufficiently small

ϵ > 0 such that

h(v) < vfor v ∈ (0, ϵ). (3.66)

Since solution y(t) = y(t; 0,κ2) is strictly decreasing for t ∈ (0, T̄], hence h̄(κ2) < κ2, which
implies h(κ2) < κ2. Assume that there exists ṽ ∈ (ϵ,κ2) such that h(ṽ) ≥ ṽ. Then there must
be v′ ∈ (0, ṽ] such that

h(v′) = v′, h′(v′) ≥ 1. (3.67)
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Thus, from (3.31), (3.43), and (3.49), we see

l1v′2 + l2v′ + l3 ≥ 0 for r ∈ [κ2, r∗
2),

˜︁l1v′2 +˜︁l2v′ +˜︁l3 ≥ 0 for r = r∗
2 ,

q1u′2 + q2v′ + q3 ≥ 0 for r > r∗
2 .

(3.68)

For r ∈ [κ2, r∗
2), further calculation gives

[(E∗(r)2 – Δr
4 ) + rκ2]v′2 + [r(E∗(r)2 – Δr

4 ) – 2rκ2E∗(r) – rκ2
2 – 2κ2(E∗(r)2 – Δr

4 )]v′ + l3

≥ [m(E∗(r)2 – Δr
4 ) – 2mκ2E∗(r) + mκ2

2 ]v′2

+m[r(E∗(r)2 – Δr
4 ) – 2rκ2E∗(r) + rκ2

2 ]v′ > 0.

Set

G̃1(v) = [(E∗(r)2 –
Δr

4
) + rκ2]v2 + [r(E∗(r)2 –

Δr

4
) – 2rκ2E∗(r)

– rκ2
2 – 2κ2(E∗(r)2 –

Δr

4
)]v + l3.

Hence, G̃1(v′) > 0.
The quadratic polynomial G̃1(v) is concave up. Since G̃1(0) = l3 ≤ 0 for r ≥ κ2, G̃1(κ2) = 0

and G̃1(v) < 0 for u ∈ (0,κ2), it contradicts the assumption of G̃1(v′) > 0.
For the case r = r∗

2 , we can use a proof similar to the above. Thus we omit it here.
For r > r∗

2 , we obtain

(E1(r)E2(r) + rκ2)v′2 + [(r – 2κ2)E1(r)E2(r) – rκ2(E1(r) + E2(r)) – rκ2
2 ]v′ + q3

≥[κ2
2 m – mκ2(E1(r) + E2(r)) + mE1(r)E2(r)]v′2

+ [rmκ2
2 – rmκ2(E1(r) + E2(r)) + rmE1(r)E2(r)]v′

>0.

(3.69)

Set

G̃2(v) = (E1(r)E2(r) + rκ2)v2 + [(r – 2κ2)E1(r)E2(r) – rκ2(E1(r) + E2(r)) – rκ2
2 ]v + q3.

Hence, G̃2(v′) > 0.
Clearly, quadratic polynomial G̃2(v) is concave up. Since G̃2(0) = q3 = l3 < 0 for r > r∗

2 ,
G̃2(κ2) = 0 and G̃2(v) < 0 for u ∈ (0,κ2). Thus, it contradicts the assumption of G̃2(v′) >
0. □

Based on the above discussion, we summarize the main results as follows.

Theorem 3.1
(1) The trivial equilibrium E0 of equation (3.1) is globally asymptotically stable if

T ≤ T∗ and r ≥ κ2.
(2) Equation (3.1) has a unique globally asymptotically stable T-periodic solution if one

of the following statements is true:
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(a) T > T∗ and r > r∗
1 .

(b) T = T∗ and r∗
1 < r < κ2.

4 The global dynamics of systems (2.6)–(2.7)
Let H(t; 0,ω) be a unique nonnegative global solution of systems (2.6)–(2.7) on [0,∞). Let
{Q1t}t≥0 and {Q2t}t≥0 be solutions semiflow associated with system (2.6) and system (2.7),
respectively. Since systems (2.6)–(2.7) are T-periodic, we consider their associated period
map P defined as P(ω) = H(T ; 0,ω) for ω ∈ R

2
+. Thus P(ω) = Q2(T–T̄)(Q1(T)(ω)), ∀ω ∈ R

2
+,

that is, P = Q2(T–T̄) ◦ Q1(T).
Let y∗(t) = y(t; 0, v0) be the unique positive T-periodic solution of system (3.1). Then

(0, y∗(t)) is a semitrivial T-periodic solution of systems (2.6)–(2.7). Write ω∗ = (0, v0), let
DP(ω∗) be the Jacobian matrix of P at ω∗ and ρ(DP(ω∗)) be the spectral radius of the linear
operator DP(ω∗).

Lemma 4.1 Assume that T > T̄ , r > r∗
1 , and one of the following two conditions is satisfied:

(1) T > T∗,
(2) T = T∗ and r∗

1 < r < κ2.
Then the following two statements are valid:

(i) If κ1 < κ2 and T > κ2T∗
κ2–κ1

, then ρ(DP(ω∗)) < 1, and hence, (0, y∗(t)) is an asymptotically
stable fixed point of P, i.e., the semitrivial T-periodic solution (0, y∗(t)) of systems (2.6)–(2.7)
is locally asymptotically stable.

(ii) If κ1 > κ2, then ρ(DP(ω∗)) > 1, and hence (0, y∗(t)) is an unstable fixed point of P, i.e.,
the semitrivial T-periodic solution (0, y∗(t)) of systems (2.6)–(2.7) is unstable.

Proof Let f1(ω) and f2(ω) be the right-hand side vector fields of systems (2.6) and (2.7),
respectively. Then we have

Df1(ω) =

[︄
δ1κ1 – 2δ1u – δ1v –δ1u

–b2v2

(u+v+r)2 – δ2v 2b2uv+b2v2+2b2vr
(u+v+r)2 – δ2u – 2δ2v – μ2

]︄

and

Df2(ω) =

[︄
δ1κ1 – 2δ1u – δ1v –δ1u

–b2v2

(u+v)2 – δ2v 2b2uv+b2v2

(u+v)2 – δ2u – 2δ2v – μ2

]︄

.

Let U1(t,ω) := Q1t(ω), U2(t,ω) := Q2t(ω) and V1(t,ω) = DωU1(t,ω) and V2(t,ω) =
DωU2(t,ω). Then, for any given w ∈ R

2
+, the matrix functions V1(t,ω) and V2(t,ω) sat-

isfy

dV1(t)
dt

= Df1(U1(t,ω))V1(t), V1(0) = I, t ∈ [0, T̄],

dV2(t)
dt

= Df2(U2(t,ω))V1(t), V2(T̄) = I, t ∈ [T̄ , T].

Since H = Q2T ◦ Q1T̄ , the chain rule implies that DH(ω∗) = DQ2T ◦ (Q1T̄ (ω∗)). Then
D(Q1T̄ (ω∗)) = DωU1(t,ω∗) = V1(T̄ ,ω∗) and DQ2T (Q1T̄ (ω∗)) = DωU2(t,ω∗) = V2(T ,
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Q1T̄ (ω∗)). Since ω∗ = (0, v0), U1(t,ω∗) = (0, y∗
1(t)) with

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(y∗
1(t))α

(︁
(y∗

1(t) – A)2 + B
)︁ β

2 e
γ√
B

tan–1
(︃

y∗1 (t)–A√
B

)︃

= vα
0
(︁
(v0 – A)2 + B

)︁ β
2 e

γ√
B

tan–1
(︂ v0–A√

B

)︂

e–δ2t for r∗
1 < r < r∗

2 ,
[︂

y∗
1(t)
v0

]︂α [︂ y∗
1(t)–E1
v0–E1

]︂ν [︂ y∗
1(t)–E2
v0–E2

]︂σ
= e–δ2t for r > r∗

2 ,

(y∗
1(t))α

(︁
(y∗

1(t) – A)
)︁β e

– γ

y∗1 (t)–A = vα
0 (v0 – A)β e– γ

v0–A e–δ2t for r = r∗
2 .

(4.1)

U2(t, U1(T̄ ,ω∗)) = (0, y∗
2(t)) with

y∗
2(t)

κ2 – y∗
2(t)

=
(︃

y∗
1(T̄)

κ2 – y∗
1(T̄)

)︃

eκ2δ2(t–T̄).

Furthermore, y∗
2(T) = v0, y∗

1(T̄) = y∗
2(T̄), and

y∗(t) =

⎧
⎨

⎩

y∗
1(t), t ∈ (nT , nT + T̄],

y∗
2(t), t ∈ (nT + T̄ , (n + 1)T],

(4.2)

for n = 0, 1, 2, . . . . Hence,

Df1(U1(t,ω∗)) =

[︄
δ1κ1 – δ1y∗

1(t) 0
–b2(y∗

1(t))2

(y∗
1(t)+r)2 – δ2y∗

1(t) b2(y∗
1(t))2+2b2y∗

1(t)r
(y∗

1(t)+r)2 – 2δ2y∗
1(t) – μ2

]︄

and

Df2(U2(t, U1(T̄ ,ω∗))) =

[︄
δ1κ1 – δ1y∗

2(t) 0
–b2 – δ2y∗

2(t) b2 – μ2 – 2δ2y∗
2(t)

]︄

.

It then follows that

V1(T̄ ,ω∗) =

⎡

⎢
⎣

e
∫︁ T̄

0 [δ1κ1–δ1y∗
1(t)]dt 0

∗ e
∫︁ T̄

0

[︃
b2(y∗1 (t))2+2b2y∗1 (t)r

(y∗1 (t)+r)2
–2δ2y∗

1(t)–μ2

]︃

dt

⎤

⎥
⎦

and

V2(T , U1(T̄ ,ω∗)) =

[︄
e
∫︁ T

T̄ [δ1κ1–δ1y∗
2(t)]dt 0

∗∗ e
∫︁ T

T̄ [b2–μ2–2δ2y∗
2(t)]dt

]︄

.

Thus, the matrix DH(ω∗) has two positive eigenvalues τ1 and τ2 given by

τ1 = e
∫︁ T̄

0 [δ1κ1–δ1y∗
1(t)]dt · e

∫︁ T
T̄ [δ1κ1–δ1y∗

2(t)]dt ,

τ2 = e
∫︁ T̄

0

[︃
b2(y∗1 (t))2+2b2y∗1 (t)r

(y∗1 (t)+r)2
–2δ2y∗

1(t)–μ2

]︃

dt · e
∫︁ T

T̄ [b2–μ2–2δ2y∗
2(t)]dt .
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Since (0, y∗
1(t)) satisfies equation (2.6), it follows that

(y∗
1(t))′

y∗
1(t)

=
[︃

b2
y∗

1(t)
y∗

1(t) + r
– μ2 – δ2y∗

1(t)
]︃

.

Integrating the above equation for t from 0 to T̄ , we then obtain

ln y∗
1(T̄) – ln v0 =

∫︂ T̄

0
b2

y∗
1(t)

y∗
1(t) + r

dt – μ2T̄ – δ2

∫︂ T̄

0
y∗

1(t)dt. (4.3)

Since (0, y∗
2(t)) satisfies equation (2.7), it follows that

(y∗
2(t))′

y∗
2(t)

=
[︁
b2 – μ2 – δ2y∗

2(t)
]︁

.

Integrating the above equation for t from T̄ to T , we then obtain

ln v0 – ln y∗
2(T̄) = (b2 – μ2)(T – T̄) – δ2

∫︂ T

T̄
y∗

2(t)dt. (4.4)

From (4.3), (4.4) and using the fact that y∗
2(T) = v0, y∗

1(T̄) = y∗
2(T̄), we have

δ2

(︄∫︂ T̄

0
y∗

1(t)dt +
∫︂ T

T̄
y∗

2(t)dt

)︄

=
∫︂ T̄

0
b2

y∗
1(t)

y∗
1(t) + r

dt – μ2T̄ + (b2 – μ2)(T – T̄), (4.5)

this implies the following inequality:

κ2(T – T∗) <
∫︂ T

0
y∗(t)dt < κ2T , (4.6)

from which we calculate

eδ1(κ1–κ2)T < τ1 = eδ1κ1T–δ1
∫︁ T

0 y∗(t)dt < eδ1[(κ1–κ2)T+κ2T∗]

and

τ2 = e
–(b2–μ2)(T–T∗)–b2

∫︁ T̄
0

(y∗(t))2

(y∗(t)+r)2 < 1.

(i) If κ1 < κ2, T > κ2T∗
κ2–κ1

, then τ1 < 1, proving the local asymptotic stability of the
semitrivial T-periodic solution (0, y∗(t)) of systems (2.6)–(2.7).

(ii) If κ1 > κ2, then we have τ1 > 1, which makes the semitrivial T-periodic solution
(0, y∗(t)) of systems (2.6)–(2.7) unstable.

This completes the proof. □

Corollary 4.1 The boundary equilibrium (κ1, 0) of systems (2.6)–(2.7) is always locally
asymptotically stable.
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Proof The proof of Corollary 4.1 is very similar to the proof of Lemma 4.1. Note that the
corresponding matrices V1(t, (κ1, 0)) and V2(t, (κ1, 0)) are

V1(T̄ , (κ1, 0)) = V2(T , U1(T̄ , (κ1, 0))) =

[︄
e
∫︁ T̄

0 –δ1κ1dt ∗
0 e

∫︁ T̄
0 [–δ2κ1–μ2]dt

]︄

,

V2(T , U1(T̄ , (κ1, 0))) =

[︄
e
∫︁ T

T̄ –δ1κ1dt ∗
0 e

∫︁ T
T̄ [–δ2κ1–μ2]dt

]︄

.

Therefore, the corresponding two positive eigenvalues τ3 and τ4 are given by

τ3 = e–δ1κ1T < 1, τ4 = e–(δ2κ1+μ2)T < 1. □

Now, we focus on the global dynamics for systems (2.6)–(2.7).

Theorem 4.1 Assume that κ1 > κ2. Then (κ1, 0) is globally asymptotically stable.

Proof From Corollary 4.1, we know that the boundary equilibrium (κ1, 0) of systems
(2.6)–(2.7) is locally asymptotically stable. Next, we are ready to prove that every solu-
tion of systems (2.6)–(2.7) goes to (κ1, 0). If (0, y∗(t)) exists, as in the proof of Lemma 4.1,
we know that (0, y∗(t)) is an unstable semitrivial T-periodic solution of systems (2.6)–(2.7)
under the condition κ1 > κ2.

The next proof investigates whether systems (2.6)–(2.7) have a positive T-periodic solu-
tion under κ1 > κ2. Now we show the nonexistence of the T-periodic solution of (2.6)–(2.7)
by contradiction. Let (x∗(t), y∗(t)) be a positive T-periodic solution of systems (2.6)–(2.7).

⎧
⎪⎪⎨

⎪⎪⎩

(x∗)′

x∗ = δ1
[︁
κ1 – (x∗ + y∗)

]︁
,

(y∗)′

y∗ =
[︃

b2
y∗

x∗ + y∗ + r
– μ2 – δ2(x∗ + y∗)

]︃ (4.7)

for t ∈ [nT , nT + T̄), n = 0, 1, 2, . . . .

⎧
⎪⎪⎨

⎪⎪⎩

(x∗)′

x∗ = δ1
[︁
κ1 – (x∗ + y∗)

]︁
,

(y∗)′

y∗ =
[︃

b2
y∗

x∗ + y∗ – μ2 – δ2(x∗ + y∗)

]︃ (4.8)

for t ∈ [nT + T̄ , (n + 1)T), n = 0, 1, 2, . . . . Integrating the first equation of (4.7) for t from 0
to T̄ and the first equation of (4.8) for t from T̄ to T , we then obtain

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ln x∗(T̄) – ln x∗(0) =
∫︂ T̄

0
δ1
[︁
κ1 – (x∗ + y∗)

]︁
dt,

ln x∗(T) – ln x∗(T̄) =
∫︂ T

T̄
δ1
[︁
κ1 – (x∗ + y∗)

]︁
dt,

(4.9)

which implies that
∫︁ T

0 (x∗ + y∗)dt = κ1T .
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Similarly, integrating the second equation of (4.7) for t from 0 to T̄ and the second equa-
tion of (4.8) for t from T̄ to T , we then obtain

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ln y∗(T̄) – ln y∗(0) =
∫︂ T̄

0

[︃

b2
y∗

x∗ + y∗ + r
– μ2 – δ2(x∗ + y∗)

]︃

dt,

ln y∗(T) – ln y∗(T̄) =
∫︂ T

T̄

[︃

b2
y∗

x∗ + y∗ – μ2 – δ2(x∗ + y∗)

]︃

dt,
(4.10)

which particularly implies

∫︂ T̄

0

[︃

b2
y∗

x∗ + y∗ + r
– μ2

]︃

dt +
∫︂ T

T̄

[︃

b2
y∗

x∗ + y∗ – μ2

]︃

dt = δ2κ1T . (4.11)

Then we see κ1 ≤ κ2, which leads to a contradiction. Thus, Lemma 2.2 of [39] implies that
for any initial value (u, v) ∈ Int(R2

+), every solution of systems (2.6)–(2.7) goes to (κ1, 0)

because here the map H satisfied the ≤K monotonicity and convergence. Hence, (κ1, 0) is
globally asymptotically stable. □

Theorem 4.2 Assume that κ1 < κ2. If T ≤ T∗ and r ≥ κ2, then (κ1, 0) is globally asymptot-
ically stable.

Proof The local asymptotic stability of (κ1, 0) can follow from Corollary 4.1. We now focus
on the global attractivity of (κ1, 0). First, consider the following system:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

dȳ
dt

= ȳ
[︃

b2
ȳ

ȳ + 2r
– δ2(ȳ + r)

]︃

, t ∈ (nT , nT + T̄], n = 0, 1, 2, . . . ,

dȳ
dt

= ȳ
[︁
b2 – δ2ȳ

]︁
, t ∈ (nT + T̄ , (n + 1)T], n = 0, 1, 2, . . . .

(4.12)

Since T ≤ T∗ and r ≥ κ2, it follows from Theorem 3.1 that

lim
t→+∞ ȳ = 0.

Suppose that (x, y) is the solution of systems (2.6)–(2.7). We see y ≤ ȳ under the condition
y(0) ≤ ȳ(0), which implies that limt→+∞ y = 0. For any given sufficiently small ϵ > 0, there
exists T0 > 0 such that y < ϵ for t > T0.

For t > T0, consider the following system:

⎧
⎪⎪⎨

⎪⎪⎩

dx
dt

= δ1x
[︁
κ1 – ϵ – x

]︁

dx̄
dt

= δ1x̄ [κ1 – x̄] .
(4.13)

We have x ≤ x ≤ x̄ under conditions x(T0) ≤ x(T0) ≤ x̄(T0) and t ≥ T0. The arbitrariness
of ϵ allows us to conclude that limt→+∞ x = κ1. This completes the proof. □

Theorem 4.3 Assume that κ1 < κ2. If T > κ2
κ2–κ1

T∗, then systems (2.6)–(2.7) admit a unique
positive T-periodic solution initiating from w̄(ū, v̄). Furthermore, there exists a continuous,
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unbounded, and one-dimensional curve H ⊂ R2 such that both 0 and w̄ are in H, and the
following statements are valid:

1) Assume that w̄(ū, v̄) ∈ H, and for any w(u, v) such that u > ū and v < v̄ we have
limt→+∞ H(t; 0, w̄) – (κ1, 0) = 0;

2) Assume that w̄(ū, v̄) ∈ H, and for any w(u, v) such that u < ū and v > v̄ we have
limt→+∞ H(t; 0, w̄) – (0, ŷ(t)) = 0.

Proof The proof 1) and 2) and the existence of positive periodic solutions follow from The-
orem 2.4 (saddle-point structure) of [39]. Here we only prove the uniqueness of positive
periodic solutions. Suppose for contradiction that periodic systems (2.6)–(2.7) have two
different T-periodic positive solutions (x1(t), y1(t)) and (x2(t), y2(t)), then x1(0) = x1(T),
y1(0) = y1(T), x2(0) = x2(T), y2(0) = y2(T). There are four possible cases that determine
the relationship between the initial values of x1(0) and x2(0), and y1(0) and y2(0):

(1)

⎧
⎨

⎩

x1(0) < x2(0)

y1(0) > y2(0)
(2)

⎧
⎨

⎩

x1(0) > x2(0)

y1(0) < y2(0)
(3)

⎧
⎨

⎩

x1(0) < x2(0)

y1(0) < y2(0)
(4)

⎧
⎨

⎩

x1(0) > x2(0)

y1(0) > y2(0).

By Theorem 5.1 of [40], if (1) or (2) holds, then for all t ∈ [0, T]

(1)′

⎧
⎨

⎩

x1(t) < x2(t)

y1(t) > y2(t)
or (2)′

⎧
⎨

⎩

x1(t) > x2(t)

y1(t) < y2(t).

Therefore, from (4.11) we can easily get

∫︂ T̄

0

[︃

b2
y1(t)

x1(t) + y1(t) + r
– μ2

]︃

dt +
∫︂ T

T̄

[︃

b2
y1(t)

x1(t) + y1(t)
– μ2

]︃

dt = δ2κ1T (4.14)

and

∫︂ T̄

0

[︃

b2
y2(t)

x2(t) + y2(t) + r
– μ2

]︃

dt +
∫︂ T

T̄

[︃

b2
y2(t)

x2(t) + y2(t)
– μ2

]︃

dt = δ2κ1T . (4.15)

We set

{︄
F1(ξ ,η) = b2η

ξ+η+r ,
F2(ξ ,η) = b2η

ξ+η
.

Taking the partial derivative of F1(ξ ,η) and F2(ξ ,η) with ξ and η, respectively, we have

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂F1(ξ ,η)
∂ξ

= –b2η

(ξ+η+r)2 < 0,
∂F1(ξ ,η)

∂η
= b2(ξ+r)

(ξ+η+r)2 > 0,
∂F2(ξ ,η)

∂ξ
= –b2η

(ξ+η)2 < 0,
∂F2(ξ ,η)

∂η
= b2ξ

(ξ+η)2 > 0.

This is a contradiction to (4.14) and (4.15).
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We will now prove that it is impossible for cases (3) and (4) to hold. It follows from
systems (2.6)–(2.7) that

δ1

∫︂ T

0
[x1(t) + y1(t)]dt = (b1 – μ1)T (4.16)

and

δ1

∫︂ T

0
[x2(t) + y2(t)]dt = (b1 – μ1)T . (4.17)

From (4.16) and (4.17), there must exist t∗ ∈ (0, T) such that one of the following two cases
holds:

(a) x1(t∗) < x2(t∗), y1(t∗) ≥ y2(t∗),
(b) x1(t∗) ≥ x2(t∗), y1(t∗) < y2(t∗).

Again by Theorem 5.1 [40], for case (a), we have x1(t) < x2(t), y1(t) ≥ y2(t) for t ∈ (t∗, T].
Therefore y1(T) ≥ y2(T), by the periodicity of y(t) and case (3), this is a contradiction. For
case (b), we have x1(t) ≥ x2(t), y1(t) < y2(t) for t ∈ (t∗, T]. Therefore x1(T) ≥ x2(T), by the
periodicity of x(t) and case (4), this also is a contradiction. □

5 Numerical examples
In this section, we first provide numerical examples to demonstrate our analytic results
for systems (2.6)–(2.7).

Example 5.1 Given the parameters

b1 = 0.1988, b2 = 0.1077, μ1 = μ2 = 0.002, T = 20

δ1 = δ2 = 8.5034 × 10–6, T̄ = 5, r = 4720,
(5.1)

we calculate that κ1 = 23,144 > κ2 = 12,430. Given four initial values (1000, 3000),
(2000, 3000), (3000, 1000), and (3000, 2000), it follows from Theorem 4.1 that (κ1, 0) is
always globally asymptotically stable as shown in Fig. 1.

Figure 1 The left figure represents the phase diagram of systems (2.6)–(2.7). The right figure represents the
solution curve graph representing x(t) and y(t)
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Figure 2 The left figure represents the phase diagram of systems (2.6)–(2.7). The right figure represents the
solution curve graph representing x(t) and y(t)

Figure 3 The left figure represents the phase diagram of systems (2.6)–(2.7). The right figure represents the
solution curve graph representing x(t) and y(t)

Example 5.2 Given the parameters

b1 = 0.1077, b2 = 0.1988, μ1 = μ2 = 0.002, T = 5.01

δ1 = δ2 = 8.5034 × 10–6, T̄ = 5, r = 47,200,
(5.2)

we calculate that κ1 = 12,430 < κ2 = 23,144, T∗ = 5.0508. Given the initial values (1000,
3000), (2000, 3000), (3000, 1000), (3000, 2000), it follows from Theorem 4.2 that T ≤ T∗

and r ≥ κ2, (κ1, 0) is always globally asymptotically stable as shown in Fig. 2.

Example 5.3 Given the parameters

b1 = 0.1077, b2 = 0.1988, μ1 = μ2 = 0.002, T = 20

δ1 = δ2 = 8.5034 × 10–6, T̄ = 5, r = 4720,
(5.3)

we calculate that κ1 = 12,430 < κ2 = 23,144, and T > κ2
κ2–κ1

T∗ = 10.9111. Given four ini-
tial values (3000, 4500), (3000, 4000), (3000, 3000), and (3000, 2000), it follows from Theo-
rem 4.3 that there exists a continuous, unbounded, and one-dimensional curve, separating
the attraction domains of (κ1, 0) and (0, ŷ(t)), shown in Fig. 3.
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Figure 4 The left figure represents the phase diagram of system (2.6)–(2.7). The right figure represents the
solution curve graph representing x(t) and y(t)

Example 5.4 Given the parameters

b1 = 0.1077, b2 = 0.1988, μ1 = μ2 = 0.002, T = 20

δ1 = δ2 = 8.5034 × 10–6, T̄ = 5, r = 4720,
(5.4)

we calculate that κ1 = 12,430 < κ2 = 23,144, and T > κ2
κ2–κ1

T∗ = 10.9111. Given four ini-
tial values (3000, 4700), (3000, 5000), (3000, 5500), and (3000, 6000), it follows from Theo-
rem 4.3 that there exists a continuous, unbounded, and one-dimensional curve, separating
the attraction domains of (κ1, 0) and (0, ŷ(t)), shown in Fig. 4.

6 Conclusion
Population replacement involves infecting wild mosquitoes with Wolbachia, while popu-
lation suppression aims to fundamentally eliminate mosquitoes and reduce the problems
caused by mosquito bites. Therefore, a continuous release of Wolbachia-infected or sterile
male mosquitoes is a direct and efficient strategy to prevent mosquito-borne diseases. In
this work, we assume that there are both Wolbachia-infected and uninfected mosquitoes
in the target area initially. To speed up the process of replacing the mosquito population,
we further release infected male mosquitoes at regular intervals. We do this to determine
the optimal number and frequency of releases needed to accelerate population replace-
ment.

Our research differs from previous studies as we have developed a model for accelerated
mosquito replacement that considers the periodic release of infected male mosquitoes. In
this model, we introduced two measures, namely κ1 = (b1 – μ1)/δ1 and κ2 = (b2 – μ2)/δ2,
which determine the carrying capacity of infected and uninfected mosquito populations,
respectively. If κ1 > κ2, it indicates that Wolbachia infection is favorable for infected
mosquitoes. On the other hand, if κ1 < κ2, it means that the infection brings a fitness cost.
Through the analysis of system (3.1), by defining a threshold value T∗ of releasing waiting
time, we found that population replacement can be achieved as long as one of the follow-
ing conditions holds: (i) κ1 > κ2; (ii) κ1 < κ2, T ≤ T∗, and r ≥ κ2. While in the case of κ1 < κ2

and T > κ2
κ2–κ1

T∗, system (3.1) has a continuous, unbounded, and one-dimensional curve
H ⊂ R2 such that both 0 and w̄(ū, v̄) (a unique positive T-periodic solution) are located
in H. This curve divides the (κ1, 0) and (0, ŷ(t)) on each side, and the solution from both
sides converges to their two equilibrium points. Unfortunately, we are currently unable to
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provide a precise expression or providing sharp estimates for curve H, this will be a part of
our future work. Additionally, future research will explore the integration of environmen-
tal and spatial factors into our mosquito population replacement models. Understanding
how variables such as habitat, temperature fluctuations, and resource availability influence
the dynamics of mosquito populations will be crucial.
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