
Advances in Continuous
and Discrete Models

Wang et al. Advances in Continuous and Discrete Models         (2025) 2025:30 
https://doi.org/10.1186/s13662-025-03903-1

R E S E A R C H Open Access

Periodic solutions in a class of periodic
switching delay differential equations
Yufeng Wang1,2, Yining Chen1,2 and Hongpeng Guo1,2*

*Correspondence:
ghp8013@gzhu.edu.cn
1School of Mathematics and
Information Science, Guangzhou
University, Guangzhou, 510006,
China
2Center for Applied Mathematics,
Guangzhou University, Guangzhou,
510006, China

Abstract
In this paper, we explore the dynamical properties of a class of nonlinear systems
governed by delay differential equations with multitime periodic switching. The
systems incorporate piecewise-smooth birth and death functions to capture complex
population dynamics under seasonal variations. Assuming monotonicity for both
birth and death functions, we obtain a novel equivalence result: when the delay is a
positive integer multiple of the switching period, the existence and stability of
periodic solutions for the systems are equivalent to those in the nondelay case. To
illustrate and validate the theoretical findings, a logistic model with seasonal
switching is presented. Numerical simulations further confirm that the system
exhibits consistent dynamical behaviors across varying delay values.
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1 Introduction
Nonlinear differential equations are widely used in mathematical biology as powerful tools
for simulating complex biological processes. They effectively model the dynamical behav-
iors in population dynamics, disease spread, and ecosystem interactions. The application
of such equations in biological mathematical modeling is well documented in the litera-
ture [1, 2]. Time delays, which are commonly observed in the life cycles of organisms, have
motivated extensive studies on delay differential equations, driven by various biological
phenomena. For example, in mosquito population growth models, delays account for the
time required for newborn individuals to mature and reproduce [3, 4]. In epidemic mod-
els, delays are crucial for incorporating latent periods or delayed immune responses [5].
Moreover, in predator–prey dynamics, delays usually refer to the time for predators to
search or digest prey [6]. Introducing time delay into biological mathematical models can
result in rich and complex behaviors, such as oscillations, bifurcations, resonance, and
chaotic dynamics [7–11]. These phenomena highlight the significant role of time delay in
mathematical models, enabling them to capture real-world biological processes.
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In population dynamics, particularly when focusing on a single species, various specific
models [10, 12–19] can be described by the following form of delay differential equation:

ẋ(t) = F(x(t – τ )) + G(x(t)), (1)

where x(t) is the population density of a species at time t, F(x) denotes the birth func-
tion of the species incorporating a maturation delay τ > 0, and G(x) is the death function
of the species that only depends on the current population size. The dynamical behav-
iors of (1) with continuous versions of F and G have been extensively studied, including
the monostable nonlinearity [12, 14, 15, 20] and bistability [15, 21–23]. Recently, there
has been a growing interest in time-switching models, which explain periodic variations
in population ecological environments, cyclic fishing practices, and certain human peri-
odic behaviors. These models offer a framework to understand the periodic environment
factors and periodic human interventions on species. A significant study on periodic suc-
cession in mosquito suppression model was conducted by Yu and Li in [24], where the
authors assumed that the sterile mosquitoes are released impulsively and periodically at
discrete time points Tk = kT , k = 0, 1, 2, . . . , so that the suppression model finally consists of
two subequations constantly switching between each other. They obtained sufficient and
necessary conditions for the existence and uniqueness of a globally asymptotically stable
T-periodic solution. For further studies and results on mosquito suppression models with
time switching, see [25–28].

Motivated by the above works, we investigate the properties of equation (1) with mul-
titime period switching. Specifically, we assume that the birth and the death functions
satisfy the following conditions:

(A1) Both F and G are piecewise-smooth T-periodic functions, expressed as

F(x(t – τ )) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

f1(x(t – τ )), t ∈ [iT , iT + t1),
f2(x(t – τ )), t ∈ [iT + t1, iT + t2),

...
fn(x(t – τ )), t ∈ [iT + tn–1, (i + 1)T),

(2)

and

G(x(t)) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

g1(x(t)), t ∈ [iT , iT + t1),
g2(x(t)), t ∈ [iT + t1, iT + t2),

...
gn(x(t)), t ∈ [iT + tn–1, (i + 1)T),

(3)

where 0 < t1 < t2 < · · · < tn–1 < T and i = 0, 1, 2, . . .
(A2) fj(x) is strictly increasing and gj(x) is strictly decreasing for j = 1, 2, . . . , n.
The assumption (A2) may seem stringent, but it is commonly met in population models

in various ecological scenarios. For instance, in [18], the author provided the birth and
death functions of wild mosquitoes as

f (A(t – τ )) =
bA2(t – τ )

2(A(t – τ ) + 2R(t – τ ))
and g(A(t)) = –m

(︃

1 +
A(t)

K

)︃

A(t).
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Another compelling example modeling a crocodilian population is found in [29], where
the birth function

f (F1(t – τ )) = sbF1(t – τ )/(k1 + F1(t – τ ))

illustrates the increase in the number of adult female crocodiles and g(F1(t)) = –daF1(t)
denotes the death of adult female crocodiles. It is easy to verify that these functions satisfy
our assumption (A2), and the examples underscore the versatility of our model and validate
its applicability to different ecological scenarios. Since both τ and T are positive, there
exists a unique nonnegative integer p and a nonnegative number q ∈ [0, T) such that τ =
pT + q, where p = [τ /T], q ∈ [0, T). In this work, we focus on a special case, namely

(A3) τ = pT , p = 1, 2, 3 . . .
Our objective is to demonstrate that under assumptions (A1)–(A3), equation (1) exhibits

similar dynamical behaviors to those of an ordinary differential equation

ẋ(t) = F(x(t)) + G(x(t)). (4)

Given an initial condition ϕ(t) ∈ C([σ – τ ,σ ],R), σ ∈ R, x(t) = x(t;σ ,ϕ) is said to be a
solution of (1) if it satisfies (1) on [σ ,∞) and x(t) = ϕ(t) on t ∈ [σ – τ ,σ ]. Without loss
of generality, we assume σ ∈ [τ , (p + 1)T). Incorporating the notion of “good” solutions
in [27, 28, 30], we introduce a special class of solutions of (1) whose initial functions are
derived from solutions of (4). Specifically, a solution xu(t) = x(t;σ ,ϕu) of (1) is called a
“good” solution if ϕu(t) = x(t; 0, u), t ∈ [σ – τ ,σ ], and x(t; 0, u) is the solution to (4) which
passes through the point (0, u).

The remainder of this paper is organized as follows. In Sect. 2, we provide some basic
lemmas which are used to prove our main results. In Sect. 3, we state and prove the main
results in two steps, using the method of the upper and lower solutions and monotonic
dynamical system theory. We then consider a logistic model with seasonal switching in
Sect. 4 to validate our main results. Finally, we conclude with a brief discussion in Sect. 5.

2 Preliminaries
Definition 2.1

(1) A solution x̄(t) of (1) is said to be stable if for any σ ∈ [τ , (p + 1)T) and ε > 0, there is
δ(ε,σ ) > 0 such that ϕ ∈ C([σ – τ ,σ ],R) and |ϕ(t) – x̄(t)| < δ for t ∈ [σ – τ ,σ ] imply

|x(t;σ ,ϕ) – x̄(t)| < ε, for t ≥ σ .

(2) A solution x̄(t) is said to be asymptotically stable if it is stable and there exists
η(σ ) > 0 such that whenever ϕ ∈ C([σ – τ ,σ ],R) and |ϕ(t) – x̄(t)| < η(σ ) for
t ∈ [σ – τ ,σ ], then

lim
t→∞(x(t;σ ,ϕ) – x̄(t)) = 0.

We next give several lemmas. The first shows that the solutions ϕu(t) have diverse peri-
odic features.
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Lemma 2.1 For any given initial value u > 0 and t ≥ 0, the following conclusions hold:
(1) If ϕu(T) > u, then ϕu(t + T) > ϕu(t), and the sequence {ϕu(t + nT)} is strictly

increasing.
(2) If ϕu(T) = u, then ϕu(nT) ≡ u, n = 0, 1, 2, . . . Moreover, ϕu(t) is a T-periodic solution

of equation (4).
(3) If ϕu(T) < u, then ϕu(t + T) < ϕu(t), and the sequence {ϕu(t + nT)} is strictly

decreasing.

Proof We only prove claim (1), as similar arguments can be applied to prove the other
claims. Write

x̃(t) = ϕu(t + T) = x(t + T ; 0, u) = x(t; 0,ϕu(T)).

Clearly, x̃(t) is a solution of (4). It then follows from x̃(0) = ϕu(T) > u = ϕu(0) that ϕu(t +
T) > ϕu(t). The proof is complete. □

In terms of Lemma 2.1, we know that if ϕu(T) > u, then for any σ ∈ [τ , (p + 1)T),

xu(σ ) = ϕu(σ ) > ϕu(σ – T) > ϕu(σ – 2T) > · · · > ϕu(σ – τ ) = xu(σ – τ ).

Further, we have the following lemma about the monotonic and periodic dynamics of so-
lution xu(t).

Lemma 2.2 Suppose (A1)–(A3) hold. For any given initial value u > 0 and t ≥ σ , the fol-
lowing conclusions hold:

(1) If ϕu(T) > u, then xu(t) > xu(t – τ ), and the sequence {xu (t + nτ)} is strictly increasing.
(2) If ϕu(T) = u, then xu(nτ ) ≡ u.
(3) If ϕu(T) < u, then xu(t) < xu(t – τ ), and the sequence {xu (t + nτ)} is strictly

decreasing.

Proof (1) Assume by contradiction that there is t̄ > σ such that

⎧
⎪⎨

⎪⎩

xu(t) > xu(t – τ ), ∀t ∈ [σ , t̄),
xu(t̄) = xu(t̄ – τ ),
xu(t) < xu(t – τ ), ∀t̄ < t < t̄ + δ,

(5)

where δ > 0 is sufficiently small. We can choose t̂ ∈ (t̄, t̄ + δ) such that ẋu(t̂) ≤ ẋu(t̂ – τ ).
There are two situations, t̄ ∈ (σ ,σ + τ ) or t̄ ≥ σ + τ .

If t̄ ∈ (σ ,σ + τ ), then from (1) and (4) we have

ẋu(t̂) = F(xu(t̂ – τ )) + G(xu(t̂)) and ẋu(t̂ – τ ) = F(xu(t̂ – τ )) + G(xu(t̂ – τ )).

There is a positive integer j such that G(xu(t̂)) = gj(xu(t̂)) and G(xu(t̂ – τ )) = gj(xu(t̂ – τ )).
Since gj is strictly decreasing and xu(t̂) < xu(t̂ – τ ), we have G(xu(t̂)) > G(xu(t̂ – τ )). Thus,
we obtain ẋu(t̂) > ẋu(t̂ – τ ), a contradiction.

If t̄ ≥ σ + τ , then from (1) we obtain

ẋu(t̂) = F(xu(t̂ – τ )) + G(xu(t̂)) and ẋu(t̂ – τ ) = F(xu(t̂ – 2τ )) + G(xu(t̂ – τ )).
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There is a positive integer l such that

F(xu(t̂ – τ )) = fl(xu(t̂ – τ )), G(xu(t̂)) = gl(xu(t̂)),

F(xu(t̂ – 2τ )) = fl(xu(t̂ – 2τ )), G(xu(t̂ – τ )) = gl(xu(t̂ – τ )).

The monotonicity of fl and gl , together with xu(t̂ – τ ) > xu(t̂) and xu(t̂ – τ ) > xu(t̂ – 2τ ),
implies

F(xu(t̂ – τ )) > F(xu(t̂ – 2τ )) and G(xu(t̂)) > G(xu(t̂ – τ )).

It indicates ẋu(t̂) > ẋu(t̂ – τ ), a contradiction again. Thus, we have established xu(t) >
xu(t – τ ). Following a similar procedure, it is easy to verify that {xu (t + nτ)} is strictly in-
creasing. Furthermore, analogous results hold if the inequalities are reversed or replaced
with equalities. This completes the proof. □

We next give a comparison principle.

Lemma 2.3 For any σ ∈ R and two given initial functions ϕi ∈ C([σ – τ ,σ ],R), i = 1, 2,
if ϕ1(t) ≤ ϕ2(t) for t ∈ [σ – τ ,σ ], then the solutions of (1) satisfy x(t;σ ,ϕ1) ≤ x(t;σ ,ϕ2) for
t ≥ σ .

Proof Let x1(t) = x(t;σ ,ϕ1) and x2(t) = x(t;σ ,ϕ2). Suppose the contrary. Then there is s̄ ≥
σ such that

x1(t) ≤ x2(t) for t ∈ [σ – τ , s̄], and x1(t) > x2(t) for t ∈ (s̄, s̄ + δ̂), (6)

where δ̂ > 0 is sufficiently small. We can choose s1 ∈ (s̄, s̄+ δ̂) such that ẋ1(s1) > ẋ2(s1). There
must be an integer k such that

ẋ1(s1) = fk(x1(s1 – τ )) + gk(x1(s1)) and ẋ2(s1) = fk(x2(s1 – τ )) + gk(x2(s1)).

By the monotonicity of fk and gk , we arrive at x1(s1 – τ ) > x2(s1 – τ ), which leads to a
contradiction to (6). □

Based on Lemma 2.3, it is easy to derive the following lemma, which shows that there
exist two solutions of (1), bounding x(t;σ ,ϕ) below and above.

Lemma 2.4 Assume that σ ∈ R and ϕ ∈ C([σ – τ ,σ ],R). Let m1 < m2 be two positive
constants such that

m1 ≤ ϕ(t) ≤ m2, for t ∈ [σ – τ ,σ ].

Then there must exist u1 ≤ m1 and u2 ≥ m2 such that

xu1 (t;σ ) ≤ x(t;σ ,ϕ) ≤ xu2 (t;σ ), for t ≥ σ . (7)
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3 Main results
We concisely summarize the main results in the following theorem.

Theorem 3.1 The solution xu(t) = x(t;σ ,ϕu) of (1) is a T-periodic solution if and only if
ϕu(t) is a T-periodic solution of (4). Moreover, xu(t) is asymptotically stable if and only if
ϕu(t) is asymptotically stable.

Proof We divide the proof into the following two steps:
Step 1: xu(t) = x(t;σ ,ϕu) is a T-periodic solution if and only if ϕu(t) is a T-periodic so-

lution.
We start by proving the necessity. It suffices to show that xu(t) is T-periodic if ϕu(T) = u.

Since equation (1) is autonomous, for any t > σ , we have xu(t) = x(t;σ ,ϕu) = x(t + T ;σ +
T ,ϕu). By the T-periodicity of ϕu(t), we have x(t + T ;σ + T ,ϕu) = x(t + T ;σ ,ϕu) = xu(t + T),
and hence xu(t) = xu(t + T), which implies that xu(t) is a T-periodic solution of (4). On the
other hand, if xu(t) is a T-periodic solution, then

ẋu(t) = fj(x(t – τ )) + gj(x(t)) = fj(x(t – pT)) + gj(x(t)) = fj(x(t)) + gj(x(t)).

Hence, ϕu(t) is a T-periodic solution of equation (4).
Step 2: The T-periodic solution xu(t) = x(t;σ ,ϕu) is asymptotically stable for (1) if and

only if ϕu(t) is asymptotically stable for (4).
Assume that ϕu(t) is asymptotically stable for (4). We prove that xu(t) is asymptotically

stable for (1). We first show the stability of xu(t). For any σ ∈ [τ , (p + 1)T) and ε > 0, it
suffices to show that there is δ = δ(ε,σ ) > 0 such that ϕ ∈ C([σ –τ ,σ ],R) and |ϕ(t)–xu(t)| <
δ for t ∈ [σ – τ ,σ ], imply

|x(t;σ ,ϕ) – xu(t)| < ε, for t ≥ σ . (8)

Since ϕu(t) is stable for (4), there must exist δ̃ > 0 such that |u – v| < δ̃ implies

|ϕu(t) – ϕv(t)| <
1
2
ε for t ≥ σ . (9)

Let δ1 = min
t∈[σ–τ ,σ ]

(︂
ϕu+ 1

2 δ̃(t) – ϕu(t)
)︂

and δ2 = min
t∈[σ–τ ,σ ]

(︂
ϕu(t) – ϕu– 1

2 δ̃(t)
)︂

. We then choose

δ = min {δ1, δ2}, and prove that (8) is true. It follows from |ϕ(t) – xu(t)| < δ for t ∈ [σ – τ ,σ ]

that

ϕ(t) > xu(t) – δ ≥ xu(t) – δ2 ≥ ϕu– 1
2 δ̃(t), and ϕ(t) < xu(t) + δ ≤ xu(t) + δ1 ≤ ϕu+ 1

2 δ̃(t),

which, by Lemma 2.3, leads to xu– 1
2 δ̃(t) < x(t;σ ,ϕ) < xu+ 1

2 δ̃(t) for t ≥ σ . On the other hand,
we have xu– 1

2 δ̃(t) < xu(t) < xu+ 1
2 δ̃(t), for t ≥ σ . It follows that

|x(t;σ ,ϕ) – xu(t)| < xu+ 1
2 δ̃(t) – xu– 1

2 δ̃(t), for t ≥ σ .

To verify (8), we only need to show

xu+ 1
2 δ̃(t) – xu– 1

2 δ̃(t) < ε, for t ≥ σ .
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Since ϕu(t) is asymptotically stable for (4),

ϕu+ 1
2 δ̃(T) < u +

1
2
δ̃ and ϕu– 1

2 δ̃(T) > u –
1
2
δ̃.

Recruiting Lemma 2.2 for t ∈ [σ ,σ + τ ] gives

xu+ 1
2 δ̃(t) ≤ xu+ 1

2 δ̃(t – τ ) = ϕu+ 1
2 δ̃(t – τ ) and xu– 1

2 δ̃(t) ≥ xu– 1
2 δ̃(t – τ ) = ϕu– 1

2 δ̃(t – τ ).

It then follows from (9) that

xu+ 1
2 δ̃(t) – xu(t) ≤ ϕu+ 1

2 δ̃(t – τ ) – xu(t – τ ) <
1
2
ε,

xu(t) – xu– 1
2 δ̃(t;σ ) ≤ xu(t – τ ) – ϕu+ 1

2 δ̃(t – τ ) <
1
2
ε.

Thus, xu+ 1
2 δ̃(t) – xu– 1

2 δ̃(t) < ε, and hence (8) is true for t ∈ [σ ,σ + τ ]. By induction, we can
achieve (8) for t ∈ [σ +kτ ,σ + (k +1)τ ], k = 1, 2, . . . Therefore, (8) is true and the T-periodic
solution xu(t) of (1) is stable.

We next prove the attractivity of xu(t) for (1). It suffices to show that for any ϕ ∈ C([σ –
τ ,σ ],R) and |ϕ(t) – xu(t)| < δ for t ∈ [σ – τ ,σ ],

lim
t→∞|x(t;σ ,ϕ) – xu(t)| = 0. (10)

Employing Lemma 2.4, there are u1, u2 and u ∈ (u1, u2) such that xu1 (t) ≤ x(t;σ ,ϕ) ≤
xu2 (t). Thus, to show (10), we only need to prove

lim
t→∞|xu1 (t) – xu(t)| = 0 and lim

t→∞|xu2 (t) – xu(t)| = 0. (11)

We can guarantee that both u1 and u2 are within the attraction domain of ϕu(t). It follows
that ϕu1 (T) > u1 and ϕu2 (T) < u2, which implies that {xu1 (t + nτ)} is strictly increasing and
{xu2 (t + nτ)} is strictly decreasing. Note that xu(t) is bounded. Set

wu1 (t) = lim
n→∞ xu1 (t + nτ ) and wu2 (t) = lim

n→∞ xu2 (t + nτ ). (12)

Clearly, both wu1 (t) and wu2 (t) are τ -periodic functions.
We now prove that wu1 (t) and wu2 (t) are continuous and piecewise differentiable on

[σ ,∞) and we only verify this for wu1 (t) due to similarity. In fact, for any t′, t′′ > σ , (12)
shows that for any ε > 0, there exist N1 = N1(t′) and N2 = N2(t′′) such that

|wu1 (t′) – xu1 (t′ + nτ )| <
ε

3
and |wu2 (t′′) – xu2 (t′′ + nτ )| <

ε

3
if n > N1 + N2.

It is obvious that xu1 (t + nτ ) is uniformly continuous on t ∈ [σ ,∞). Then there is δ = δ(ε) >
0 such that if |t′ – t′′| < δ, then |xu1 (t′ + nτ ) – xu1 (t′′ + nτ )| < ε/3. Hence, when |t′ – t′′| < δ,
we have

|wu1 (t′) – wu2 (t′′)| < |xu1 (t′ + nτ ) – xu1 (t′′ + nτ )|
< |wu1 (t′) – xu1 (t′ + nτ )| + |wu2 (t′′) – xu2 (t′′ + nτ )|
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+ |xu1 (t′ + nτ ) – xu1 (t′′ + nτ )| < ε,

which implies that wu1 (t) is continuous on [σ ,∞). Moreover, for any nonnegative integer k

and t′ ∈
n–2⋃︁

j=0
(kT + tj, kT + tj+1) ∪ (kT + tn–1, (k + 1)T), we have

lim
t→t′

wu1 (t) – wu1 (t′)
t – t′ = lim

t→t′
lim

n→∞
xu1 (t + nτ ) – xu1 (t′ + nτ )

t – t′

= lim
n→∞ lim

t→t′
xu1 (t + nτ ) – xu1 (t′ + nτ )

t – t′

= lim
n→∞ ẋu1 (t′ + nτ ) = F(wu1 (t′)) + G(wu1 (t′)).

It indicates that wu1 (t) is differentiable at the point t′. Similarly, we can show that wu1 (t) is
left differentiable at the points t = kT and t = kT + tj+1. Thus, wu1 (t) is piecewise differen-
tiable on t ∈ [σ ,∞). We can conclude that wu1 (t) is a τ -periodic solution to (4). Therefore,
wu1 (t) = wu2 (t) = xu(t), which proves (11), and thus the attractivity of xu(t) for (1).

Finally, we prove the sufficiency by contradiction. We claim that there exists η ∈ (0, δ)

such that

ϕv(T) < v, for v ∈ (u, u + η), and ϕv(T) > v, for v ∈ (u – η, u). (13)

In fact, if not, then for any η > 0, we can find v′ ∈ (u, u + η) such that ϕv(T) ≥ v, or v′ ∈
(u – η, u) such that ϕv(T) ≤ v. For v′ ∈ (u, u + η), if ϕv(T) = v, then xv(t) is another T-
periodic solution, a contradiction to the asymptotic stability of xu(t). If ϕv(T) > v, then
Lemma 2.2 tells that {xv(nτ )} is strictly increasing, which contradicts the convergence of
{xv(nτ )}. Similarly, for u ∈ (u – η, u), we can arrive at the same contradiction. Hence, (13)
is true. This completes the proof. □

We provide Fig. 1 to illustrate the stability of xu(t) in Theorem 3.1.

Corollary 3.1 An equilibrium solution of (1) is asymptotically stable if and only if the
corresponding equilibrium solution of (4) is asymptotically stable.

4 Logistic model with seasonal switching
In this section, we provide an example of logistic model with seasonal switching to ver-
ify our theoretical results. The continuous version of the logistic model is given by the
following equation

dx
dt

= rx
(︂

1 –
x
K

)︂
,

where x represents the number of a population, r is the rate of maximum population
growth, and K is carrying capacity of the population. To better capture the influence of en-
vironmental variations on population dynamics, we divide each environmental cycle into
four seasons: S1, S2, S3, and S4. Assume that, in each environmental cycle, the season S1

starts at t = 0 and ends at t = t1; the season S2 starts at t = t1 and ends at t = t2; the season
S3 starts at t = t2 and ends at t = t3, and the season S4 starts at t = t3 and lasts until t = T .
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Figure 1 The main idea for proving the stability of xu(t) in Theorem 3.1. The two blue curves represent the
solutions x

u+ 1
2 δ̃
(t) and x

u– 12 δ̃
(t). The red and black curves represent the solutions xu(t) and x(t;σ ,ϕ),

respectively. The monotonic dynamics exhibited by Lemma 2.2 guarantees that the distance between
x
u+ 1

2 δ̃
(t) and x

u– 12 δ̃
(t) tends to 0. It forces the distance between xu(t) and x(t;σ ,ϕ) tend to 0

Let ri and Ki be the maximum growth rates and the carrying capacity of the population
during Si, i = 1, 2, 3, 4, respectively. We assume that resources are abundant and gradually
increase with seasonal changes throughout the year. According to Malthusian population
theory [31], we know that resource-rich environments typically support higher reproduc-
tion rates and larger population sizes. Thus, we further assume that ri > rj and Ki > Kj for
i > j. Then we get the following time switching differential equations:

dx
dt

= r1x
(︃

1 –
x

K1

)︃

= f1(x), t ∈ [mT , mT + t1), (14)

dx
dt

= r2x
(︃

1 –
x

K2

)︃

= f2(x), t ∈ [mT + t1, mT + t2), (15)

dx
dt

= r3x
(︃

1 –
x

K3

)︃

= f3(x), t ∈ [mT + t2, mT + t3), (16)

dx
dt

= r4x
(︃

1 –
x

K4

)︃

= f4(x), t ∈ [mT + t3, (m + 1)T), (17)

where m = 0, 1, 2, . . .
The solution x(t) for different time intervals is defined as follows:
• For t ∈ [0, t1), x(t) satisfies (14), with the initial value x(0) = u.
• For t ∈ [t1, t2), x(t) satisfies (15), with the initial value x(t1) = limt→t–

1
x(t).

• For t ∈ [t2, t3), x(t) satisfies (16), with the initial value x(t2) = limt→t–
2

x(t).
• For t ∈ [t3, T), x(t) satisfies (17), with the initial value x(t3) = limt→t–

3
x(t).
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On other intervals, the solution can be defined in the same way. To describe the periodic
dynamics of solution x(t), we define

h(u) := x(T ; 0, u) and hi(u) := x(ti; 0, u) for i = 1, 2, 3,

where h is the Poincaré map of the system (14)–(17). It is easy to see that the solution
x(t; 0, u) of the system (14)–(17) is T-periodic if and only if u is a fixed point of h. We use
similar arguments to those in [24–26, 32, 33] to discuss the fixed points of h.

The next lemma shows the nonexistence of the fixed points.

Lemma 4.1 If u ∈ (0, K1], then h(u) > u. If u ∈ [K4,∞), then h(u) < u.

Proof When u ∈ (0, K1], a solution x(t; 0, u) of the system (14)–(17) is determined by (14)
for t ∈ [0, t1) and satisfies dx/dt ≥ 0, which leads to u ≤ h1(u). Then initiated from h1(u),
a solution x(t, t1, h1(u)) is driven by (15) for t ∈ [t1, t2) and satisfies dx/dt > 0, which yields
h1(u) < h2(u). Similarly, we can achieve h2(u) < h3(u) < h(u). Hence, we have h(u) > u for
u ∈ (0, K1]. When u ∈ [K4,∞), we have dx/dt < 0 for t ∈ [0, t1), which leads to u > h1(u). If
h1(u) > K2, then u > h1(u) > h2(u). If h1(u) ≤ K2, then h2(u) ≤ K2 < u. Both cases illustrate
that u > h2(u). Following a similar procedure, we can finally arrive at u > h(u). The proof
is complete. □

Lemma 4.1 implies that the system (14)–(17) has no T-periodic solutions in (0, K1] ∪
[K4,∞) and has at least one T-periodic solution in (K1, K4). Furthermore, we have

Theorem 4.1 The system (14)–(17) has a unique T-periodic solution which is globally
asymptotically stable.

Proof Let u∗ be a fixed point of h in (K1, K2). By the approach in [32], it suffices to show
the uniqueness of u∗ and (u – u∗)(h(u) – u) < 0 for all u > 0. In fact, we can calculate that

h′(u) =
B1(h1(u))

B1(h2(u))

B2(h2(u))

B2(h3(u))

B3(h3(u))

B3(h(u))
at u = u∗,

where

B1(u) =
f1(u)

f2(u)
, B2(u) =

f1(u)

f3(u)
, and B3(u) =

f1(u)

f4(u)
. (18)

Direct computation yields

B′
1(u) =

r1K2(K1 – K2)

r2K1(K2 – u)2 , B′
2(u) =

r1K3(K1 – K3)

r3K1(K3 – u)2 , and B′
3(u) =

r1K4(K1 – K4)

r4K1(K4 – u)2 ,

which indicate that B1(u) is a strictly decreasing function in the intervals (K1, K2), (K2, K4),
B2(u) is a strictly decreasing function in the intervals (K1, K3), (K3, K4), and B3(u) is a
strictly decreasing function in the interval (K1, K4).

We now prove that h is a contraction mapping. It suffices to show that h′(u) < 1 for
u ∈ (K1, K4). Due to similarity, we only focus on the interval u ∈ (K1, K2), in which we have

h2(u) > h1(u), h3(u) > h2(u), and h(u) > h3(u).
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By the monotonicity of B1(u), B2(u), and B3(u), we then obtain

B1(h2(u)) < B1(h1(u)), B2(h3(u)) < B2(h2(u)), and B3(h(u)) < B3(h3(u)).

Since K1 < h1(u) < h2(u) < K2, we have B1(h2(u)) < B1(h1(u)) < 0 and B2(h3(u)) < B2(h2(u)) <
0. Besides, from K1 < h3(u) < h(u) < K4, we obtain B3(h(u)) < B3(h3(u)) < 0. Hence, h′(u) < 1
at each u ∈ (K1, K2) satisfying h(u) = u, which suffices to show the uniqueness of the fixed
points in (K1, K2). The proof is complete. □

We consider the following time delay system:

dx
dt

= r1x(t – pT) –
r1x2(t)

K1
, t ∈ [mT , mT + t1), (19)

dx
dt

= r2x(t – pT) –
r2x2(t)

K2
, t ∈ [mT + t1, mT + t2), (20)

dx
dt

= r3x(t – pT) –
r3x2(t)

K3
, t ∈ [mT + t2, mT + t3), (21)

dx
dt

= r4x(t – pT) –
r4x2(t)

K4
, t ∈ [mT + t3, (m + 1)T), (22)

where p, m = 0, 1, 2, . . .
Consider the parameters

(r1, r2, r3, r4, K1, K2, K3, K4, t1, t2, t3, T) = (2, 4, 6, 8, 100, 150, 200, 250, 7, 12, 17, 20). (23)

Let p = 1. Figures 2(A) and 3(A) demonstrate that the system (19)–(22) has a unique glob-
ally asymptotically stable τ -periodic solution. Similarly, when p = 4, Figs. 2(B) and 3(B)

exhibit the same dynamic behavior for the system (19)–(22). In fact, the system exhibits
similar dynamic behavior regardless of the value of p, where p is a positive integer. This
shows that the qualitative characteristics of the system, such as the existence and stability
of periodic solutions, remain the same for different integer multiples of the environmental
period.

Figure 2 Solution curves of system (19)–(22) with parameters given in (23)
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Figure 3 Phase-space plots of system (19)–(22) with parameters given in (23)

5 Discussion
In the population ecological environment, the periodic environment is widely present in
the natural and social systems, such as seasonal climate change, species reproduction laws,
or periodic fluctuations in the economy. The behavior of the system often fluctuates reg-
ularly with the periodic changes in external conditions. Studying the impact of periodic
fluctuations on the system can help us understand the long-term behavior of the system,
predict its future changes, and even discover potential critical points. This makes the pe-
riodic environment an important background for analyzing the behavior of complex sys-
tems, and has a wide range of application value in many fields such as natural sciences,
engineering, and economics.

In this work, we developed a class of nonlinear delay differential equations to model
systems in a periodic environment. We focused on the critical case where the delay is a
positive integer multiple of the environmental period. By constructing upper and lower so-
lutions and applying the theory of monotonic dynamical systems, we demonstrated that,
under the conditions (A1)–(A3), the existence and stability of periodic solutions and equi-
libria in time delay systems are equivalent to those in the corresponding nondelay case.
Applying our general results to the logistic model with seasonal switching, the numeri-
cal simulations validated our theoretical findings. Our study extended and improved the
results in [27, 28, 30], the model we presented has a general form with wide applicability.

There are some directions in which our model can be extended. The first extension is
to remove the restriction of the time delay τ , that is, delay could be a nonpositive integer
multiple of the environmental period, which is more in line with various practical issues
in practical applications. Another direction in our future research plan is to extend our
model by relaxing the monotonicity constraints on the birth and death functions. In the
current framework, the presence of monotonicity simplifies the stability analysis of the
periodic solutions. However, many real-world systems exhibit nonmonotonic behavior
due to factors such as density dependence, environmental fluctuations, or complex inter-
actions between species. By removing these limitations, we can explore a wider range of
biological and ecological models that more realistically represent population dynamics.
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