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Abstract
To understand the impact of vaccination, we consider an SIVR
(susceptible–infected–vaccinated–recovered) model that combines impulsive
vaccination into the classical SIR model. The final size is firstly defined and estimated,
and then the peak value and peak time are considered. Finally, the critical time for a
given infected number is studied, and it can be used to define and estimate the
stopping time. Our results extend those for the well-understood SIR model.
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1 Introduction
Infectious diseases threaten the world in various ways and have a significant impact on
human health, economics, social structures, and more [3]. Controlling infectious diseases
has always been a global concern.

Vaccination is an effective strategy for minimizing infectious diseases and has been con-
sidered in many literatures. The SIR (susceptible–infected–recovered) models and their
variants have been extensively explored in [10, 11]. Gao et al. [12] investigated an SIRS
epidemic model with seasonal varying contact rate and mixed vaccination strategy. They
studied the permanence and extinction of the disease for the SIRS model. The standard SIR
epidemic model was extended to a fourth compartment V of vaccinated persons in [21].
The influence of vaccinations on the total cumulative number is calculated by comparing
with monitored real time COVID-19 data in different countries. The reduction in the final
cumulative fraction of infected persons is given by using the actual pandemic parameters.
In [24], Turkyilmazoglu revealed that the vaccine application offers less control over the
spread of virus since some portion of vaccinated people is not totally protected/immuned
and viable to infection again after a while due to weak/loss immunity offered by the vac-
cine. See also [15, 22] and the references therein.

As we know, the final size is one of the most concerning indicators for an epidemic.
The final size of an epidemic is the total proportion of the population that becomes in-
fected [7, 17]. Knowing the final size is crucial for assessing the severity of epidemics,
evaluating the impact of interventions, guiding healthcare planning, and informing public
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health decision-making. To understand the development trend and severity of infectious
diseases, researchers have estimated and analyzed the final size by using mathematical
models and empirical data [2, 5, 6, 8, 9, 16, 19]. Results tell us that public health measures
[2, 19], vaccination campaigns [13, 24], and other interventions [1, 4] all can reduce the
final size by limiting the spread of the disease.

Besides the final size, the peak amplitude of an epidemic and the peak time [23] become
the main concerns of CDC staff. Understanding the peak value and peak time helps op-
timize healthcare responses, minimize the burden on healthcare systems, and reduce the
overall morbidity and mortality associated with the infectious disease.

The classical SIR model involves the system of ODE [14]

{︄
dS(t)

dt = –βS(t)I(t),
dI(t)

dt = βS(t)I(t) – γ I(t)
(1.1)

with the initial conditions

S(0) = S0, I(0) = I0, S0 + I0 = N ,

where S(t) and I(t) denote the susceptible and infected compartments of a given popula-
tion in the presence of an infectious disease. The constant N is the size of the population,
R(t) := N – S(t) – I(t) is the recovered compartment of the population at time t. The posi-
tive parameters β and γ are the infected and recovery rates per unit time, respectively. It
is well known that the basic reproduction number is R0 = β

γ
N .

To introduce vaccination into the SIR model, we first make the following assumptions:
1. Population is partitioned into four classes, the susceptibles S(t), the infectious I(t),

the vaccinated V (t), and the recovered R(t) respectively, see the flow chart in Fig. 1. The
total population size is N , that is, S(0) + I(0) := N .

2. The factor σ (0 ≤ σ ≤ 1) is the infection probability of the vaccinated member contact-
ing with the infections, σ = 0 means that the vaccine is completely effective in preventing
infection, and σ = 1 means that the vaccine has no effect.

3. The vaccinations are implemented at times t = nτ , n = 1, 2, . . . , φ(0 < φ < 1) is pulse
vaccination rate, and the interpulse time, i.e., the time between two consecutive pulse
vaccinations, is τ .

4. The vaccine wears off at a constant rate θ .

Figure 1 Flow chart of SIVR epidemic model
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When pulse vaccination is incorporated into SIR model (1.1), the system becomes an
SIVR (susceptible–infected–vaccinated–recovered) epidemic model:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS(t)
dt = –βS(t)I(t) + θV (t),

dI(t)
dt = βS(t)I(t) + σβV (t)I(t) – γ I(t),

dV (t)
dt = –σβV (t)I(t) – θV (t),

⎫⎪⎪⎬
⎪⎪⎭ t ≠ nτ , n = 1, 2, . . . ,

S(nτ+) = (1 – φ)S(nτ ),

I(nτ+) = I(nτ ),

V (nτ+) = V (nτ ) + φS(nτ )

⎫⎪⎪⎬
⎪⎪⎭ t = nτ , n = 1, 2, . . . ,

S(0) = S0 > 0, I(0) = I0 > 0, V (0) = V0 = 0.

(1.2)

We are more interested in the final size, the peak value, the peak time, and the critical
times for model (1.2). The paper is structured as follows. The next section deals with the
final size, and its estimation is derived. Section 3 is devoted to the peak value and peak
time, and four critical times are defined and estimated in Sect. 4. The stopping time is
defined in the last section, and its estimates for model (1.1) are presented.

2 The final size
It is easy to see that the solution (S, I, V ) to problem (1.2) exists uniquely and is global.
Moreover, S(t) + I(t) + V (t) ≤ N for t ≥ 0.

We first claim that

lim
t→∞ I(t) = 0, (2.1)

which means that the disease vanishes eventually, see Fig. 2.
We now prove (2.1) by contradiction. In fact, if lim supt→∞ I(t) = ε0 for some ε0 > 0, there

exists a sequence {tn}+∞
n=1 such that I(tn) ≥ ε0

2 for any n.

Figure 2 The SIVR model.W(t) = S(t) + V(t). The infected number I increases at the beginning and then
decreases in a long run
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Since S, I are bounded by N , we have |I ′(t)| ≤ M for some M ≥ 0 for t ≥ 0 and t ≠ nτ .
Therefore, there exists δ0 > 0 such that

|I(t) – I(tn)| ≤ ε0

4
for t ∈ (tn – δ0, tn] or t ∈ [tn, tn + δ0),

which means

I(t) ≥ I(tn) – |I(t) – I(tn)| ≥ ε0

2
–

ε0

4
=

ε0

4
for t ∈ (tn – δ0, tn] or t ∈ [tn, tn + δ0)

and

∫︂ ∞

0
I(t)dt ≥

∞∑︂
n=1

∫︂ tn+δ0

tn–δ0

I(t)dt ≥
∞∑︂

n=1

ε0

4
δ0 = ∞. (2.2)

On the other hand, since

d
dt

(S + I + V )(t) = –γ I(t), (2.3)

integrating from t = 0 to t = +∞ yields

(S + I + V )(+∞) – (S + I + V )(0) = –γ

∫︂ ∞

0
I(t)dt

and
∫︂ ∞

0
I(t)dt =

–1
γ

[(S + I + V )(∞) – (S + I + V )(0)] < ∞, (2.4)

which leads to a contradiction to (2.2); therefore, lim supt→∞ I(t) = 0 and limt→∞ I(t) = 0.
Since (S + V )′ = –βS(t)I(t)–σβV (t)I(t) ≤ 0 for t ≠ nτ and (S + V ) is continuous for t ≥ 0,

the limit of (S + V )(t) as t → ∞ exists.
As in [17], the final size (Z) of the epidemic is defined as the number of members of the

population who are infected over the course of the epidemic. For our model (1.2),

Z = N – (S + V )∞.

Now we estimate Z and define W (t) = S(t) + V (t) for t ≥ 0. It follows from (1.2) that

–βW (t)I(t) ≤ W ′(t) = –βS(t)I(t) – σβV (t)I(t) ≤ –σβW (t)I(t), (2.5)

and dividing (2.5) by W (t) gives

–βI(t) ≤ W ′(t)/W (t) ≤ –σβI(t). (2.6)

Integrating (2.6) from 0 to +∞ yields

–β

∫︂ +∞

0
I(t)dt ≤ ln W∞ – ln W0 ≤ –σβ

∫︂ +∞

0
I(t)dt. (2.7)
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By combining (2.4) and (2.7), we obtain

β

γ
[(S + I + V )(∞) – (S + I + V )(0)] ≤ ln

W∞
W0

≤ σβ

γ
[(S + I + V )(∞) – (S + I + V )(0)],

which means

σβ

γ
[S0 + I0 – (S + V )(∞)] ≤ ln

W0

W∞
≤ β

γ
[S0 + I0 – (S + V )(∞)],

and equivalently,

σβ

γ
[N – W∞] ≤ ln

W0

W∞
≤ β

γ
[N – W∞].

In particular, since R0 = βN
γ

, we have

σR0[1 –
W∞
N

] ≤ ln
W0

W∞
≤R0[1 –

W∞
N

].

Recalling that W0 = S0, we have estimates for the final size Z = N –W∞, where W∞ satisfies

W∗ ≤ W∞ ≤ W ∗,

and W∗, W ∗ are, respectively, the unique positive roots of

g1(x) := ln
S0

x
– R0[1 –

x
N

] = 0 (2.8)

and

g2(x) := ln
S0

x
– σR0[1 –

x
N

] = 0. (2.9)

In fact, we can see from Fig. 3 that

g1(0+) > 0, g1(x) < 0 for x ≥ N ,

Figure 3 The graphs of g1 and g2 for different cases
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there exists a unique W∗ satisfying 0 < W∗ < N and

g1(W∗) = 0, g1(x) < 0 for 0 < W∗ < x.

So we have

W∗ ≤ W∞.

Similarly,

g2(x) ≥ 0 for x ≤ W∗,

there exists unique W ∗ satisfying 0 < W∗ ≤ W ∗ < N such that

g2(W ∗) = 0, g2(x) ≥ 0 for 0 < W∗ ≤ x ≤ W ∗ ≤ N .

Therefore

W∞ ≤ W ∗.

Theorem 2.1 The final size of model (1.2) is Z = N – W∞, and W∞ satisfies

W∗ ≤ W∞ ≤ W ∗,

where W∗ is the unique positive root of g1 = 0 defined in (2.8), and W ∗ is the unique positive
root of g2 = 0 defined in (2.9).

Remark 2.1 If σ = 1, which means that the vaccine has no effect, we then have g1 = g2 and
W∗ = W∞ = W ∗, and W∞ is the unique positive root of g1 = 0, see Sect. 9.2 in [7].

3 The peak value and peak time
Noting that I(0) > 0 and limt→∞ I(t) = 0, there exists tP ≥ 0 such that Im := I(tP) =
supt≥0 I(t), we usually call tP the peak time and I(tP) is the peak value.

By using equation (1.2) and W = S + V , we have

d
dt

[(W + I)(t) –
γ

β
ln(W (t))] = –γ

(1 – σ )VI
W

≤ 0,

d
dt

[(W + I)(t) –
γ

σβ
ln(W (t))] = γ

(1 – σ )SI
σW

≥ 0

for t ≠ nτ , n = 1, 2, . . . , which implies that

β

γ

d
dt

[(W + I)(t)] ≤ d
dt

[ln(W (t))] ≤ σβ

γ

d
dt

[(W + I)(t)]. (3.1)

Recalling that W , I are continuous and piecewise differentiable, integrating (3.1) from 0
to t yields

σβ

γ
[S0 + I0 – W (t) – I(t)] ≤ ln

W0

W (t)
≤ β

γ
[S0 + I0 – W (t) – I(t)] (3.2)
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for any t > 0 and

S0 + I0 – W (t) –
γ

σβ
ln

W0

W (t)
≤ I(t) ≤ S0 + I0 – W (t) –

γ

β
ln

W0

W (t)
. (3.3)

Usually, the maximum number of infectives is the number of infectives when the deriva-
tive of I is zero, but in our model (1.2), I(t) is not differentiable at t = nτ , n = 1, 2, . . . , so we
have to consider two cases.

If tP ≠ nτ for n = 1, 2, . . . , we have I ′(tP) = 0 and (S + σV )(tP) = γ

β
. Using (3.3) with t = tP

yields

S0 + I0 –
γ

σβ
–

γ

σβ
ln W0 +

γ

σβ
ln

γ

β
≤ Im ≤ S0 + I0 –

γ

β
–

γ

β
ln W0 +

γ

β
ln

γ

σβ
(3.4)

since γ

β
≤ W (tp) ≤ γ

σβ
.

If tP = n0τ for n0 = 1, 2, . . . . In this case, we have I ′(t–
P ) ≥ 0 and I ′(t+

P ) ≤ 0, that is,

(S + σV )(tP) ≥ γ

β
and (1 – φ + σφ)S(tP) + σV (tP) ≤ γ

β
,

and therefore γ

β
≤ W (tP) ≤ γ

β
1

min{(1–φ+σφ),σ } , which together with (3.3) gives

S0 + I0 – γ

β
1

min{(1–φ+σφ),σ } – γ

σβ
ln W0 + γ

σβ
ln γ

β
≤ Im

≤ S0 + I0 – γ

β
– γ

β
ln W0 + γ

β
ln[ γ

β
1

min{(1–φ+σφ),σ } ].
(3.5)

Combining two cases, we have estimates (3.5) of the peak value since (3.5) holds if (3.4)
holds.

We now turn to estimates of the peak time tP . It follows from (2.6) that

–
W ′

βWI
≤ 1 ≤ –

1
σ

W ′

βWI
, (3.6)

which together with (3.3) gives

– W ′
βW [S0+I0–W (t)– γ

β
ln W (0)+ γ

β
ln W (t)] ≤ 1 ≤ – 1

σ
W ′

βW [S0+I0–W (t)– γ
σβ

ln W (0)+ γ
σβ

ln W (t)] , (3.7)

and by integrating (3.7) from 0 to tP , we have

∫︁ W (tp)
W0

dz
βz[z–S0–I0+ γ

β
ln W (0)– γ

β
ln z]

≤ tP ≤ ∫︁ W (tP)
W0

dz
σβz[z–S0–I0+ γ

σβ
ln W (0)– γ

σβ
ln z]

.

Recalling that γ

β
≤ W (tP) ≤ γ

β
1

min{(1–φ+σφ),σ } and W (0) = S0 yields

∫︁ γ
β

S0
dz

βz[z–S0–I0+ γ
β

ln S0– γ
β

ln z]
≤ tp ≤ ∫︁ γ

β
1

min{1–φ+σφ,σ }
S0

dz
σβz[z–S0–I0+ γ

σβ
ln S0– γ

σβ
ln z]

. (3.8)

Theorem 3.1 The peak value Im of model (1.2) satisfies (3.5), and the peak time tP satisfies
(3.8). Moreover, if σ = 1, we have

Im = S0 + I0 – γ

β
– γ

β
ln W0 + γ

β
ln γ

β
,

tp =
∫︁ γ

β

S0
dz

βz[z–S0–I0+ γ
β

ln S0– γ
β

ln z]
.

(3.9)
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Figure 4 The SIVR model andW(t) = S(t) + V(t). The peak value Im is 53. tP(= 60) is the peak time and tμ(= 280)
is the critical time for the infected desired level μ = 10

As an example, we illustrate estimates of the peak time and peak value of the SIVR model
in Fig. 4. Assume that there is no initial vaccination, the infection probability σ of the
vaccinated member contacting with the infections is small. Let β = 0.0005, θ = 0.03, σ =
0.002, γ = 0.01, φ = 0.3, and take S0 = 100, I0 = 20. Figure 4 shows that the peak time is
tP = 60 and the peak value is Im = 53.

4 The critical times
As in [14], there are two important critical times for the epidemic model. One is the first
time (tμ) the infected population is below a given threshold (μ), and the other is the first
time the number of infected individuals begins to decrease, which is in fact the peak time
tP for most models with single wave and can be viewed as the critical time with μ replaced
by the peak value IP .

However, owing to the complexity of the development of infectious diseases, multiple
waves of infections are possible. For example, in several countries successive waves of
COVID-19 disease have been observed [18, 20]. So we now present the following four
critical times.

Let (S, I, V ) be the solution of (1.2) with S(0) = x ≥ 0 and I(0) = y ≥ 0. For a given thresh-
old μ > 0, we denote four critical times as follows, see Fig. 5.

(i) u∗ is the first time at which the number of infected individuals is not greater than the
given value, that is,

u∗(x, y) := tμ = inf{t > 0 : I(t) ≤ μ};

(ii) u∗ is the last time at which the number of infected individuals is not less than the
given value, that is,

u∗(x, y) := tμ = sup{t > 0 : I(t) ≥ μ};
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Figure 5 The four critical times and the stopping time

(iii) v∗ is the first time from which the number of infected individuals begins to decrease,
that is,

v∗(x, y) := inf{t > 0 : ∃δ > 0 such that I(z) < I(t) for z ∈ (t, t + δ)};

(iv) v∗ is the last time at which the number of infected individuals is not decreasing, that
is,

v∗(x, y) := sup{t > 0 : ∃δ > 0 such that I(z) ≤ I(t) for z ∈ (t – δ, t)};

It is easy to see that u∗(x, y) = 0 when 0 ≤ y < μ, and v∗ = v∗ for epidemic models with
single wave. For our model (1.2), let μ = 10, then the first time tμ at which the number of
infected individuals is not greater than μ is 280, see Fig. 4, and the last time tμ at which
the number of infected individuals is not less than μ is also 280.

Next we derive some estimates for the critical times.

Theorem 4.1 For each x ≥ 0 and y ≥ μ,

ln x – ln γ

βσ

βIm
≤ u∗(x, y) ≤ x + y

γμ
. (4.1)

Proof Let S, I , and V be the solution of SIVR model (1.2) with S(0) = x and I(0) = y. Since
d
dt (S + I + V )(t) = –γ I(t),

∫︂ t

0
γ I(τ )dτ + S(t) + I(t) + V (t) = x + y.

Choosing t = u∗(x, y) and noting that I(τ ) ≥ μ for 0 ≤ τ ≤ u∗(x, y) gives

u∗(x, y)γμ ≤
∫︂ u∗(x,y)

0
γ I(τ )dτ ≤ x + y, (4.2)

and we have the right inequality of (4.1).
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On the other hand, since I(t) > μ = I(u∗) for 0 ≤ t < u∗ by the definition of u∗, we have
I ′(u–∗ ) ≤ 0, which together with the second equation of (1.2) yields

(S + σV )(u∗) ≤ γ

β
,

and therefore,

(S + V )(u∗) := W (u∗) ≤ (
S
σ

+ V )(u∗) ≤ γ

σβ
. (4.3)

It follows from (2.6) that

W (u∗) ≥ W (0)e–β
∫︁ u∗

0 I(τ )dτ ≥ xe–βu∗Im , (4.4)

which together with (4.3) gives the left inequality of (4.1). □

Theorem 4.2 For each x ≥ γ

β
and y > 0,

ln x – ln( γ

β
1

min{1–φ+σφ,σ } )

βIm
≤ v∗(x, y) ≤ ln x – ln( γ

β
)

σβy
. (4.5)

Proof Let (S, I, V ) be the solution of SIVR model (1.2) with S(0) = x and I(0) = y. Letting
W = S + V and integrating equation (2.6) from 0 to t gives

W (0)e–β
∫︁ t

0 I(τ )dτ ≤ W (t) ≤ W (0)e–σβ
∫︁ t

0 I(τ )dτ (4.6)

for t ≥ 0.
Since I(t) is continuous and increasing on t ∈ [0, v∗(x, y)], y ≤ I(t) ≤ Im for t ∈ [0, v∗(x, y)].

If v∗ ≠ nτ for n = 1, 2, . . . , we have I ′(v∗) = 0 and (S + σV )(v∗) = γ

β
. In view of (4.6),

γ

β
= (S + σV )(v∗(x, y)) ≤ W (v∗(x, y)) ≤ xe–σβ

∫︁ v∗
0 I(τ )dτ ≤ xe–σβyv∗ ,

γ

σβ
= (

S
σ

+ V )(v∗(x, y)) ≥ W (v∗(x, y)) ≥ xe–β
∫︁ v∗

0 I(τ )dτ ≥ xe–βImv∗ .

Taking the natural logarithm and rearranging gives (4.5).
If v∗ = n0τ for n0 = 1, 2, . . . , we have I ′(v–∗ ) ≥ 0 and I ′(v+∗) ≤ 0, that is,

γ

β
≤ (S + σV )(v∗) ≤ W (v∗(x, y)) and

γ

β

1
min(1 – φ + σφ,σ )

≥ W (v∗(x, y)).

By (4.6),

γ

β
≤ W (v∗(x, y)) ≤ xe–σβ

∫︁ v∗(x,y)
0 I(τ )dτ ≤ xe–σβyv∗(x,y)

and

γ

β

1
min(1 – φ + σφ,σ )

≥ W (v∗(x, y)) ≥ xe–β
∫︁ v∗(x,y)

0 I(τ )dτ ≥ xe–βv∗(x,y)Im .
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Now we can take the natural logarithm of above two inequations to get (4.5) and complete
the proof. □

5 The stopping time
Usually, we say the epidemic stops if there are no longer infected individuals after a special
time tS , that is, I(tS – 1) > 0 and I(t) = 0 for t ≥ tS . It is well known that in any actual epi-
demic situation, the infected number is a nonnegative integer. However, in most epidemic
compartment models described by ODEs or PDEs, I(t) is a continuous function of time
t. We have the limit limt→∞ I(t) = 0 as proved above, but I(t) > 0 for t > 0, it is difficult to
derive the exact time tS .

It seems to us that there is no definition for the stopping time. However, the critical time
for a given threshold μ(> 0) provides us a convenient route. Denote

tS := tμ|μ=0.5 = sup{t > 0 : I(t) ≥ 0.5},

where (S, I, V ) is the solution of (1.2). It is easy to see that I(tS – 1) ≥ 1 and I(t) = 0 for
t ≥ tS if I(t) is a nonnegative integer for any t ≥ 0.

With the above definition, we have the following estimates of the stopping time for SIR
model (1.1) by using the results in [14].

Theorem 5.1 Let (S, I) be the solution of (1.1) with S(0) = x > 0, I(0) = y > 0.5. Then we
have

(i) 1
γ

ln( x+y
γ /β+0.5 ) ≤ tS ≤ x+y

0.5γ
;

(ii) tS ≤ ln(2y)
γ –βx if x ∈ [0,γ /β);

(iii) lim
x+y→∞

tS
ln(2(x+y))/γ = 1.

Proof Recalling that SIR model (1.1) admits a single wave, we have u∗(x, y) = u∗(x, y) :=
u(x, y). It is shown in [14] that

1
γ

ln(
x + y

γ /β + μ
) ≤ u(x, y) ≤ x + y

μγ
,

u(x, y) ≤ ln(y/μ)

γ – βx
if x ∈ [0,γ /β),

lim
x+y→∞

u(x, y)

ln((x + y)/μ)/γ
= 1.

Replacing μ by 0.5, we have tS = u(x, y) and complete the proof. □

Let us consider the example as shown in Fig. 4. Since β = 0.0005, σ = 0.002, γ = 0.01, x =
S0 = 100, y = I0 = 20, we have 100 ln 240

41 ≤ tS ≤ 24000, which is not satisfactory. However,
it is our first attempt to define and estimate the stopping time, and we look forward to
future progress.

6 Conclusion and discussion
It is well known that an infectious disease model can be used to understand the current
state of the epidemic, to predict pandemic landscape, and to help make decisions. In this
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paper, we consider an SIVR epidemic model with impulsive vaccination, which extends
the classical SIR model.

For this model, what we are more interested in are the final size, the peak value, the
peak time, and the stopping time. The final size is firstly considered. Differently from the
classical SIR model, in which the final size can be derived by a formula, we present some
estimates of the final size by overcoming the difficulty induced by impulsive vaccination.
We also define and estimate the peak value and peak time. Moreover, four critical times for
the SIVR model are defined and studied. Our results extend those for the well-understood
SIR model.

It seems to us that there is no result for the stopping time, which is very important for
any actual epidemic. We try to define the stopping time of the SIVR model by using the
critical time for a given threshold μ = 0.5, some rough estimates are also presented. It is
worth mentioning that all above definitions and results can be used to investigate similar
compartmental models, and the follow-up progress is worth looking forward to.
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