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Abstract
This paper considers a stochastic model of microorganism flocculation incorporating
two complementary nutrients. By introducing nonlinear perturbation, we analyze the
influence of flocculations, microorganisms, and two nutrients on the model dynamic.
The paper proves the existence and uniqueness of the stationary distribution in the
stochastic model. Moreover, sufficient conditions for the extinction of
microorganisms are established. Numerical simulations indicate that nonlinear
perturbation makes the growth process of microorganisms more unpredictable,
better reflecting the complicated variations in real-world environments. Noise
interference is not always detrimental, but appropriate noise levels may promote the
growth of microorganisms.
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1 Introduction
The chemostat is a commonly used device in continuous microorganism cultivation and
ecological research, playing a crucial role in mathematical ecology modeling. This device
maintains a constant flow rate of the culture medium. In a chemostat, the concentration
of supplied nutrients regulates the density of microorganisms, while the flow rate con-
trols the growth rate. By adjusting the flow rate, the growth of microorganisms can be
balanced with the inflow rate of nutrients, thus maintaining a stable population density of
microorganisms. It is generally assumed that the reaction volume remains constant in the
reactor, with equal inflow and outflow rates [1, 2]. Theoretically, the chemostat model can
be represented using ODEs, PDEs, or SDEs, making it applicable to various fields, includ-
ing chemical, pharmacology, ecology, and medical research. For example, in [3], a partial
differential equation model describing two species competing for a limited nutrient source
in a non-stirring chemostat was studied, in which one microorganism species was extinct.
A stochastic chemostat model incorporating the Monod and Haldane consumption func-
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Table 1 Terms in Model (1.1) and Their Descriptions

Term Description

r1φ1(C(t))φ2(N(t))X(t) Uptake rate of carbon source
r2φ1(C(t))φ2(N(t))X(t) Uptake rate of nitrogen source
rφ1(C(t))φ2(N(t))X(t) Growth rate of microorganisms
m1X(t)P(t) Flocculation rate of microorganisms
m2X(t)P(t) Loss rate of flocculants

tions for the species was analyzed in [4]. In [5], a stochastic chemostat model driven by
white noise was investigated to study the dynamical properties of the system under en-
vironmental fluctuations. In reality, microorganisms are often too small to be easily col-
lected directly, and flocculants are typically added to the reactor to collect large quantities
of microorganisms. Flocculants [6] promote the aggregation of suspended particles into
larger particles and are widely used in water treatment, textile, and other fields.

Given the broad application of microorganism flocculants and environmentally friendly
characteristics, a dynamic analysis of the model is necessary. Tai et al. [7] developed a class
of microorganism flocculation model with delay. Ni et al. [8] established a size-structured
PDE model that considers the cell size of algae, depicting the evolutionary relationship
among algal cell growth, nutrient uptake, and flocculation effect. By constructing a suit-
able positive invariant set and using the Lyapunov-LaSalle theorem, Guo and Ma [9] in-
vestigated the global stability of the equilibrium point under specific conditions. The per-
sistence of the model was also studied, and an explicit expression for the eventual lower
bound of microorganism concentration was provided. In addition, a microorganism floc-
culation delay model with a saturated functional response was presented in [10], demon-
strating that microorganism collection is sustainable and gives an eventual lower bound on
the microorganism concentration under certain conditions. Using the Lyapunov-LaSalle
theorem, a sufficient condition for global stability was ultimately established. Wang et al.
[11] proposed a dynamic model (1.1) with two different kinds of nutrients. Additionally,
they investigated the global stability of the boundary equilibrium point and positive equi-
librium point, as well as the persistence of the model (1.1)

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

dC(t) = [1 – C(t) – r1φ1(C(t))φ2(N(t))X(t)]dt,

dN(t) = [1 – N(t) – r2φ1(C(t))φ2(N(t))X(t)]dt,

dX(t) = [rφ1(C(t))φ2(N(t))X(t) – X(t) – m1X(t)P(t)]dt,

dP(t) = [1 – P(t) – m2X(t)P(t)]dt,

(1.1)

where C(t), N(t), X(t), and P(t) denote the concentration of carbon source, nitrogen
source, microorganisms and flocculants, respectively. The functions φ1(C(t)) and φ2(N(t))
are the Monod-type function

φ1(C(t)) =
C(t)

K1 + C(t)
, φ2(N(t)) =

N(t)
K2 + N(t)

,

where the constants K1 > 0 and K2 > 0. In the model (1.1), r ≥ 0, ri ≥ 0 (i = 1, 2) and mi ≥
0 (i = 1, 2) are the constants.
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The influence of various external factors on deterministic systems is unavoidable in nat-
ural environments. Considering these environmental changes, it is both reasonable and
practical to incorporate noise into the model. Therefore, analyzing the dynamic behavior
of the system under stochastic perturbation is significant. To study the effects of stochas-
tic perturbation, the researchers introduced perturbation into deterministic models using
different methods. In [12], Yang et al. proposed a tri-trophic food chain model incorpo-
rating stochastic perturbation in the environment. Xu et al. [13] developed and examined
a stochastic competition chemostat model. Recently, numerous researchers have concen-
trated on the ergodicity of the unique stationary distribution in the stochastic chemostat
model and established sufficient conditions for microorganism survival and extinction
within the model (Xu et al. [14], Lv et al. [15], Imhof and Walcher [16], Gao et al. [17],
Zhang et al. [18], Sun and Zhang [19], Stephanopoulos et al. [20], Chi and Zhao [21]).
Zhang et al. [22] introduced white noise as a linear perturbation to develop a microor-
ganism flocculation model. Li et al. [23] studied a stochastic microorganism floccula-
tion model with a Monod-type response function. Liu and Ma [24] proposed a stochastic
model involving two complementary nutrients.

Noise characteristics are a key factor influencing the behavior of stochastic biological
dynamical systems. Nonlinear noise (Zhou et al. [25], Yu and Yuan [26], Sun and Lu [27],
and Li et al. [28]) means that there is a nonlinear relationship between the noise term
and the system state. This type of noise is commonly used in models, particularly when
describing complex dynamic behaviors.

The innovation of this paper is reflected in (i) Adding nonlinear perturbation to the
microorganism flocculation model that involves two complementary nutrients. (ii) The
interference of small nonlinear noise may positively impact the growth of microorganisms.

In Sect. 2, a stochastic model incorporating nonlinear perturbation is formulated. In
Sect. 3, we show the existence and uniqueness of global positive solutions and the station-
ary distribution. Additionally, we demonstrate the extinction of microorganisms. Numer-
ical simulations are employed in Sect. 4 to validate and support our theoretical results.
The conclusions are presented in Sect. 5.

2 The model formulation and necessary lemmas
Stochastic dynamical systems have been widely employed to investigate various biolog-
ical phenomena, including ecological stability, population dynamics, and disease trans-
mission. Inspired by the success of stochastic epidemic models (He et al. [29], Tan et al.
[30]), we aim to explore the stochastic dynamics of microorganism flocculation, a pro-
cess influenced by complex interactions and environmental perturbations. In Sect. 2.1,
we analyze a nonlinear perturbation model to describe the microorganism flocculation
process.

2.1 The model formulation
In stochastic dynamical models, the “perturbation” of the deterministic model introduces
randomness, simulating the natural or artificial effects on system dynamics. Below are
three common perturbation methods: (i) Parameter Perturbation [31], (ii) Equilibrium
Point Perturbation [32], and (iii) System-Wide Perturbation [33].
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Regarding method (iii), Liu and Ma [24] proposed a stochastic model (2.1), incorporat-
ing the effects of linear perturbation on the system’s behavior.

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

dC(t) = [1 – C(t) – r1φ1(C(t))φ2(N(t))X(t)] dt + σ1C(t)dB1(t),

dN(t) = [1 – N(t) – r2φ1(C(t))φ2(N(t))X(t)] dt + σ2(t)N(t)dB2(t),

dX(t) = [rφ1(C(t))φ2(N(t)) – 1 – m1P(t)] X(t)dt + σ3X(t)dB3(t),

dP(t) = [(1 – P(t)) – m2X(t)P(t)] dt + σ4P(t)dB4(t),

(2.1)

where Bi(t) (i = 1, 2, 3, 4) represent independent standard Brownian motions satisfying
Bi(0) = 0 (i = 1, 2, 3, 4), and σ 2

i (i = 1, 2, 3, 4) denote the intensities of white noise. However,
disturbances to the system are not always linear, so we introduce a nonlinear perturba-
tion inspired by the methods outlined in [34, 35]. Given this, a stochastic model (2.2) with
nonlinear perturbation is developed

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dC(t) = [1 – C(t) – r1φ1(C(t))φ2(N(t))X(t)] dt

+
(︁
σ11C2(t) + σ12C(t)

)︁
dB1(t),

dN(t) = [1 – N(t) – r2φ1(C(t))φ2(N(t))X(t)] dt

+
(︁
σ21N2(t) + σ22(t)N(t)

)︁
dB2(t),

dX(t) = [rφ1(C(t))φ2(N(t)) – 1 – m1P(t)] X(t)dt

+
(︁
σ31X2(t) + σ32X(t)

)︁
dB3(t),

dP(t) = [1 – P(t) – m2X(t)P(t)] dt

+
(︁
σ41P2(t) + σ42P(t)

)︁
dB4(t),

(2.2)

where σ 2
ij > 0 (i = 1, 2, 3, 4, j = 1, 2) are the intensities of noise. From the perspective of bi-

ology, the initials value of the model (2.2) are nonnegative

C(0) = C0 ≥ 0, N(0) = N0 ≥ 0, X(0) = X0 ≥ 0, P(0) = P0 ≥ 0,

where C0, N0, X0, and P0 are the concentrations of C(t), N(t), X(t), and P(t), respectively.

2.2 Some preliminaries and necessary lemmas
In the complete probability space (Ω,F , {Ft}t≥0,P) with a natural filtration {Ft}t≥0 satis-
fying the usual conditions. On this space, we define the independent Brownian motions
Bi(t) for i = 1, 2, 3, 4. Define the sets R

4
+ = {β = (β1,β2,β3,β4) ∈ R

4 : βi ≥ 0, i = 1, 2, 3, 4}
and R

4
+ = {β = (β1,β2,β3,β4) ∈ R

4 : βi > 0, i = 1, 2, 3, 4}. The solution of model (2.2) is
represented by W (t) = (C(t), N(t), X(t), P(t))T , with the initial value specified as W0 =
(C0, N0, X0, P0)T ∈R

4
+.

Lemma 2.1 [35] Let (c(t), n(t)) be the solutions of SDEs (2.3) with the initial value
(c(0) = C0, n(0) = N0),

⎧
⎨

⎩

dc(t) = [1 – c(t)] dt + (σ11c(t) + σ12) c(t)dB1(t),

dn(t) = [1 – n(t)] dt + (σ21n(t) + σ22)n(t)dB2(t).
(2.3)
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We have
(i) C(t) ≤ c(t), N(t) ≤ n(t), a.s.
(ii) limt→∞ 1

t
∫︁ t

0 c2(s)ds =
∫︁∞

0 x2π1(x)dx, limt→∞ 1
t
∫︁ t

0 n2(s)ds =
∫︁∞

0 y2π2(y)dy, a.s.
The density functions π1(x) and π2(y) are expressed

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

π1(x) =Q1x–2(1+q1) (σ11x + σ12)
–2(1–q1)

e
– 2

σ12
(︁
σ12+σ11x

)︁
(︂

1
x + 2σ11+σ12

σ12

)︂

, (x ∈ (0, +∞)),

π2(y) =Q2y–2(1+q2)
(︁
σ21y + σ22

)︁–2(1–q2)

e
– 2

σ22
(︁
σ22+σ21y

)︁
(︂

1
y + 2σ21+σ22

σ22

)︂

, (y ∈ (0, +∞)),

(2.4)

where q1 = 2σ11+σ12
σ 3

12
, q2 = 2σ21+σ22

σ 3
22

, Q1 and Q2 are constants such that
∫︁∞

0 π1(x)dx = 1,
∫︁∞

0 π2(y)dy = 1, respectively.

Lemma 2.2 [36] Assume there has a bounded domain open D ⊂ E
d with a regular bound-

ary Γ and satisfying the following conditions
(i) For a positive number M, the inequality

∑︁n
i,j=1 aij(x)ηiηj ≥ M|η|2 holds for all x ∈ D

and any vector η ∈ E
d .

(ii) There exists a nonnegative C2-function V (x), such that LV (x) remains strictly negative
for all x outside the domain D, i.e., for x ∈ E

d \ D.
Then, the Markov process X(t) possesses a unique ergodic stationary π(·).
For all x ∈ E

d \ D and every function f (·) that is integrable with respect to the measure
π(·), we have

P
{︃

1
T

∫︂ T

0
f (X(t))dt −→

T→∞

∫︂

Ed
f (x)π(dx)

}︃

= 1,

where X(t) is the solution of SDE

dX(t) = μ(X)dt +
k∑︂

r=1

σr(X)dBr(t),

the diffusion matrix

A(x) = (aij(x)), aij(x) =
k∑︂

r=1

σ i
r (x)σ i

r (x).

Lemma 2.3 [37] If x ≥ 0, we obtain two inequalities

(i)
x3

(︁
x2 + 1

)︁ ≥
(︃

x –
1
2

)︃

, (ii)
x4

(︁
x2 + 1

)︁ ≥
(︃

3
4

x2 –
1
4

)︃

.

3 Global dynamic analysis for model (2.2)
3.1 Existence and uniqueness
Theorem 3.1 For any initial condition W0 ∈ R

4
+, there exists a unique solution W (t) to

model (2.2) that remains in R
4
+, meaning that for all t ≥ 0, W (t) ∈ R

4
+.
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Proof The selection of a C2-function for the proof process can be based on the methods
outlined in [24]. Therefore, we omit it here. □

3.2 Stationary distribution
Define

Rs
0(θ ) =

r
a1(θ )a2(θ )a3(θ )(K1 + 1)(K2 + 1)

,

where

a1(θ ) =

⎛

⎝1 +
1
2
σ 2

12 + 2 3

√︄

σ 2
11

(1 – θ )2 + 2
√︃

σ11σ12

1 – θ

⎞

⎠ ,

a2(θ ) =

⎛

⎝1 +
1
2
σ 2

22 + 2 3

√︄

σ 2
21

(1 – θ )2 + 2
√︃

σ21σ22

1 – θ

⎞

⎠ ,

a3(θ ) =
(︃

1 + m1 +
1
2
σ 2

32 +
√︃

rσ31σ32

(1 – θ )r1
+ 3

√︄
(︃

rσ31

(1 – θ )r1

)︃2

+
√︃

rσ31σ32

(1 – θ )r2

+ 3

√︄
(︃

rσ31

(1 – θ )r2

)︃2)︃

.

When θ → 0+, we obtain the stochastic threshold as follows

Rs
0 =

r
a1a2a3(K1 + 1)(K2 + 1)

,

where

a1 =
(︃

1 +
1
2
σ 2

12 + 2 3
√︂

σ 2
11 + 2

√
σ11σ12

)︃

,

a2 =
(︃

1 +
1
2
σ 2

22 + 2 3
√︂

σ 2
21 + 2

√
σ21σ22

)︃

,

a3 =

⎛

⎝1 + m1 +
1
2
σ 2

32 +
√︃

rσ31σ32

r1
+ 3

√︄
(︃

rσ31

r1

)︃2

+
√︃

rσ31σ32

r2
+ 3

√︄
(︃

rσ31

r2

)︃2
⎞

⎠ .

Theorem 3.2 If Rs
0 > 1, there exists a unique stationary distribution for model (2.2), and

it has the ergodic property for any initial W0 ∈ R
4
+.

Proof To check condition (i) in Lemma 2.2, it is enough to examine the diffusion matrix
of model (2.2)

4∑︂

i,j=1

aij(C, N , X, P)ξiξj =
(︁(︁

σ11C2 + σ12C
)︁
ξ1,
(︁
σ21N2 + σ22N

)︁
ξ2,

(︁
σ31X2 + σ32X

)︁
ξ3,
(︁
σ41P2 + σ42P

)︁
ξ4
)︁
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⎛

⎜
⎜
⎜
⎝

(︁
σ11C2 + σ12C

)︁
ξ1

(︁
σ21N2 + σ22N

)︁
ξ2

(︁
σ31X2 + σ32X

)︁
ξ3

(︁
σ41P2 + σ42P

)︁
ξ4

⎞

⎟
⎟
⎟
⎠

=
(︁
σ11C2 + σ12C

)︁2
ξ1

2 +
(︁
σ21N2 + σ22N

)︁2
ξ2

2

+
(︁
σ31X2 + σ32X

)︁2
ξ3

2 +
(︁
σ41P2 + σ42P

)︁2
ξ4

2

≥ M∗ ∥ ξ ∥2 for any W ∈R
4
+,

ξ = (ξ1, ξ2, ξ3, ξ4) ∈ Dε ,

where M∗ = min(C,N ,X,P)∈Dε {(σ11C2 + σ12C)2, (σ21N2 + σ22N)2, (σ31X2 + σ32X)2, (σ41P2 +
σ42P)2} and Dε =

[︁
ε, 1

ε

]︁× [︁ε, 1
ε

]︁× [︁ε, 1
ε

]︁× [︁ε, 1
ε

]︁
. Therefore, condition (i) is satisfied.

We introduce a C2-function

V ∗(W ) = MV ∗
1 + V ∗

2 + V ∗
3 ,

where V ∗
1 = – ln X + m1P – c1 ln C – c2 ln N + c3C + c4N + c1U1 + c2U2 + U3 + U4,

U1 =
∑︁2

i=1
αi(C+βi)θ

θ
, U2 =

∑︁2
i=1

ηi(N+γi)θ

θ
, U3 = 1

2

(︂
k1C +

∑︁2
i=1

νi(X+ωi)θ

θ

)︂
, U4 =

1
2

(︂
k2N +

∑︁2
i=1

ϑi(X+φi)θ

θ

)︂
, V ∗

2 = (σ11C+σ12)θ

θ
+ (σ21N+σ22)θ

θ
+ (σ31X+σ32)θ

θ
+ (σ41P+σ42)θ

θ
, V ∗

3 = – ln C –
ln N – ln P, 0 < θ < 1, 0 < α < 1, ci > 0 (i = 1, 2, 3, 4) and M ≥ 0 denotes a sufficiently large
constant satisfying

–Mλ + G ≤ –2,

where λ = a3(θ )(Rs
0 – 1) and G = sup

W∈Dε

{A + F (C, N , P) – E (W )},

A = B + 3 + σ11σ
θ–1
12 + σ21σ

θ–1
22 + σ41σ

θ–1
42 ,

E(W ) =
1 – θ

4
(︁
σ θ+2

11 Cθ+2 + σ θ+2
21 Nθ+2 + σ θ+2

31 Xθ+2 + σ θ+2
41 Pθ+2)︁ ,

F(C, N , P) =
1
2

(σ11C + σ12)
2 +

1
2

(σ21N + σ22)
2 +

1
2

(σ41P + σ42)
2 .

Now, we define a nonnegative C2-function V (W ) that holds for any W ∈R
4
+. Noting that

V ∗(W ) is a continuous function for any (W ) ∈R
4
+ and

lim
ε→0,W∈Dε

V ∗(W ) = ∞.

Therefore, V ∗(W ) must have a minimum point Wm = (Cm, Nm, Xm, Pm) ∈ R
4
+. The C2-

function V (W ) : R4
+ →R+ ∪ {0}

V (W ) = V ∗(W ) – V ∗(Wm).

Let

c1 =
r

(a1(θ ))2 (a2(θ )) (K1 + 1) (K2 + 1)
,
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c2 =
r

(a1(θ )) (a2(θ ))2 (K1 + 1) (K2 + 1)
,

c3 =
r

(a1(θ )) (a2(θ )) (K1 + 1)2 (K2 + 1)
,

c4 =
r

(a1(θ )) (a2(θ )) (K1 + 1) (K2 + 1)2 .

Using Itô formula for U1, we have

LU1 =
2∑︂

i=1

αi (C + βi)
θ–1 (1 – C – r1φ1(C)φ2(N)X)

–
2∑︂

i=1

αi (1 – θ)

2 (C + βi)
2–θ

(︁
σ11C2 + σ12C

)︁2

=
2∑︂

i=1

αi

(C + βi)
1–θ

(1 – C – r1φ1(C)φ2(N)X)

–
2∑︂

i=1

αi (1 – θ)

2 (C + βi)
2–θ

(︁
σ11C2 + σ12C

)︁2

≤
2∑︂

i=1

αi

β1–θ
i

–
α1 (1 – θ)βθ–2

1 σ 2
11C4

2
(︂

C
β1

+ 1
)︂2–θ

–
α2(1 – θ )βθ–2

2 σ11σ12C3

(︂
C
β2

+ 1
)︂2–θ

≤
2∑︂

i=1

αi

β1–θ
i

–
α1 (1 – θ)βθ+2

1 σ 2
11

(︂
C
β1

)︂4

2
(︂

C
β1

+ 1
)︂2 –

α2(1 – θ )βθ+1
2 σ11σ12

(︂
C
β2

)︂3

(︂
C
β2

+ 1
)︂2

≤
2∑︂

i=1

αi

β1–θ
i

–
α1 (1 – θ)βθ+2

1 σ 2
11

(︂
C
β1

)︂4

4
(︃(︂

C
β1

)︂2
+ 1
)︃ –

α2(1 – θ )βθ+1
2 σ11σ12

(︂
C
β2

)︂3

2
(︃(︂

C
β2

)︂2
+ 1
)︃

≤
2∑︂

i=1

αi

β1–θ
i

–
α1 (1 – θ)βθ+2

1 σ 2
11

4

[︄
3
4

(︃
C
β1

)︃2

–
1
4

]︄

–
α2(1 – θ )βθ+1

2 σ11σ12

2

(︃
C
β2

–
1
2

)︃

≤
(︃

α1

β1–θ
1

+
α1(1 – θ )βθ+2

1 σ 2
11

16

)︃

+
(︃

α2

β1–θ
2

+
α2(1 – θ )βθ+1

2 σ11σ12

4

)︃

–
3α1(1 – θ )βθ

1 σ 2
11

16
C2 –

α2(1 – θ )βθ
2 σ11σ12

2
C.

Let

α1 =
8

3(1 – θ )βθ
1

, α2 =
2

(1 – θ )βθ
2

, β1 = 2 3

√︄
1

(1 – θ )σ 2
11

, β2 = 2

√︄
1

(1 – θ )σ11σ12
.

Then

LU1 ≤ 2

⎡

⎣ 3

√︄

σ 2
11

(1 – θ )2 +
√︃

σ11σ12

1 – θ

⎤

⎦ –
σ 2

11
2

C2 – σ11σ12C.
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Similarly, let

η1 =
8

3(1 – θ )γ θ
1

, η2 =
2

(1 – θ )γ θ
2

, γ1 = 2 3

√︄
1

(1 – θ )σ 2
21

, γ2 = 2

√︄
1

(1 – θ )σ21σ22
.

LU2 ≤ 2

⎡

⎣ 3

√︄

σ 2
21

(1 – θ )2 +
√︃

σ21σ22

1 – θ

⎤

⎦ –
σ 2

21
2

N2 – σ11σ12N .

2LU3 =k1 (1 – C – r1φ1(C)φ2(N)X) +
2∑︂

i=1

[︄

νi(X + ωi)
θ–1(rφ1(C)φ2(N)X

– X – m1XP) –
νi (1 – θ)

2 (X + ωi)
2–θ

(︁
σ31X2 + σ32X

)︁2
]︄

≤k1 +

(︄ 2∑︂

i=1

νiω
θ–1
i r – k1r1

)︄

φ1(C)φ2(N)X +
ν1(1 – θ )ωθ+2

1 σ 2
31

16

+
ν2(1 – θ )ωθ+1

2 σ31σ32

4
–

3ν1(1 – θ )ωθ
1σ

2
31

16
X2 –

ν2(1 – θ )ωθ
2σ31σ32

2
X.

Let

k1 =
∑︁2

i=1 νiω
θ–1
i r

r1
, ν1 =

8
3(1 – θ )ωθ

1
, ν2 =

2
(1 – θ )ωθ

2
,

ω1 = 2 3

√︃ r
r1(1 – θ )σ 2

31
, ω2 = 2

√︃
r

r1(1 – θ )σ31σ32
.

Then, we have

2LU3 ≤ 2

⎡

⎣

√︃
rσ31σ32

(1 – θ )r1
+ 3

√︄
(︃

rσ31

(1 – θ )r1

)︃2
⎤

⎦ –
σ 2

31
2

X2 – σ31σ32X.

Similarly, let

k2 =
∑︁2

i=1 ϑiϖ
θ–1
i r

r2
, ϑ1 =

8
3(1 – θ )ϖθ

1
, ϑ2 =

2
(1 – θ )ϖθ

2
,

ϖ1 = 2 3

√︃ r
r2(1 – θ )σ 2

31
, ϖ2 = 2

√︃
r

r2(1 – θ )σ31σ32
,

we have

2LU4 ≤ 2

⎡

⎣

√︃
rσ31σ32

(1 – θ )r2
+ 3

√︄
(︃

rσ31

(1 – θ )r2

)︃2
⎤

⎦ –
σ 2

31
2

X2 – σ31σ32X.
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Therefore, we obtain

LV ∗
1 ≤

(︂
–

c1

C
+ c3

)︂
(1 – C – r1φ1(C)φ2(N)X) +

c1

2C2

(︁
σ11C2 + σ12C

)︁2

+
(︂

–
c2

N
+ c4

)︂
(1 – N – r2φ1(C)φ2(N)X) +

c2

2N2

(︁
σ21N2 + σ22N

)︁2

–
1
X

(rφ1(C)φ2(N)X – X – m1XP) +
1

2X2

(︁
σ31X2 + σ32X

)︁2

+ m1 (1 – P – m2XP) + c1

(︄

2 3

√︄

σ 2
11

(1 – θ )2 + 2
√︃

σ11σ12

1 – θ
–

σ 2
11
2

C2

– σ11σ12C

)︄

+ c2

⎛

⎝2 3

√︄

σ 2
21

(1 – θ )2 + 2
√︃

σ21σ22

1 – θ
–

σ 2
21
2

N2 – σ21σ22N

⎞

⎠

+
√︃

rσ31σ32

(1 – θ )r1
+ 3

√︄
(︃

rσ31

(1 – θ )r1

)︃2

+
√︃

rσ31σ32

(1 – θ )r2
+ 3

√︄
(︃

rσ31

(1 – θ )r2

)︃2

–
σ 2

31
2

X2 – σ31σ32X

≤ –
[︃

rCN
(K1 + C)(K2 + N)

+
c1

C
+

c2

N
+ c3(K1 + C) + c4(K2 + N)

]︃

+
c1r1NX + c2r2CX
(K1 + C)(K2 + N)

+ c3 (K1 + 1) + c4 (K2 + 1)

+ 1 + m1 +
1
2
σ 2

32 +
√︃

rσ31σ32

(1 – θ )r1
+ 3

√︄
(︃

rσ31

(1 – θ )r1

)︃2

+
√︃

rσ31σ32

(1 – θ )r2

+ 3

√︄
(︃

rσ31

(1 – θ )r2

)︃2

+ c1

⎛

⎝1 +
1
2
σ 2

12 + 2 3

√︄

σ 2
11

(1 – θ )2 + 2
√︃

σ11σ12

1 – θ

⎞

⎠

+ c2

⎛

⎝1 +
1
2
σ 2

22 + 2 3

√︄

σ 2
21

(1 – θ )2 + 2
√︃

σ21σ22

1 – θ

⎞

⎠

≤ – 5 5√rc1c2c3c4 +
c1r1NX + c2r2CX
(K1 + C) (K2 + N)

+ c3 (K1 + 1)

+ c4 (K2 + 1) + c1

⎛

⎝1 +
1
2
σ 2

12 + 2 3

√︄

σ 2
11

(1 – θ)2 + 2
√︃

σ11σ12

1 – θ

⎞

⎠

+ c2

⎛

⎝1 +
1
2
σ 2

22 + 2 3

√︄
σ 2

21

(1 – θ)2 + 2
√︃

σ21σ22

1 – θ

⎞

⎠ + 1 + m1 +
1
2
σ 2

32

+
√︃

rσ31σ32

(1 – θ) r1
+ 3

√︄
(︃

rσ31

(1 – θ) r1

)︃2

+
√︃

rσ31σ32

(1 – θ) r2
+ 3

√︄
(︃

rσ31

(1 – θ) r2

)︃2

= –
r

(a1(θ )) (a2(θ )) (K1 + 1) (K2 + 1)
+ a3(θ ) +

c1r1NX + c2r2CX
(K1 + C)(K2 + N)

= – a3(θ )(Rs
0 – 1) +

c1r1NX + c2r2CX
(K1 + C)(K2 + N)

= – λ +
c1r1NX + c2r2CX
(K1 + C)(K2 + N)

.
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Similarly using Itô formula to V ∗
2 , we have

LV ∗
2 =σ11 (σ11C + σ12)

θ–1 (1 – C – r1φ1 (C)φ2 (N)X)

+
1
2

(θ – 1)σ 2
11 (σ11C + σ12)

θ–2 (︁σ11C2 + σ12C
)︁2

+ σ21 (σ21N + σ22)
θ–1 (1 – N – r2φ1 (C)φ2 (N)X)

+
1
2

(θ – 1)σ 2
21 (σ21N + σ22)

θ–2 (︁σ21N2 + σ22N
)︁2

+ σ31 (σ31X + σ32)
θ–1 (rφ1 (C)φ2 (N)X – X – m1XP)

+
1
2

(θ – 1)σ 2
31 (σ31X + σ32)

θ–2 (︁σ31X2 + σ32X
)︁2

+ σ41 (σ41P + σ42)
θ–1 (1 – P – m2XP)

+
1
2

(θ – 1)σ 2
41 (σ41P + σ42)

θ–2 (︁σ41P2 + σ42P
)︁2

≤σ11σ
θ–1
12 –

1 – θ

2
σ 2+θ

11 Cθ+2 + σ21σ
θ–1
22 –

1 – θ

2
σ 2+θ

21 Nθ+2

+ σ31σ
θ–1
32 rφ1(C)φ2(N)X –

1 – θ

2
σ 2+θ

31 Xθ+2 + σ41σ
θ–1
42

–
1 – θ

2
σ 2+θ

41 Pθ+2

≤B + σ11σ
θ–1
12 + σ21σ

θ–1
22 + σ41σ

θ–1
42

–
1 – θ

4
(︁
σ θ+2

11 Cθ+2 + σ θ+2
21 Nθ+2 + σ θ+2

31 Xθ+2 + σ θ+2
41 Pθ+2)︁ ,

where

B = sup
U∈R4

+

{︄

–
1 – θ

4
(︁
σ θ+2

11 Cθ+2 + σ θ+2
21 Nθ+2 + σ θ+2

31 Xθ+2 + σ θ+2
41 Pθ+2)︁

+ σ31σ
θ–1
32 rφ1(C)φ2(N)X

}︄

.

Similarly, we have

LV ∗
3 = –

1
C

–
1
N

–
1
P

+ 3 +
r1NX + r2CX

(K1 + C)(K2 + N)

+ m2X +
1
2

(σ11C + σ12)
2 +

1
2

(σ21N + σ22)
2 +

1
2

(σ41P + σ42)
2 .

Therefore, we obtain

LV ≤M
[︃

–λ +
c1r1NX + c2r2CX
(K1 + C)(K2 + N)

]︃

–
1
C

–
1
N

–
1
P

+ 3 +
r1NX + r2CX

(K1 + C)(K2 + N)
+ m2X

+
1
2

(σ11C + σ12)
2 +

1
2

(σ21N + σ22)
2 +

1
2

(σ41P + σ42)
2
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+ B + σ11σ
θ–1
12 + σ21σ

θ–1
22 + σ41σ

θ–1
42

–
1 – θ

4
(︁
σ θ+2

11 Cθ+2 + σ θ+2
21 Nθ+2 + σ θ+2

31 Xθ+2 + σ θ+2
41 Pθ+2)︁ .

Let us show that, for any W ∈ R
4
+\Dε , the inequality LV ≤ –1 holds. The set of R4

+\Dε can
be divided into eight domains

D1 = {W ∈R
4
+ : C < ε}, D2 = {W ∈R

4
+ : N < ε},

D3 = {W ∈R
4
+ : X < ε}, D4 = {W ∈R

4
+ : P < ε},

D5 =
{︃

W ∈R
4
+ : C >

1
ε

}︃

, D6 =
{︃

W ∈ R
4
+ : N >

1
ε

}︃

,

D7 =
{︃

W ∈R
4
+ : X >

1
ε

}︃

, D8 =
{︃

W ∈R
4
+ : P >

1
ε

}︃

.

We select ε to be sufficiently small so that
(i) – 1

ε
+ G ≤ –1,

(ii) (Mc1+1)r1ε

K1
+ (Mc2+1)r2ε

K2
+ m2ε ≤ 1,

(iii) – 1–θ
8

1
εθ+2 σ θ+2

11 + H1 ≤ –1,
(iv) – 1–θ

8
1

εθ+2 σ θ+2
21 + H2 ≤ –1,

(v) – 1–θ
8

1
εθ+2 σ θ+2

31 + H3 ≤ –1,
(vi) – 1–θ

8
1

εθ+2 σ θ+2
41 + H4 ≤ –1.

• Case 1: If W ∈ D1, we have

LV ≤ –
1
C

+
(Mc1 + 1)r1NX + (Mc2 + 1)r2CX

(K1 + C)(K2 + N)

+ m2X + F + A – E

:= –
1
C

+ G ≤ –1.

• Case 2: If W ∈ D2, we have

LV ≤ –
1
N

+
(Mc1 + 1)r1NX + (Mc2 + 1)r2CX

(K1 + C)(K2 + N)

+ m2X + F + A – E

:= –
1
N

+ G ≤ –1.

• Case 3: If W ∈ D3, we have

LV ≤ – Mλ +
(Mc1 + 1)r1NX + (Mc2 + 1)r2CX

(K1 + C)(K2 + N)

+ m2X + F + A – E

≤ – Mλ +
(Mc1 + 1)r1ε

K1
+

(Mc2 + 1)r2ε

K2

+ m2ε + F + A – E
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:= – Mλ +
(Mc1 + 1)r1ε

K1
+

(Mc2 + 1)r2ε

K2
+ m2ε + G

≤ – 1.

• Case 4: If W ∈ D4, we have

LV ≤ –
1
P

+
(Mc1 + 1)r1NX + (Mc2 + 1)r2CX

(K1 + C)(K2 + N)

+ m2X + F + A – E

:= –
1
P

+ G ≤ –1.

• Case 5: If W ∈ D5, we have

LV ≤ –
1 – θ

8
σ θ+2

11 Cθ+2 –
1 – θ

8
σ θ+2

11 Cθ+2

+
(Mc1 + 1)r1NX + (Mc2 + 1)r2CX

(K1 + C)(K2 + N)
+ +m2X + F + A

–
1 – θ

4
(︁
σ θ+2

21 Nθ+2 + σ θ+2
31 Xθ+2 + σ θ+2

41 Pθ+2)︁

≤ –
1 – θ

8
1

εθ+2 σ θ+2
11 –

1 – θ

8
σ θ+2

11 Cθ+2

+
(Mc1 + 1)r1NX + (Mc2 + 1)r2CX

(K1 + C)(K2 + N)
+ m2X + F + A

–
1 – θ

4
(︁
σ θ+2

21 Nθ+2 + σ θ+2
31 Xθ+2 + σ θ+2

41 Pθ+2)︁

:=
1 – θ

8
1

εθ+2 σ θ+2
11 + ϕ1

≤ –
1 – θ

8
1

εθ+2 σ θ+2
11 + H1 ≤ –1,

where H1 = sup
{︁
ϕ1 | W ∈ R

4
+
}︁

.
• Case 6: If W ∈ D6, we have

LV ≤ –
1 – θ

8
σ θ+2

21 Nθ+2 –
1 – θ

8
σ θ+2

21 Nθ+2

+
(Mc1 + 1)r1NX + (Mc2 + 1)r2CX

(K1 + C)(K2 + N)
+ m2X + F + A

–
1 – θ

4
(︁
σ θ+2

11 Cθ+2 + σ θ+2
31 Xθ+2 + σ θ+2

41 Pθ+2)︁

≤ –
1 – θ

8
1

εθ+2 σ θ+2
21 –

1 – θ

8
σ θ+2

21 Nθ+2

+
(Mc1 + 1)r1NX + (Mc2 + 1)r2CX

(K1 + C)(K2 + N)
+ +m2X + F + A

–
1 – θ

4
(︁
σ θ+2

11 Cθ+2 + σ θ+2
31 Xθ+2 + σ θ+2

41 Pθ+2)︁

:= –
1 – θ

8
1

εθ+2 σ θ+2
21 + ϕ2
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≤ –
1 – θ

8
1

εθ+2 σ θ+2
21 + H2 ≤ –1,

where H2 = sup
{︁
ϕ2 | W ∈ R

4
+
}︁

.
• Case 7: If W ∈ D7, we have

LV ≤ –
1 – θ

8
σ θ+2

31 Xθ+2 –
1 – θ

8
σ θ+2

31 Xθ+2

+
(Mc1 + 1)r1NX + (Mc2 + 1)r2CX

(K1 + C)(K2 + N)
+ +m2X + F + A

–
1 – θ

4
(︁
σ θ+2

11 Cθ+2 + σ θ+2
21 Nθ+2 + σ θ+2

41 Pθ+2)︁

≤ –
1 – θ

8
1

εθ+2 σ θ+2
31 –

1 – θ

8
σ θ+2

31 Xθ+2

+
(Mc1 + 1)r1NX + (Mc2 + 1)r2CX

(K1 + C)(K2 + N)
+ m2X + F + A

–
1 – θ

4
(︁
σ θ+2

11 Cθ+2 + σ θ+2
21 Nθ+2 + σ θ+2

41 Pθ+2)︁

:= –
1 – θ

8
1

εθ+2 σ θ+2
31 + ϕ3

≤ –
1 – θ

8
1

εθ+2 σ θ+2
31 + H3 ≤ –1,

where H3 = sup
{︁
ϕ3 | W ∈ R

4
+
}︁

.
• Case 8: If W ∈ D8, we have

LV ≤ –
1 – θ

8
σ θ+2

41 Pθ+2 –
1 – θ

8
σ θ+2

41 Pθ+2

+
(Mc1 + 1)r1NX + (Mc2 + 1)r2CX

(K1 + C)(K2 + N)
+ m2X + F + A

–
1 – θ

4
(︁
σ θ+2

11 Cθ+2 + σ θ+2
21 Nθ+2 + σ θ+2

31 Xθ+2)︁

≤ –
1 – θ

8
1

εθ+2 σ θ+2
41 –

1 – θ

8
σ θ+2

41 Pθ+2

+
(Mc1 + 1)r1NX + (Mc2 + 1)r2CX

(K1 + C)(K2 + N)
+ +m2X + F + A

–
1 – θ

4
(︁
σ θ+2

11 Cθ+2 + σ θ+2
21 Nθ+2 + σ θ+2

31 Xθ+2)︁

:= –
1 – θ

8
1

εθ+2 σ θ+2
41 + ϕ4

≤ –
1 – θ

8
1

εθ+2 σ θ+2
41 + H4 ≤ –1,

where H4 = sup
{︁
ϕ4 | W ∈ R

4
+
}︁

.
Thus, a sufficiently small ε exists such that

LV (W ) ≤ –1, ∀ W ∈R
4
+ \ Dε ,

i.e., the condition (ii) is also verified. □
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For model (2.2), the existence of a unique stationary distribution indicates that microor-
ganisms can persist when the stochastic threshold Rs

0 > 1.

3.3 Extinction
First, define

R1 =
r
(︁∫︁∞

0 x2π1(x)dx
)︁ 1

2
(︁∫︁∞

0 y2π2(y)dy
)︁ 1

2

K1K2 + (K1 + K2 + 1)
(︁∫︁∞

0 x2π1(x)dx
)︁ 1

2
(︁∫︁∞

0 y2π2(y)dy
)︁ 1

2
(︂

1 + σ 2
32
2

)︂ ,

R̃1 =
r

(K1 + K2 + 1)
(︂

1 + σ 2
32
2

)︂ .

Theorem 3.3 Given any initial value W0 ∈R
4
+, let W (t) denote the solution of model (2.2).

If

R1 < 1 or R̃1 < 1,

then

lim
t→∞ X(t) = 0 a.s.

Namely, under the nonlinear perturbation, the microorganisms in model (2.2) will go ex-
tinct exponentially with probability one.

Proof Itô formula [38] to lnX

d ln X =
(︃

rCN
(K1 + C)(K2 + N)

– 1 – m1P –
σ 2

32
2

– σ31σ32X –
σ 2

31
2

X2
)︃

dt

+ (σ31X + σ32)dB3(t), (3.1)

then integrating both sides of (3.1) from 0 to t and dividing each term by t

ln X(t) – ln X(0)

t
=

r
t

∫︂ t

0

C(s)N(s)
(K1 + C(s))(K2 + N(s))

ds –
(︃

1 +
σ 2

32
2

)︃

–
m1

t

∫︂ t

0
P(s)ds –

σ31σ32

t

∫︂ t

0
X(s)ds –

σ 2
31

2t

∫︂ t

0
X2(s)ds

+
σ31

t

∫︂ t

0
X(s)dB3(s) + σ32

B3(t)
t

≤ r
t

∫︂ t

0

C(s)N(s)
(K1 + C(s))(K2 + N(s))

ds –
(︃

1 +
σ 2

32
2

)︃

–
σ 2

31
2t

∫︂ t

0
X2(s)ds + σ32

B3(t)
t

+
M(t)

t
, (3.2)

where M(t) = σ31
∫︁ t

0 X(s)dB3(s) is a martingale and its quadratic variation is

⟨M, M⟩(t) = σ 2
31

∫︂ t

0
X2(s)ds.
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Considering the exponential martingales inequality [36]

P

{︄

sup
0≤t≤k

[︃

M(t) –
1
2
⟨M, M⟩(t)

]︃

> 2 ln k

}︄

≤ 1
k2 .

Using the Borel-Cantelli lemma [36], it can be found that for almost all ω ∈ Ω, there exits
k0(ω) such that for k ≥ k0(ω), we get

sup
0≤t≤k

[︃

M(t) –
1
2
⟨M, M⟩(t)

]︃

≤ 2 ln k,

then

M(t) ≤ 2 ln k +
1
2
⟨M, M⟩(t) = 2 ln k +

1
2
σ 2

31

∫︂ t

0
X2(s)ds, a.s. (3.3)

For 0 ≤ k – 1 ≤ t ≤ k, substituting (3.3) into (3.2) yields

ln X(t)
t

≤ ln X(0)

t
+

r
t

∫︂ t

0

C(s)N(s)
(K1 + C(s))(K2 + N(s))

ds –
(︃

1 +
σ 2

32
2

)︃

+ σ32
B3(t)

t
+

2 ln k
k – 1

. (3.4)

Using Hölder’s inequality and Lemma 2.1, we have

1
t

∫︂ t

0
C(s)N(s)ds ≤

(︃
1
t

∫︂ t

0
C2(s)ds

)︃ 1
2
(︃

1
t

∫︂ t

0
N2(s)ds

)︃ 1
2

≤
(︃

1
t

∫︂ t

0
c2(s)ds

)︃ 1
2
(︃

1
t

∫︂ t

0
n2(s)ds

)︃ 1
2

. (3.5)

From Lemma 4.1, Case (i) of [24] and limt→∞ σ32
t B3(t) = 0 a.s., we note that

limsupt→∞
1
t
∫︁ t

0 C(s)ds ≤ limt→∞ 1
t
∫︁ t

0 c(s)ds = 1 and limsupt→∞
1
t
∫︁ t

0 N(s)ds ≤
limt→∞ 1

t
∫︁ t

0 n(s)ds = 1 a.s. Based on (3.4), we obtain

lim sup
t→∞

ln X(t)
t

≤ r
(︁∫︁∞

0 x2π1(x)dx
)︁ 1

2
(︁∫︁∞

0 y2π2(y)dy
)︁ 1

2

K1K2 + (K1 + K2 + 1)
(︁∫︁∞

0 x2π1(x)dx
)︁ 1

2
(︁∫︁∞

0 y2π2(y)dy
)︁ 1

2

–
(︃

1 +
σ 2

32
2

)︃

=
(︃

1 +
σ 2

32
2

)︃

(R1 – 1) ≤ 0.

Similarly, from the Lemma 4.1, Case (ii) of [24], we obtain

lim
t→∞ sup

ln X(t)
t

≤ r
K1 + K2 + 1

– 1 –
σ 2

32
2

=
(︃

1 +
σ 2

32
2

)︃

(R̃1 – 1) ≤ 0.

So, limt→∞ X(t) = 0 a.s. □
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The threshold Rs
0 of the nonlinear noise model (2.2) can be transformed into the thresh-

old R̄s
0 = r(︂

1+ 1
2 σ 2

1

)︂(︂
1+ 1

2 σ 2
2

)︂
(K1+1)(K2+1)

(︂
1+m1+ 1

2 σ 2
3

)︂ of the linear noise model (2.1) or the basic

reproduction number R0 = r
(1+m1)(K1+1)(K2+1) of model (1.1) when σi1 = 0 (i = 1, 2, 3, 4) or

σij = 0 (i = 1, 2, 3, 4, j = 1, 2).

4 Numerical simulations
The Euler-Milstein method has significant advantages compared to the Euler-Maruyama
method, as described in [36, 39, 40], and [41]. Its strong convergence order of 1 provides
higher accuracy and demonstrates superior performance in handling systems with non-
linear diffusion terms. The numerical discretization of the Euler-Milstein method is given
by Xn+1 = Xn + μ(Xn, tn)Δt + σ (Xn, tn)ΔWn + 1

2σ (Xn, tn) ∂σ (Xn ,tn)
∂X

(︁
(ΔWn)2 – Δt

)︁
, we can get

the numerical discretization scheme for system (2.2)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Cn+1 = Cn +
(︃

1 – Cn –
r1CnNnXn

(K1 + Cn)(K2 + Nn)

)︃

Δt + (σ11Cn + σ12)Cn
√

Δtξn

+
Cn

2
(2σ 2

11C2
n + 3σ11σ12Cn + σ 2

12)(ξ 2
n – 1)Δt,

Nn+1 = Nn +
(︃

1 – Nn –
r2CnNnXn

(K1 + Cn)(K2 + Nn)

)︃

Δt + (σ21Nn + σ22)Nn
√

Δtςn

+
Nn

2
(2σ 2

21N2
n + 3σ21σ22Nn + σ 2

22)(ς2
n – 1)Δt,

Xn+1 = Xn +
(︃

rCnNnXn

(K1 + Cn)(K2 + Nn)
– Xn – m1XnPn

)︃

Δt + (σ31Xn + σ32)Xn

√
Δtζn +

Xn

2
(2σ 2

31X2
n + 3σ31σ32Xn + σ 2

32)(ζ 2
n – 1)Δt,

PN+1 = Pn + (1 – Pn – m2XnPn)Δt + (σ41Pn + σ42)Pn
√

Δtℓn

+
Pn

2
(2σ 2

41P2
n + 3σ41σ42Pn + σ 2

42)(ℓ2
n – 1)Δt,

where Δt indicates the time increments. The variables ξn, ςn, ζn, and ℓn are independent
Gaussian random variables, each following the distribution N(0, 1). We conduct numeri-
cal simulations to illustrate and validate our main results, offering deeper insights of the
system behavior under various conditions.

The parameters listed in Table 2 are used.

Table 2 Parameter Symbols and Their Descriptions

Symbol Description Unit

r Microorganism growth rate hour–1

r1 Consumption rate of carbon source hour–1

r2 Consumption rate of nitrogen source hour–1

m1 Interaction coefficient of microorganisms and flocculants mL/(μg · hour)
m2 Degradation rate of flocculants mL/(μg · hour)
K1 Half-saturation constant of carbon source response μg/mL
K2 Half-saturation constant of nitrogen source response μg/mL
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4.1 Stationary distribution
Example 1 According to [24], we choose appropriate parameters in model (2.2) as follows

r = 8.0, r1 = 6.0, r2 = 8.0, m1 = 0.01, m2 = 1.0, K1 = 0.1, K2 = 0.6,

σ11 = σ21 = σ31 = σ41 = 0.01,σ12 = σ22 = σ32 = σ42 = 0.2.

By calculation, we obtain

Rs
0 =

r
a1a2a3 (K1 + 1) (K2 + 1)

≈ 1.3773 > 1,

in accordance with the conditions specified in Theorem 3.2, the model (2.2) exists as a
unique stationary distribution. Figures 1–3 shows the corresponding numerical simula-
tion results. The deterministic model has a positive equilibrium point

E∗ = (C∗, N∗, X∗, P∗) ≈ (0.3376, 0.1168, 0.8786, 0.5323).

For comparison with system (2.1), we choose σ1 = σ2 = σ3 = σ4 = 0.2. This is equivalent
to σ11 = σ21 = σ31 = σ41 = 0 in system (2.2). Figure 4 shows the corresponding numerical
simulation results. Then, the nonlinear perturbation makes the microorganism growth
process more complicated.

Example 2 To demonstrate the effect of nonlinear perturbation on model (2.2), we select
σ11 = σ21 = σ31 = σ41 = 0.2, σ12 = σ22 = σ32 = σ42 = 0. The selection of all other parameters is
identical to that specified in Example 1, maintaining consistency for comparison purposes.
Figure 5 shows the corresponding numerical simulation results.

4.2 Extinction of microorganisms
Example 3 If the flocculation effect (m1) is increased m1 = 0.01 to m1 = 1.62, the other
parameters are the same as in Example 1. By calculating, Rs

0 ≈ 0.4931 does not satisfy
Theorem 3.2. The microorganisms go extinct. Figure 6 shows the corresponding numeri-
cal simulation results.

Example 4 The selection of parameters is as follows

r = 1.7, r1 = 0.96, r2 = 1.001, m1 = 0.005, m2 = 4.0, K1 = 0.36, K2 = 0.035,

σ11 = σ21 = σ31 = σ41 = 0.01, σ12 = σ22 = σ32 = σ42 = 0.7.

We have R1 ≈ 0.97066 and R̃1 ≈ 0.97883. So, the microorganisms extinct with probability
one. Figure 7 shows the corresponding numerical simulation results.

Example 5 The selection of parameters is as follows

r = 3.5, r1 = 0.96, r2 = 1.001, m1 = 1.5, m2 = 4.0, K1 = 0.36, K2 = 0.3,

σ11 = σ21 = σ31 = σ41 = 0.01, σ12 = σ22 = σ32 = σ42 = 0.2.
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Figure 1 The blue fluctuating lines in the left figures stand for the solutions of system (2.2), while the red
smooth curves correspond to the solutions of system (1.1). The right figures show the empirical density
distributions. The initial value is set as (C0,N0,X0,P0) = (0.8, 0.3, 1.0, 1.2)

We have R1 ≈ 1.77197 and R̃1 ≈ 2.09794. The microorganisms are not extinct, but deter-
ministic model (1.1) has a stable boundary equilibrium point E = (1, 1, 0, 1). Figure 8 shows
the corresponding numerical simulation results.

Example 6 Based on the parameters in Example 4, we increase σ11 = σ21 = σ31 = σ41 = 0.01
to σ11 = σ21 = σ31 = σ41 = 0.4. The probability of microorganisms extinction is one. Figure 9
shows the corresponding numerical simulation results.
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Figure 2 Figures (a) and (b) are the hexbin plots illustrating the 2D distributions of (C(t),N(t)) and (X(t),P(t)),
respectively

Figure 3 The discrete and continuous empirical density distributions for C(t), N(t), X(t), and P(t) are presented
as their respective representations

Figure 1 shows that the paths of the stochastic model ultimately oscillate around the pos-
itive equilibrium point of the ODEs model and possess a stationary distribution. In Fig. 4,
although the amplitude of oscillations around the positive equilibrium point for carbon
source, nitrogen source, and flocculant in the two stochastic models does not vary signif-
icantly, it is evident that nonlinear perturbation has a greater impact on microorganism
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Figure 4 In the comparison of stochastic nonlinear and linear perturbation, the initial value is set as
(C0,N0,X0,P0) = (0.8, 0.3, 1.0, 1.2). In the figures, the orange fluctuating lines stand for the solutions of system
(2.2). The red smooth curves correspond to the solutions of system (1.1). The blue fluctuating lines stand for
the solutions of system (2.1)

Figure 5 The initial value is set as (C0,N0,X0,P0) = (0.8, 0.3, 1.0, 1.2). In the figures, the blue fluctuating lines
stand for the solutions of system (2.2), and the red smooth curves correspond to the solutions of system (1.1)

growth compared to linear perturbation. Figure 5 further demonstrates that the nonlinear
perturbation model significantly influences microbial growth. Figure 6 illustrates that as
the parameter m1 increases, microorganisms in the stochastic model go extinct, whereas
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Figure 6 The initial value is set as (C0,N0,X0,P0) = (0.8, 0.3, 1.0, 1.2). In the figures, the blue fluctuating lines
stand for the solutions of system (2.2) withm1 = 1.62, and the red smooth curves correspond to the solutions
of system (1.1)

Figure 7 The initial value is set as (C0,N0,X0,P0) = (1.5, 1.2, 1.0, 1.5). In the figures, the blue fluctuating lines
stand for the solutions of system (2.2), and the red smooth curves correspond the solutions of system (1.1)

the ODEs model retains a positive equilibrium point. Similarly, Fig. 7 shows that increas-
ing the noise level leads to a similar extinction effect in the stochastic model, consistent
with the trend observed in Fig. 6. In Fig. 8, while microorganisms in the ODEs model go ex-
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Figure 8 The initial value is set as (C0,N0,X0,P0) = (0.84, 0.84, 0.22, 0.84). In the figures, the blue fluctuating
lines stand for the solutions of system (2.2) with σ11 = σ21 = σ31 = σ41 = 0.01, and the red smooth curves
correspond the solutions of system (1.1)

Figure 9 The initial value is set as (C0,N0,X0,P0) = (0.84, 0.84, 0.22, 0.84). In the figures, the blue fluctuating
lines stand for the solutions of system (2.2) with σ11 = σ21 = σ31 = σ41 = 0.4, and the red smooth curves
correspond the solutions of system (1.1)

tinct, those in the stochastic model can survive under an appropriate noise level. However,
Fig. 9 shows that further increasing the noise level based on Fig. 8 results in the extinction
of microorganisms in both models.
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5 Conclusion
Environmental noises, such as temperature, humidity, nutrient concentration, oxygen
concentration, and other factors, can affect the growth rate of microorganisms. Therefore,
incorporating environmental noises into the model of microorganism flocculation is both
crucial and meaningful, as it more accurately reflects real-world dynamics and uncertain-
ties. First, we obtain the existence and uniqueness of the solution to the stochastic model
(2.2). Next, we prove that the model (2.2) has a unique ergodic stationary distribution if
Rs

0 > 1, while the microorganism will go extinct if R1 < 1 or R̃1 < 1. We emphasize that
the selection of the stochastic threshold is not unique. Finally, we verify that the conclu-
sions depend on numerical simulations. The finding that moderate levels of environmental
noise can enhance microorganism growth has profound biological implications.

The demonstrations of the stationary distribution and microorganism extinction ex-
tend the model based on ordinary differential equations. In natural environments, the
growth rate of microorganisms is influenced by multiple factors, including environmental
noises, the rate of nutrient uptake, and the efficiency of nutrient conversion by microor-
ganisms. Additionally, the flocculation processes also play a significant role in microorgan-
ism growth. While this study incorporates white noise, real-world microbial environments
often involve more complex noise types, such as lévy noise, telegraph noise, and colored
noise. This study has not considered these aspects, and we will investigate these issues as
part of future work.
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