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Abstract
Chub mackerel (Scomber japonicus) is a key commercial species in South Korea.
However, the catch volume of chub mackerel has experienced significant fluctuations
over the past few decades, with current trends indicating a decline. Despite
regulatory measures such as closed seasons, resource depletion remains a concern,
thereby highlighting the requirement for effective management strategies.
Numerous previous studies have proposed optimal harvest strategies by assuming
constant prices. However, as large catches of mackerel tend to have lower prices, it is
crucial to develop optimal harvest strategies that account for this decrease. Thus, we
aim to develop a monthly optimal harvest strategy for chub mackerel that considers
catch-dependent pricing. We define logarithmic, rational, and irrational
catch-dependent price functions and their corresponding objective functions. In
addition, we develop an optimal control system based on a discrete age-structured
model. We use Pontryagin’s maximum principle to prove the necessary conditions for
the optimal harvest strategy under the three catch-dependent pricing functions and
perform simulations using the forward–backward sweep method. We compare the
optimal harvest strategies under the three catch-dependent pricing scenarios with
those under a constant price. The optimal harvest strategies with the rational and
irrational price functions are similar to those with a constant price, where the fishing
effort increases immediately after spawning and then gradually decreases. In contrast,
the optimal harvest strategy with the logarithmic price function involves a gradual
increase in fishing effort from July immediately after the spawning period, with the
maximum effort in June before the next spawning season. In addition, we compare
the effects of monthly closed seasons across the four pricing scenarios. A closed
season in July immediately after spawning provides the highest resource recovery
efficiency. In contrast, a closed season in June provides the highest catch and profit
efficiencies. As the cost per unit of effort increases, the fishing effort, catch, and profit
decrease, while the biomass increases, and the profit decrease is smallest under the
logarithmic price function. Our method can improve monthly optimal harvest
strategies for other species using catch-dependent pricing functions as well as
significantly contribute to enhancing fishers’ profit.

Keywords: Chub mackerel; Optimal harvest strategy; Catch-dependent pricing;
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1 Introduction
Mackerel are widely distributed in the temperate and subtropical regions of the Pacific,
Atlantic, and Indian oceans [1–3]. Chub mackerel is a turbulent and migratory species
that lives in the coastal waters of South Korea. They migrate to the northern coast from
spring to summer, then to the southern coast from autumn to winter for wintering, and
spawn in the eastern waters of Jeju Island in April and June [4, 5].

Chub mackerel is an important commercial fish species in South Korea. The catch of
chub mackerel in South Korea continuously increased from 38,256 tons in 1970 to more
than 400,000 tons since the mid-1990s. However, after reaching the maximum, the catch
decreased to approximately 100,000–200,000 tons in the early 2000s. Since then, the an-
nual catch has shown increasing and decreasing trends, with an overall decline [6]. There
are three broad categories of control over commercial fishing: catch restrictions, effort re-
strictions, and spatial access control [7]. The Korean government has implemented a total
allowable catch, closed season, and regulations on the catch of immature fish to control
the decline in the resources of club mackerel. Overharvesting and unreasonable harvest-
ing policies have several detrimental effects, such as ecological destruction and species
extinction. Therefore, optimal harvest strategies must be established to maximize catch
returns and maintain the amount of resources [8].

Optimal fishery harvesting and bioeconomical optimal fishery control have been widely
studied. There are several models with different assumptions for optimal control. These
are categorized into continuous [9–11] and discrete [12–15] models based on time. Wang
and Wang [11] studied the optimal harvesting strategy for a single fish species in con-
tinuous time. Li and Yakubu [12] considered fish exploitation levels and recruitment dy-
namics at discrete times. In addition, size-structured [16–19] and age-structured models
[15, 20–23] have been developed according to the categorization of objects based on size
and age, respectively. Age-structured models were developed first. Getz [23] used an age-
structured model with harvesting and spawning seasons. Jang and Cho [15] considered
closed seasons in addition to harvesting and spawning seasons. Tahvonen [20] described
the history of the development of age-structured models. Kato [18, 19] investigated non-
linear and linear size-based population models. In addition to the abovementioned mod-
els, various other types of optimal fishery harvesting strategies exist, such as stochastic
[8, 24–28] and spatial [29–31] methods. Liu et al. [25, 26] developed a two-species stochas-
tic model, and Zhu and Meng [28] extended it to an n-species stochastic model.

Few studies have considered the changes in price according to supply and demand for
optimal control. Kilkki et al. [32] changed supply and demand by controlling the price.
Finck et al. [33] applied real-time pricing based on supply and demand. Kebai and Senfa
[34] minimized the difference between supply and demand. However, these studies did not
consider optimal fishery harvesting. Studies on optimal fishery harvesting based on price
changes mainly consider randomness in price, and not variations in price based on supply
and demand. Andersen [35] and Lewis [36] studied an optimal harvest model under price
uncertainty. Hanson and Ryan [37] considered significant inflationary price fluctuations.
Brites and Braumann [38] discussed the growth dynamics of harvested fish populations
considering linear price changes. However, previous studies have not proposed optimal
fishing strategies based on price changes caused by fluctuations in the supply or demand
of fish species.
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Figure 1 A schematic diagram illustrating optimal harvesting strategies for a discrete age-structured
mackerel model under catch-dependent pricing

In this study, we aim to develop a model that incorporates the catch-dependent price
to address the limitations of previous studies. In addition, we estimate the monthly fish-
ing effort required to maximize fishing profit based on the catch-dependent price of chub
mackerel in South Korea. We propose a discrete age-structured optimal control system
to develop optimal harvest strategies. We present three catch-dependent price functions
to incorporate the catch-dependent prices into the objective function of the system. Sub-
sequently, we develop optimal harvest strategies based on these functions using Pontrya-
gin’s maximum principle and compare the strategies. In addition, we use the functions
to determine the most suitable month for imposing a closed fishing season for resource
recovery in South Korea. This study provides strategies for optimizing fishing effort to
maximize profit while promoting sustainable practices by incorporating catch-dependent
pricing and age-structured population dynamics. These findings can guide policymakers
in implementing effective management strategies, such as determining the best timing for
closed fishing seasons, thereby supporting resource recovery and the long-term viability
of mackerel stock in South Korea.

2 Materials and methods
An optimal control system, provided by a discrete age-structured model, was used to de-
scribe the optimal harvest based on catch-dependent pricing for chub Mackerel in Ko-
rea. The process is summarized as follows: First, three catch-dependent price functions
were defined, and their parameters were estimated via nonlinear regression using catch
and price data. Second, based on the estimated three catch-dependent price functions, an
optimal harvesting system was employed to present the optimal harvesting strategies for
each function. Third, the optimal harvest strategies and closed-season policies under the
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Table 1 Parameters of age-structured model

Parameter Description Value Source

K von Bertalanffy growth parameter 2.19 Hwang et al., 2008 [39]
t0 Theoretical age when size is zero –0.0035 Hwang et al., 2008 [39]
L∞ Asymptotic size 34.1 Hwang et al., 2008 [39]

Lt Length at time t L∞
(
1 – e–K

(
t–t0

))
Hwang et al., 2008 [39]

Wt Weight at time t 0.0012× L3.697t Hwang et al., 2008 [39]
fi Fecundity at age i fi = 54.771×Wi Cha et al., 2002 [40]
Mi Mortality at age i Mi = 16.25

12×Li
Jang and Cho, 2022 [15]

D Density-dependent mortality 9.4× 10–7 Jang and Cho, 2022 [15]

gi Growth rate at age i logWi+1
Wi

Jang and Cho, 2022 [15]

σt Selectivity at time t 1 Assumed
ut Fishing effort at time t Estimated
ci,t Catch rate at age i ci,t = ut × σi

Bi,t Biomass at time t Estimated
P Average price 1408.1 (103 won/ton) KOSIS [6]
C Cost 3× 108 (won/ut ) Jang and Cho 2022 [15]
δ Discount rate 1.001–1 Jang and Cho, 2022 [15]
ht Total harvest at time t ht =

∑
ci,t × Bi,t

three catch-dependent price scenarios were compared with those under a constant price
scenario. Finally, a sensitivity analysis of the optimal harvest strategies concerning costs
was conducted for each scenario (See Fig. 1).

2.1 Age-structured model
We used the discrete age-structured biomass model of chub mackerel constructed by Jang
and Cho [15]. They divided the population of chub mackerel into six age groups based on
its life cycle of six years. As juvenile fish face a lack of food in limited spaces, they have a
density-dependent natural mortality rate. They constructed their model by dividing the
life cycle of mackerel into a spawning season and normal season. The model is expressed
as follows:

B1,t+1 = τ (t)
(

γ1B1,t

α1B1,t + β1
– c1,tB1,t

)
+ (1 – τ (t))

6∑
i=2

fi
W1

Wi
Bi,t

B2,t+1 = τ (t)
(

e
(
g2,t–M2,t

)
B2,t – c2,tB2,t

)
+ (1 – τ (t))

(
γB1,t

αB1,t + β
– c1,tB1,t

)

B3,t+1 = τ (t)
(

e
(
g3,t–M3,t

)
B3,t – c3,tB3,t

)
+ (1 – τ (t))

(
e
(
g2,t–M2,t

)
B2,t – c2,tB2,t

)

B4,t+1 = τ (t)
(

e
(
g4,t–M4,t

)
B4,t – c4,tB4,t

)
+ (1 – τ (t))

(
e
(
g3,t–M3,t

)
B3,t – c3,tB3,t

)

B5,t+1 = τ (t)
(

e
(
g5,t–M5,t

)
B5,t – c5,tB5,t

)
+ (1 – τ (t))

(
e
(
g4,t–M4,t

)
B4,t – c4,tB4,t

)

B6,t+1 = τ (t)
(

e
(
g6,t–M6,t

)
B6,t – c6,tB6,t

)
+ (1 – τ (t))

(
e
(
g5,t–M5,t

)
B5,t – c5,tB5,t

)
,

where τ (t) =

{
1, if t mod 12 ≠ 0
0, if t mod 12 = 0.

The descriptions and values of the variables used in the model are presented in Table 1.
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2.2 Catch-dependent pricing
Numerous previous studies have developed optimal harvest strategies by assuming con-
stant fish prices [9–15]. However, prices are determined by supply and demand. As the
demand for chub mackerel is constant in Korea, we considered that fish prices would be
more affected by supply than by demand. Therefore, we proposed logarithmic, rational,
and irrational functions for the relationship between the supply (ht = monthly catch at
time t) and price (Pt = monthly price per catch at time t). The functions are expressed as
follows:

Logarithmic price function: PL
t = bL

1 log (ht + 1) + bL
2

Rational price function: PR
t =

bR
1

ht + bR
2

+ bR
3

Irrational price function: PI
t = bI

1 (ht + 1)bI
3 + bI

2.

We collected the monthly catch (tons) and price per catch (1000 won/ton) of chub mack-
erel in South Korea from July 2017 to June 2022, provided by the Korean Statistical Infor-
mation Service [6]. The parameters for the logarithmic, rational, and irrational functions
were estimated via nonlinear regression using the fitnlm function in MATLAB.

2.3 Optimal harvest system based on catch-dependent pricing
The control variable for fishery management is fishing effort, which is a measure of the
strength of fishery operations [41]. Jang and Cho proposed an optimal harvest system for
mackerel by assuming a constant price (PCon) [15]. In contrast, we propose an optimal har-
vest strategy by incorporating three different catch-dependent pricing scenarios into the
objective function of the optimal harvest system. The optimal harvest strategy under the
assumption of a constant price inevitably involves as much harvest as possible during pe-
riods of resource abundance because the price remains constant regardless of the timing
or quantity of the harvest. Therefore, under the constant price assumption, the optimal
harvest strategy is estimated to involve harvesting intensively during periods of resource
abundance and high growth rates, such as those immediately after spawning. However,
under catch-dependent pricing, the price decreases as the harvest increases, which can
alter the optimal harvest strategy with the aim of maximizing profit. Therefore, we com-
pared the optimal harvest strategies and maximum profits obtained using the three catch-
dependent pricing scenarios with the previous results obtained under the constant price
assumption.

We constructed an optimal harvest system with monthly prices in the form of logarith-
mic and rational functions according to the monthly catch. Based on the fishing effort ut

and a selectivity (σt) of 1, the monthly catch can be expressed as follows:

ht =
6∑

i=2

σtutBi,t .

The fishing effort (ut ∈ [0, 1]) was defined as a control variable, and an objective function
was designed to maximize the catch profit. The objective functions based on the logarith-
mic, rational, and irrational price functions are represented by JL (u), JR (u), and JI (u),
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respectively, and the optimal harvest system is expressed as follows:

JL (u) =
T–1∑
k=0

{
( 6∑

i=2

PL
kσtukBi,k

)
– Cu2

k}δk + q
6∑

i=2

Bi,T

JR (u) =
T–1∑
k=0

{
( 6∑

i=2

PR
k σtukBi,k

)
– Cu2

k}δk + q
6∑

i=2

Bi,T

JI (u) =
T–1∑
k=0

{
( 6∑

i=2

PI
kσtukBi,k

)
– Cu2

k}δk + q
6∑

i=2

Bi,T

subject to

B1,t+1 = τ (t)
γtB1,t

αtB1,t + βt
+ (1 – τ (t))

6∑
i=2

fi
W1

Wi
Bi,t (1)

B2,t+1 = τ (t)
(

e
(
g2,t–M2

)
B2,t – σtutB2,t

)
+ (1 – τ (t))

(
γB1,t

αB1,t + β
– σtutB1,t

)

B3,t+1 = τ (t)
(

e
(
g3,t–M3

)
B3,t – σtutB3,t

)
+ (1 – τ (t))

(
e
(
g2,t–M2

)
B2,t – σtutB2,t

)

B4,t+1 = τ (t)
(

e
(
g4,t–M4

)
B4,t – σtutB4,t

)
+ (1 – τ (t))

(
e
(
g3,t–M3

)
B3,t – σtutB3,t

)

B5,t+1 = τ (t)
(

e
(
g5,t–M5

)
B5,t – σtutB5,t

)
+ (1 – τ (t))

(
e
(
g4,t–M4

)
B4,t – σtutB4,t

)

B6,t+1 = τ (t)
(

e
(
g6,t–M6

)
B6,t – σtutB6,t

)
+ (1 – τ (t))

(
e
(
g5,t–M5

)
B5,t – σtutB5,t

)

where τ (t) =

{
1, if t mod 12 ≠ 0
0, if t mod 12 = 0

, PL
k = bL

1log
(∑6

j=2 σkukBj,k + 1
)

+ bL
2 , PR

k =

bR
1∑6

j=2 σk uk Bj,k +bR
2

+ bR
3 , PI

k = bI
1

(∑6
j=2 σkukBj,k + 1

)bI
3 + bI

2, αt = D
(
1 – eg1,t–M1

)
, βt =

(
g1,t –

M1
)
eg1,t–M1 , and γt = g1,t – M1.

The optimal control function (u∗
t ) must be determined such that

J
(
u∗) = max{J (u)},

subject to system (1). We define Hamiltonian functions with objective functions JL (u),
JR (u), and JI (u) as HL

t , HR
t , and HR

t , respectively, as follows:

HL
t = JL

t (u, B) +
6∑

i=1

λi,t+1Bi,t+1

HR
t = JR

t (u, B) +
6∑

i=1

λi,t+1Bi,t+1

HI
t = JI

t (u, B) +
6∑

i=1

λi,t+1Bi,t+1,

where JL
t (u, B) = {(∑6

i=2 PL
t σtutBi,t

)
– Cu2

t }δt , JR
t (u, B) = {(∑6

i=2 PR
t σtutBi,t

)
– Cu2

t }δt ,
JI
t (u, B) = {(∑6

i=2 PI
tσtutBi,t

)
– Cu2

t }δt , and λi,t denotes adjoint variables for each age
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i = 1, 2, . . . , 6 at time t = 1, 2, . . . , T – 1. We constructed the necessary conditions of u∗
t for

three objective functions (JL (u), JR (u), and JI (u)) with catch-dependent pricing using the
discrete Pontryagin’s maximum principle [42] in the form of the following three theorems:

Theorem 1 For the optimal control function uL∗
t and corresponding solutions Bi,t (i =

1, 2, . . . , 6) for system (1) with objective function JL (u), there exist adjoint variables λL
i,t for

t = 1, 2, . . . , T – 1 such that

λL
1,t = λL

1,t+1τ (t)
γtβt

(α1B1,t + βt)2 + λL
2,t+1 (1 – τ (t))

γtβt

(α1B1,t + βt)2

λL
i,t =

⎧
⎨
⎩bL

1
σtut

∑6
j=2 Bj,t

σtut
∑6

j=2 Bj,t + 1
+ bL

2 + bL
1 log

⎛
⎝

6∑
j=2

σtutBj,t

⎞
⎠

⎫
⎬
⎭σtutδt

+ λL
i,t+1τ (t)

(
egi,t–Mi – σtut

)
+ λL

i+1,t+1 (1 – τ (t))
(

e
(
gi,t–Mi

)
– σtut

)

+ λL
1,t+1 (1 – τ (t)) fi

W1

Wi
, i = 2, 3, 4, 5

λL
6,t =

⎧⎨
⎩bL

1
σtut

∑6
j=2 Bj,t

σtut
∑6

j=2 Bj,t + 1
+ bL

2 + bL
1 log

⎛
⎝

6∑
j=2

σtutBj,t

⎞
⎠

⎫⎬
⎭σtutδ

t

+ λL
6,t+1τ (t)

(
e
(
g6,t–Mt

)
– σtut

)
+ λL

1,t+1 (1 – τ (t)) f6
W1

W6

λL
i,T+1 = q, i = 2, 3, 4, 5, 6,

and u satisfies uL∗
t at

⎧⎨
⎩

⎛
⎝ σtut

∑6
j=2 Bj,t

σtut
∑6

j=2 Bj,t + 1
+ log

⎛
⎝σtut

6∑
j=2

Bj,t + 1

⎞
⎠

⎞
⎠bL

1

6∑
i=2

σtBi,t – 2Cut

⎫⎬
⎭ δt

= –bL
2

6∑
i=2

σtBi,tδ
t +

6∑
i=2

λi,t+1τ (t)Bi,t +
6∑

i=3

λi,t+1 (1 – τ (t))Bi–1,t .

Theorem 2 For the optimal control function uR∗
t and corresponding solutions Bi,t (i =

1, 2, . . . , 6) of system (1) with objective function JR (u), there exist adjoint variables λR
i,t for

t = 1, 2, . . . , T – 1 such that

λR
1,t = λR

1,t+1τ (t)
γtβt

(α1B1,t + βt)2 + λR
2,t+1 (1 – τ (t))

γtβt

(α1B1,t + βt)2

λR
i,t =

⎧⎪⎨
⎪⎩

bR
1σtut +

bR
2 bR

3 ut(∑6
j=2 utBj,t + bR

3

)2

⎫⎪⎬
⎪⎭

δt + λR
i,t+1τ (t)

(
egi,t–Mi – σtut

)

+ λR
i+1,t+1 (1 – τ (t))

(
egi,t–Mi – σtut

)
+ λR

1,t+1 (1 – τ (t)) fi
W1

Wi
, i = 2, 3, 4, 5

λR
6,t =

⎧⎪⎨
⎪⎩

bR
1σtut +

bR
2 bR

3 ut(∑6
j=2 utBj,t + bR

3

)2

⎫⎪⎬
⎪⎭

δt + λR
6,t+1τ (t)

(
eg6,t–M6 – σtut

)
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+ λR
1,t+1 (1 – τ (t)) f6

W1

W6

λR
i,T+1 = q, i = 2, 3, 4, 5, 6,

and u satisfies uL∗
t at

⎧
⎪⎨
⎪⎩

bR
2 bR

3
∑6

j=2 σtBj,t(∑6
j=2 utBj,t + bR

3

)2 – 2Cut

⎫
⎪⎬
⎪⎭

δt

=
6∑

i=2

λR
i,t+1τ (t)Bi,t +

6∑
i=3

λR
i,t+1 (1 – τ (t))Bi–1,t – b1

6∑
i=2

Bi,tδ
t .

Theorem 3 For the optimal control function uI∗
t and corresponding solutions Bi,t (i =

1, 2, . . . , 6) of system (1) with objective function JI (u), there exist adjoint variables λI
i,t for

t = 1, 2, . . . , T – 1 such that

λI
1,t = λI

1,t+1τ (t)
γtβt

(α1B1,t + βt)2 + λI
2,t+1 (1 – τ (t))

γtβt

(α1B1,t + βt)2

λI
i,t = bI

1σtut

⎛
⎝

6∑
j=2

σtutBj,t + 1

⎞
⎠

bI
3–1 ⎧⎨

⎩
(
bI

3 + 1
)
⎛
⎝

6∑
j=1

σtutBj,t

⎞
⎠ + 1

⎫⎬
⎭ δt + bI

2σtutδ
t

+ λI
i,t+1τ (t)

(
egi,t–Mi – σtut

)
+ λI

i+1,t+1 (1 – τ (t))
(

e
(
gi,t–Mi

)
– σtut

)

+ λI
1,t+1 (1 – τ (t)) fi

W1

Wi
, i = 2, 3, 4, 5

λI
6,t = bI

1σtut

⎛
⎝

6∑
j=2

σtutBj,t + 1

⎞
⎠

bI
3–1 ⎧⎨

⎩
(
bI

3 + 1
)
⎛
⎝

6∑
j=1

σtutBj,t

⎞
⎠ + 1

⎫⎬
⎭ δt + bI

2σtutδ
t

+ λI
6,t+1τ (t)

(
e
(
g6,t–Mt

)
– σtut

)
+ λI

1,t+1 (1 – τ (t)) f6
W1

W6

λL
i,T+1 = q, i = 2, 3, 4, 5, 6,

and u satisfies uL∗
t at

⎧⎪⎨
⎪⎩

bI
1

⎛
⎝

6∑
j=2

σtBj,t

⎞
⎠

⎛
⎝bI

3 + 1 +
6∑

j=2

σtutBj,t

⎞
⎠

⎛
⎝

6∑
j=2

σtutBj,t + 1

⎞
⎠

bI
3–1

– 2Cut

⎫⎪⎬
⎪⎭

δt

= –bI
2

( 6∑
i=2

σtBi,t

)
+

6∑
i=2

λI
i,t+1τ (t) σtBi,t +

6∑
i=3

λI
i,t+1 (1 – τ (t)) σtBi–1,t .

Proofs of Theorems 1, 2, and 3 Appendix. □

The optimal harvest strategies (uL∗
t , uR∗

t , and uI∗
t ) that satisfy the necessary conditions of

the three theorems using the forward–backward sweep method [42] can be numerically
calculated. However, in the case of Theorem 3, it is difficult to calculate the values of bI

3
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other than –0.5 numerically. Therefore, the optimal harvest strategy (uI∗
t ) for Theorem 3

is calculated under the assumption that bI
3 = –0.5.

2.4 Comparison of optimal harvest strategies based on catch-dependent pricing
We derived the necessary conditions for the optimal harvest strategies for mackerel based
on three different catch-dependent price functions. We used these conditions to simulate
the optimal harvest strategies over a 10-year period for each function. We used the simula-
tion results to derive the 10-year monthly averages for the optimal fishing effort (ut), total
biomass (

∑
Bi,t), catch (ht), and profit (

∑T–1
k=0 {(∑6

i=2 PL
k σtukBi,k

)
– Cu2

k}δk). Subsequently,
we compared the optimal harvest strategies based on these three catch-dependent prices
with the strategy proposed by Jang and Cho [15], which assumes a fixed price based on
the monthly average price from July 2017 to June 2022.

The Korean government designates a one-month closed fishing season for mackerel be-
tween April and June, and May was designated as the closed season in 2023. In the pro-
posed optimal harvest strategy system (1), the optimal fishing strategy for a closed season
in month t was estimated by adjusting the selectivity to 0 in month t (σt = 0). We compared
the variation in the optimal fishing effort, total biomass, catch, and profit when a closed
season was designated for each month from January to December with a no-closed-season
scenario for four catch-dependent prices. In addition, to assess the effectiveness of imple-
menting a closed season, we compared the profit efficiency (profit per unit effort), fishing
efficiency (catch per unit effort), and resource recovery efficiency (resource recovery rate
relative to profit reduction) with those of a no-closed-season scenario.

2.5 Sensitivity analysis with respect to cost
The cost associated with production typically affects optimal strategies, and our optimal
harvest strategy also incorporates the cost per unit effort into the objective function. While
prices can be reasonably estimated using historical data, costs are challenging to estimate
owing to various contributing factors. Therefore, constant cost was used in this study.
We conducted a sensitivity analysis for costs ranging from 100 to 1200 million won/ut

(with a default value of 300 million) to investigate how changes in costs affect the optimal
harvesting strategy.

3 Numerical results
3.1 Catch-dependent pricing
Table 2 shows the results of the nonlinear regression analysis of the logarithmic, ratio-
nal, and irrational functions for the mackerel catch and price data from July 2017 to June

Table 2 Estimated parameters for nonlinear regression of logarithmic, rational, and irrational
functions for mackerel catch and price data from July 2017 to June 2022

Functions Parameters Value P-value R2 Adj. R2

PLt bL1 –564.64 <0.001 0.724 0.720
bL2 6758.3 <0.001

PRt bR1 2.2982e + 06 <0.001 0.757 0.750
bR2 507.69 0.0339
bR3 1273.8 <0.001

PIt bI1 57,540 <0.001 0.769 0.765
bI2 932.03 <0.001
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Figure 2 Comparison of monthly catch-dependent price functions for mackerel estimated via nonlinear
regression

2022. The p-values for all parameters of these three functions were less than 0.05, indi-
cating statistical significance at a 95% confidence level. The R2 values for the logarithmic,
rational, and irrational functions were estimated to be 0.724, 0.757, and 0.769, respectively.
The catch-dependent pricing of mackerel was accurately estimated because the R2 values
of all functions were high, and the irrational function showed the highest R2 value. This
suggests that all three functions are potentially useful as catch-dependent pricing func-
tions for mackerel. Figure 2 shows the average price for mackerel from July 2017 to June
2022 and the catch-dependent prices estimated using the nonlinear regression of the three
functions. The prices estimated using the logarithmic, rational, and irrational functions
were higher than the average price when the monthly catch was less than approximately
13,000, 16,600, and 14,600 tons, respectively. In particular, when the logarithmic func-
tion was used, the decrease in price was more sensitive compared with the rational and
irrational functions when the monthly catch was more than 15,000 tons.

3.2 Comparison of optimal harvest strategies based on catch-dependent pricing
We compared the optimal harvest strategies for chub mackerel under four pricing sce-
narios, i.e., one with constant pricing and three with catch-dependent pricing. Figure 3
shows the monthly average optimal fishing effort (Fig. 3.A), total biomass (Fig. 3.B), catch
(Fig. 3.C), and profit (Fig. 3.D) over the next 10 years for the four scenarios. Under the
rational and irrational pricing scenarios, the fishing effort increased in July immediately
after the mackerel spawning season. This trend is similar to the constant pricing scenario.
However, under the logarithmic pricing scenario, the fishing effort decreased immediately
after the spawning season and then gradually increased, with the maximum effort occur-
ring during the spawning season. The monthly average total biomass, catch, and profit
were the highest in July for all four scenarios. Thereafter, they gradually decreased and
reached the minimum values in June during the spawning season. The variation in the
monthly average catch and profit was the highest under the constant pricing scenario and
lowest under the logarithmic pricing scenario.
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Figure 3 Monthly averages of optimal fishing effort, total biomass, catch, and profit over 10 years for four
pricing scenarios

Table 3 Monthly averages of fishing effort, total biomass, catch, and profit over a period of 10 years
for four pricing scenarios

Function ut Total biomass (tons) Catch (tons) Profit (billion won)

Constant 0.0878 146,330 13,991 16.27
Logarithmic 0.0683 189,967 12,424 15.35
Rational 0.0815 151,764 13,485 16.51
Irrational 0.0846 161,967 13,785 16.13

Table 3 shows the 10-year monthly averages of the fishing effort, total biomass, catch,
and profit for each pricing scenario. The average catch and fishing effort under the rational
pricing scenario were slightly lower than those under the constant pricing scenario, but the
profit was the highest at 16.51 billion won. In the logarithmic pricing scenario, the average
catch and profit were the lowest at 12,424 tons and 15.35 billion won, respectively, whereas
the total biomass was the highest at 189,967 tons. In addition, the average fishing effort
was the lowest at 0.0683, resulting in the highest catch and profit per unit fishing effort
at 181,903 tons/ut and 224.74 billion won/ut, respectively. This indicates that the optimal
harvest strategy under the logarithmic pricing scenario is the most effective in terms of
fishing efficiency and resource stability.

3.3 Variation in optimal harvest strategies with monthly closed seasons
To analyze the effects of monthly closed seasons, the average fishing effort, total biomass,
catch, and profit were compared over a 10-year period when a closed season was imple-
mented from January to December. Figure 4 shows the variations in the average fishing
effort, total biomass, catch, and profit compared with the optimal fishing strategy with-
out a closed season for each month of the closed season. For all catch-dependent price
scenarios, a closed season in July immediately after the spawning season resulted in the
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Figure 4 Variation rate for fishing effort, total biomass, catch, and profit for each monthly closed season
compared with the optimal fishing strategy without a closed season

largest reduction in profit (2%–5%) and catch (0%–3%) but provided the most significant
resource recovery effect (6%–8%). Conversely, a closed season in June during the spawn-
ing season resulted in the smallest reduction in catch (0%–1.5%) and profit (0%–4%) but
provided the minimal resource recovery effect (0%–1%).

Figure 5 shows the variation rates in the profit, fishing, and resource recovery efficiencies
for each monthly closed season compared with the scenario without a closed season for
all pricing scenarios. The profit and fishing efficiencies represent the profit and catch per
unit effort, respectively. As shown in Fig. 4, although the profit and catch for the scenario
with a closed season were lower than those without a closed season, the profit and fishing
efficiencies mostly increased. In the case of constant pricing (Fig. 5.A), the profit and fish-
ing efficiencies increased by 2.456% and 2.789% in April and March, respectively. In the
catch-dependent pricing scenarios, the profits and fishing efficiencies were the highest in
June, with increases of 1.477% and 4.644% for the logarithmic scenario (Fig. 5.B), 1.566%
and 3.248% for the irrational scenario (Fig. 5.C), and 1.612% and 2.800% for the rational
scenario (Fig. 5.D), respectively. The resource recovery efficiency was the highest in July
for all pricing scenarios, with increases of 4.026% (constant), 1.162% (logarithmic), 1.906%
(irrational), and 2.538% (rational) compared with the optimal fishing strategy without a
closed season. This indicates that, although a closed season can improve the profit, fish-
ing, and resource recovery efficiencies, the effects depend on the catch-dependent pricing
scenarios.

3.4 Sensitivity analysis with respect to cost
We compared the optimal harvest strategies for mackerel under four pricing scenarios
based on changes in costs. Figure 6 shows the monthly average optimal fishing effort
(Fig. 6.A), total biomass (Fig. 6.B), catch (Fig. 6.C), and profit (Fig. 6.D) over the next 10
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Figure 5 Comparison of variation rates for profit, fishing, and resource recovery efficiencies for different
monthly closed seasons and pricing scenarios. A. Constant price. B. Logarithmic price function. C. Irrational
price function. D. Rational price function

Figure 6 Monthly averages of optimal fishing effort, total biomass, catch, and profit over 10 years for four
pricing scenarios as costs varied from 100 to 1200 million

years as costs varied from 100 to 1200 million. In all four scenarios, a decrease in costs
increased the monthly average fishing effort, catch, and profit while reducing the total
biomass, whereas an increase in costs raised the total biomass but reduced the other vari-
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ables, with the magnitude of these changes diminishing as the costs increased. A notable
observation is that, when the catch-dependent price function was a logarithmic function,
the profit, which was the lowest among the four scenarios at the default cost of 300 mil-
lion, became the highest at approximately 1.266 billion in monthly average profit when
the cost reached 1200 million. This result occurred because, as shown in Fig. 2, the loga-
rithmic function exhibited the highest price sensitivity to catch quantity. Furthermore, as
indicated in Fig. 6.C, the monthly average catch was approximately 11,000 tons when the
cost was 1.2 billion, during which the logarithmic price function reached its highest level.

4 Discussion and conclusion
This study has proposed an optimal harvest strategy by analyzing the catch and price data
of chub mackerel in Korea using various catch-dependent pricing functions. We proposed
three catch-dependent pricing functions: logarithmic, rational, and irrational. We used
these functions to formulate an objective function to maximize fishing profits and uti-
lized a discrete age-structured mackerel model, as suggested in a previous study [15], to
propose an optimal harvest strategy system. We employed Pontryagin’s maximum prin-
ciple to derive the necessary conditions for the optimal fishing strategy under the three
catch-dependent pricing functions and compared the optimal strategies for constant and
catch-dependent pricing.

We compared the optimal harvest strategies under one constant pricing scenario and
three catch-dependent pricing scenarios. The optimal harvest strategy for the rational
and irrational price scenarios was similar to that for the constant price scenario, where
the fishing effort increased immediately after the spawning season and then gradually de-
creased. In contrast, in the logarithmic scenario, the optimal harvest strategy involved a
gradual increase in fishing effort after the spawning season, with a peak immediately be-
fore the next spawning period. In the constant price scenario, the 10-year average profit
efficiency and total biomass were the lowest at 185.3 billion won/ut and 146,330 tons,
respectively, compared with the optimal strategies with the catch-dependent pricing sce-
narios. This suggested that failing to account for appropriate catch-dependent pricing not
only led to inefficient harvesting strategies but also hindered resource recovery. We also
compared the effects of monthly closed seasons under the four pricing scenarios. All sce-
narios showed that a closed season in July immediately after the spawning period provided
the maximum resource recovery efficiency. Conversely, a closed season in June immedi-
ately before the spawning period yielded the highest profit efficiency. As the cost per unit
of effort increased, the monthly average fishing effort, catch, and profit decreased, while
the total biomass quantity increased. In the case of monthly average profit, the extent of
the decrease varied depending on the catch-dependent pricing scenario, with the smallest
decrease occurring when the price function was logarithmic.

This study has several limitations. First, although the supply aspect of pricing (catch) was
considered according to the laws of supply and demand, the demand aspect was not ad-
dressed. In Korea, mackerel is a commercially popular species throughout the year. Thus,
we did not consider demand because we expected demand variations to be minimal and
unlikely to affect the price significantly. Second, we assumed that the cost per unit of fish-
ing effort was fixed and did not account for price volatility owing to rising costs. To ad-
dress this limitation, the changes in the average fishing effort, catch, biomass, and profit
were presented through the cost sensitivity analysis when a constant cost increased or de-
creased. In addition, as the government of South Korea provides subsidies to prevent price
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increases owing to rising costs such as fuel, the volatility resulting from cost increases is
expected to be low.

Despite these limitations, this study successfully developed an optimal monthly har-
vest strategy for chub mackerel in Korea under various catch-dependent pricing scenar-
ios. This study demonstrates that, even for fish species with similar life histories, harvest
strategies should vary depending on market prices influenced by catch. If the demand is
sufficient, even if the catch is high, an optimal harvest strategy based on the constant price
assumed in previous studies [9–15] may be sufficient. However, for species with insuffi-
cient demand, prices inevitably decrease as catch increases. The estimated profit from
optimal harvest strategies incorporating catch-dependent pricing is comparable to that
under constant pricing, while maintaining higher resource levels and ensuring resource
stability. In contrast, if optimal harvest strategies are designed based on constant pricing
but the actual prices decrease with increased catch, fishers’ profit may decline and resource
stability may deteriorate owing to overharvesting. Our research on optimal harvest strate-
gies using catch-dependent pricing not only addresses these issues but also highlights how
optimal strategies can vary depending on the specific catch-dependent pricing function
that is applied. In addition, the effects of closed seasons differed based on the pricing sce-
nario. In Korea, the fishing population has steadily decreased owing to aging and work-
force attrition, underscoring the necessity of governmental support and resource manage-
ment policies [43, 44]. We believe that this study can be used to develop improved monthly
optimal harvest strategies for other fish species using catch-dependent pricing functions,
and can contribute significantly to improving fishers’ profit. The stability of fishers’ profit
could potentially lead to changes in the economic dependence of the community on fishing
and the creation of additional employment opportunities [45]. Furthermore, we hope that
this study will provide an alternative for fishery managers and policymakers to improve
harvest efficiency and resource recovery through monthly closed seasons.

Appendix
We proceed to prove Theorems 1, 2, and 3. Each proof is detailed below:

Theorem 1 For the optimal control function uL∗
t and corresponding solutions Bi,t (i =

1, 2, . . . , 6) for system (1) with objective function JL (u), there exist adjoint variables λL
i,t for

t = 1, 2, . . . , T – 1 such that

λL
1,t = λL

1,t+1τ (t)
γtβt

(α1B1,t + βt)2 + λL
2,t+1 (1 – τ (t))

γtβt

(α1B1,t + βt)2
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⎧⎨
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⎛
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6∑
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⎠

⎫⎬
⎭σtutδt
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(
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(
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+ λL
6,t+1τ (t)

(
e
(
g6,t–Mt

)
– σtut

)
+ λL

1,t+1 (1 – τ (t)) f6
W1

W6

λL
i,T+1 = q, i = 2, 3, 4, 5, 6,

and u satisfies uL∗
t at

⎧⎨
⎩

⎛
⎝ σtut

∑6
j=2 Bj,t

σtut
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j=2 Bj,t + 1
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⎛
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⎞
⎠

⎞
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6∑
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σtBi,t – 2Cut

⎫⎬
⎭ δt

= –bL
2

6∑
i=2

σtBi,tδ
t +

6∑
i=2

λi,t+1τ (t)Bi,t +
6∑

i=3

λi,t+1 (1 – τ (t))Bi–1,t .

Proof of Theorem 1 According to the discrete-time Pontryagin’s maximum principle [17],
the Hamiltonian HL

t at time t is defined as

HL
t = JL

t (u, B) +
6∑

i=2

λL
i,t+1Bi,t+1,

where JL
t
(
u, B

)
=

{(∑6
i=2 PLσtutBi,t

)
– Cu2

t
}
δt .

For t = 1, 2, . . . , T , expanding this definition yields

HL
t = JL

t (u, B) +
6∑

i=2

λL
i,t+1Bi,t+1

=

{( 6∑
i=2

PL
t σtutBi,t
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– Cu2
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(
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(
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)
Bi–1,t).

We apply the three necessary conditions (adjoint, transversality, and optimality) from Pon-
tryagin’s maximum principle:

λL
i,t =

∂HL
t

∂Bi,t
, i = 1, 2, . . . , 6 (Adjoint condition)

λL
i,T = φ′ (x∗

T
)

, i = 1, 2, . . . , 6 (Transversality condition)

∂HL
t

∂ut
= 0 at u∗ (Optimality condition).

These conditions are applied for t = 1, 2, . . . , T – 1.
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First, the adjoint condition allows us to obtain the adjoint variables λL
i,t implicitly. For

each t = 1, 2, . . . , T – 1 and i = 1, 2, . . . , 6, we define the adjoint variable λL
i,t as

λL
i,t =

∂HL
t

∂Bi,t
.

In the process of computing these partial derivatives, note the following relationships re-
garding Bj,t . First,

∂Bj,t

∂B1,t
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⎧⎨
⎩

0, if j ≠ 1,

1, if j = 1,

which indicates that Bj,t is not directly affected by B1,t unless j = 1. Second, for γtB1,t(αt ×
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Substituting HL
t into the above expression and differentiating with respect to Bi,t yields the

recursive relationship for λL
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+ λL
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1,t+1 (1 – τ (t)) f6
W1
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Second, the terminal state t = T + 1 is derived through the transversality condition

λL
i,T+1 = q, i = 2, 3, 4, 5, 6.

Third, we determine ut that satisfies the optimality condition
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We isolate all terms containing ut on the left side and move the remainder to the right
side:
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This expression clearly separates the ut-dependent part from the part that does not de-
pend on ut , making it straightforward to solve for ut .

Hence, for t = 1, 2, . . . , T – 1, there exist adjoint variables λL
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j=2 Bj,t + 1
+ bL

2 + bL
1 log

⎛
⎝

6∑
j=2

σtutBj,t

⎞
⎠

⎫⎬
⎭σtutδ

t

+ λL
6,t+1τ (t)

(
e
(
g6,t–Mt

)
– σtut

)
+ λL

1,t+1 (1 – τ (t)) f6
W1

W6
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λL
i,T+1 = q, i = 2, 3, 4, 5, 6,

and u satisfies uL∗
t at

⎧⎨
⎩

⎛
⎝ σtut

∑6
j=2 Bj,t

σtut
∑6

j=2 Bj,t + 1
+ log

⎛
⎝σtut

6∑
j=2

Bj,t + 1

⎞
⎠

⎞
⎠bL

1

6∑
i=2

σtBi,t – 2Cut

⎫⎬
⎭ δt

= –bL
2

6∑
i=2

σtBi,tδ
t +

6∑
i=2

λi,t+1τ (t)Bi,t +
6∑

i=3

λi,t+1 (1 – τ (t))Bi–1,t . □

Theorems 2 and 3 are quite similar to Theorem 1. The proofs of Theorems 2 and 3
proceed in a manner entirely analogous to that of Theorem 1. Therefore, much of the proof
process is omitted. Theorem 2 utilizes the rational price function PR

t , while Theorem 3
applies the irrational price function PI

t .

Theorem 2 For the optimal control function uR∗
t and corresponding solutions Bi,t (i =

1, 2, . . . , 6) of system (1) with objective function JR (u), there exist adjoint variables λR
i,t for

t = 1, 2, . . . , T – 1 such that

λR
1,t = λR

1,t+1τ (t)
γtβt

(α1B1,t + βt)2 + λR
2,t+1 (1 – τ (t))

γtβt

(α1B1,t + βt)2

λR
i,t =

⎧⎪⎨
⎪⎩

bR
1σtut +

bR
2 bR

3 ut(∑6
j=2 utBj,t + bR

3

)2

⎫⎪⎬
⎪⎭

δt + λR
i,t+1τ (t)

(
egi,t–Mi – σtut

)

+ λR
i+1,t+1 (1 – τ (t))

(
egi,t–Mi – σtut

)
+ λR

1,t+1 (1 – τ (t)) fi
W1

Wi
, i = 2, 3, 4, 5

λR
6,t =

⎧⎪⎨
⎪⎩

bR
1σtut +

bR
2 bR

3 ut(∑6
j=2 utBj,t + bR

3

)2

⎫⎪⎬
⎪⎭

δt + λR
6,t+1τ (t)

(
eg6,t–M6 – σtut

)

+ λR
1,t+1 (1 – τ (t)) f6

W1

W6

λR
i,T+1 = q, i = 2, 3, 4, 5, 6,

and u satisfies uL∗
t at

⎧⎪⎨
⎪⎩

bR
2 bR

3
∑6

j=2 σtBj,t(∑6
j=2 utBj,t + bR

3

)2 – 2Cut

⎫⎪⎬
⎪⎭

δt

=
6∑

i=2

λR
i,t+1τ (t)Bi,t +

6∑
i=3

λR
i,t+1 (1 – τ (t))Bi–1,t – b1

6∑
i=2

Bi,tδ
t .

Proof of Theorem 2 According to the discrete-time Pontryagin’s maximum principle [17],
the Hamiltonian HL

t at time t is defined as

HR
t = JR

t (u, B) +
6∑

i=2

λR
i,t+1Bi,t+1
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=

{( 6∑
i=2

PR
t σtutBi,t

)
– Cu2

t

}
δt +

6∑
i=2

λR
i,t+1Bi,t+1

=

{
bR

1

6∑
i=2

σtutBi,t +
bR

2
∑6

i=2 σtutBi,t∑6
j=2 σtutBj,t + bR

3
– Cut

}
δt

+ λ1,t+1

(
τ (t)

γtB1,t

αtB1,t + βt
+ (1 – τ (t))

6∑
i=2

fi
W1,t

Wi,t
Bi,t

)

+ λ2,t+1

(
τ (t)

(
eg2,t–M2 – σtut

)
B2,t +

(
1 – τ (t)

γ1B1,t

α1,tB1,t + β1,t

))

+
6∑

i=3

λi,t+1(τ (t)
(
egi,t–Mi – σtut

)
Bi,t + (1 – τ (t))

(
egi–1,t–Mi–1 – σtut

)
Bi–1,t).

We apply the three necessary conditions (adjoint, transversality, and optimality) from Pon-
tryagin’s maximum principle. First, the adjoint condition allows us to obtain the adjoint
variables λR

i,t implicitly:

λR
1,t =

∂HR
t

∂B1,t
= λR

1,t+1τ (t)
γtβt

(α1B1,t + βt)2 + λR
2,t+1 (1 – τ (t))

γtβt

(α1B1,t + βt)2

λR
i,t =

∂HR
t

∂Bi,t

=

⎧⎪⎨
⎪⎩

bR
1σtut +

bR
2 bR

3 ut(∑m
j=2 utBj,t + bR

3

)2

⎫⎪⎬
⎪⎭

δt + λR
t τ (t)

(
egi,t–Mi – σtut

)

+ λR
i+1,t+1 (1 – τ (t))

(
e
(
gi,t–Mi

)
– σtut

)
+ λR

1,t+1 (1 – τ (t)) fi
W1

Wi
, i = 2, 3, 4, 5

λR
i,t =

∂HR
t

∂Bi,t

=

⎧⎪⎨
⎪⎩

bR
1σtut +

bR
2 bR

3 ut(∑6
j=2 utBj,t + bR

3

)2

⎫⎪⎬
⎪⎭

δt + λL
6,t+1τ (t)

(
e
(
g6,t–Mt

)
– σtut

)

+ λL
1,t+1 (1 – τ (t)) f6

W1

W6
.

Second, the terminal state t = T + 1 is derived through the transversality condition

λR
i,T+1 = q, i = 2, 3, 4, 5, 6.

Third, we determine ut that satisfies the optimality condition

0 =
∂HR

t
∂ut

=

⎧⎪⎨
⎪⎩

bR
1

6∑
i=2

σtBi,t +
bR

2
∑6

i=2 σtBi,t∑6
j=2 σtutBj,t + bR

3
–

bR
2
∑6

i=2 σtutBi(∑6
j=2 σtutBj,t + bR

3

)2

6∑
i=2

σtBi,t – 2Cut

⎫⎪⎬
⎪⎭

δt
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–
6∑

i=2

λi,t+1τ (t)Bi,t –
6∑

i=3

λi,t+1 (1 – τ (t))Bi–1,t .

We isolate all terms containing ut on the left side and move the remainder to the right
side:

⎧⎪⎨
⎪⎩

bR
2 bR

3
∑6

i=2 σtBi,t(∑6
j=2 utBj,t + bR

3

)2 – 2Cut

⎫⎪⎬
⎪⎭

δt

=
6∑

i=2

λR
i,t+1τ (t)Bi,t +

6∑
i=3

λR
i,t+1 (1 – τ (t))Bi–1,t – b1

6∑
i=2

Bi,tδ
t .

This expression clearly separates the ut-dependent part from the part that does not de-
pend on ut , making it straightforward to solve for ut .

Hence, for t = 1, 2, . . . , T – 1, there exist adjoint variables λR
i,t for t = 1, 2, . . . , T – 1 such

that

λR
1,t = λR

1,t+1τ (t)
γtβt

(α1B1,t + βt)2 + λR
2,t+1 (1 – τ (t))

γtβt

(α1B1,t + βt)2

λR
i,t =

⎧⎪⎨
⎪⎩

bR
1σtut +

bR
2 bR

3 ut(∑6
j=2 utBj,t + bR

3

)2

⎫⎪⎬
⎪⎭

δt + λR
i,t+1τ (t)

(
egi,t–Mi – σtut

)

+ λR
i+1,t+1 (1 – τ (t))

(
egi,t–Mi – σtut

)
+ λR

1,t+1 (1 – τ (t)) fi
W1

Wi
, i = 2, 3, 4, 5

λR
6,t =

⎧⎪⎨
⎪⎩

bR
1σtut +

bR
2 bR

3 ut(∑6
j=2 utBj,t + bR

3

)2

⎫⎪⎬
⎪⎭

δt + λR
6,t+1τ (t)

(
eg6,t–M6 – σtut

)

+ λR
1,t+1 (1 – τ (t)) f6

W1

W6

λR
i,T+1 = q, i = 2, 3, 4, 5, 6,

and u satisfies uL∗
t at

⎧⎪⎨
⎪⎩

bR
2 bR

3
∑6

i=2 σtBi,t(∑6
j=2 utBj,t + bR

3

)2 – 2Cut

⎫⎪⎬
⎪⎭

δt

=
6∑

i=2

λR
i,t+1τ (t)Bi,t +

6∑
i=3

λR
i,t+1 (1 – τ (t))Bi–1,t – b1

6∑
i=2

Bi,tδ
t . □

Theorem 3 For the optimal control function uI∗
t and corresponding solutions Bi,t (i =

1, 2, . . . , 6) of system (1) with objective function JI (u), there exist adjoint variables λI
i,t for

t = 1, 2, . . . , T – 1 such that

λI
1,t = λI

1,t+1τ (t)
γtβt

(α1B1,t + βt)2 + λI
2,t+1 (1 – τ (t))

γtβt

(α1B1,t + βt)2
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λI
i,t = bI

1σtut

⎛
⎝

6∑
j=2

σtutBj,t + 1

⎞
⎠

bI
3–1 ⎧⎨

⎩
(
bI

3 + 1
)
⎛
⎝

6∑
j=1

σtutBj,t

⎞
⎠ + 1

⎫⎬
⎭ δt + bI

2σtutδ
t

+ λI
i,t+1τ (t)

(
egi,t–Mi – σtut

)
+ λI

i+1,t+1 (1 – τ (t))
(

e
(
gi,t–Mi

)
– σtut

)

+ λI
1,t+1 (1 – τ (t)) fi

W1

Wi
, i = 2, 3, 4, 5

λI
6,t = bI

1σtut

⎛
⎝

6∑
j=2

σtutBj,t + 1

⎞
⎠

bI
3–1 ⎧

⎨
⎩

(
bI

3 + 1
)
⎛
⎝

6∑
j=1

σtutBj,t

⎞
⎠ + 1

⎫
⎬
⎭ δt + bI

2σtutδ
t

+ λI
6,t+1τ (t)

(
e
(
g6,t–Mt

)
– σtut

)
+ λI

1,t+1 (1 – τ (t)) f6
W1

W6

λL
i,T+1 = q, i = 2, 3, 4, 5, 6,

and u satisfies uL∗
t at

⎧⎪⎨
⎪⎩

bI
1

⎛
⎝

6∑
j=2

σtBj,t

⎞
⎠

⎛
⎝bI

3 + 1 +
6∑

j=2

σtutBj,t

⎞
⎠

⎛
⎝

6∑
j=2

σtutBj,t + 1

⎞
⎠

bI
3–1

– 2Cut

⎫⎪⎬
⎪⎭

δt

= –bI
2

( 6∑
i=2

σtBi,t

)
+

6∑
i=2

λI
i,t+1τ (t) σtBi,t +

6∑
i=3

λI
i,t+1 (1 – τ (t)) σtBi–1,t .

Proof of Theorem 3 According to the discrete-time Pontryagin’s maximum principle [17],
the Hamiltonian HL

t at time t is defined as

HI
t = JI

t (u, B) +
6∑

i=2

λI
i,t+1Bi,t+1

=

{( 6∑
i=2

PI
tσtutBi,t

)
– Cu2

t

}
δt +

6∑
i=2

λI
i,t+1Bi,t+1

= {bI
1

( 6∑
i=2

σtutBi,t

)⎛
⎝

6∑
j=2

σtutBj,t + 1

⎞
⎠

bI
2

+ bI
3

( 6∑
i=2

σtutBi,t

)
– Cu2

t }δt

+ λ1,t+1

(
τ (t)

γtB1,t

αtB1,t + βt
+ (1 – τ (t))

6∑
i=2

fi
W1,t

Wi,t
Bi,t

)

+ λ2,t+1

(
τ (t)

(
eg2,t–M2 – σtut

)
B2,t +

(
1 – τ (t)

γ1B1,t

α1,tB1,t + β1,t

))

+
6∑

i=3

λi,t+1
(
τ (t)

(
egi,t–Mi – σtut

)
Bi,t + (1 – τ (t))

(
egi–1,t–Mi–1 – σtut

)
Bi–1,t

)
.

We apply the three necessary conditions from Pontryagin’s maximum principle. First, the
adjoint condition allows us to obtain the adjoint variables λI

i,t implicitly:

λI
1,t =

∂HI
t

∂B1,t
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= λI
1,t+1τ (t)

γtβt

(α1B1,t + βt)2 + λI
2,t+1 (1 – τ (t))

γtβt

(α1B1,t + βt)2

λI
i,t =

∂HI
t

∂Bi,t

= bI
1σtut

⎛
⎝

6∑
j=2

σtutBj,t + 1

⎞
⎠

bI
2–1 ⎧⎨

⎩
6∑

i=1

σtutBi,t + 1 + bI
2

⎛
⎝

6∑
j=1

σtutBj,t

⎞
⎠

⎫⎬
⎭ δt

+ bI
3σtutδ

t

+ λI
i,t+1τ (t)

(
egi,t–Mi – σtut

)
+ λI

i+1,t+1 (1 – τ (t))
(

e
(
gi,t–Mi

)
– σtut

)

+ λI
1,t+1 (1 – τ (t)) fi

W1

Wi

= bI
1σtut

⎛
⎝

6∑
j=2

σtutBj,t + 1

⎞
⎠

bI
2–1 ⎧⎨

⎩
(
bI

2 + 1
)
⎛
⎝

6∑
j=1

σtutBj,t

⎞
⎠ + 1

⎫⎬
⎭ δt + bI

3σtutδ
t

+ λI
i,t+1τ (t)

(
egi,t–Mi – σtut

)
+ λI

i+1,t+1 (1 – τ (t))
(

e
(
gi,t–Mi

)
– σtut

)

+ λI
1,t+1 (1 – τ (t)) fi

W1

Wi
, i = 2, 3, 4, 5

λI
6,t =

∂HI
t

∂Bi,t

= bI
1σtut

⎛
⎝

6∑
j=2

σtutBj,t + 1

⎞
⎠

bI
2–1 ⎧

⎨
⎩

(
bI

2 + 1
)
⎛
⎝

6∑
j=1

σtutBj,t

⎞
⎠ + 1

⎫
⎬
⎭ δt + bI

3σtutδ
t

+ λI
6,t+1τ (t)

(
e
(
g6,t–Mt

)
– σtut

)
+ λI

1,t+1 (1 – τ (t)) f6
W1

W6
.

Second, the terminal state t = T + 1 is derived through the transversality condition

λI
i,T+1 = q, i = 2, 3, 4, 5, 6.

Third, we determine ut that satisfies the optimality condition

0 =
∂HI

t
∂ut

=

⎧⎪⎨
⎪⎩

bI
1

⎛
⎝

6∑
j=2

σtBj,t

⎞
⎠

⎛
⎝

6∑
j=2

σtutBj,t + 1

⎞
⎠

bI
2

+ bI
1bI

2

⎛
⎝

6∑
j=2

σtBj,t

⎞
⎠

×
⎛
⎝

6∑
j=2

σtutBj,t + 1

⎞
⎠

bI
2–1

⎫⎪⎬
⎪⎭

δt

+ bI
3

( 6∑
i=2

σtBi,t

)
δt – 2Cutδ

t –
6∑

i=2

λI
i,t+1τ (t)Bi,t –

6∑
i=3

λI
i,t+1 (1 – τ (t))Bi–1,t .
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We isolate all terms containing ut on the left side and move the remainder to the right
side:

⎧
⎪⎨
⎪⎩

bI
1

⎛
⎝

6∑
j=2

σtBj,t

⎞
⎠

⎛
⎝bI

3 + 1 +
6∑

j=2

σtutBj,t

⎞
⎠

⎛
⎝

6∑
j=2

σtutBj,t + 1

⎞
⎠

bI
3–1

– 2Cut

⎫
⎪⎬
⎪⎭

δt

= –bI
2

( 6∑
i=2

σtBi,t

)
+

6∑
i=2

λI
i,t+1τ (t) σtBi,t +

6∑
i=3

λI
i,t+1 (1 – τ (t)) σtBi–1,t .

This expression clearly separates the ut-dependent part from the part that does not de-
pend on ut , making it straightforward to solve for ut .

Hence, for t = 1, 2, . . . , T – 1, there exist adjoint variables λI
i,t for t = 1, 2, . . . , T – 1 such

that

λI
1,t = λI

1,t+1τ (t)
γtβt

(α1B1,t + βt)2 + λI
2,t+1 (1 – τ (t))

γtβt

(α1B1,t + βt)2

λI
i,t = bI

1σtut

⎛
⎝

6∑
j=2

σtutBj,t + 1

⎞
⎠

bI
3–1 ⎧⎨

⎩
(
bI

3 + 1
)
⎛
⎝

6∑
j=1

σtutBj,t

⎞
⎠ + 1

⎫⎬
⎭ δt + bI

2σtutδ
t

+ λI
i,t+1τ (t)

(
egi,t–Mi – σtut

)
+ λI

i+1,t+1 (1 – τ (t))
(

e
(
gi,t–Mi

)
– σtut

)

+ λI
1,t+1 (1 – τ (t)) fi

W1

Wi
, i = 2, 3, 4, 5

λI
6,t = bI

1σtut

⎛
⎝

6∑
j=2

σtutBj,t + 1

⎞
⎠

bI
3–1 ⎧⎨

⎩
(
bI

3 + 1
)
⎛
⎝

6∑
j=1

σtutBj,t

⎞
⎠ + 1

⎫⎬
⎭ δt + bI

2σtutδ
t

+ λI
6,t+1τ (t)

(
e
(
g6,t–Mt

)
– σtut

)
+ λI

1,t+1 (1 – τ (t)) f6
W1

W6

λL
i,T+1 = q, i = 2, 3, 4, 5, 6,

and u satisfies uL∗
t at

⎧
⎪⎨
⎪⎩

bI
1

⎛
⎝

6∑
j=2

σtBj,t

⎞
⎠

⎛
⎝bI

3 + 1 +
6∑

j=2

σtutBj,t

⎞
⎠

⎛
⎝

6∑
j=2

σtutBj,t + 1

⎞
⎠

bI
3–1

– 2Cut

⎫
⎪⎬
⎪⎭

δt

= –bI
2

( 6∑
i=2

σtBi,t

)
+

6∑
i=2

λI
i,t+1τ (t) σtBi,t +

6∑
i=3

λI
i,t+1 (1 – τ (t)) σtBi–1,t . □
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