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Abstract
This study proposes a dynamical epidemic model SIR incorporating a nonlinear
saturated incidence and nonlinear recovery rates. The model considers the influence
of available resources, the ratio of the infected population, and the decrease of
interventions on the spread of infectious diseases. The use of a nonlinear incident rate
as a monoid-type equation improves the study compared to a constant-type incident
rate because the spread of infection is now determined by the force of the illness and
the number of infected individuals available to disseminate the infection. The
consideration of recovery rate, which includes the minimum and maximum feasible
recovery rates and the amount of resources available for treatment, makes the
research more advantageous. The conditions for the existence of the equilibria have
been established. Furthermore, stability analysis and bifurcation have been carried
out using Lyapunov’s direct method, the Routh–Hurwitz criterion, and Dulac’s
creation under each set of conditions. A numerical simulation was conducted using
MATLAB. As the value of the preventive measure increases, the results indicate a
considerable decrease in the infected compartment. In addition, the recovered
population is growing as more resources, such as oxygen cylinders, hospital beds, and
vaccination doses, become available.

Keywords: SIRmodel with nonlinear incident and recovery rate; Existence of Points
of Equilibria; Stability analysis at equilibrium; Bifurcation analysis; Numerical simulation

1 Introduction
An epidemic is defined as an unanticipated disease outbreak that harms a significant por-
tion of the habitat’s population before it can be eradicated [1]. Epidemic outbreaks recur
at intervals of many years elapsed between pandemics. An analysis of disease occurrence
is called epidemiology. In addition to affecting millions of people, the widespread trans-
mission of infectious diseases has a negative impact on social, political, economic, and
geographic aspects of society [2]. In many countries around the world, infectious diseases
such as cholera, malaria, and others are regarded as endemic. Certain diseases spread by
viruses, such as influenza, while others spread by bacteria, such as tuberculosis, and still
others spread by carriers, such as flies, ticks, mosquitoes, and so on, such as malaria. An
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important tool for grasping the mechanisms underlying the spread and decline of infec-
tious diseases is the epidemiological model. When gathering information through other
channels like direct observation or experimentation is impractical, mathematical model-
ing might be helpful. Models are created using stochastic equations or ordinary differential
equations. Since mathematical modeling of infectious disease transmission dynamics pro-
vides both short- and long-term forecasting of disease occurrence in the population and
the reliance on multiple factors, it is crucial for a better understanding of epidemiological
models and prevention and control strategies.

These days, mathematical modeling of an epidemic is a significant tool for comprehend-
ing, predicting, as well as controlling outbreaks of diseases. The concept of “mathematical
modeling of an infectious disease” describes a deterministic method that uses differen-
tial equations to categorize the entire human population into compartments based on the
presence or absence of infectious diseases. These compartments include susceptible popu-
lation (S), infectious population (I), and recovered population (R). Movement within these
compartments is caused by infection, progression, recovery, or migration. These variables
show the number of individuals in every section at any particular moment. Here, S stands
for the total number of people who are susceptible. A susceptible individual acquires the
infection and joins the infected class when they come in contact with an infected indi-
vidual. I stands for the total number of infected people. They are infectious and have the
potential to spread the disease to susceptible populations; R is the proportion of individ-
uals who are resistant or have recovered. These individuals were infected and have either
recovered from their disease, shifted to a different class, or passed away.

In mathematical epidemiology, the SIR model proposed by Kermack and McKendrick
in 1927 was crucial [3]. The effects of significant dynamics were first presented by Ker-
mack and McKendrick (1932) in subsequent work [4]. The model’s uses and summary
were provided by Hethcote in 1976 [5].

N = S + I + R represents the entire human population, and N is assumed to be constant
during the simulation. The model that Kermack and Mckendrick (1927) proposed is as
follows:

dS
dt

= –βSI,

dI
dt

= βSI – αI,

dR
dt

= αI,

(1)

where β and α represent the infection and recovery rate, respectively, of the individuals
who are infected.

Numerous models of epidemics have been proposed in the literature. Agarwal and
Verma [6] examined the saturating contact rate of contacts of a person provided by
Heesterbeek and Metz [7] and developed an epidemic model SIR. The dynamics of an
infectious-disease model is mostly determined by the function that characterizes the in-
cidence rate. In epidemiological models [1, 2, 8, 9], where the dynamics are merely estab-
lished by the basic reproduction number, ℜ0, standard bilinear incidence rate, αIS, has
been utilized frequently. If ℜ0 < 1, the disease will vanish and all populations will become
susceptible; if not, it will continue. The influence of prevention tactics like mask wear-
ing, self-isolation, and quarantine, which are crucial in containing the spread of infectious
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illnesses, is not taken into account in the calculation of those bilinear incidence rates.
Therefore, it is imperative to take note of the impact of intervention tactics and the pro-
gressive reduction of interventions on the transmission of infectious diseases. In [10–12]
some mathematical models are examined that handled corona infection using mathemat-
ical models.

Several researchers took into account various forms of incidence rate in their works.
The saturated incidence rate αIS

1+βI , for instance, was first described by Anderson and May
[2] in 1978. It saturates as a result of the concentration of infectious individuals at high
infection levels. αIS

1+β1S+β2I is an additional nonlinear incidence rate that was separately in-
troduced by DeAngelis [13] and Beddington [14]. This incidence rate underwent modi-
fication, and αIS

1+β1S+β2I2 with a nonlinear recovery rate was employed by Gui-Hua Li and
Yong-Xin Zhang [15]. The incidence rate responds more slowly to a gradual decline in in-
tervention tactics than it would to a conventional bilinear term, αIS. Conversely, a higher
rate of rise than bIS may be observed if few intervention measures are used. Government
interventions have a significant negative influence on the economy as a consequence of
pandemics like COVID-19. These initiatives have increased unemployment rates and cor-
porate bankruptcy cases, which has caused governments to limit their level of intervention
[16–19].

In order to examine the impact of intervention decrease on the spread of infectious
diseases, we extend the SIR model in the present study by taking into account the nonlinear
Monod-equation-type saturated incidence rate. The ratio represented by the nonlinear
Monod equation is:

αIS
n + βI

, (2)

where the illness infection force is represented by αIS, and the form of the incidence rate
as a function of the infected subpopulation I is determined by n, a positive constant that
denotes the degree of intervention, and β denotes the proportion of the infected popula-
tion that can spread the infection further. As the proportion of people infected increases,
the incidence rate rises as well, becoming independent of the number of infected subpop-
ulations, as evidenced by the global response to the COVID-19 pandemic. This is implied
by the monod equation type of incidence rate, which is low for the small number of in-
fected segment of the population because of rigorous intervention. Figure 1 illustrates how
β affects the disease’s propagation, with graphs (A), (B), and (C) representing the corre-
sponding values as β = 1, β = 0.7, and β = 0.3. The World Health Organisation (WHO)
estimates the hospital bed-population ratio as the measure of resource availability to the
general public. Shan and Zhu [20] took into account the effect of resource availability along
with the nonlinear recovery rate that is given as follows:

β (b, I) = β0 + (β1 – β0)
b

b + I
, (3)

because of the quantity of available health-care resources and the proportion of infected
population, β0 and β1, 0 < β0 < β1, represent the minimum and maximum per capita re-
covery rates, respectively. Also, b is some positive constant that has a biological signifi-
cance as it is a measure of the effect of hospital bed capacity on the spread of infectious
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Figure 1 Impact of β on the infection rate with varying k values

Figure 2 Graph of recovery rate for a fixed number of available resources

diseases. Figure 2 shows how the nonlinear recovery rate behaves when the quantity of
resources available is known. It has been discovered that complicated dynamic behav-
ior including forward and backward bifurcations can result from this nonlinear recovery
term. Several studies conducted recently examined the infectious diseases dynamics using
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various forms of incidence rates [21–24] that includes mainly two factors, infected pop-
ulation and intervention strategies. The presented research proposes a SIR model that
incorporates a nonlinear saturated incidence rate and a recovery rate using a Monod-type
equation. Previous researches showed that the infection rate depended on the entire pop-
ulation. However, this study has taken into account the possibility that an infected person
might not be able to spread the infection if susceptible individuals are not available, as
might be the situation under a quarantine, which makes the model novel. Furthermore, it
is evident that the recovery rate is directly correlated with the quantity of resources that
are accessible, such as hospital beds, oxygen cylinders, or vaccination doses, depending
on the disease.

The rest of the paper is organized as follows: Following model formulation, Sect. 2
presents a mathematical validation of the model, including positivity and boundedness
of the solution, basic reproduction number computation, existence of points of equi-
libria, bifurcation analysis, and stability analysis at equilibria points. In Sect. 3, the nu-
merical solution is computed using the MATLAB solver, and the results are displayed
graphically. A brief summary of the findings and the study’s conclusion is given in
Sect. 4.

2 Model specification
The entire population N(t) is categorized into three compartments, that is, susceptible
population S(t), infected population I(t), and recovered population R(t), where, N (t) =
S (t) + I (t) + R (t) with individuals commuting from category S(t) to category I(t) at a
transmission rate of αIS

k+βI .
After acquiring the infection, a person will either recover at a rate β (b, I) I or die at a

rate γ I . Since there are three subpopulations, the nonlinear dynamical system is composed
of the following three nonlinear differential equations:

dS
dt

= A –
αIS

k + βI
– δS,

dI
dt

=
αIS

k + βI
–

(
β0 + (β1 – β0)

b
b + I

)
I – (γ + δ)I,

dR
dt

=
(

β0 + (β1 – β0)
b

b + I

)
I – δR,

(4)

where A is some positive constant that represents the birth rate, δ represents the natu-
ral mortality rate for each compartment, and γ indicates the disease-related death. The
incidence rate and recovery rate are defined by Eqs. (2) and (3), respectively.

Since R(t) is not present in the first two equations of system (4), it is sufficient to focus
simply on the first two equations with R(t) = N(t) – S(t) – I(t). The following simplified
model will therefore be the main topic of discussion:

dS
dt

= A –
αIS

k + βI
– δS,

dI
dt

=
αIS

k + βI
–

(
β0 + (β1 – β0)

b
b + I

)
I – (γ + δ)I.

(5)
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2.1 Positivity and boundedness of the solution set
Theorem 1 The solution set

� =
{
((S(t)) , (I(t))) ∈R

2
+ ∪ {(0, 0)} ; S(t) + I(t) ≤ A

δ
,∀ t ≥ 0

}
,

for the system (5) satisfies positivity and boundedness.

Proof Suppose that N(t) = S(t) + I(t), then by adding the first two equations of system (5):

dN
dt

= A – δN(t) –
(

β0 + (β1 – β0)
b

b + I

)
I – γ I(t),

implies that:

dN
dt

≤ A – δN(t),

on using integration techniques, one can obtain that:

N(t) ≤ N(0)e–δt +
A
δ

(
1 – e–δt) .

Therefore, lim
t→∞ sup N(t) ≤ A

δ
and dN

dt < 0 for N ≥ A
δ

. Hence, the required result holds. □

2.2 Basic reproduction number
The average number of subsequent infections that an infected person causes during the
course of their infectious period when they are placed into a population that is totally
susceptible is known as the basis reproduction number. Here, the next-generation ma-
trix method [25] approach will be employed to determine the basic reproduction number,
which is represented by ℜ0. On comparing (5) with [25], we obtain:

f =
αIS

k + βI
,

v =
(

β0 + (β1 – β0)
b

b + I

)
I + (γ + δ)I.

Now, F and V will be evaluated by partial derivatives at the disease-free equilibrium point,
that is:

F =
∂f
∂I

∣∣∣∣
E0

, V =
∂v
∂I

∣∣∣∣
E0

,

which implies

F =
αA
kδ

, V = β1 + γ + δ

and ℜ0 will be the spectral radius of FV –1, hence:

ℜ0 =
αA

kδ (β1 + γ + δ)
. (6)
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2.3 Existence of equilibria
A point of equilibrium is one where all of the state variables remain unchanged and con-
stant. For system (5) the points of equilibria will be calculated by solving the system of
equations:

A –
αIS

k + βI
– δS = 0,

αIS
k + βI

–
(

β0 + (β1 – β0)
b

b + I

)
I – (γ + δ)I = 0.

(7)

• For disease-free equilibria, substitute I = 0 in (5), it is obtained that S = A
δ

, therefore:

E0(S, I) =
(

A
δ

, 0
)

.

• For endemic equilibria E1 (S∗, I∗), the following equations need to be solved:

A –
αI∗S∗

k + βI∗ – δS∗ = 0,

αI∗S∗

k + βI∗ –
(

β0 + (β1 – β0)
b

b + I∗

)
I∗ – (γ + δ)I∗ = 0.

From the second equation it is obtained that:

S∗ =
(β0I∗ + bβ1 + bγ + bδ + δI∗ + γ I∗) (k + βI∗)

α (b + I∗)

and on substituting this into the first equation, it is obtained that:

C1
(
I∗)2 + C2

(
I∗) + C3 = 0, (8)

where

C1 = (α + βδ) (β0 + γ + δ) ,

C2 = b (β1 + γ + δ) (α + βδ) + δk (1 – ℜ0) (β1 + γ + δ) – δk (β1 – β0) ,

C3 = bkδ (1 – ℜ0) (β1 + γ + δ) .

Therefore, the roots will be of the type:

I∗
1 , I∗

2 =
–C2 ±

√
(C2)

2 – 4C1C3

2C1
.

The following possible cases arise from these:
Case I When ℜ0 < 1, then C1 > 0 and C3 > 0. If b ≥ δk(β1–β0)

(β1+γ +δ)(α+βδ)
, then C2 > 0,

hence, (8) has no positive real roots. Else for C2 < 0, equation (8) has no real
root if (C2)

2 – 4C1C3 < 0, one real and positive root if (C2)
2 – 4C1C3 = 0, and

two positive real roots if (C2)
2 – 4C1C3 > 0.
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Case II When ℜ0 = 1, then C1 > 0 and C3 = 0. Therefore, equation (8) has no real
root if b ≥ δk(β1–β0)

(β1+γ +δ)(α+βδ)
and only one positive real root if b < δk(β1–β0)

(β1+γ +δ)(α+βδ)
. In

this case one root is always zero.
Case III When ℜ0 > 1, clearly C3 < 0 and hence –4C1C3 > 0. This implies that√

(C2)
2 – 4C1C3 > C2, therefore equation (8) has a unique positive real root.

2.4 Stability analysis
A stable equilibrium point is one where a minor disturbance of the solution from that equi-
librium point gradually diminishes over time. Additionally, if a tiny disturbance increases
over time, it is deemed unstable.

Definition 1 Assume there exists a real-valued scalar function L(x) that satisfies the fol-
lowing:

• L(x) = 0;
• L(x) is positive definite for x ≠ x;
• L′(x) is negative semidefinite along the trajectories of x′ = g(x).

Then, L(x) is called the Lyapunov function and x is stable for the system x′ = g(x).

Theorem 2 The system (5) at the disease-free equilibrium point E0 will be locally asymp-
totically stable for ℜ0 < 1 and unstable when ℜ0 > 1.

Proof Comparing system (5) with

dS
dt

= f1 (S, I) ,

dI
dt

= f2 (S, I) ,

it is obtained that:

f1 (S, I) = A –
αIS

k + βI
– δS,

f2 (S, I) =
αIS

k + βI
–

(
β0 + (β1 – β0)

b
b + I

)
I – (γ + δ)I.

Then, the Jacobian matrix of the system (5) is denoted by J and defined as:

J =

(
∂f1
∂S

∂f1
∂I

∂f2
∂S

∂f2
∂I

)
,

which implies that

J =

(
– αI

k+βI – δ – kαS
(k+βI)2

αI
k+βI

kαS
(k+βI)2 – (β0 + γ + δ) – b2(β1–β0)

(b+I)2

)
,

at the disease-free equilibrium point E0(S, I) =
(A

δ
, 0

)
, it is obvious that:

J (E0) =

(
–δ – αA

kδ

0 αA
kδ

– (β1 + γ + δ)

)
.
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Now, the characteristic equation generated from J(E0) has eigenvalues:

λ1 = –δ,

λ2 =
αA
kδ

– (β1 + γ + δ) .

Thus, the Jacobian matrix has both eigenvalues as negative if and only if ℜ0 < 1. Hence, by
the Routh–Hurwitz criterion for stability [26], the equilibrium point E0 is asymptotically
stable for ℜ0 < 1 and unstable when ℜ0 > 1. □

Theorem 3 The system (5) at the disease-free equilibrium point E0 will be globally asymp-
totically stable for αA

δ(β0+γ +δ)
< k.

Proof As αA
δ(β0+γ +δ)

< k, therefore ℜ0 < 1. The Lyapunov function for this problem is defined
as:

dL
dt

=
dL
dS

.
dS
dt

+
dL
dI

.
dI
dt

=
(

δ

A
–

1
S

)(
A –

αIS
k + βI

– δS
)

+
δ

A

(
αIS

k + βI
–

(
β0 + (β1 – β0)

b
b + I

)
I – (γ + δ)I

)

= 2δ –
δ2S
A

–
A
S

+
αI

k + βI
–

δ

A

(
γ + δ + β0 + (β1 – β0)

b
b + I

)
I

≤ 2δ –
δ2S
A

–
A
S

+
(
α – δk

A (γ + δ + β0)
)

I – δ
A (γ + δ + β0) I2

k + βI

≤ 0,

because, β0 + (β1 – β0)
b

b+I > β0 holds for all I ≥ 0. Therefore, dL
dt ≤ 0 holds provided that

ℜ0 ≤ 1. Also, dL
dt = 0 only at E0(S, I) =

(A
δ

, 0
)
, which completes the proof. □

Theorem 4 The endemic equilibrium point E1 (S∗, I∗) will be asymptotically stable only if
equations (9) and (10) satisfy:

αI∗

k + βI∗ + β0 + γ + 2δ +
b2 (β1 – β0)

(b + I∗)2 >
kαS∗

(k + βI∗)2 , (9)

b2δ (β1 – β0)

(b + I∗)2 + δ (β0 + γ + δ) +
b2 (β1 – β0)αI∗

(k + βI∗) (b + I∗)2 +
αI∗ (β0 + γ + δ)

k + βI∗

>
kαδS∗

(k + βI∗)2 . (10)

Proof Consider the jacobian matrix for the system (5) at the endemic equilibrium point
E1 (S∗, I∗):

J(E1) =

(
– αI∗

k+βI∗ – δ – kαS∗
(k+βI∗)2

αI∗
k+βI∗

kαS∗
(k+βI∗)2 – (β0 + γ + δ) – b2(β1–β0)

(b+I∗)2

)
.
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Then, the characteristic equation related to the matrix J(E1) will be:

λ2 – tr (J(E1)) λ + det (J(E1)) = 0,

which implies

λ2 + H1λ + H2 = 0, (11)

where

H1 =
αI∗

k + βI∗ + β0 + γ + 2δ +
b2 (β1 – β0)

(b + I∗)2 –
kαS∗

(k + βI∗)2 ,

H2 =
b2δ (β1 – β0)

(b + I∗)2 + δ (β0 + γ + δ) +
b2 (β1 – β0)αI∗

(k + βI∗) (b + I∗)2

+
αI∗ (β0 + γ + δ)

k + βI∗ –
kαδS∗

(k + βI∗)2 .

Now, by applying the Routh–Hurwitz criterion it is observed that the matrix J(E1) will have
eigenvalues with negative real parts if and only if both H1 and H2 are positive. Therefore,
the equilibrium point E1 (S∗, I∗) is asymptotically stable only if (9) and (10) holds. □

Theorem 5 If we rewrite equation (10) as:

b2δ (β1 – β0)

(b + I∗)2 + δ (β0 + γ + δ) +
b2 (β1 – β0)αI∗

(k + βI∗) (b + I∗)2 +
αI∗ (β0 + γ + δ)

k + βI∗ <
kαδS∗

(k + βI∗)2 ,

then E1 (S∗, I∗) will be a saddle point. Moreover, if we rewrite equation (9) as:

αI∗

k + βI∗ + β0 + γ + 2δ +
b2 (β1 – β0)

(b + I∗)2 >
kαS∗

(k + βI∗)2

and (10) is satisfied, then E1 (S∗, I∗) will be unstable.

2.5 Bifurcation analysis
A bifurcation occurs when equilibrium points undergo a shift in stability behavior or dy-
namics; this point of equilibrium at which a bifurcation exists is referred to as the bifur-
cation point.

Theorem 6 The system (5) exhibits a bifurcation at the equilibrium point E0(S, I) =
(A

δ
, 0

)
when α = kδ(β1+γ +δ)

A .

Proof From J(E0), it is clear that if α = kδ(β1+γ +δ)

A , then one eigenvalue will be zero. Hence,
the system becomes unstable at ℜ0 = 1. As for α < kδ(β1+γ +δ)

A , both the eigenvalues of the
matrix J(E0) will be negative. This implies that E0 becomes an asymptotically stable node
for the system (5). Again, if α > kδ(β1+γ +δ)

A holds, the matrix J(E0) has one negative and
another positive eigenvalue. This implies that E0 becomes an unstable saddle point for the
system (5). Therefore, system (5) exhibits a bifurcation for α = kδ(β1+γ +δ)

A . □
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Theorem 7 Suppose that:

αI∗

k + βI∗ + β0 + γ + 2δ +
b2 (β1 – β0)

(b + I∗)2 =
kαS∗

(k + βI∗)2

and (10) holds. Then, at the endemic equilibrium point E1 (S∗, I∗), system (5) shows a Hopf
bifurcation.

Proof By the given condition:

αI∗

k + βI∗ + β0 + γ + 2δ +
b2 (β1 – β0)

(b + I∗)2 =
kαS∗

(k + βI∗)2 ,

it can be seen that C1 = 0 in (11) and the equation reduces to

δ2 + C2 = 0.

Hence, by using Theorem 5, the stability behavior for the system (5) at the endemic equi-
librium point E1 (S∗, I∗) is totally depend on parametric value α = α∗, where:

α∗ =
b2δ (β1 – β0) (k + βI∗)2 + δ(k + βI∗)2(b + I∗)2

kδS∗(b + I∗)2 – I∗ (β0 + γ + δ) (k + βI∗) (b + I∗)2 – b2I∗ (β1 – β0) (k + βI∗)
,

such that

kδS∗(b + I∗)2 – I∗ (β0 + γ + δ)
(
k + βI∗) (

b + I∗)2 – b2I∗ (β1 – β0)
(
k + βI∗) ≠ 0.

Also, we have

d
dα

[tr (J (E1))]α=α∗ =
kS∗ – I∗ (k + βI∗)

(k + βI∗)2 ≠ 0.

Therefore, there exists a Hopf bifurcation for the system (5) at the endemic equilibrium
point E1 (S∗, I∗) for α = α∗. □

Theorem 8 The positive quadrant of the (S, I) plane for the system (5) has no periodic
solution in the interior when k < bβ .

Proof Consider a nonnegative real-valued function F such that:

F(S, I) =
k + βI

IS
> 0.

Also, from Theorem 2, we have

f1(S, I) = A –
αIS

k + βI
– δS,

f2(S, I) =
αIS

k + βI
–

(
β0 + (β1 – β0)

b
b + I

)
I – (γ + δ)I.
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Then, we have

H =
∂

∂S
(
F .f1

)
+

∂

∂I
(
F .f2

)

= –
A (k + βI)

IS2 –
β0β

S
–

b (β1 – β0) [bβ – k]

S(b + I)2 –
β(γ + δ)

S

< 0, when k < bβ . □

Hence, by using Dulac’s creterion [27], it is proved that the positive quadrant of the (S, I)

plane for the system (5) has no periodic solution in the interior when k < bβ .

3 Numerical simulation
By the MATLAB solver ode45, which solves initial-value problems using the Runge–Kutta
methods, we numerically demonstrate the results that the equilibrium point E is locally
and globally asymptotically stable. Additionally, graphs for various values of β demon-
strate the dynamic behavior of the susceptible and infected population. Using parametric
data from Table 1, a time-dependent graph of the susceptible and infected populations was
created. Table 1 makes it evident that endemic equilibrium exists at point E∗(170.74, 2.21)

and that the basic reproduction number is ℜ0 = 4.2168. Upon applying Theorem 4 to de-
termine the validity of the parameters listed in Table 1, it is determined that the equi-
librium point E∗(170.74, 2.21) is locally asymptotically stable for these parametric val-
ues.

Figure 3 depicts that S(t) and I(t) are solutions that approach the equilibrium point
E∗(170.74, 2.21) and satisfy the initial condition I(S0, I0) = (100, 50). The dynamics of the
susceptible and infected populations is shown in Fig. 3 for β = 1, 0.7, 0.3, where it can be
seen that every member of the infected population is actively contributing to the propa-
gation of the infection. The graphs show the effects of various beta values on solutions S
and I , these reflect the situations in which a ratio of the infected population rather than the
entire infected population is available for additional infection spread. The global asymp-
totically stability for the endemic equilibrium point E∗(209.91, 2.95) has been demon-
strated using the parameter values listed in Table 2. As a result, our solutions S(t) and I(t)
will converge to the same equilibrium point E∗(209.91, 2.95) for any initial values. Figure 4
shows that the equilibrium point E is globally asymptotically stable. For the system (5),
five distinct initial values have been taken into consideration in order to demonstrate the
global stability of equilibrium point E∗(209.91, 2.95). Figure 4 makes it abundantly evident
that both solutions S and I converge to the same equilibrium point for all initial values.
Additionally, using various values of k and β , the parameters listed in Table 3 have been

Table 1 Parameter values used for numerical simulation of S(t) and I(t)

Parameter Value Dimension

A 1.75 individual/time
α 0.01 (individual/time)–1

k 2 individual
δ 0.005 time–1

β0 0.2 time–1

β1 0.21 time–1

b 0.2 individual
γ 0.2 time–1
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Figure 3 Relation between Susceptible and Infected Population with respect to time and β = 1(S3, I3),
β = 0.7(S2, I2), andβ = 0.3(S1, I1)

Table 2 Parameter values used for stability analysis

Parameter Value Dimension

A 2.3 individual/time
α 0.01 (individual/time)–1

k 2 individual
δ 0.005 time–1

β0 0.2 time–1

β1 0.5 time–1

b 0.2 individual
γ 0.2 time–1

utilized to model the impact of intervention levels on the propagation of infections. Us-
ing different values of k and fixed β = 1, Fig. 5 illustrates how intervention levels affect
the propagation of infection. When the entire population that is affected is actively trans-
mitting the disease, it illustrates how the infection spreads. Figure 6 shows how varying
intervention levels impact the spread of infection using various values of k, which repre-
sents the level of intervention such as low, mild, moderate, and strict, and β = 0.7. It is
indicative of the spread of the virus when only about 70% of the infected population is
actively spreading the disease, rather than the entire infected population. Using a range
of values for k, which stands for the level of intervention, including low, mild, moderate,
and strict, Fig. 7 illustrates how different intervention levels affect the transmission of the
infection. When just roughly 30 percent of the infected population actively spreads the
disease, as opposed to the entire infected population, it represents the spread of the dis-
ease. Greater values of k indicate that employing stringent and modest therapies aids in
the decrease in the number of infected individuals. The modest β values had a similar
outcome.
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Figure 4 Stability analysis for the endemic equilibrium point E1 with distinct initial values

Table 3 Parameters used for dynamic behavior of infected population I

Parameter Value Dimension

A 1.7 individual/time
α 0.01 (individual/time)–1

δ 0.005 time–1

β0 0.02 time–1

β1 006 time–1

b 0.2 individual
γ 0.2 time–1

4 Conclusion
A novel SIR model using a Monod-type equation featuring a nonlinear saturated inci-
dence and recovery rate is proposed in the study. A detailed mathematical analysis has
been conducted for the developed model. Firstly, the nonnegativity and boundedness of
the solution set has been proved. Further, every possibility for the existence of disease-free
and endemic equilibria has been discussed. Additionally, the models’ dynamics are locally
and it is globally analyzed. The model’s stability at disease-free equilibria are explored and
discovered that it was unstable when ℜ0 > 1 and locally and globally asymptotically stable
when ℜ0 < 1. It is established that, for ℜ0 > 1, the disease endemic equilibrium E1 (S∗, I∗)
exists. Under some circumstances specified by the inequalities (9) and (10), it is locally
asymptotically stable; otherwise, an unstable condition and the existence of a saddle point
for the endemic equilibrium point are governed by Theorem 5. MATLAB has been used
to carry out the numerical simulation. The use of a nonlinear incident rate as a monoid-
type equation improves the study over a constant-type incident rate because the spread
of infection is now determined by the force of the disease as well as the number of in-
fected individuals available to distribute the virus. The evaluation of the recovery rate,
which includes the lowest and maximum achievable recovery rates as well as the quantity
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Figure 5 Dynamic behavior of Infected population (I) with varying values of k and fixed β = 1

Figure 6 Dynamic behavior of Infected population (I) with varying values of k and fixed β = 0.7

of treatment resources available, improves the outcome of the research. The model’s nu-
merical simulation shows that when the rate of transmission increases, infection grows or
decreases due to the availability of therapy. Furthermore, when the degree of inhibition
adopted by susceptible and infected individuals grows, infection rates decrease. Based on
graphical analysis, the research findings show a significant drop in the infected compart-
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Figure 7 Dynamic behavior of Infected population (I) with varying values of k and fixed β = 0.3

ment as the preventative measure’s value rises. Furthermore, the number of people who
have recovered is increasing as more supplies, such as oxygen tanks, hospital beds, and
doses of vaccinations, become accessible. In the future, we will focus on assessing our
model’s stability with various nonlinear treatment function types and incident rates. For
the sake of this study, we will also consider fractional derivatives and evaluate their benefits
and drawbacks.
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