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Abstract
Objective: This study aimed to investigate the prevalence of human papillomavirus
(HPV) infection in Xinjiang, estimate the real-time reproduction number (Rt) of HPV
infection, evaluate the effectiveness of local prevention and control policies, and
provide a theoretical basis for cervical cancer (CC) control strategies in the region.
Methods: Using the R0 package, the R software was employed to estimate the
dynamic changes in the real-time reproduction number (Rt) of HPV infection in
Xinjiang from January 2015 to December 2019. Four methods—Maximum Likelihood
Estimation (ML), Exponential Growth (EG), Sequential Bayesian (SB), and
Time-Dependent (TD)—were used to calculate the Rt values. The study compared
the results from these methods to determine the most reliable approach for
estimating HPV transmission. Results: Among the four methods, the TD method
provided the best fit for observed and predicted cases. The estimated overall Rt was
1.1381 (95% CI: 1.0762–1.1972). For the periods 2015–2017 and 2017–2019, the Rt
values were 1.2827 and 1.0544, respectively. Notably, the Rt value showed a
downward trend after 2017 but remained above 1, indicating continued transmission
of HPV. Conclusion: Although HPV infection rates in Xinjiang appear to be decreasing,
the persistent Rt values suggest that HPV transmission has not been fully controlled.
This highlights the urgent need for strengthened prevention and control measures to
reduce HPV-related cervical cancer risk in the region.

Keywords: Human papillomavirus; Epidemiology; Real-time basic reproduction
number; Trend analysis

1 Introduction
Human papillomavirus (HPV) is ubiquitously present in nature and can induce specific
infections in the skin of the human body, with certain strains persisting in the mucosal
epithelium. Primarily transmitted through sexual contact, HPV infection poses a signif-
icant health concern, affecting the vagina, cervix, and anal canal, representing some of
the most prevalent sexually transmitted viral diseases. Cervical cancer (CC), a malignant
neoplasm, poses a substantial threat to women’s well-being and may severely impact their
quality of life [1]. Globally, 99.7% of cervical squamous cell carcinoma cases are associated
with persistent infection of high-risk HPV [2]. Although HPV infection is highly preva-
lent, not all cases progress to malignant tumors. The persistent of the infection emerges
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Figure 1 Number of HPV infection cases in Xinjiang from 2015–2019

Figure 2 Number of CC cases in Xinjiang from 2015–2019

as a critical factor in the development of CC. Typically, HPV infection manifests without
overt clinical symptoms and is transient in nature. Within two years, the human immune
system can eliminate or eliminate 90%of HPV infection, with only a minority of individu-
als experiencing persistent infection, leading eventually to cervical intraepithelial lesions
and, potentially, CC [3].

According to the 2022 report on global cancer mortality, CC cases worldwide rose from
604,000 in 2020 to 662,000 in 2022, with deaths increasing from 342,000 in 2020 to 349,000
in 2022 [4, 5]. Both the incidence and mortality rates of CC are escalating globally. The
situation in China is particularly concerning. In 2022, China reported 15.07 million new
cases and 5.57 million deaths from CC, representing 13.83% and 4.54% of global cases and
deaths, respectively [6]. Xinjiang, situated in northwest of China, stands out as one of the
regions with high incidence rates of CC in China [7–9]. Analysis of the epidemic sequence
of HPV infection and CC cases in Xinjiang from 2015 to 2019 underscores the severity of
HPV infection in the region. The incidence of infection cases rose from 2015 to 2017 and
has since remained at a consistently high level, while the number of CC cases has remained
elevated (Fig. 1 and 2).

The elevated incidence of CC and precancerous lesions in Xinjiang is attributed to the
joint effect of various factors like regional environment, lifestyle habits, level of education,
medical conditions, medical advancements, and assistance measures. Therefore, explor-
ing the distribution of HPV infection and CC in different age groups, and regions in Xin-
jiang, as well as understanding the relationship and patterns with the aforementioned fac-
tors, is extremely crucial for preventing, handling with, and managing HPV infection and
CC in the future. In terms of age distribution, the peak ages for HPV infection in Xinjiang
women are 30–40 years and 40–50 years, as demonstrated in Fig. 3. The average age for
CC to be found firstly in Xinjiang women is 51 years, and the risk is the highest for women
during 40–59 years old, as explicated in Fig. 4. These results may have been influenced by
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Figure 3 Age distribution of HPV infection cases in
Xinjiang, 2015–2019

Figure 4 Age distribution of CC cases in Xinjiang,
2015–2019

several factors. First, HPV, as a sexually transmitted disease, tends to occur in individuals
with sexual experience, making them more likely to be in contact with partners infected
with HPV, hence increasing the risk of infection. Second, with aging and weakening of the
immune system, the body becomes less resistant to persistent HPV infection, increasing
the possibility of CC. Regarding regional distribution, the incidence of CC in southern
Xinjiang is significantly higher than the average level of the province, especially compared
to the northern and eastern regions, as explicated in Fig. 5. The higher incidence might be
due to the rising HPV infection rates in the southern region and the uneven distribution of
healthcare services, causing a relative lag in prevention, early detection, and intervention
of CC. Additionally, this phenomenon could be influenced by local culture, socioeconomic
disparities, and uneven distribution of medical resources. Therefore, further research can
be developed to fully understand its underlying causes.

In summary, addressing the prevention and control of HPV infection in Xinjiang to sub-
sequently mitigate the incidence of CC represents a pressing medical and societal chal-
lenge requiring immediate attention.

Numerous studies have delved into HPV infection using statistical models, primarily
focusing on factors associated with HPV prevalence and outbreaks. These factors encom-
pass sexual behavior [10, 11], age [12, 13], gender [14, 15], immune system status [16, 17],
health knowledge and behavior, geographical environment and social economy [18, 19].

There are few studies focusing on dynamic models of HPV transmission, with the ma-
jority being theoretical in nature. Considering the epidemiological characteristics of HPV
infection, most proposed dynamic models are centered on global dynamic analyses to ob-
tain strategies for HPV control [20–22]. The basic reproduction number (RPN)(R0) serves
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Figure 5 Regional distribution of CC incidence in Xinjiang from 2015 to 2019

as a key epidemiology indicator for assessing virus spread, representing the average new
infection number induced by infectious individuals in a wholly susceptible population.
When R0 < 1, the infection will dwindle and eventually disappear from the population.
Conversely, if R0 ≥ 1, the disease will persist and propagate within the population, poten-
tially leading to an enduring epidemic (with infection rates continuing to rise). Ramziya
Rifhat et al. [23] developed a dynamic model of HPV infection and secondary CC trans-
mission regarding the transmission characteristics specific to Xinjiang, which incorpo-
rates a two-stage recovery process for HPV infection and precancerous lesions. Param-
eter values were optimized using the Markov Chain Monte Carlo (MCMC) algorithm,
leveraging data from CC cases in Xinjiang Province, China. The estimated basic RPN was
1.1490(95%CI : 0.6778 ∼ 1.9084), underscoring the significant impact of HPV infection
on CC incidence in Xinjiang. Furthermore, the study delves into the sensitivity of key pa-
rameters to the basic RPN through numerical simulation. Ultimately, practical control
strategies were proposed to mitigate the further spread of HPV infection and CC within
the region. Gao et al. [24] constructed a bisexual model to evaluate HPV vaccine allocation
strategies, focusing on Guangxi Province, China. They investigated the optimal distribu-
tion of vaccines between genders given a fixed vaccine dose. After numerical analysis, it
was found that first vaccinating the vaccine to the gender with a low input rate, followed
by distributing the remaining vaccines among other genders, can minimize the basic RPN
Rmin = 0.9987, ensuring it remains below the critical threshold of 1.

The real-time RPN (Rt) quantifies the anticipated number of secondary cases stemming
from primary infections at time t. A value of Rt > 1 indicates ongoing disease transmis-
sion, whereas a decline in Rt indicates a gradual slowdown in disease spread. Monitor-
ing changes in Rt estimates over time facilitates a precise assessment of the scale of epi-
demic progression, delineating peak disease incidence and inflection points more clearly.
This dynamic metric furnishes a specific basis for evaluating the effect of prevention and
control measures [25]. While basic RPN denotes an average value, real-time RPN offers
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varying estimates at different time points, enhancing our ability to discern shifts in the
rate of infectious disease transmission. Some researchers employed dynamic basic RPN
methodologies to assess the epidemic trend of COVID-19 and H1N1 influenza and the
effect of prevention and control measures [26–28]. Utilizing epidemic data of COVID-19
from Beijing, Shanghai, Guangzhou, and Shenzhen, Han Ke et al. [28] estimated the real-
time RPN’s fluctuations at different times by using mature models to evaluate the trend
of COVID-19 infectivity over time within the context of prevailing prevention and con-
trol measures. Thomas Obadia et al. [29] utilized R statistical software to establish a tai-
lored package, employing exponential growth (EG), maximum likelihood (ML), sequential
Bayesian (SB), and time-dependent (TD) methods to estimate the real-time RPN of H1N1
influenza in 2009. It aimed to evaluate the influenza epidemic trend and the efficiency
of prevailing prevention and control measures. Building upon the package developed by
Thomas Obadia et al. within the R statistical software, Wang Ying et al. [30] estimated the
real-time RPN of daily reported COVID-19 confirmed cases in Hubei Province from Jan-
uary 17 to February 8, 2020. Employing the EG, ML, SB, and TD, they compared the fitting
effects of the four methods against actual observations, with the EG method demonstrat-
ing the best fitting effect. The estimated Rt value is 3.49, with a reduced Rt value of 2.95
during the implementation of closure control measures, indicating the effective reduction
of virus transmission rates. Roya Nikbakht et al. [31] used ML, EG, TD, and AR to esti-
mate the Rt value using Canadian influenza cumulative case data. Fitting results revealed
that the TD method exhibited the smallest mean square error (MSE). The TD method es-
timated the real-time RPN of 2018 data to be 1.52 (95%CI : 1.11 ∼ 1.94), highlighting the
persistence of the epidemic and the necessity for continued measures to control, mitigate,
and prevent the spread of the epidemic.

Analyzing pertinent data regarding HPV infection and estimating the real-time RPN
(Rt) holds significant importance for understanding the transmission ability of the virus
and assessing the efficiency of subsequent prevention and control measures. Currently,
few studies have been conducted to analyze the HPV virus infection trends and preven-
tion and control in Xinjiang using real-time RPN. This research investigated an innova-
tive methodology for estimating the dynamic change in Rt , the basic RPN, at different
time points to evaluate the transmission capacity of the virus and the effect of subsequent
prevention and control measures.

2 Materials and methods
We review and outline the application of techniques for estimating both the serial interval
distribution and RPNs during epidemics. Additionally, we introduce tools for assessing
the impact of assumptions on estimation sensitivity.

2.1 Data sources
As a comprehensive large-scale hospital, Xinjiang Medical University affiliated hospitals
possess advanced medical equipment and technological capabilities to provide support for
the diagnosis and treatment of diseases such as HPV infection and cervical cancer. With
a wide range of patient sources, including patients from different cities and counties in
Xinjiang, it can better represent the demographic characteristics and disease spectrum of
the region. Furthermore, these hospitals have the capability for remote consultations, en-
abling data sharing and collaboration with hospitals in other regions of Xinjiang to further
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enhance the overall understanding of HPV infection and cervical cancer incidence rates.
Therefore, this study aims to collect HPV infection and cervical cancer case data from
Xinjiang Medical University-affiliated hospitals to reflect the overall situation of HPV in-
fection and cervical cancer incidence rates in Xinjiang.

We selected data from recent years to analyze the trends in HPV infection and cervi-
cal cancer incidence in Xinjiang. This decision was informed by several factors. First, we
sought to ensure the contemporaneity of the data by excluding earlier periods. Second,
the impact of the HPV screening program initiated in 2009 requires a certain amount of
time to manifest in the overall infection trends, so we avoided overly early data. Moreover,
the COVID-19 pandemic in 2019 shifted public attention away from HPV infection, re-
sulting in decreased awareness. Consequently, this study does not consider data on HPV
infection and cervical cancer incidence beyond 2019.

2.2 Defining a generation time (GT) distribution
The GT refers to the duration between infection in a primary and a secondary case. Typ-
ically, its distribution is deduced from the temporal lag between all pairs of infectors and
infectees [32]. Given its inherent unobservability, it is often approximated by the serial in-
terval distribution, which characterizes the elapsed time between the onset of symptoms.
Our software features a’generation.time()’ function tailored to depict a discretized GT dis-
tribution. Discretization is conducted over defined intervals such as [0, 0.5), [0.5, 1.5), and
[1.5, 2.5), with users able to select their preferred time unit (hour, day, week...). Our soft-
ware supports multiple descriptions, including “empirical”, which necessitates a compre-
hensive distribution specification, and parametric distributions such as “gamma”, “lognor-
mal”, or “weibull”. In the latter scenario, users are required to provide the mean and stan-
dard deviation in their desired time units. Additionally, we offer a function’est.GT()’ for
estimating the serial interval distribution through exponential growth and maximum like-
lihood, utilizing a sample of observed time intervals between symptom onsets in primary
and secondary cases.

2.3 Exponential growth method (EG)
As delineated by Wallinga and Lipsitch [33], the EG rate in the initial outbreak phase is
closely tied to the initial reproduction ratio. This growth rate e quantifies the per capita
change in new case numbers over time. Due to the discrete nature of incidence data, Pois-
son regression is recommended for estimating this parameter [29, 34], rather than linear
regression on the logged incidence. The RPN is computed as

R =
1

M(–e)
,

where M denotes the moment-generating function of the discretized GT distribution. Se-
lecting a period on the epidemic curve characterized by exponential growth is imperative.
The deviance-based R-squared statistic is employed to aid in this selection process. No
assumption is made regarding population mixing.

2.4 Maximum likelihood estimation (ML)
This model, introduced by White and Pagano [35], operates under the assumption that the
secondary case number resulting from an index case follows a Poisson distributed with an
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expected value R. By observing (N0, N1, . . . , NT ) incident cases across consecutive time
intervals, and with knowledge of the GT distribution ω, R is estimated by maximizing the
log-likelihood

LL(R) = ΣT
t=1 log(

e–μt μ
Nt
t

Nt !
),

where

μt = RΣt
m=1Nt–mωm.

Once more, it is imperative to compute the likelihood over a timeframe characterized
by exponential growth, with the possibility of employing the deviance R-squared measure
to identify the optimal period. Notably, no assumptions are made regarding population
mixing within the community.

2.5 Sequential Bayesian method (SB)
While introduced by its authors as “real-time Bayesian”, this method facilitates more pre-
cise sequential estimation of the initial RPN. It takes an approximation to SIR model,
wherein the incidence at time m + 1 noted as Nm+1, is approximately as Poisson distributed
with a mean of Nmeγ (R–1) [36], where 1

γ
represents the reciprocal of the infectious pe-

riod average duration. The proposed algorithm, outlined within a Bayesian framework,
commences with a non-informative prior distribution on the RPN R. Subsequently, this
distribution is updated as fresh data becomes available:

P(R|N0, N1, . . . , Nm+1) =
P(Nm+1|R, N0, N1, . . . , Nm)P(R|N0, N1, . . . , Nm)

P(N0, N1, . . . , Nm+1)

In essence, the prior distribution for R employed on each subsequent day corresponds
to the posterior distribution from the preceding day. At each time point, the posterior
mode can be calculated, the highest probability density interval can be determined. Sim-
ilar to previous iterations, this methodology mandates that the epidemic is experiencing
exponential growth, neglecting susceptible depletion. It implicitly assumes an exponential
distribution for the GT and posits random mixing within the population.

2.6 Time-dependent method (TD)
The methodology proposed by Wallinga and Teunis [37] for computing RPNs is TD. It
involves averaging all the compatible transmission networks observed. Specifically, the
probability Pij, denoting the transmission from case j with onset at time ti to case i with
onset at time tj, is determined as follows:

Pij =
Niw(ti – tj)

∑︁
i≠k Niw(ti – tk)

.

The effective RPN for case j is thus denoted as Rj =
∑︁

i pij and is averaged as Rt =
1

Nt

∑︁
tj=t Rj over all cases with the same date of onset. CI for Rt is derived through sim-

ulation. Correction for real-time estimation, accounting for unobserved secondary cases,
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are feasible [38]. Additionally, it is viable to accommodate imported cases throughout the
epidemic.

In this study, statistical analysis was performed using R 4.1.3. The real-time RPN Rt was
estimated utilizing the’estimate.R()’ function in the R0 software package. The estimated
Rt values for the SB and TD methods were derived from averaging across all time points
in the infection dataset. Given that the EG and ML methods necessitate an exponential
growth phase, we additionally performed sensitivity analysis on the exponential growth
phase through the’Sensitivity.analysis()’ function. This approach aids in identifying the
optimal time window for estimating the basic RPN, thereby enhancing the study’s credi-
bility.

3 Results
3.1 Estimating real-time RPNs
The dataset for this study comprises monthly confirmed HPV infections reported by hos-
pitals affiliated with Xinjiang Medical University. Data collection spanned from January
2015 to December 2019. In line with the incubation period of HPV infection, a Gamma
distribution with an average of 2.6 months and a standard deviation of 1 month was em-
ployed to model the time distribution of HPV infection. To construct the HPV epidemic
curve, we employed ML, EG, SB, and TD to estimate Rt (Table 1).

The Rt values estimated using case data from January 2015 to December 2019 are as fol-
lows: The estimated Rt for the ML method was 1.0574(95%CI : 1.0465 ∼ 1.0684), for the
EG method was 1.0534(95%CI : 1.0520 ∼ 1.0549), for the SB method was 1.1625(95%CI :
1.1120 ∼ 1.2115), and for the TD method was 1.1381(95%CI : 1.0762 ∼ 1.1972). Surpris-
ingly, despite utilizing the same data, the estimated range exhibited a considerable vari-
ation of up to 10% (from 1.0534 to 1.1625). In addition, the confidence intervals did not
consistently overlap (Fig. 6). However, the fitting of each model to the data remained rel-
atively similar across all cases, except for the SB method, which displayed poorer fitting
(Fig. 7).

No substantial disparity existed among the real-time RPNs, as estimated by various
methods. However, the Rt estimates derived from each method surpass the critical thresh-
old of 1, which indicates that HPV transmission in Xinjiang remains uncontained and con-
tinues to spread. Therefore, it remains imperative to prioritize HPV virus transmission in

Table 1 Real-time RPN and 95%CI estimated by ML, EG, SB, and TD method

Method Initial Estimate Optimal time range estimate
Rt Rt
[95%CI] [95%CI]

ML (optimal time window: 12:20) 1.0574 1.3300
[1.0465 , 1.0684] [1.2577 , 1.4079]

EG (optimal time window: 1:20) 1.0534 1.3134
[1.0520 , 1.0549] [1.3016 , 1.3254]

SB 1.1625 1.3205
[1.1120 , 1.2115] [1.2179 , 1.4200]

TD 1.1381 1.2916
[1.0762 , 1.1972] [1.2208 , 1.3633]

All estimates were generated using the first 60 months of data (default column)or the optimal fitting time window (“optimal”
column). For the SB method, the optimal reported estimate was obtained on month 20, as this date best fits the end of the
exponential growth period. For the TD method, the optimal estimates were averaged over the first 27 months.
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Figure 6 Rt value and its 95% CI of HPV infection in Xinjiang from 2015 to 2019 estimated by EG, ML, SB, and
TD methods

Figure 7 Fitting effect diagram of the four methods ML, EG, SB, and TD and actual observations

Xinjiang and bolster the implementation of prevention and control measures to curb the
incidence of CC among women in Xinjiang and advance towards the goal of eliminating
CC promptly.

3.2 Sensitivity analysis
The EG and ML methods necessitate the user to designate the time frame during which
exponential growth occurs. By default, this period spans from the first case to the date
of maximum incidence. Nevertheless, a more optimal selection can be made by lever-
aging the deviance R-squared statistic across a spectrum of potential time periods. The
highest R-squared value indicates the period in which the analytical model best fits the
data, and this interval is chosen to provide estimates. To identify this time span, the’Sensi-
tivity.analysis()’ function systematically computes the deviance R-squared statistic across
user-defined time intervals. A plot illustrating the highest R-squared value over progres-
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Figure 8 Sensitivity of the reproduction ratio to the choice of the time period for estimation. (a), (c) The
maximum deviance R-squared statistic across varying time periods, with the red dot indicating the optimal
value. (b), (d) Estimates of the reproduction ratio for various start and end dates, with the dot denoting the
best fit and solid black lines delineating the corresponding 95%CI. Estimates falling within the 95%CI of the
best-fit value can be obtained by employing a diverse range of start and end dates, as indicated by values
between the solid black lines

sively longer time periods can be generated (Fig. 8 (a)(c)), while the corresponding esti-
mates are displayed based on the selected time window (Fig. 8 (b)(d)).

During the exponential growth period analyzed in this study (January 2015–March
2017), the optimal exponential growth interval was determined using the deviation R-
squared statistic. The analysis indicated that the most appropriate section of the epidemic
curve for exponential growth in the EG and ML methods spanned 19 months. Specifi-
cally, from the first month to the 20th month, the estimated RPN for the EG method was
1.3134(95%CI : 1.3016 ∼ 1.3254) (Fig. 8 (b)). The RPN estimate for the ML method was
1.3300(95%CI : 1.2577 ∼ 1.4079) (Fig. 8 (d)).

Across a wide range of time windows, the RPN estimates remained within the 95%CI
of the optimal fit, implying robustness to variations in the exponential growth period.
The estimates derived from the best-fitting time window for each method are reported in
Table 1. Notably, employing the “best fitting” time period for EG and ML methods resulted
in reduced variability between estimates.

According to the research by Thomas Obadia et al. [29], the SB method is deemed more
suitable for estimating the real-time RPN during the latter portion of the initial expo-
nential growth phase. Analysis of the data in this study revealed a brief, sharp decline
following an increase in cases from January 2015 to August 2016. Therefore, for the SB
method, the period spanning from the first month to the 20th month was identified as
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Figure 9 Sensitivity of the RPN to the choice of the GT distribution. Reproduction ratio estimates were
computed using various mean GTs. (a) The variation in the estimated real-time RPN using the EG method
across different generation times. (b) The variation in the estimated real-time RPN using the ML method
across different generation times. CIs are shown as vertical bars

the most appropriate time period for estimating the real-time RPN, yielding an estimate
of 1.3205(95%CI : 1.2179 ∼ 1.4200). The TD method is best applied during the period
when the infection rate peaks. Therefore, the TD methodology was utilized to estimate
the real-time RPN using incidence data from January 2015 to March 2017, generating an
estimated value of 1.2916(95%CI : 1.2208 ∼ 1.3633) (Table 1). Since 2014, the HPV de-
tection pilot project has been officially initiated in Xinjiang. Secondly, domestic vaccines
have also been available on the market since 2016. In addition, the widespread use of mo-
bile phone applications such as TikTok has heightened the influence of digital networks on
individuals, leading to an increased awareness of HPV among women in Xinjiang. These
factors collectively contribute to enhancing women’s attention to HPV in Xinjiang, which
further promotes the enthusiasm of women in Xinjiang for HPV detection and increases
the detection rate of HPV.

Another pertinent consideration is how estimates vary based on the determined GT dis-
tribution. We varied the GT distribution for the EG and ML methodologies (Fig. 9 (a)(b)):
as anticipated, estimates elevated with the mean GT [s41??]. Employing the same epi- <ref:??>

demic curve, reported reproduction ratios ranged from 1.1 to 1.5 as the mean GT varied
from 1.5 to 5 months.

3.3 The fitting of the four methods with the actual observations
In Fig. 7, the real-time RPNs estimated by the EG, ML, SB, and TD methods were uti-
lized to forecast the number of HPV infection cases, and the predicted values were fitted
with the actual observations. TD method exhibited the smallest deviation and displayed
superior fitting effectiveness.

Figure 10 illustrates that the Rt value estimated by the TD method, exhibiting optimal
fitting, displays a discernible downward trend over the years, with a gradual convergence
toward 1 since 2018. Observing the HPV infection epidemic curve in Xinjiang from 2015
to 2019 (Fig. 1), it is evident that the number of HPV infection cases continued to rise from
2015, peaking in March 2017, before stabilizing into a relatively flat trend thereafter. The
estimated Rt value was 1.2827 during 2015–2017, decreasing to 1.0544 during 2017–2019,
indicative of a significant reduction in the estimated RPN. This decline can be attributed to
several factors: heightened awareness of HPV infection due to increased internet penetra-
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Figure 10 Estimating the trend of the real-time RPN Rt over time using the TD methodology. (The light blue
shadow is the 95% CI range, the blue solid line is the real-time RPN, the gray solid line is the average of the
real-time RPN from 2015 to 2019, and the black dotted line is the threshold 1)

tion, improvements in women’s education leading to enhanced cultural standards, and re-
duced instances of early marriage, early sexual activity, and early childbirth among women
in Xinjiang. Additionally, HPV vaccination has also played a significant role in preventing
infection. Since the end of 2016, China has successively launched HPV domestic vaccines
and implemented vaccine policies, gradually expanding vaccination coverage [39].

If the Rt estimation value remained above 1, it signifies the necessity for the implemen-
tation of effective prevention and control strategies to curb the spread of HPV infection
and mitigate the incidence of CC in Xinjiang.

4 Conclusion
In this study, data encompassing the monthly count of confirmed HPV infections reported
by Xinjiang Medical University-affiliated hospitals from January 2015 to December 2019
was collected. EG, ML, SB, and TD were employed to estimate the real-time RPN accord-
ing to the epidemic curve. Subsequently, these methods were compared to determine the
one yielding the highest accuracy and optimal fitting. The real-time RPN was estimated
utilizing the function’estimate.R()’ within the R0 package of the statistical software R4.1.3
to evaluate the transmission rate of HPV, providing a scientific basis for disease prevention
and control.

Rt serves as a critical parameter in assessing the prevalence of infectious diseases. The
higher the Rt value, the faster the spread of such infectious diseases. Through the fit-
ting of observed and predicted case counts using the four methods, it was determined
that the TD method exhibited the optimal fitting effect, yielding an estimated Rt value
of 1.1381(95%CI : 1.0762 ∼ 1.1972). Obviously, the Rt value for HPV infection remains
above 1, signaling the persistence of a severe trend in Xinjiang. Consequently, intensified
control measures are imperative to curtail further spread of the infection within the re-
gion.
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In this study, the Rt values for HPV infection in Xinjiang were calculated using differ-
ent methods, facilitating an assessment of the transmission potential of the HPV virus.
Comparisons were made between Rt values before and after the implementation of con-
trol measures such as sex education, regular screening, and vaccination. Initially, Rt values
suitable for the TD method were estimated during the early epidemic phase. Subsequently,
following the implementation of these control measures, a significant decrease in Rt values
was observed compared to earlier periods (with estimated values of 1.2827 for 2015–2017
and 1.0544 for 2017–2019), indicating the efficacy of these control measures in reduc-
ing the transmission rate of HPV virus. This study provides vital parameters for further
analysis of HPV infection, including the evaluation of control measure implementation
effectiveness and the prediction of future infection trends, and also provides a scientific
basis for adjusting control measures.

With the rapid advancement of the national economy and the enhancement of national
policies, Xinjiang has witnessed the formulation of numerous policies aimed at bolstering
various facets of its society, including its economy, security, education, medical care, and
other aspects. By strengthening the publicity of HPV infection-related knowledge, women
in Xinjiang have paid more attention to HPV infection and related diseases. Through tai-
lored sex education suitable for age and education level, Xinjiang women have exhibited
increased vigilance towards inappropriate sexual behaviors. By vigorously promoting the
role of HPV vaccination, the HPV vaccination rate of women in Xinjiang has been ele-
vated, with vaccination initiation occurring at increasingly younger ages. Consequently, it
is anticipated that the HPV infection epidemic in Xinjiang will be effectively controlled in
the foreseeable future, bringing the complete elimination of CC within reach.
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