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Abstract
In this paper, the “pseudoinfection phenomenon” and “individual behavioral
responses” are taken into account in the SIR epidemic model, and the deterministic
and stochastic models are analyzed dynamically. Through the exploration of the
deterministic SPAFIR (Susceptible-Pseudoinfected-Alert-Fragile-Infected-Recovered)
model, the conditions for the equilibrium points’ existence and stability are
determined. With the assistance of the Pontryagin maximum principle, this paper
introduces a Hamiltonian function with a penalty term and the optimal control
strategy is obtained by comparing the three groups of strategies. The optimal control
strategy requires multiple control measures to inhibit the infectious disease spread.
Further considering the stochastic SPAFIR model, the existence of the uniqueness of a
global positive solution and the existence of a stationary distribution for the
stochastic model are proved, and the condition for disease extinction is also verified.
Random perturbations of the effective contact rates can slow the pace of spreading
the infectious diseases. Results of theoretical analysis and the system’s responsiveness
to variations in effective contact rates are verified by numerical simulations, and the
outcomes indicate that active prevention education and community encouragement
can both inhibit infection spread.

Keywords: SPAFIR epidemic model; Pseudoinfection; Differential equation; Stability
analysis; Random perturbations

1 Introduction
In history, the massive spread of infectious diseases had brought great disasters and had
a huge impact on society [1–3]. For instance, in medieval Europe, the plague caused over
50 percent of the population to die in different regions of the continent. The massive out-
break of cholera caused social instability in nineteenth-century England and Ireland, and
AIDS broke out globally in the late twentieth century, resulting in serious population fatal-
ities and economic impacts. The rapid development of medical devices and technologies,
alongside the improvement of living and economic conditions, has reduced the threat of
infectious diseases to human health. This has led to decreased morbidity and mortality
rates, and effective control of many infectious diseases. However, with the further acceler-
ation of globalization and urbanization, and the changes in human lifestyles, the transmis-

© The Author(s) 2025. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit
to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The
images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise
in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

https://doi.org/10.1186/s13662-025-03895-y
https://crossmark.crossref.org/dialog/?doi=10.1186/s13662-025-03895-y&domain=pdf
https://orcid.org/0009-0001-6716-4347
mailto:anshanhyh@163.com
http://creativecommons.org/licenses/by/4.0/


Nie et al. Advances in Continuous and Discrete Models         (2025) 2025:18 Page 2 of 33

sion speed and range of infectious diseases may be faster than ever before, and the issue
of infectious diseases is still a concern, especially the emergence and spread of emerging
viruses [4, 5], such as those that have reduced economic output [6, 7] and caused severe
declines in the tourism industry [8–10]. Given that epidemics have affected businesses in
various countries and regions, studying the mechanisms by which infectious diseases are
transmitted has become crucial.

Epidemic models have been used for more than two hundred years to help understand
how infectious diseases spread. This dates back to 1760, when Bernoulli [11] carried out
a mathematical analysis of smallpox. He proposed the theory of vaccination as a means of
preventing the disease. In 1927, Kermack and McKendrick [12] simulated the transmis-
sion process of different infectious diseases using differential equations and established
the classical SIR model, which provided an important theoretical basis for the study of
epidemic dynamics models. In 1957, Bailey [13] used mathematical tools such as differ-
ential equations and stochastic processes to theoretically describe an infectious disease
and its outbreak mechanism. In 2000, Hethcote [14] reviewed epidemic dynamics and in-
troduced major mathematical models, as well as quantitative methods for modeling and
predicting outbreaks and transmission of infectious diseases. In the last 30 years, a multi-
tude of mathematical models have been created by scholars to depict various transmission
attributes of infectious diseases, such as models with nonlinear incidence rates [15–18],
models with bilinear linear incidence rates [19–21], models characterized by network
structures [22–24], and models characterized by spatial diffusion [25–27]. These models
are extremely versatile theoretical tools that provide us with indispensable help in gaining
a deeper understanding of the dynamic progress of disease spread and in assessing the
validity for epidemiological defence and control measures.

By analyzing epidemiological transmission mechanisms, it has been possible to gain
some insight into infection characteristics and transmission routes. Some researchers have
explored new approaches to infectious-disease spread by transforming some parameters
into time-dependent control variables. Zaman et al. [28] provided an indepth discussion
on the propagation of the SIR model in regular and small-world networks. Based on the
known infectious disease parameters, they employed optimal control theory to determine
the optimal vaccination strategy. It was suggested that targeted vaccination and network
topology-based vaccination strategies were more efficient than random vaccination in
controlling and reducing infection spread. By varying parameters such as susceptible rate,
infected rate, and exposure rate, Zhang et al. [29] developed a saturated exposure-rate
SEIR prevalence model, and proposed control measures to respond to epidemic emer-
gence and transmission, such as raising health awareness and enhancing medical safety
to curb disease spread. To describe the time delay of infection, Laarabi et al. [30] used
the theory of delay dynamics, established an ODE mathematical model with control de-
lay based on two control strategies, vaccination and treatment, and proposed appropriate
vaccination and therapeutic measures for the control and eradication of the disease.

The epidemic models mentioned above are largely deterministic models that have al-
most no consideration of the impact of stochastic factors in the natural environment on
disease transmission. In fact, stochastic factors in the natural environment are ubiquitous
and have an impact on population dynamic behavior [31]. In the past decade, more and
more scholars have explored the impact of stochastic factors on the mechanisms of disease
transmission. Tornatore et al. [32] established a stochastic SIR model using stochastic dif-
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ferential equations, studied the impact of stochastic factors on the SIR model, determined
the conditions for system stability through mathematical analysis and numerical simula-
tions, and investigated the effects of stochastic disturbances on the model and its corre-
sponding prevention and control strategy. Wei et al. [33] developed a stochastic model of
SIQS in which there is an incidence of saturation and in which this incidence is affected by
independent random disturbances. For epidemic models that include stochastic factors,
investigating the threshold conditions for extinction is of great theoretical significance and
practical value. Gray et al. [34] investigated a stochastic SIS model to analyze the 2019-
nCoV pandemic transmission dynamics using a fractal fraction operator, creating appro-
priate conditions for disease eradication and persistence. To describe the stochasticity of
the number of superspreaders and implicitly exposed individuals, Kang et al. [35]used a
stochastic differential-equation approach, and explored the impact of randomness on the
propagation model through theoretical analysis of a probability model and stochastic pro-
cesses. This provided a theoretical basis for establishing optimal control strategy, and the
same stochastic factors can also be applied to the same epidemic propagation model.

In epidemic models, changes in individual behavior can result in different epidemic
model outcomes. Fenichel et al. [36] revealed that human individual behavioral responses
can significantly affect the results of epidemic models, and proposed that these response
factors should be incorporated into epidemiological models to more accurately predict
the spread and outbreak of diseases. Sahneh et al. [37] found that individual behavioral
responses are one of the important factors influencing how infectious diseases spread.
Epidemiological models that consider human individual behavioral responses show sig-
nificant effects, and can greatly reduce the risk of virus transmission. In some cases, forced
isolation or restrictions on people’s activities may have the opposite effect, and encourag-
ing and improving individual behavior in response to interventions can reduce the likeli-
hood of infection and spread.

This paper considers the combination of “pseudoinfection” and “individual behavioral
responses” on the basis of the classical SIR model. “Pseudoinfection” refers to the same
symptoms as virus infection but without being infected and contagious, such as the out-
break of COVID-19, whose symptoms include cold, fever, cough, runny nose, etc. Pseu-
doinfected individuals have these symptoms, but they are not infected with the COVID-19
virus and are not contagious. At the same time, the behavioral responses of pseudoinfected
individuals can be divided into three categories: i) Actively responding to their own “infec-
tion” and remaining vigilant. ii) Passively responding to their own “infection” and remain-
ing vulnerable. iii) Responding to their own “infection” with a calm mindset and taking
no action, in which case the pseudoinfected individuals can be regarded as susceptible
individuals. This paper constructs a deterministic model considering the phenomena of
“pseudoinfection” and “individual behavioral response”, and examines the effect of pseu-
doinfected individuals’ behavior on disease spread using a control strategy. In addition, the
impact on disease transmission when the effective contact rate is affected by random per-
turbations is considered, and the condition under which the disease elimination threshold
is reached is explored.

The remaining sections are then structured in the following way. In Sect. 2, taking into
account the phenomena for “pseudoinfection” and “individual behavioral responses”, a de-
terministic SPAFIR model is constructed. In Sect. 3, after calculating R0, local and global
asymptotic stability for equilibrium points are proved. Section 4 presents a control strategy
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for limiting infection spread. Section 5 establishes a stochastic SPAFIR model with effec-
tive contact rates subject to stochastic disturbances. In Sect. 6, a global positive solution
exists in the stochastic model, which is shown to be unique. In addition, the condition for
the elimination of disease is provided. Validated by numerical simulations, Sect. 7 further
confirms the stability of the equilibrium points and analyzes the efficacy for optimal con-
trol strategy, as well as the condition for achieving disease elimination under the stochastic
model. Section 8 analyzes the sensitivity of infectious disease transmission to changing ef-
fective contact rates. The last section consists of conclusions and future prospects.

2 The deterministic model
During an outbreak caused by a specific strain of a virus, with fluctuations in time t, the
population size N (t) changes. In order to describe their characteristics and behavior, the
population size can be grouped according to six different categories: (1) The susceptible
group includes those who risk becoming infected but are not currently infected, is de-
noted by S(t). (2) The pseudoinfected class is represented by P(t), refers to individuals
who exhibit symptoms identical to those of a viral infection but are neither infected nor
contagious. These symptoms, influenced by external environmental factors or reduced
immune function, are clinically consistent with those of actual infected individuals. How-
ever, these individuals do not carry the virus, and their symptoms are not caused by a viral
infection. (3) The alert class, denoted as A(t), refers to individuals who exhibit symptoms
similar to those of a viral infection but are noncontagious. These symptoms may partially
overlap with typical manifestations of viral infections; however, they are not caused by
actual infection but may result from environmental factors or reduced immune function.
Triggered by subjective cognition and psychological responses, these individuals subcon-
sciously perceive themselves as being infected and adopt proactive measures to address
this “perceived infection”, such as seeking medical assistance, self-isolating, or taking steps
to improve their health condition. (4) The fragile class, represented as F(t), also refers to
individuals who exhibit symptoms resembling those of a viral infection but are noncon-
tagious. Driven by psychological and cognitive factors, these individuals subconsciously
believe they are infected. However, unlike those in the A(t) category, they typically re-
spond to this “perceived infection” in a negative manner, such as displaying anxiety, fear,
or psychological withdrawal. (5) I(t) represents the infected class, which consists of in-
fected and contagious individuals. (6) R(t) denotes the recovery class, which consists of
immune individuals who are not infected with the disease.

In the constructed model, a pseudoinfected state is introduced after the susceptible
state. The behavioral responses of the pseudoinfected individuals have the following man-
ifestations: If the pseudoinfected individuals actively deal with the “infection” that the in-
dividuals themselves think they have, their psychology is positive and optimistic, and then
they enter the alert state. If the pseudoinfected individual responds passively to the “infec-
tion”, the psychological depression is heavy and the pseudoinfected individuals enter the
fragile state from the pseudoinfected state. If the pseudoinfected individuals treat their
“infection” calmly, they return to the susceptible state. Considering individual behavioral
responses, susceptible individuals, alert individuals, and fragile individuals have different
effective contact rates when contacting with infected individuals. This paper establishes a
deterministic SPAFIR model considering a “pseudoinfection phenomenon” and “individ-
ual behavioral responses”. Figure 1 presents the SPAFIR epidemic state-transition diagram,
which is used to describe the transition process between different states.
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Figure 1 State transition diagram for the SPAFIR epidemic model

Parameters are defined to provide a clearer understanding of their meaning and role in
the SPAFIR epidemic model. Each parameter has a specific role and function in the model,
the meanings of the parameters are as follows:

• The fluctuation in the population of a system over time is considered. To describe this
phenomenon more clearly, the parameter b is described as the number of immigrants.
However, some individuals may leave the system due to unforeseeable circumstances,
such as natural death, so this paper uses μ to define the natural removal rate. In
addition, the infectious mortality rate φ of infected individuals due to the infectious
disease is also considered in this paper.

• When the virus begins to spread in the system, a portion of the susceptible individuals
become infected by contact with infected individuals, and the effective contact rate is
denoted by β . There are also some susceptible individuals who may directly enter a
pseudoinfection state at a proportion of α, influenced by external environmental
factors or reduced immune function, without requiring contact with infected
individuals. This mechanism is based on the impact of noninfectious factors on
individual health, including environmental pressure, and physiological changes.
Meanwhile, pseudoinfected individuals treat their “infection” calmly and transform
into susceptible individuals with a probability of ω.

• When pseudoinfected individuals actively face their “infection”, this group will
transform into alert individuals at a proportion of d. Similarly, when pseudoinfected
individuals passively face their “infection”, they transform into fragile individuals at a
probability of η. Simultaneously, both alert and fragile individuals can transform into
each other due to external interference. For example, alert individuals may be rejected
and isolated by others due to the possibility of infection, causing their reactions to
become passive, leading to a transformation into fragile individuals at a rate of ϕ.
Fragile individuals may enter an alert state at a probability of θ due to external
stimulation, and this process is closely related to the external environment.

• When there are infected individuals, alert and fragile individuals have some
probability of contacting them and becoming infected, and the effective contact rates
of alert and fragile individuals are specified as δ and σ , respectively. For alert
individuals, positive individual responses can effectively enhance immune capacity,
thereby increasing resistance to pathogens. This immunity-boosting effect
significantly reduces the likelihood of alert individuals becoming infected. In contrast,
for fragile individuals, negative individual responses may lead to further weakening of
the immune system, increasing the risk of infection. Therefore, it is reasonable to
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assume that δ < σ holds. Meanwhile, infected individuals are cured and enter the
recovery state at a rate of ε, where they acquire immunity.

From the above analysis, the system dynamics equations are as shown below:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS
dt = b – αS – βSI – μS + ωP,
dP
dt = αS – ωP – dP – ηP – μP,
dA
dt = dP – δAI + θF – ϕA – μA,
dF
dt = ηP – σFI + ϕA – θF – μF ,
dI
dt = δAI + σFI + βSI – εI – (μ + φ)I,
dR
dt = εI – μR.

(1)

By merging the coefficients of the similar terms in system (1), system (2) can be ob-
tained, and both system (1) and system (2) can represent the same system. For the sake of
discussion, this paper will only consider system (2):

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS
dt = b – m1S – βSI + ωP,
dP
dt = αS – m2P,
dA
dt = dP – δAI + θF – m3A,
dF
dt = ηP – σFI + ϕA – m4F ,
dI
dt = δAI + σFI + βSI – m5I,
dR
dt = εI – μR,

(2)

where

b,α, d,η, θ ,ϕ,β , δ,σ ,ω, ε,φ,μ > 0, δ < σ ,

m1 = α + μ, m2 = ω + d + η + μ, m3 = ϕ + μ,

m4 = θ + μ, m5 = ε + μ + φ

(3)

and

S(0) = S0 ≥ 0, A(0) = A0 ≥ 0, F(0) = F0 ≥ 0,

P(0) = P0 ≥ 0, I(0) = I0 ≥ 0, R(0) = R0 ≥ 0,
(4)

N (t) = S(t) + A(t) + F(t) + P(t) + I(t) + R(t). (5)

3 Deterministic model analysis
Lemma 1 For t ≥ 0, the closed set Π+ = {(S(t), P(t), A(t), F(t), I(t), R(t)) ∈ R6

+ : S ≥ 0, P ≥
0, A ≥ 0, F ≥ 0, I ≥ 0, R ≥ 0, S(t)+P(t)+A(t)+F(t)+ I(t)+R(t) ≤ b

μ
} is the positive invariant

set of the model (2).

Proof It is evident that dN
dt = b – μN – φI ≤ b – μN , so there exists b

μ
– e–μt( b

μ
– N 0) ≥

N (t), in which N 0 = N (0). There can be no doubt that lim
t→∞N (t) ≤ b

μ
. Thus, for t ≥ 0, the
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positive invariant set for the model (2) is represented by:

Π+ =
{
(
S(t), P(t), A(t), F(t), I(t), R(t)

) ∈ R6
+ : S ≥ 0, P ≥ 0, A ≥ 0,

F ≥ 0, I ≥ 0, R ≥ 0, S(t) + P(t) + A(t) + F(t) + I(t) + R(t) ≤ b
μ

}

.
(6)

□

3.1 The basic reproduction number R0

R0 represents the next-generation number generated by a single virus spreader. Before
calculating R0, it is essential to determine the disease-free equilibrium point E0. The equi-
librium point E = (S, P, A, F , I, R) can be computed from the kinetic equations (2). E must
satisfy the following equations:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

b – m1S – βSI + ωP = 0,

αS – m2P = 0,

dP – δAI + θF – m3A = 0,

ηP – σFI + ϕA – m4F = 0,

δAI + σFI + βSI – m5I = 0,

εI – μR = 0.

(7)

Let I = 0, then the disease-free equilibrium point E0 = (S1, P1, A1, F1, I1, R1) can be calcu-
lated easily and invariably exists, where:

S1 =
bm2

m1m2 – ωα
, P1 =

αb
m1m2 – ωα

, A1 =
αb(dm4 + θη)

(m3m4 – θϕ)(m1m2 – ωα)
,

F1 =
αb(dϕ + ηm3)

(m3m4 – θϕ)(m1m2 – ωα)
, I1 = 0, R1 = 0.

(8)

Let X = (I, A, F , S, P, R), then model (2) can be written as dX
dt = B(X) – V(X), where:

B(X) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

δAI + σFI + βSI
dP + θF
ηP + ϕA
ωP + b

αS
εI

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,V(X) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

m5I
δAI + m3A
σFI + m4F
βSI + m1S

m2P
μR

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (9)

Determining the Jacobian matrices of (9), there are:

J
(
B(X)

)
=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

δA + σF + βS δI σ I βI 0 0

0 0 θ 0 d 0
0 ϕ 0 0 η 0
0 0 0 0 ω 0
0 0 0 α 0 0
ε 0 0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (10)
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J
(
V(X)

)
=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

m5 0 0 0 0 0

δA δI + m3 0 0 0 0
σF 0 σ I + m4 0 0 0
βS 0 0 βI + m1 0 0
0 0 0 0 m2 0
0 0 0 0 0 μ

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Selecting the submatrices related to the first four variables associated with infected in-
dividuals [38], the outcomes are indicated below:

B =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

f 0 0 0

0 0 θ 0

0 ϕ 0 0

0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

, V =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

m5 0 0 0
αδb(dm4+θη)

(m3m4–θϕ)(m1m2–ωα) m3 0 0
ασb(dϕ+ηm3)

(m3m4–θϕ)(m1m2–ωα) 0 m4 0
bβm2

m1m2–ωα
0 0 m1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (11)

where f = δαb(dm4+θη)+σαb(dϕ+ηm3)+βbm2(m3m4–θϕ)
(m3m4–θϕ)(m1m2–ωα) .

By simple calculations, the next-generation matrix [39] is:

BV –1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

f
m5

0 0 0

– θασb(dϕ+ηm3)
m4m5(m3m4–θϕ)(m1m2–ωα) 0 θ

m4
0

– αϕδb(dm4+θη)
m3m5(m3m4–θϕ)(m1m2–ωα)

ϕ

m3
0 0

0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (12)

R0 of the system (2) is the spectral radius of BV –1, which is the characteristic root max-
imum of BV –1. Clearly, R0 is capable of being presented as:

R0 = max
{
ρ
(
BV –1)} = max{R01, R02}, (13)

where R01 = δαb(dm4+θη)+σαb(dϕ+ηm3)+βbm2(m3m4–θϕ)
m5(m3m4–θϕ)(m1m2–ωα) , R02 =

√
ϕθ

m3m4
, and it is obvious that

R02 < 1.

3.2 Stability of equilibrium points
Theorem 1 If R01 < 1, the disease-free equilibrium point E0 = (S1, P1, A1, F1, I1, R1) is locally
asymptotically stable.

Proof For system (2), the Jacobian matrix at E0 = (S1, P1, A1, F1, I1, R1) can be written as:

J(E0) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

–m1 ω 0 0 –bβm2
m1m2–ωα

0

α –m2 0 0 0 0

0 d –m3 θ
–δαb(dm4+θη)

(m3m4–θϕ)(m1m2–ωα) 0

0 η ϕ –m4
–σαb(tηm3+dϕ)

(m3m4–θϕ)(m1m2–ωα) 0

0 0 0 0 m5(R01 – 1) 0

0 0 0 0 ε –μ

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (14)
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The characteristic equation for J(E0) is:

∣
∣λE – J(E0)

∣
∣

= (λ + μ)
(
λ – m5(R01 – 1)

)
(

λ +
m3 + m4

2
+
√

(m3 – m4)2 + 4θϕ

2

)

(

λ +
m3 + m4

2
–

√
(m3 – m4)2 + 4θϕ

2

)(

λ +
m1 + m2

2
+
√

(m1 – m2)2 + 4αω

2

)

(

λ +
m1 + m2

2
–

√
(m1 – m2)2 + 4αω

2

)

. (15)

The eigenvalues corresponding to the characteristic equation of J(E0) can be obviously
obtained as:

λ1 = –μ < 0, λ2 = m5(R01 – 1),

λ3 =
–
√

(m1 + m2)2 – 4(m1m2 – ωα) – (m1 + m2)

2
< 0,

λ4 =
√

(m1 + m2)2 – 4(m1m2 – ωα) – (m1 + m2)

2
< 0,

λ5 =
–
√

(m3 + m4)2 – 4(m3m4 – θϕ) – (m3 + m4)

2
< 0,

λ6 =
√

(m3 + m4)2 – 4(m3m4 – θϕ) – (m3 + m4)

2
< 0.

(16)

If R01 < 1, there exists λ2 < 0. By the Routh–Hurwitz stability criterion, if R01 < 1, E0 is
locally asymptotically stable. □

Theorem 2 If R01 > 1 and βm2m5(σm3 + δm4) + δσ (m5(m1m2 – ωα)) > δσbβm2, the
disease-free equilibrium point E0 = (S1, P1, A1, F1, I1, R1) is locally asymptotically stable.

Proof On the basis of equations (7), let I ≠ 0, according to simple calculations, S∗, P∗, A∗,
F∗, R∗ can be, respectively, expressed by I∗, which is the nonnegative real root of the cubic
equation a1I3 + a2I2 + a3I + a4 = 0, where:

a1 = δσβm2m5,

a2 = βm2m5(σm3 + δm4) + δσ
(
m5(m1m2 – ωα) – bβm2

)
,

a3 = (δm4 + σm3)
(
m5(m1m2 – ωα) – bβm2

)

+ βm2m5(m3m4 – θϕ) – αbδσ (d + η),

a4 = m5(m3m4 – θϕ)(m1m2 – αω)(1 – R01).

(17)

According to Cardan’s formula and calculations, when R01 > 1 and βm2m5(σm3 +δm4)+
δσ (m5(m1m2 – ωα)) > δσbβm2, the cubic equation a1I3 + a2I2 + a3I + a4 = 0 has a non-
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negative real root I∗, so E∗ exists, the results are as follows:

S∗ =
bm2

(βI∗ + m1)m2 – αω
, P∗ =

αb
(βI∗ + m1)m2 – αω

,

A∗ =
αb(d(σ I∗ + m4) + θη)

((βI∗ + m1)m2 – αω)((δI∗ + m3)(σ I∗ + m4) – ϕθ )
,

F∗ =
αb(η(δI∗ + m3) + ϕd)

((βI∗ + m1)m2 – αω)((δI∗ + m3)(σ I∗ + m4) – ϕθ )
, R∗ =

εI∗

μ
,

I∗ =
3

√
√
√
√–

27a2
1a4 – 9a1a2a3 + 2a3

2

54a3
1

+

√
27
4 a2

1a2
4 – 9

2 a1a2a3a4 – 1
4 a2

2a2
3 + a3

2a4 + a1a3
3

27a4
1

+
3

√
√
√
√–

27a2
1a4 – 9a1a2a3 + 2a3

2

54a3
1

–

√
27
4 a2

1a2
4 – 9

2 a1a2a3a4 – 1
4 a2

2a2
3 + a3

2a4 + a1a3
3

27a4
1

.

(18)

Due to the complexity of the parameters in model (2), it is highly challenging to rigor-
ously prove its local asymptotic stability at E∗ theoretically. Therefore, this paper employs
numerical solutions to explore the local asymptotic stability of the model. By substituting
specific parameters into the model, a set of numerical solutions was successfully obtained,
which satisfy the fundamental assumptions of the model, the results are as follows:

b = 0.00752,α = 0.3,ω = 0.3,ϕ = 0.2, θ = 0.2, d = 0.3,η = 0.3,
β = 0.4, δ = 0.3,σ = 0.5, ε = 0.1270,φ = 0.0001,μ = 0.0074

(19)

and

S∗ = 0.0303, P∗ = 0.0113, A∗ = 0.1546,
F∗ = 0.1519, I∗ = 0.0368, R∗ = 0.6308.

(20)

By calculating, all parameters that satisfy R01 = 2.9866 > 1 and βm2m5(σm3 + δm4) +
δσ (m5(m1m2 – ωα)) – δσbβm2 > 0. Also, through Fig. 3, at the positive equilibrium point
E∗, model (2) is locally asymptotically stable. Apart from the set of parameters in this
paper, there may exist other numerical solutions. This paper only discusses the sufficient
condition for the model to satisfy local asymptotic stability. □

Theorem 3 If b(δ + σ + β) < φμ, the disease-free equilibrium point E0 = (S1, P1, A1, F1,
I1, R1) is globally asymptotically stable.

Proof Constructing a Lyapunov function K(t) = I(t) + R(t), and

K ′(t) =I ′(t) + R′(t)

=δAI + σFI + βSI – (μ + φ)I – μR

=(δA + σF + βS – φ)I – μ(I + R).

(21)

According to the positive invariant set (6), there exists K ′(t) ≤ ( (δ+σ+β)b
μ

–φ)I –μ(I +R). It
can be seen that K ′(t) ≤ 0 if and only if b(δ + σ + β) ≤ μφ, meanwhile, K ′(t) = 0 if and only
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if S(t) = S1, P(t) = P1, A(t) = A1, F(t) = F1, I(t) = R(t) = 0. That is, E0 is the unique solution
in the invariant set (6). Based on the Lyapunov–LaSalle Invariance Principle [40], it can be
shown that the disease-free equilibrium point E0 of system (2) is globally asymptotically
stable if b(δ + σ + β) < φμ. □

Theorem 4 If R01 > 1 and βm2m5(σm3 + δm4) + δσ (m5(m1m2 – ωα)) > δσbβm2, the pos-
itive equilibrium point E∗ = (S∗, P∗, A∗, F∗, I∗, R∗) is globally asymptotically stable.

Proof Formulating a Lyapunov function:

C(t) =
[(

S(t) – S∗) +
(
P(t) – P∗) +

(
A(t) – A∗) +

(
F(t) – F∗) +

(
I(t) – I∗)

+
(
R(t) – R∗)]2

(22)

and

C′(t) =2
[(

S(t) – S∗) +
(
P(t) – P∗) +

(
A(t) – A∗) +

(
F(t) – F∗) +

(
I(t) – I∗)

+
(
R(t) – R∗)][S′(t) + P′(t) + A′(t) + F ′(t) + I ′(t) + R′(t)

]
.

(23)

Since E∗ obeys equation (7), there is b – μS∗ – μP∗ – μA∗ – μF∗ – μI∗ – μR∗ = 0, that is
b = μS∗ + μP∗ + μA∗ + μF∗ + μI∗ + μR∗. Equation (23) can be evaluated as:

C′(t) =2
[(

S(t) – S∗) +
(
P(t) – P∗) +

(
A(t) – A∗) +

(
F(t) – F∗) +

(
I(t) – I∗)

+
(
R(t) – R∗)][μ

(
S∗ – S(t)

)
+ μ

(
P∗ – P(t)

)
+ μ

(
A∗ – A(t)

)

+ μ
(
F∗ – F(t)

)
+ μ

(
I∗ – I(t)

)
+ μ

(
R∗ – R(t)

)]

= – 2μ
[(

S(t) – S∗) +
(
P(t) – P∗) +

(
A(t) – A∗) +

(
F(t) – F∗)

+
(
I(t) – I∗) +

(
R(t) – R∗)]2

≤0,

(24)

where C′(t) = 0 if and only if S = S∗, P = P∗, A = A∗, F = F∗, I = I∗, R = R∗. In accordance
with the Lyapunov–LaSalle Invariance Principle [40], system (2) is globally asymptotically
stable at E∗ = (S∗, P∗, A∗, F∗, I∗, R∗). □

Moreover, the stability analysis of equilibrium points indicates that, in the biological sys-
tem, even under complex behavioral responses and pseudoinfection phenomena, appro-
priate control measures can effectively maintain the dominance of the healthy population.
This provides a theoretical foundation for optimizing control strategy.

4 The optimal control model
This paper considers applying the model to a closed environment, such as a school cam-
pus, and proposes four control objectives over a certain control time interval. On the one
hand, the aim is to increase the alert population while reducing the number of fragile
individuals following pseudoinfection. On the other hand, this paper aims to reduce the
scale of the transition to the infectious state. This paper introduces time-dependent con-
trol variables χ1(t) and χ2(t), which represent the effects of positive prevention educa-
tion and community encouragement guidance. The control measures will be ineffective if
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χ1(t) = χ2(t) = 0, and fully effective if χ1(t) = χ2(t) = 1, where 1 –χ1(t) represents the effect
of suppressing the transition of alert individuals to the fragile state, and 1–χ2(t) represents
the effect of suppressing the transition of alert individuals to the infectious state. We fur-
ther change the proportion constants d, θ in the model (2) to be control variables d(t) and
θ (t), which are used to control the proportion of alert individuals with pseudoinfection and
fragile individuals, respectively. The proportion of alert individuals with pseudoinfected
symptoms in a closed environment can be increased by actively promoting prevention ed-
ucation and encouraging guidance in the community. The system augmented with control
is given by:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS
dt = b – m1S – βSI + ωP,
dP
dt = αS – m2P,
dA
dt = d(t)P – (1 – χ2(t))δAI + θ (t)F – (1 – χ1(t))ϕA – μA,
dF
dt = ηP – σFI + (1 – χ1(t))ϕA – θ (t)F – μF ,
dI
dt = (1 – χ2(t))δAI + σFI + βSI – m5I,
dR
dt = εI – μR.

(25)

The objective is to maximize the proportion of alert individuals with pseudoinfected
symptoms within a limited time frame, while minimizing the proportion of fragile indi-
viduals, reducing the scale of transition to the infectious state, and ultimately containing
the spread of the virus. The objective function has the form:

J(χ1,χ2, d, θ ) =
∫ T

t0

[

DA(t) –
c1

2
χ2

1 (t) –
c2

2
χ2

2 (t) –
c3

2
d2(t) –

c4

2
θ2(t)

]

dt, (26)

where

χ1(t),χ2(t), d(t), θ (t) ∈ U ≜ {(χ1,χ2, d, θ )|χ1(t),χ2(t), d(t), θ (t)are

measurable, and 0 ≤ χ1(t),χ2(t), d(t), θ (t) ≤ 1,∀t ∈ [t0, T]}
(27)

and t0 is the initial control time, U is the allowable control set, T is the end control time,
ci (i = 1, 2, 3, 4) is the weighting coefficient of the control variable, and D is the weighting
coefficient of the alert individuals, the square of the controlling variables reflects the effects
of proactive preventive education and community encouragement and guidance. System
(25) satisfies the initial condition (4).

Theorem 5 There exists an optimal four-dimensional control pair (χ∗
1 (t),χ∗

2 (t), d∗(t),
θ∗(t)) ∈ U , thus creating the following function:

J
(
χ∗

1 ,χ∗
2 , d∗, θ∗) = max J(χ1,χ2, d, θ ),χ1(t),χ2(t), d(t), θ (t) ∈ U . (28)

Proof Proving that optimal control exists requires only five conditions:
• The state variables and control variables are both nonnegative.
• The admissible control set U is both closed and convex.
• The convex integral function is defined within the allowed set U.
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• In the system (25), the expressions on the right-hand side are functions that are
related to control and state variables, and are linear and bounded.

• There exist positive numbers a1, a2 > 0, and a3 > 0 such that the integrand expression
L(t, A(t),χ1,χ2, d, θ ) = DA(t) – c1

2 χ2
1 (t) – c2

2 χ2
2 (t) – c3

2 d2(t) – c4
2 θ2(t) in the target

functional satisfies –L(t, A(t),χ1,χ2, d, θ ) ≥ a1(|χ1|2 + |χ2|2 + |d|2 + |θ |2)a2/2 – a3.
The first three conditions are evidently satisfied, and it suffices to verify the last two.

According to the positive invariant set (6), it follows that:

b
μ

≥ max
{

S(t), P(t), A(t), F(t), I(t), R(t)
}

(29)

and the right end of system (25) satisfies the following inequalities:

dS
dt

≤ b,
dP
dt

≤ αb
μ

,
dA
dt

≤ d(t)P + θ (t)F ,
dF
dt

≤ bη

μ
+
(
1 – χ1(t)

)
ϕA,

dI
dt

≤ (σ + β)
b2

μ2 +
(
1 – χ2(t)

)
δAI,

dR
dt

≤ εb
μ

.
(30)

Therefore, the fourth condition holds. Furthermore, by the positive invariant set (6),
there is:

–L
(
t, A(t),χ1,χ2, d, θ

)
=

c1

2
χ2

1 (t) +
c2

2
χ2

2 (t) +
c3

2
d2(t) +

c4

2
θ2(t) – DA(t)

≥ c1

2
χ2

1 (t) +
c2

2
χ2

2 (t) +
c3

2
d2(t) +

c4

2
θ2(t) –

Db
μ

.
(31)

Let a1 = min{ c1
2 , c2

2 , c3
2 , c4

2 }, a2 = 2, and a3 = Db
μ

, so that the inequality is established below:

–L
(
t, A(t),χ1,χ2, d, θ

) ≥ a1
(|χ1|2 + |χ2|2 + |d|2 + |θ |2)a2/2 – a3. (32)

The last condition holds, and therefore, optimal control can be achieved.
To address the multiple complex constraints in the model (25), such as the nonnegativity

and range limitations of control and state variables, and to achieve effective tradeoffs in
multiobjective optimization, the augmented Hamiltonian is introduced. Compared to the
standard Hamiltonian, the augmented Hamiltonian incorporates penalty terms, enabling
a more systematic integration of constraints and objectives while satisfying the Pontryagin
maximum principle under more general conditions. Based on the Pontryagin maximum
principle, this paper defines a Hamiltonian function with penalty terms, which leads to
an expression for the optimal control system. The augmented Hamiltonian can be repre-
sented as:

H = – DA(t) +
c1

2
χ2

1 (t) +
c2

2
χ2

2 (t) +
c3

2
d2(t) +

c4

2
θ2(t)

+ κ1(t)[b – m1S – βSI + ωP] + κ2(t)[αS – m2P]

+ κ3(t)
[
d(t)P + θ (t)F – μA –

(
1 – χ2(t)

)
δAI –

(
1 – χ1(t)

)
ϕA

]

+ κ4(t)
[
ηP – σFI +

(
1 – χ1(t)

)
ϕA – θ (t)F – μF

]
(33)

+ κ5(t)
[(

1 – χ2(t)
)
δAI + σFI + βSI – m5I

]
+ κ6(t)[εI – μR]
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– �11(t)χ1(t) – �12(t)
(
1 – χ1(t)

)
– �21(t)χ2(t)

– �22(t)
(
1 – χ2(t)

)
– �31(t)d(t) – �32(t)

(
1 – d(t)

)

– �41(t)θ (t) – �42(t)
(
1 – θ (t)

)
,

where κi(t) (i = 1, 2, 3, 4, 5, 6) is an adjoint variable and �ij(t) ≥ 0 (i = 1, 2, 3, 4, j = 1, 2) de-
notes the penalty operator, which satisfies that �11(t)χ1(t) = �12(t)(1 – χ1(t)) = 0 at op-
timal control χ∗

1 , �21(t)χ2(t) = �22(t)(1 – χ2(t)) = 0 at optimal control χ∗
2 , �31(t)d(t) =

�32(t)(1 – d(t)) = 0 at optimal control d∗, and �41(t)θ (t) = �42(t)(1 – θ (t)) = 0 at optimal
control θ∗. □

Theorem 6 For the optimal control pair (χ∗
1 (t),χ∗

2 (t), d∗(t), θ∗(t)) ∈ U and the solution
(S(t), P(t), A(t), F(t), I(t), R(t)) ∈ R

6
+ for state system (25), adjoint variables κ1(t), κ2(t),

κ3(t), κ4(t), κ5(t), and κ6(t) satisfy the given conditions:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dκ1

dt
=(m1 + βI)κ1(t) – ακ2(t) – βIκ5(t),

dκ2

dt
=m2κ2(t) – ωκ1(t) – d(t)κ3(t) – ηκ4(t),

dκ3

dt
=
(
κ3(t) – κ4(t)

)(
1 – χ1(t)

)
ϕ +

(
κ3(t) – κ5(t)

)(
1 – χ2(t)

)
δI

+ κ3(t)μ + D,

dκ4

dt
=
(
κ4(t) – κ3(t)

)
θ (t) + κ4(t)μ – κ5(t)σ I,

dκ5

dt
=
(
κ1(t) – κ5(t)

)
βS +

(
κ3(t) – κ5(t)

)(
1 – χ2(t)

)
δA

+
(
κ4(t) – κ5(t)

)
σF + κ5(t)m5 – κ6(t)ε,

dκ6

dt
=κ6(t)μ.

(34)

The boundary conditions are:

κ1(T) = κ2(T) = κ3(T) = κ4(T) = κ5(T) = κ6(T) = 0. (35)

The expressions for optimal control variables of the state system (25) can be given by the
following formulas:

χ∗
1 (t) = min

{

1, max

{

0,
(κ4(t) – κ3(t))ϕA

c1

}}

,

χ∗
2 (t) = min

{

1, max

{

0,
(κ5(t) – κ3(t))δAI

c2

}}

,

d∗(t) = min

{

1, max

{

0,
–κ3(t)P

c3

}}

,

θ∗(t) = min

{

1, max

{

0,
(κ4(t) – κ3(t))F

c4

}}

.

(36)
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Proof The adjoint system can be expressed on the basis of the Pontryagin maximum prin-
ciple as follows:

dκ1

dt
= –

∂H
∂S

,
dκ2

dt
= –

∂H
∂P

,
dκ3

dt
= –

∂H
∂A

,

dκ4

dt
= –

∂H
∂F

,
dκ5

dt
= –

∂H
∂I

,
dκ6

dt
= –

∂H
∂R

(37)

and the boundary condition for the adjoint system is (35).
To obtain the optimality condition, the Hamiltonian function takes the derivative of the

control variables χ1(t), χ2(t), d(t), and θ (t), respectively, to obtain:

∂H
∂χ1

=c1χ1(t) +
(
κ3(t) – κ4(t)

)
ϕA – �11 + �12,

∂H
∂χ2

=c2χ2(t) +
(
κ3(t) – κ5(t)

)
δAI – �21 + �22,

∂H
∂d

=c3d(t) + κ3(t)P – �31 + �32,

∂H
∂θ

=c4θ (t) +
(
κ3(t) – κ4(t)

)
F – �41 + �42

(38)

and set them equal to 0; the optimal control formulas are as follows:

χ∗
1 (t) =

(κ4(t) – κ3(t))ϕA + �11 – �12

c1
,

χ∗
2 (t) =

(κ5(t) – κ3(t))δAI + �21 – �22

c2
,

d∗(t) =
–κ3(t)P + �31 – �32

c3
,

θ∗(t) =
(κ4(t) – κ3(t))F + �41 – �42

c4
.

(39)

To derive the ultimate optimal control equations without punitive conditions, this paper
examines the subsequent three scenarios taking χ∗

1 (t) as an illustrative example:
• In the set {t|0 < χ∗

1 (t) < 1}, the first scenario occurs when �11(t) = �12(t) = 0.
Subsequently, the optimal control formula is:

χ∗
1 (t) =

(κ4(t) – κ3(t))ϕA
c1

. (40)

• If �11(t) = 0 in {t|χ∗
1 (t) = 1}, then the optimum control formula can be expressed as:

1 = χ∗
1 (t) =

(κ4(t) – κ3(t))ϕA – �12

c1
, (41)

due to �12(t) ≥ 0, which means that (κ4(t)–κ3(t))ϕA
c1

≥ 1.
• If �12(t) = 0 in the set {t | χ∗

1 (t) = 0}, the formula for the optimal control is given by:

0 = χ∗
1 (t) =

(κ4(t) – κ3(t))ϕA + �11

c1
, (42)

due to �11(t) ≥ 0, which means that (κ4(t)–κ3(t))ϕA
c1

≤ 0.
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On the basis of the given situation, the ultimate formula for optimal control of χ∗
1 (t) is:

χ∗
1 (t) = min

{

1, max

{

0,
(κ4(t) – κ3(t))ϕA

c1

}}

. (43)

Similarly, the ultimate control formulas for χ∗
2 (t), d∗(t), and θ∗(t) are given by:

χ∗
2 (t) = min

{

1, max

{

0,
(κ5(t) – κ3(t))δAI

c2

}}

,

d∗(t) = min

{

1, max

{

0,
–κ3(t)P

c3

}}

,

θ∗(t) = min

{

1, max

{

0,
(κ4(t) – κ3(t))F

c4

}}

.

(44)

In this optimal control system, the state system (25) and adjoint system (34) work to-
gether, satisfying initial, boundary, and optimal conditions to achieve the best control.
The optimal control system is represented by:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS
dt

=b – m1S – βSI + ωP,

dP
dt

=αS – m2P,

dA
dt

=d∗(t)P –
(
1 – χ∗

2 (t)
)
δAI + θ∗(t)F –

(
1 – χ∗

1 (t)
)
ϕA – μA,

dF
dt

=ηP – σFI +
(
1 – χ∗

1 (t)
)
ϕA – θ∗(t)F – μF ,

dI
dt

=
(
1 – χ∗

2 (t)
)
δAI + σFI + βSI – m5I,

dR
dt

=εI – μR,

dκ1

dt
=(m1 + βI)κ1(t) – ακ2(t) – βIκ5(t),

dκ2

dt
=m2κ2(t) – ωκ1(t) – d(t)κ3(t) – ηκ4(t),

dκ3

dt
=
(
κ3(t) – κ4(t)

)(
1 – χ1(t)

)
ϕ +

(
κ3(t) – κ5(t)

)(
1 – χ2(t)

)
δI + κ3(t)μ + D,

dκ4

dt
=
(
κ4(t) – κ3(t)

)
θ (t) + κ4(t)μ – κ5(t)σ I,

dκ5

dt
=
(
κ1(t) – κ5(t)

)
βS +

(
κ3(t) – κ5(t)

)(
1 – χ2(t)

)
δA +

(
κ4(t) – κ5(t)

)
σF

+ κ5(t)m5 – κ6(t)ε,

dκ6

dt
=κ6(t)μ,

S(t0) = S0, P(t0) = P0, A(t0) = A0, F(t0) = F0, I(t0) = I0, R(t0) = R0,

κ1(T) = κ2(T) = κ3(T) = κ4(T) = κ5(T) = κ6(T) = 0.

(45)

□
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The analysis of the optimal control system highlights the critical role of proactive pre-
vention education and community interventions in reducing the vulnerable population
and controlling the scale of infection. By introducing a Hamiltonian function with penalty
terms, we optimized the dynamic adjustment strategy for control variables. Biologically,
this indicates that rational allocation of resources to maximize the proportion of alert in-
dividuals while minimizing the transition rate to the infected population can significantly
enhance the efficiency of disease control.

5 The stochastic model
On the basis of the deterministic SPAFIR model, further consideration has been given to
the impact of stochastic factors on the infectious disease. The effective contact rates δ and
σ directly influence the speed and scale of disease transmission, making them critical pa-
rameters in describing the dynamics of infectious disease spread. Variations in δ and σ

significantly affect the system’s dynamic characteristics, such as the peak number of infec-
tions, transmission rate, and overall outbreak size. Therefore, this paper assumes that the
effective contact rates δ and σ are subject to stochastic perturbations; let δ + ρ1Ẇ1(t) and
σ +ρ2Ẇ2(t), respectively, represent the random disturbances of the effective contact rates,
they are incorporated into the model (2) to obtain the corresponding disturbed system:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS(t) =
(
b – m1S(t) – βS(t)I(t) + ωP(t)

)
dt,

dP(t) =
(
αS(t) – m2P(t)

)
dt,

dA(t) =
(
dP(t) – δA(t)I(t) + θF(t) – m3A(t)

)
dt – ρ1A(t)I(t)dW1(t),

dF(t) =
(
ηP(t) – σF(t)I(t) + ϕA(t) – m4F(t)

)
dt – ρ2F(t)I(t)dW2(t),

dI(t) =
(
δA(t)I(t) + σF(t)I(t) + βS(t)I(t) – m5I(t)

)
dt + ρ1A(t)I(t)dW1(t)

+ ρ2F(t)I(t)dW2(t),

dR(t) =
(
εI(t) – μR(t)

)
dt,

(46)

where W1(t) and W2(t) are independently standard Brownian motions, the instant at
which the initial value is zero, namely W1(0) = W2(0) = 0. ρ2

i represents the corresponding
disturbance intensity, and Ẇi(t) denotes white noise, where i = 1, 2.

6 Stochastic model analysis
Theorem 7 For any given initial value (S0, P0, A0, F0, I0, R0) ∈ R

6
+ and t ≥ 0, system (46)

exists a unique positive solution, which exists in R
6
+ with probability 1, a.s.

Proof Assuming that there is I = eν(t), then ν(t) = ln I , and utilizing Itô′s formula, there is
dν(t) = 1

I dI – 1
2I2 (dI)2, model (47) can be obtained as:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS(t) =
(
b – m1S(t) – βS(t)eν(t) + ωP(t)

)
dt,

dP(t) =
(
αS(t) – m2P(t)

)
dt,

dA(t) =
(
dP(t) – δA(t)eν(t) + θF(t) – m3A(t)

)
dt – ρ1A(t)eν(t)dW1(t),

dF(t) =
(
ηP(t) – σF(t)eν(t) + ϕA(t) – m4F(t)

)
dt – ρ2F(t)eν(t)dW2(t),

dν(t) =
(

δA(t) + σF(t) + βS(t) – m5 –
ρ2

1 A2 + ρ2
2 F2

2

)

dt

+ ρ1A(t)dW1(t) + ρ2F(t)dW2(t),

dR(t) =
(
εeν(t) – μR(t)

)
dt.

(47)
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The models (47) and (46) are equivalent, and the coefficients in model (47) are locally
Lipschitz continuous. Therefore, in the time interval [0, τb), there exists a unique local
solution (S(t), P(t), A(t), F(t), I(t), R(t)) for any initial condition (S0, P0, A0, F0, I0, R0), where
τb is the blasting time. For the proof that this solution is global, it is sufficient to show that
τb = +∞. Assuming that there exists m ≥ g0 ≥ 1 such that the initial state stays within the
interval [ 1

g , g0], the stopping time τg is defined as:

τg =inf
{

t ∈ [0, τb) : min
(
S(t), P(t), A(t), F(t), I(t), R(t)

) ≤ 1
g

or

max
(
S(t), P(t), A(t), F(t), I(t), R(t)

) ≥ g
}

.
(48)

We set inf � = +∞, where � is an empty set. In accordance with the stopping-time
definition, it can be deduced that τg is a function that increases monotonically with g .
Therefore, there exists lim

g→∞ τg = τ∞, and it is obvious that τ∞ ≤ τb, a.s.. For all t ≥ 0, there

exist τb = +∞ and (S(t), P(t), A(t), F(t), I(t), R(t)) ∈ R
6
+ if it can be demonstrated that τ∞ =

+∞, a.s. The next task is to prove, through a contradiction, that τ∞ = +∞. Assuming τ∞ ≠
+∞, ϒ > 0 and a very small value ς > 0 such that P(τ∞ < ϒ) > ς . Since the function τg

increases monotonically, it is possible to derive P(τg < ϒ) > ς . Let f (y) = y – 1 – ln y, define
the function:

V (S, P, A, F , I, R) = f (S) + f (P) + f (A) + f (F) + f (I) + f (R). (49)

For any t ∈ [0, τg), using Itô′s formula, it can be obtained that:

dV (S, P, A, F , I, R) =
(

1 –
1
S

)

dS +
1

2S2 (dS)2 +
(

1 –
1
P

)

dP +
1

2P2 (dP)2

+
(

1 –
1
A

)

dA +
1

2A2 (dA)2 +
(

1 –
1
F

)

dF +
1

2F2 (dF)2

(

1 –
1
I

)

dI +
1

2I2 (dI)2 +
(

1 –
1
R

)

dR +
1

2R2 (dR)2

=
(
b – φI – μ(S + P + A + F + I + R)

)
dt –

(
b
S

– m1

– βI + ωP
)

dt –
(

αS
P

– m2

)

dt –
(

dP
A

– δI +
θF
A

– m3

–
ρ2

1 I2

2

)

dt + ρ1IdW1 –
(

ηP
F

– σ I +
ϕA
F

– m4 –
ρ2

2 I2

2

)

dt (50)

+ ρ2IdW2 –
(

δA + σF + βS – m5 –
ρ2

1 A2 + ρ2
2 F2

2

)

dt

– ρ1AdW1 – ρ2FdW2 –
(

εI
R

– μ

)

dt

=
(

b – μ(S + P + A + F + I + R) – φI –
(

b
S

+
ηP
F

+
dP
A

+
ηS
P

+
εI
R

–
θF
A

–
ϕA
F

)

+ μ + m1 + m2 + m3 + m4 + m5
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+ βI + δI + σ I – δA – σF – βS – ωP +
ρ2

1 (A2 + I2)

2

+
ρ2

2 (F2 + I2)

2

)

dt + ρ1(I – A)dW1 + ρ2(I – F)dW2.

Setting that:

P =b – μ(S + P + A + F + I + R) – φI –
(

b
S

+
ηS
P

+
dP
A

+
ηP
F

+
εI
R

–
θF
A

–
ϕA
F

)

+ m1 + m2 + m3 + m4 + m5 + μ + βI

+ δI + σ I – δA – σF – βS – ωP +
ρ2

1 (A2 + I2)

2
+

ρ2
2 (F2 + I2)

2

(51)

and then there is:

P ≤b +
θF
A

+
ϕA
F

+ m1 + m2 + m3 + m4 + m5 + μ + βI + δI + σ I

+
ρ2

1 (A2 + I2)

2
+

ρ2
2 (F2 + I2)

2
:= K .

(52)

Therefore, it can be obtained that:

dV (S, P, A, F , I, R) ≤ Kdt + ρ1(I – A)dW1 + ρ2(I – F)dW2. (53)

Integrate t from 0 to τg on both sides of the inequality (53), taking the expectations of
both sides, this can be represented as:

EV
(
S(τg), P(τg), A(τg), F(τg), I(τg), R(τg)

) ≤EV
(
S0, P0, A0, F0, I0, R0) + KE(τg)

=V
(
S0, P0, A0, F0, I0, R0) + Kτg

≤V
(
S0, P0, A0, F0, I0, R0) + Kϒ .

(54)

Since P(τg < ϒ) > ς , it follows that for each t ∈ {τg ≤ ϒ}, at least one of the quantities in
S(τg), P(τg), A(τg), F(τg), I(τg), and R(τg) is equal to 1

m or m, there always exists:

V (S(τg ∧ ϒ), P(τg ∧ ϒ), A(τg ∧ ϒ), F(τg ∧ ϒ), I(τg ∧ ϒ), R(τg ∧ ϒ))

≥ (g – 1 – ln g) ∧ ( 1
g – 1 – ln 1

g ).
(55)

Combining (54) and (55), it can be obtained that:

V
(
S0, P0, A0, F0, I0, R0) + Kϒ ≥E

(
1{τg≤ϒ}V

(
S(τg ∧ ϒ), P(τg ∧ ϒ), A(τg ∧ ϒ),

F(τg ∧ ϒ), I(τg ∧ ϒ), R(τg ∧ ϒ)
))

≥ς · inf
{

1
g

– 1 – ln g or g – 1 + ln g
}

,

(56)
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where 1{τg≤ϒ} is the indicative function for the set {τg ≤ ϒ}. Letting g → ∞, it can be
obtained that:

V
(
S0, P0, A0, F0, I0, R0) + Kϒ ≥ ∞. (57)

Meanwhile, for any initial condition (S0, P0, A0, F0, I0, R0) ∈ R
6
+, it is easy to know that

V (S0, P0, A0, F0, I0, R0) is a real number, it can be derived as:

V
(
S0, P0, A0, F0, I0, R0) + Kϒ < ∞. (58)

Equations (57) and (58) contradict each other, so the assumption is not valid. Hence, it
is proved that τb = +∞, and thus model (46) has a globally unique positive solution with
probability 1, a.s. □

Theorem 8 If R0 > 1 and for any initial condition (S0, P0, A0, F0, I0) ∈ R5
+ of system (61),

satisfying the following conditions:

0 < M < min
{
ξ1S2, ξ2P2, ξ3A2, ξ4F2, ξ5I2}, (59)

where

M =
1
2
ρ2

1 A∗(I∗)2 +
1
2
ρ2

2 F∗(I∗)2 +
1
2
ρ2

1 I∗(A∗)2 +
1
2
ρ2

2 I∗(F∗)2,

ξ1 =μ,

ξ2 =μ,

ξ3 =μ –
1
2
ρ2

1 I∗,

ξ4 =μ –
1
2
ρ2

2 I∗,

ξ5 =μ + ε –
1
2
ρ2

1 A∗ –
1
2
ρ2

2 F∗.

(60)

The stationary distribution π exists for the model presented in equations (61). Moreover,
the solution to the model is ergodic.

Proof Consider the first four equations of the model (47), forming the following random
system:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS(t) =
(
b – βS(t)I(t) – m1S(t) + ωP(t)

)
dt,

dP(t) =
(
αS(t) – m2P(t)

)
dt,

dA(t) =
(
dP(t) – δA(t)I(t) + θF(t) – m3A(t)

)
dt – ρ1A(t)I(t)dW1(t),

dF(t) =
(
ηP(t) – σF(t)I(t) + ϕA(t) – m4F(t)

)
dt – ρ2F(t)I(t)dW2(t),

dI(t) =
(
δA(t)I(t) + σF(t)I(t) + βS(t)I(t) – m5I(t)

)
dt + ρ1A(t)I(t)dW1(t)

+ ρ2F(t)I(t)dW2(t).

(61)
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Define a C2 function:

Θ(S, P, A, F , I, R) = Θ1 + Θ2 + Θ3 + Θ4, (62)

where

Θ1 =
1
2

(

A – A∗ – A∗ ln
A
A∗

)2

,

Θ2 =
1
2

(

F – F∗ – F∗ ln
F
F∗

)2

,

Θ3 =
1
2

(

I – I∗ – I∗ ln
I
I∗

)2

,

Θ4 =
1
2
(
S + A + P + F + I – S∗ – P∗ – A∗ – F∗ – I∗)2.

(63)

The differential operator L for Θ1 is:

LΘ1 =
(

1 –
A∗

A

)

(dP – δAI + θF – m3A) +
1
2

A∗

A2

(
ρ2

1 A2I2)

=
(
A – A∗)

(
dP
A

+
θF
A

– δI – m3

)

+
1
2
ρ2

1 A∗I2

=
(
A – A∗)

(
dP(A∗ – A)

AA∗ +
d(P – P∗)

A∗ +
θF(A∗ – A)

AA∗ +
θ (F – F∗)

A∗

+ δ
(
I∗ – I

)
)

+
1
2
ρ2

1 A∗I2

≤d(P – P∗)(A – A∗)

A∗ +
θ (F – F∗)(A – A∗)

A∗ + δ
(
I∗ – I

)(
A – A∗)

+
1
2
ρ2

1 A∗I2.

(64)

By computation, it can be obtained as:

LΘ1 ≤d(P – P∗)(A – A∗)

A∗ +
θ (F – F∗)(A – A∗)

A∗ + δ
(
I∗ – I

)(
A – A∗)

+
1
2
ρ2

1 A∗(I – I∗ + I∗)2

≤d(P – P∗)(A – A∗)

A∗ +
θ (F – F∗)(A – A∗)

A∗ + δ
(
I∗ – I

)(
A – A∗)

+
1
2
ρ2

1 A∗(I – I∗)2 +
1
2
ρ2

1 A∗(I∗)2.

(65)

Similarly, the differential operator L for Θ2 can be computed as:

LΘ2 =
(

1 –
F∗

F

)

(ηP – σFI + ϕA – m4F) +
1
2

F∗

F2

(
ρ2

2 F2I2)

=
(
F – F∗)

(
ηP
F

– σ I +
ϕA
F

– m4

)

+
1
2

F∗ρ2
2 I2

=
(
F – F∗)

(
ηP(F∗ – F)

FF∗ +
η(P – P∗)

F∗ +
ϕA(F∗ – F)

FF∗ +
ϕ(A – A∗)

F∗ (66)
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+ σ
(
I∗ – I

)
)

+
1
2
ρ2

2 F∗(I – I∗ + I∗)2

≤η(P – P∗)(F – F∗)

F∗ +
ϕ(A – A∗)(F – F∗)

F∗ + σ
(
I∗ – I

)(
F – F∗)

+
1
2
ρ2

2 F∗(I – I∗)2 +
1
2
ρ2

2 F∗(I∗)2.

Next, the differential operator L for Θ3 is calculated as:

LΘ3 =
(

1 –
I∗

I

)

(δAI + σFI + βSI – m5I) +
1
2

I∗

I2

(
ρ2

1 A2I2 + ρ2
2 F2I2)

=
(
I – I∗)(δA + σF + βS – m5) +

1
2

I∗(ρ2
1 A2 + ρ2

2 F2)

=δ
(
I – I∗)(A – A∗) + σ

(
I – I∗)(F – F∗) + β

(
I – I∗)(S – S∗)

+
1
2
ρ2

1 I∗(A – A∗ + A∗)2 +
1
2
ρ2

2
(
F – F∗ + F∗)2

≤δ
(
I – I∗)(A – A∗) + σ

(
I – I∗)(F – F∗) + β

(
I – I∗)(S – S∗)

+
1
2
ρ2

1 I∗(A – A∗)2 +
1
2
ρ2

1 I∗(A∗)2 +
1
2
ρ2

2 I∗(F – F∗)2 +
1
2
ρ2

2 I∗(F∗)2.

(67)

Finally, the differential operator L for Θ3 can be computed as:

LΘ4 =
(
S + P + A + F + I – S∗ – P∗ – A∗ – F∗ – I∗)(–μ

(
S – S∗)

– μ
(
P – P∗) – μ

(
A – A∗) – μ

(
F – F∗) – (μ + ε)

(
I – I∗))

= – μ
(
S – S∗)2 – 2μ

(
P – P∗)(S – S∗) – 2μ

(
A – A∗)(S – S∗)

– 2μ
(
F – F∗)(S – S∗) – 2(μ + ε)

(
I – I∗)(S – S∗) – μ

(
P – P∗)2

– 2μ
(
A – A∗)(P – P∗) – 2μ

(
F – F∗)(P – P∗) – 2(μ + ε)

(
I – I∗)(P – P∗)

– μ
(
A – A∗)2 – 2μ

(
F – F∗)(A – A∗) – 2(μ + ε)

(
I – I∗)(A – A∗)

– μ
(
F – F∗)2 – 2(μ + ε)

(
I – I∗)(F – F∗) – (μ + ε)

(
I – I∗)2.

(68)

Combining the above equations, there is:

Θ(S, P, A, F , I, R) ≤1
2
ρ2

1 A∗(I – I∗)2 +
1
2
ρ2

1 A∗(I∗)2 +
1
2
ρ2

2 F∗(I – I∗)2 +
1
2
ρ2

2 F∗(I∗)

+
1
2
ρ2

1 I∗(A – A∗)2 +
1
2
ρ2

1 I∗(A∗)2 +
1
2
ρ2

2 I∗(F – F∗)2 +
1
2
ρ2

2 I∗(F∗)2

– μ
(
S – S∗)2 – μ

(
P – P∗)2 – μ

(
A – A∗)2 – (μ + ε)

(
I – I∗)2

= – μ
(
S – S∗)2 – μ

(
P – P∗)2 –

(

μ –
1
2
ρ2

1 I∗
)
(
A – A∗)2

–
(

μ –
1
2
ρ2

2 I∗
)
(
F – F∗)2 –

(

μ + ε –
1
2
ρ2

1 A∗ –
1
2
ρ2

2 F∗
)
(
I – I∗)2

+
1
2
ρ2

1 A∗(I∗)2 +
1
2
ρ2

2 F∗(I∗)2 +
1
2
ρ2

1 I∗(A∗)2 +
1
2
ρ2

2 I∗(F∗)2.

(69)
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According to the equation (59), the ellipsoid

–ξ1(S – S∗)2 – ξ2(P – P∗)2 – ξ3(A – A∗)2 – ξ4(F – F∗)2 – ξ5(I – I∗)2 + M = 0 (70)

lies entirely in R5
+, and any region containing this ellipsoid is denoted as O, and O ∈ R5

+,
where O is the closure of O. It can be deduced that LΘ(S, P, A, F , I, R) < 0 in (S, P, A, F , I) ∈
R5

+. It is easily shown that the diffusion matrix of the system forms a uniform ellipsoid over
O [41]. Based on the above analysis, obviously, the random system (61) has a stationary
distribution π and is ergodic.

Specifically, there exists:

lim
t→∞

1
t

E
∫ t

0

[
ξ1
(
S(v) – S∗)2 + ξ2

(
P(v) – P∗)2 + ξ3

(
A(v) – A∗)2 + ξ4

(
F(v) – F∗)2

+ ξ5
(
I(v) – I∗)2]dv ≤ M.

(71)

□

Theorem 9 In system (46), given (S(t), P(t), A(t), F(t), I(t), R(t)) ∈ R
6
+ as a solution, for any

initial condition (S0, P0, A0, F0, I0, R0) ∈ R
6
+, if G(ρ2

1 ,ρ2
2 ) = δ2

2ρ2
1

+ σ 2

2ρ2
2

+ βb
μ

– m5 < 0, then

lim sup
t→∞

ln I(t)
t < 0, I(t) tends to 0.

Proof From equation (47), we can obtain that:

d ln I(t) =
(

δA(t) + σF(t) – m5 + βS(t) –
ρ2

1 A2(t)
2

–
ρ2

2 F2(t)
2

)

dt

+ ρ1A(t)dW1(t) + ρ2F(t)dW2(t).
(72)

Integrating both sides of the equation over t in the interval [0, t], and dividing by t, then
the deformation is:

ln I(t) – ln I(0)

t
=
∫ t

0 (δA(h) + σF(h) + βS(h) – m5 – ρ2
1 A2(h)

2 – ρ2
2 F2(h)

2 )dh
t

+
∫ t

0 ρ1A(h)dW1(h)

t
+
∫ t

0 ρ2F(h)dW2(h)

t
,

(73)

then

ln I(t)
t

=
∫ t

0 (δA(h) + σF(h) + βS(h) – m5 – ρ2
1 A2(h)

2 – ρ2
2 F2(h)

2 )dh
t

+
∫ t

0 ρ1A(h)dW1(h)

t
+
∫ t

0 ρ2F(h)dW2(h)

t
+

ln I(0)

t

≤
∫ t

0 (– ρ2
1

2 (A(h) – δ

ρ2
1

)2 + δ2

2ρ2
1

)dh

t
+

∫ t
0 (– ρ2

2
2 (F(h) – σ

ρ2
2

)2)dh

t
(74)

+
σ 2

2ρ2
2

+
βb
μ

– m5 +
∫ t

0 ρ1A(h)dW1(h)

t
+
∫ t

0 ρ2F(h)dW2(h)

t
+

ln I(0)

t

≤ δ2

2ρ2
1

+
σ 2

2ρ2
2

+
βb
μ

– m5 +
∫ t

0 ρ1A(h)dW1(h)

t
+
∫ t

0 ρ2F(h)dW2(h)

t
+

ln I(0)

t
,

where
∫ t

0 ρ1A(h)dW1(h) and
∫ t

0 ρ2F(h)dW2(h) are continuous local martingales.
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Let Q1(t) =
∫ t

0 ρ1A(h)dW1(h) and Q2(t) =
∫ t

0 ρ2F(h)dW2(h) with Q1(0) = 0 and Q2(0) = 0,
where the quadratic variations can be represented as:

⟨Q1(t)⟩ = ρ2
1
∫ t

0 A2(h)dh, (75)

⟨Q2(t)⟩ = ρ2
2
∫ t

0 F2(h)dh. (76)

According to the positive invariant set (6), there exists lim sup
t→∞

⟨Qi(t)⟩
t ≤ ρ2

i b2

μ2 < ∞, and

lim
t→∞

Qi(t)
t = 0 can be obtained by the strong law of number. Then, we take the upper limit

of equation (74), to obtain:

lim sup
t→∞

ln I(t)
t ≤ δ2

2ρ2
1

+ σ 2

2ρ2
2

+ βb
μ

– m5. (77)

To eradicate the disease, it suffices to satisfy lim sup
t→∞

ln I(t)
t < 0. Setting G(ρ2

1 ,ρ2
2 ) = δ2

2ρ2
1

+

σ 2

2ρ2
2

+ βb
μ

– m5, it can be seen that G(ρ2
1 ,ρ2

2 ) is monotonically declining with respect to ρ2
1

and ρ2
2 . Therefore, as long as ρ2

1 and ρ2
2 are sufficiently large such that the disease will

ultimately disappear, simultaneously, there exists G(ρ2
1 ,ρ2

2 ) < 0. □

The analysis of the stochastic model demonstrates that disease can naturally die out
under certain conditions, particularly when the intensity of random perturbations is suf-
ficiently large. Biologically, this implies that the randomness in policies, such as intermit-
tent lockdown or fluctuating vaccination rate, can to some extent weaken the long-term
transmission potential of the disease.

7 Numerical simulations
Combined with the findings of this study, the Runge–Kutta algorithm was implemented
to perform numerical simulations. As the parameter ranges were not provided in previous
research, this paper establishes them based on R0 and stability conditions to ensure model
accuracy. The outcome of these simulations supports the validity of the theories presented.

For the verification of the local asymptotic stability of E0 in Theorem 1. Let b = 0.00752,
α = 0.3, ϕ = 0.2, θ = 0.2, η = 0.3, ω = 0.2, d = 0.3, β = 0.4, δ = 0.3, σ = 0.5, ε = 0.6, φ =
0.0001, μ = 0.0074. Through calculations, R01 = 0.6612, R0 = R02 = 0.96432 < 1 and the
equilibrium point E0 = (0.0323, 0.0120, 0.4860, 0.4860, 0, 0) can be concluded. The local
asymptotic stability of the model (2) at E0 is confirmed by Fig. 2, which indicates that the
infectious disease will eventually be eradicated over time.

To verify the local asymptotic stability of E∗ in Theorem 2, let b = 0.00752, α = 0.3,
ϕ = 0.2, θ = 0.2, η = 0.3, ω = 0.3, d = 0.3, β = 0.4, δ = 0.3, σ = 0.5, ε = 0.1270, φ =
0.0001, μ = 0.0074. The calculations yield R02 = 0.96432, R0 = R01 = 2.9866 > 1 and E∗ =
(0.0303, 0.0113, 0.1546, 0.1519, 0.0368, 0.6308). Figure 3 confirms the local asymptotic sta-
bility of E∗ in model (2) and indicates that the infectious disease will eventually converge
to the positive equilibrium point E∗ as time progresses.

To reveal the influence of the optimal control pair (χ∗
1 (t),χ∗

2 (t), d∗(t), θ∗(t)) on dis-
ease spread with the optimal control strategy, a group of parameters is randomly set:
b = 0.00752, α = 0.3, ω = 0.2, η = 0.3, ϕ = 0.2, β = 0.4, δ = 0.3, σ = 0.5, ε = 0.6, φ = 0.0001,
μ = 0.0074, and let χ1 = χ∗

1 (t), χ2 = χ∗
2 (t), d = d∗(t), θ = θ∗(t). Meanwhile, different control
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Figure 2 Stability of E0 for the model (2) when R0 < 1

Figure 3 Stability of E∗ for system (2) with R0 > 1 and βm2m5(σm3 + δm4) + δσ (m5(m1m2 –ωα)) > δσbβm2

strategies are applied: “optimal control”, “middle control measure”, and “constant control
measure”. The images of different control strategies can be obtained. Figure 4 shows the
variation of the population of A(t) and I(t) with time t under different control strategies. In
Fig. 4(a), A(t) under the optimal control strategy shows a decreasing trend over time until
it stabilizes, while A(t) under the constant control strategy and middle control strategy
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Figure 4 The fluctuations of A(t) and I(t) over time when employing various control strategies

requires some fluctuations over time before reaching a stable state. In Fig. 4(b), I(t) under
the optimal control strategy can reach a stable state in a very short time, and the number
of people infected that reach the stable state under the middle control strategy is fewer
than under the constant control strategy. However, under the middle control strategy, it
takes longer for I(t) to reach stability. According to Fig. 4, it is clear that “optimal control”
is preferable to “medium control measure”, while “constant control measure” is less desir-
able. This suggests that, in any case, the optimal control strategy is effective in controlling
infectious disease and optimizing the number of infected individuals. However, it is im-
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portant to note that optimal control requires multiple control measures to suppress the
spread of infection through active prevention education and community encouragement

Next, Verification of the infectious disease eradication condition in the stochastic model
(46). First, let ρ1 = 0.05, ρ2 = 0.025. Figure 5 presents the time series and frequencies of
S(t), A(t), F(t), and I(t). According to Theorem 8, it is known that the disease will persist
and there is a stationary distribution. Observing from Fig. 5, despite the continuous fluc-
tuations in the count of susceptible, alert, fragile, and infected individuals over time t, the
probabilities they follow are stable. Next, to observe the spread of infectious disease un-
der deterministic and random systems, consider comparing the deterministic system with
the random system with different perturbation intensities. For ρ1 = 0.05, ρ2 = 0.025, the
changes of S(t), A(t), F(t), and I(t) in the deterministic and stochastic models are shown
in Fig. 6. The quantities of individuals in the stochastic model fluctuate from the deter-
ministic model, but over a smaller range. When the perturbations rise so that ρ1 = 0.085,
ρ2 = 0.05, from Fig. 7, one can observe that the individuals in the stochastic model fluctu-
ate more, but still oscillate around the equilibrium of the deterministic model and remain
stationary overall.

The more pronounced fluctuations observed in Fig. 7 are a result of the increased per-
turbation intensity incorporated into the model. These variations illustrate the influence
of random factors on the system, particularly in real-world situations such as localized
outbreaks or in small populations. During the initial phases of an outbreak, for instance,
patient numbers may fluctuate significantly due to random influences like changes in con-
tact rates, despite the overall trend eventually stabilizing toward the equilibrium point.
This demonstrates how stochastic factors, such as variability in contact rates or environ-
mental shifts, can cause notable short-term deviations from equilibrium, even when the
long-term trend remains steady.

Let b = 0.0074, α = 0.3, ϕ = 0.2, θ = 0.2, ω = 0.2, d = 0.3, η = 0.3, β = 0.2, δ = 0.15, σ =
0.3, ε = 0.85, φ = 0.25, μ = 0.3, ρ1 = 0.25, ρ2 = 0.25, which satisfy Theorem 9. Figure 8
displays the time series of S(t), A(t), F(t), and I(t). When the perturbation intensities are
large enough, the populations of susceptible, alert, and vulnerable individuals can instantly
increase and reach a steady state. Simultaneously, the number of infected individuals can
instantly decrease to 0, which means that at sufficiently high perturbation intensities, the
infection dies out instantly. Therefore, over time, rapid extinction of the infectious disease
can be accomplished by adding sufficient perturbations.

8 Sensitivity analysis
To explore the significance of effective contact rates in the process of virus transmission,
this paper performs a sensitivity analysis on R0 of the viral infection.

The partial derivatives of R01 in terms of the contact infection coefficients β , δ, and σ

can be expressed, respectively, as follows:

∂R01

∂β
=

bβm2(m3m4 – θϕ)

δαb(dm4 + θη) + σαb(dϕ + ηm3) + bβm2(m3m4 – θϕ)
> 0, (78)

∂R01

∂δ
=

δαb(dm4 + θη)

δαb(dm4 + θη) + σαb(dϕ + ηm3) + bβm2(m3m4 – θϕ)
> 0, (79)

∂R01

∂σ
=

σαb(dϕ + ηm3)

δαb(dm4 + θη) + σαb(dϕ + ηm3) + bβm2(m3m4 – θϕ)
> 0. (80)
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Figure 5 The time series and frequencies of S(t), A(t), F(t), and I(t) with ρ1 = 0.05, ρ2 = 0.025
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Figure 6 The deviations of S(t), A(t), F(t), and I(t) over time in both the deterministic and stochastic models,
taking into account ρ1 = 0.05 and ρ2 = 0.025

Figure 7 The disparities of S(t), A(t), F(t), and I(t) over time in both deterministic and stochastic models
considering ρ1 = 0.085 and ρ2 = 0.05
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Figure 8 The temporal evolution of S(t), A(t), F(t), and I(t) with ρ1 = 0.25 and ρ2 = 0.25

It is clearly shown that parameters β , δ, and σ help to suppress the infection and trans-
mission of the virus.

Figure 9 presents the sensitivity analysis of R01. Specifically, Fig. 9(a) illustrates the sensi-
tivity of R01 to the effective contact rates δ and β . It is evident that R01 remains unaffected
by changes in the parameter β , whereas its value increases with the increment of the pa-
rameter δ. Similarly, Fig. 9(b) demonstrates the sensitivity of R01 to the effective contact
rates σ and β . In this case as well, R01 does not exhibit any variation with respect to the pa-
rameter β , while its value rises with an increase in the parameter σ . Furthermore, Fig. 9(c)
displays the sensitivity analysis of R01 to the effective contact rates σ and δ. Here, the value
of R01 increases with the increment of both parameters, showing consistent growth mag-
nitudes. Based on Fig. 9(a), if there exists R0 = R01, parameters δ and σ have a greater
inhibitory effect on the virus than parameter β . Therefore, Spreading the virus can be
effectively curbed by intervening the individual behavioral responses of pseudoinfected
individuals.

R02 is independent of parameters β , δ, and σ , so the sensitivity analysis of R02 is not
performed in this paper.

9 Conclusions
To explore the impact of behavioral responses of pseudoinfected individuals on virus
transmission, this paper develops the SPAFIR epidemic model including “pseudoinfected
individuals”, “alert individuals”, and “susceptible individuals”, which can indicate the im-
pact of pseudoinfected individuals’ behavioral responses on infectious-disease transmis-
sion. Furthermore, the impact of random fluctuations in effective contact rates is consid-
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Figure 9 The sensitivity analysis of R01 to the effective contact rates δ , σ , and β

ered. Finally, to validate the results derived from the theoretical analysis and evaluate how
the model responds to variations in the effective contact rates, numerical simulations are
conducted.

In comparison to the classical SIR model, this paper explores in depth the impact of
“pseudoinfection” and “individual behavior” on spreading the infectious disease, making
the system more realistic in terms of the actual scenario of disease spread. Also, this pa-
per incorporates the impact of pseudoinfection, enabling the model to better predict the
trend of disease spread. Thus, the model proposed in this paper provides an accurate and
practical tool for studying transmission mechanisms and formulating infectious disease
control strategy. Through the research, the following results have been obtained: i) Pos-
itive individual behavioral responses can reduce infection spread. ii) Active prevention
education and community encouragement can help prevent the infectious disease from
spreading, but they cannot completely eliminate the infection. iii) Random fluctuations in
effective contact rates can suppress infection spread, so taking full advantage of stochas-
tic perturbations in the effective contact rate can achieve the inhibitory effect on disease
spread.

Future investigations will prioritize three specific areas. Firstly, we will examine the
transmission of multiple viruses within the social system. Secondly, we will investigate
the effect of individuals falsely diagnosed with infection on the dissemination of different
contagious illnesses during the same era within the societal framework. Lastly, future re-
search will examine stochastic perturbations to enhance the effectiveness of contact rates
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and explore the circumstances under which disease extinction occurs in the scenario of
multiple viruses.
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