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Abstract
In this paper, we study the existence of positive odd 2π -periodic solutions for
second-order ordinary differential equations

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

–u′′(t) = f (t,u(t), v(t),u′(t)), t ∈ [0, 2π ],

–v′′(t) = g(t,u(t), v(t), v′(t)), t ∈ [0, 2π ],

u(0) = u(2π ),u′(0) = u′(2π ),

v(0) = v(2π ), v′(0) = v′(2π ),

where f ,g : [0, 2π ]×R
+ ×R

+ ×R → R
+ are continuous, and f ,g are 2π -periodic in t.

Under the conditions that nonlinear terms f (t, x, y,p) and g(t, x, y,q) may be superlinear
or sublinear growth on x, y,p and q as |(x, y,p)| → 0, |(x, y,q)| → 0 or
|(x, y,p)| → ∞, |(x, y,q)| → ∞. The existence results of positive periodic solutions are
obtained, our proof is based on the fixed point index theory in cones. Finally, two
examples are given to illustrate the applicability of the conclusions of this paper.
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1 Introduction and main results
In recent years, the study the existence of periodic solutions of second-order differential
equations has been attracting the attention of many mathematicians, see for instance the
papers [1, 3, 4, 6–18]. In particular, in [12], the authors considered the existence of pos-
itive periodic solutions for the boundary value problems(BVP) of second-order ordinary
differential equations

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

x′′ + a1(t)x = f1(x, y), t ∈R,

y′′ + a2(t)x = f2(x, y), t ∈ R,

x(0) = x(1), x′(0) = x′(1),

y(0) = y(1), y′(0) = y′(1),
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where fi : R2 →R+ are continuous functions, i = 1, 2. The authors proved the existence of
positive periodic solutions by applying Leray–Schauder fixed-point theorem.

It is worth noting that in [12], the authors considered the nonlinear terms f , g do not
contain derivative terms u′, v′. However, to the best of our knowledge, there are no refer-
ences researching the existence of positive odd 2π-periodic solutions for nonlinear terms
f , g contain derivative terms u′, v′. The purpose of the current article is to investigate the
existence of positive periodic solutions for second-order ordinary differential equations

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

–u′′(t) = f (t, u(t), v(t), u′(t)), t ∈ [0, 2π],

–v′′(t) = g(t, u(t), v(t), v′(t)), t ∈ [0, 2π],

u(0) = u(2π), u′(0) = u′(2π),

v(0) = v(2π), v′(0) = v′(2π),

(1.1)

where f , g : [0, 2π] × R
+ × R

+ × R → R
+ are continuous. We consider the case that

f (t, x, y, p) and g(t, x, y, q) may be superlinear growth on x, y, p and q. In order to study
the existence results of positive odd 2π-periodic solutions for BVP (1.1), we need that
f (t, x, y, p) and g(t, x, y, q) satisfy the following Nagumo condition on p and q:

(F1) Let f , g : [0,π] × R
+ × R

+ × R → R
+ be continuous and 2π-periodic in t, and f , g

be odd functions in (t, x, y), that is

f (t + 2π , x, y, p) = f (t, x, y, p), f (–t, –x, –y, p) = –f (t, x, y, p),

g(t + 2π , x, y, q) = g(t, x, y, q), g(–t, –x, –y, q) = –g(t, x, y, q).

(F2) For any given M > 0, there exists a positive continuous function HM(ρ) on R
+ satis-

fying

∫︂ +∞

0

ρdρ

HM(ρ) + 1
= +∞,

such that for any (t, x, y, p) ∈ [0,π] × [–M, M] × [–M, M] × R and (t, x, y, q) ∈ [0,π] ×
[–M, M] × [–M, M] ×R, we have

|f (t, x, y, p)| ≤ HM(|ρ|), |g(t, x, y, q)| ≤ HM(|ρ|).

Firstly, we consider the case that f (t, x, y, p), g(t, x, y, q) may be superlinear growth on
x, y, p and q as |(x, y, p)| → 0, |(x, y, q)| → 0 or |(x, y, p)| → ∞, |(x, y, q)| → ∞. In this case,
we obtain the following result.

Theorem 1.1 Let f , g : [0,π] × R
+ × R

+ × R → R
+ be continuous. If f , g satisfy the as-

sumption (F1), (F2) as well as the following conditions:
(F3) There exist ai, bi, ci, δ > 0, i = 1, 2, satisfying a + b + c < 1, where a = a1 + a2, b =

b1 + b2, c = c1 + c2, such that

f (t, x, y, p)

≤ a1x + b1y + c1|p|, (t, x, y, p) ∈ [0,π] × [0, +∞) × [0, +∞) ×R, |(x, y, p, q)| < δ,
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g(t, x, y, q)

≤ a2x + b2y + c2|q|, (t, x, y, q) ∈ [0,π] × [0, +∞) × [0, +∞) ×R, |(x, y, p, q)| < δ.

(F4) There exist di, ei, Ci, δ > 0, i = 1, 2, satisfying m > 1, where m = min{d, e}, d = d1 +
d2, e = e1 + e2, such that

f (t, x, y, p)

≥ d1x + e1y – C1, (t, x, y, p) ∈ [0,π] × [0, +∞) × [0, +∞) ×R, |(x, y, p, q)| > H

g(t, x, y, q)

≥ d2x + e2y – C2, (t, x, y, q) ∈ [0,π] × [0, +∞) × [0, +∞) ×R.|(x, y, p, q)| > H

Then BVP (1.1) has at least one positive odd 2π -periodic solution.

Secondly, we consider the case that f (t, x, y, p), g(t, x, y, q) may be sublinear growth on
x, y, p and q as |(x, y, p)| → 0, |(x, y, q)| → 0 or |(x, y, p)| → ∞, |(x, y, q)| → ∞. In this case,
we obtain the following result.

Theorem 1.2 Let f , g : [0,π] ×R
+ ×R

+ ×R → R
+ be continuous functions. If f , g satisfy

the assumption (F1), (F2) and the following conditions:
(F5) There exist di, ei, δ′ > 0, i = 3, 4, satisfying m′ > 1, where m′ = min{d′, e′}, d′ = d3 +

d4, e′ = e3 + e4, such that

f (t, x, y, p) ≥ d3x + e3y, (t, x, y, p) ∈ [0,π] × [0, +∞) × [0, +∞) ×R, |(x, y, p, q)| < δ′,

g(t, x, y, q) ≥ d4x + e4y, (t, x, y, q) ∈ [0,π] × [0, +∞) × [0, +∞) ×R, |(x, y, p, q)| < δ′.

(F6) There exist ai, bi, ci, H , i = 3, 4, satisfying a′ + b′ + c′ < 1, where a′ = a3 + a4, b′ =
b3 + b4, c′ = c3 + c4, such that

f (t, x, y, p)

≤ a3x + b3y + c3|p|, (t, x, y, p) ∈ [0,π] × [0, +∞) × [0, +∞) ×R, |(x, y, p, q)| > H ,

g(t, x, y, q)

≤ a4x + b4y + c4|q|, (t, x, y, q) ∈ [0,π] × [0, +∞) × [0, +∞) ×R, |(x, y, p, q)| > H .

Then BVP (1.1) has at least one positive odd 2π -periodic solution.

It is worth noting that in Theorems 1.1 and Theorems 1.2, we use the inequality con-
ditions (F3)–(F4) and (F5)-(F6) to describe the superlinear and sublinear growth of the
nonlinearity f and g , respectively. Our inequality conditions are weaker than the usual
conditions described by the corresponding upper and lower limits.

The remainder part of this paper is organized as follows. In Sect. 2, for the convenience
of the readers we collect some general results and given some notations. In Sect. 3, under
suitable hypotheses, we apply the fixed point index theory in cones to obtain the existence
results of positive periodic solutions for BVP (1.1). In Sect. 4, we apply the previous results
to some examples to demonstrate the applicability of our main results.
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2 Preliminaries
Throughout this paper, let C2π (R) denote the Banach space of all continuous 2π-periodic
function u(t) with norm ||u||C = max |u(t)|, let C1

2π (R) be the Banach space of all continu-
ous differentiable 2π-periodic function u(t) with norm ||u||C1 = max{||u||C , ||u′||C}. Gen-
erally, Cn

2π (R) denotes nth-order continuous differentiable 2π-periodic function space.
Set I = [0,π], then C(I) denote the Banach space of all continuous function u(t) on I ,
and Cn(I) denote the Banach space of all nth-order continuously differentiable u(t) on
I . Let L2(I) denote the Hilbert space of locally square integrable function u(t) on I with
interior product (u, v) =

∫︁ π

0 u(t)v(t)dt and the normal ||u||2 = (
∫︁ π

0 |u(t)|2dt) 1
2 . Let X × Y

denote the Banach space formed by the product space of X and Y according to normal
||(u, v)|| = max{||.||X , ||.||Y }.

If (u, v) ∈ C2
2π (R) × C2

2π (R) is the odd 2π-periodic solution of the BVP (1.1), then by the
oddity of (u, v), then

u(0) = u(π) = 0, v(0) = v(π) = 0.

We constraint of (u, v) on [0,π] is a solution of the second-order boundary value problem

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

–u′′ = f (t, u(t), v(t), u′(t)), t ∈ [0,π],

–v′′ = g(t, u(t), v(t), v′(t)), t ∈ [0,π],

u(0) = u(π) = 0,

v(0) = v(π) = 0.

(2.1)

On the contrary, if (u, v) ∈ C2[0,π] × C2[0,π] is the solution of BVP (2.1), then it is as-
sumed that the odd continuation of (F1), (u, v) with a period of 2π is the odd 2π-periodic
solution of BVP(1.1). To prove Theorem 1.1–1.2, we consider BVP (2.1).

Given h ∈ C(I), we consider the linear boundary value problem (LBVP)

⎧
⎨

⎩

–u′′ = h(t), t ∈ [0, 1],

u(0) = u(π) = 0.
(2.2)

It is well known that LBVP (2.2) has a unique solution expressed by

u(t) =
∫︂ π

0
G(t, s)h(s)ds := Sh(t), (2.3)

where G(t, s) is the corresponding Green function given by

G(t, s) =

⎧
⎪⎨

⎪⎩

t(1 –
s
π

), 0 ≤ t ≤ s ≤ 1,

s(1 –
t
π

), 0 ≤ s ≤ t ≤ 1.
(2.4)

From (2.3), we have

u′(t) =
∫︂ π

t
(1 –

s
π

)h(s)ds –
1
π

∫︂ t

0
sh(s)ds, t ∈ I. (2.5)
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According to (2.5) and (2.2), we easily see that the solution operator of LBVP (2.2) S :
C(I) → C2(I) is a linear bounded operator. By compactness of the embedding C2(I) →ʿ
C1(I), we obtain that S : C(I) → C1(I) is a completely continuous linear operator.

Lemma 2.1 For every h ∈ C(I), LBVP (2.2) has a unique solution u = Sh satisfies

||u||2 ≤ ||u′||2 ≤ ||u′′||2. (2.6)

Proof Let h ∈ C(I), since orthogonal function system {sin kπ t|k = 1, 2, . . .} ⊂ L2(I) is a
complete orthogonal system, it can be expressed by the Fourier sine series expansion

u(t) =
∞∑︂

k=1

bk sin kπ t, (2.7)

where bk = 2
π

∫︁ π

0 u(t) sin kπ tdt, k = 1, 2, . . . . It then follows from Parseval equality that

||u||22 =
π

2

∞∑︂

k=1

|bk|2. (2.8)

On the other hand, since u′ ∈ L2(I) is an even function, it can be expressed by the Fourier
cosine series expansion

u′(t) =
a0

2
+

∞∑︂

k=1

ak cos kπ t, (2.9)

where a0 = 2
π

∫︁ π

0 u′(t)dt = u(0) – u(π) = 0, ak = 2
π

∫︁ π

0 u′(t) cos kπ tdt = 2kbk , k = 1, 2, . . . ,
By (2.7), (2.9) and the Parseva equality, we obtain

||u′||22 =
π

2

∞∑︂

k=1

|2kbk|2 ≥ π

2

∞∑︂

k=1

|bk|2 = ||u||22,

||u′′||22 =
π

2

∞∑︂

k=1

|2k2πbk|2 ≥ π

2

∞∑︂

k=1

|2kbk|2 = ||u′||22.

Hence (2.5) holds. □

Lemma 2.2 Let h ∈ C+(I). Then the solution u = Sh of LBVP (2.2) has the following prop-
erties:

(a) u(t) ≥ 1
π2 t(π – t)||u||C , t ∈ I ;

(b) ||u||C ≤ π2

4
∫︁ π

0 u(t) sin tdt;
(c) There exists ξ ∈ (0,π) such that u′(ξ ) = 0, u′(t) ≥ 0 for t ∈ [0, ξ ], and u′(t) ≤ 0 for

t ∈ [ξ ,π]. Moreover, ||u′||C = max{u′(0), –u′(π)}.

Proof Let h ∈ C+(I) and u = Sh. From the expression (2.4), we easily see that the Green
function G(t, s) has the following properties:

(i) 0 ≤ G(t, s) ≤ G(s, s) ∀t, s ∈ I ;
(ii) G(t, s) ≥ 1

π
G(s, s)G(t, t) ∀t, s ∈ I .
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By virtue of (2.3) and the properties (i) and (ii), for every t ∈ I , we have

u(t) =
∫︂ π

0
G(t, s)h(s)ds ≥ 1

π
G(t, t)

∫︂ π

0
G(s, s)h(s)ds ≥ 1

π2 t(π – t)||u||C . (2.10)

Hence, the conclusion of Lemma 2.2(a) holds.
Multiply the inequality (2.10) by sin t and integrating over I , we get

∫︂ π

0
u(t) sin tds ≥ 1

π2 ||u||C
∫︂ π

0
t(π – t)dt =

2
π2 ||u||C .

Hence, the conclusion of Lemma 2.2(b) holds.
From (2.5), we see that u′(0) ≥ 0 and u′(π) ≤ 0. Since u′′(t) = –h(t) ≤ 0 for every t ∈ I , it

follows that u′(t) is a monotone decreasing function on I . So, we conclude that there exists
ξ ∈ (0,π) such that u′(ξ ) = 0, u′(t) ≥ 0 for t ∈ [0, ξ ], and u′(t) ≤ 0 for t ∈ [ξ ,π]. Moreover,
we get

||u′||C = max
t∈I

|u′(t)| = max{u′(0), –u′(π)}.

Hence, the conclusion of Lemma 2.2(c) holds.
Now, we define a closed convex cone K in C1(I)

K = {u ∈ C1(I)|u(t) ≥ 0, t ∈ I}. (2.11)

For every (u, v) ∈ K × K , set

F(u, v)(t) := f (t, u(t), v(t), u′(t)), G(u, v)(t) := f (t, u(t), v(t), v′(t)), t ∈ I. (2.12)

Then F and G : K × K → C+(I) are continuous and it maps every bounded in K × K into
bounded set in C+(I). We define three mappings

A : K2 → K2, A1, A2 : K × K → K ,

by

A = (A1, A2), A1 = S ◦ F , A2 = S ◦ G. (2.13)

By the complete continuity of operator S : C(I) → C1(I), we get A : K2 → K2 is a com-
pletely continuous mapping. By the definitions of S and K , the odd 2π-periodic solution
of BVP(1.1) is equivalent to the nonzero fixed point of A. We will find the nonzero fixed
of A by using the fixed point index theory in cones.

To find the nonzero fixed point of A defined by (2.11), we recall some concepts and
conclusions on the fixed point index in [2, 5]. Let E be a Banach space and K ⊂ E be a
closed convex cone in E. Assume Ω is a bounded open subset of E with boundary ∂Ω, and
K ∩ Ω ≠ ∅. Let A : K ∩ Ω → K be a completely continuous mapping. If Au ≠ u, for every
u ∈ K ∩ ∂Ω, then the fixed point index i(A, K ∩ Ω, K) has definition. One important fact
is that if i(A, K ∩ Ω, K) ≠ 0, then A has a fixed point in K ∩ Ω. □
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Lemma 2.3 ([5]) Let Ω be a bounded open subset of E with 0 ∈ Ω, and A : K ∩ Ω → K
be a completely continuous mapping. If μAu ≠ u for every u ∈ K ∩ ∂Ω and 0 < μ ≤ 1, then
i(A, K ∩ Ω, K) = 1.

Lemma 2.4 ([5]) Let Ω be a bounded open subset of E and A : K ∩ Ω → K be a completely
continuous mapping. If there exists v0 ∈ K \ {0} such that u – Au ≠ τv0 for every u ∈ K ∩ ∂Ω

and τ ≥ 0, then i(A, K ∩ Ω, K) = 0.

Lemma 2.5 ([5]) Let Ω be a bounded open subset of E, and A, A1 : K ∩ Ω → K be two
completely continuous mappings. If (1– s)Au+ sA1u ≠ u for every u ∈ K ∩∂Ω and 0 ≤ s ≤ 1,
then i(A, K ∩ Ω, K) = i(A1, K ∩ Ω, K).

3 Proof of main results
In this section, we will use the fixed-point index theory in cones to prove Theorem 1.1
and Theorem 1.2.

Proof of Theorem 1.1 Set E = C1(I), it is easy to verify that K ∈ E is the closed convex cone
defined by (2.11) and A = (S ◦ F , S ◦ G) : K2 → K2 is the completely continuous mapping
defined by (2.13). Then the odd 2π-periodic solution of BVP (1.1) is equivalent to the
nontrivial fixed point of A. Let 0 < r < R < +∞ and set

Ω1 = {(u, v) ∈ C1(I) × C1(I)
⃓
⃓||(u, v)||C1 < r},

Ω2 = {(u, v) ∈ C1(I) × C1(I)
⃓
⃓||(u, v)||C1 < R}. (3.1)

Next, we prove that A has a fixed point in K2 ∩ (Ω2/Ω1), where r is small enough and
R is large enough. Let 0 < r < δ

2 , where δ is the positive constant in the condition (F3), we
will prove that A satisfies the condition of Lemma 2.3 in K2 ∩ (Ω2/Ω1), namely

(u, v) ≠ μA(u, v), 0 < μ ≤ 1, (u, v) ∈ K2 ∩ ∂Ω1. (3.2)

In fact, if (3.2) dose not hold, there exists (u0, v0) ∈ K2 ∩ ∂Ω1 and μ0 ∈ (0, 1) such that
(u0, v0) = μ0A(u0, v0). Since u0 = S(μ0F(u0, v0)), v0 = S(μ0G(u0, v0)), according to the def-
inition of S, u0 is the unique solution of LBVP (2.2) for h = μ0F(u0, v0) ∈ C+(I). Hence,
(u0, v0) ∈ C2(I) × C2(I) satisfies the following differential equations

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

–u′′
0(t) = μ0f (t, u0(t), v0(t), u′

0(t)), t ∈ [0,π],

–v′′
0(t) = μ0g(t, u0(t), v0(t), v′

0(t)), t ∈ [0,π],

u0(0) = u0(π) = 0,

v0(0) = v0(π) = 0.

(3.3)

Since (u0, v0) ∈ K2 ∩ ∂Ω1, by the definition of K and Ω1, we have

u0 ≥ 0, v0 ≥ 0, |(u0(t), u0(t), v′
0(t), u′

0(t))| = 2||(u, v)||C1 < δ.

In view of (F3), we get

f (t, u0(t), v0(t), u′
0(t)) ≤ a1u0(t) + b1v0(t) + c1|u′

0(t)|,
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g(t, u0(t), v0(t), v′
0(t)) ≤ a2u0(t) + b2v0(t) + c2|v′

0(t)|.

From (3.3), we have

–u′′
0(t) – v′′

0(t) = μ0f (t, u0(t), v0(t), u′
0(t)) + μ0g(t, u0(t), v0(t), v′

0(t))

≤ f (t, u0(t), v0(t), u′
0(t)) + g(t, u0(t), v0(t), v′

0(t)).
(3.4)

Take the norm || · ||2 on both sides of (3.4), then by Lemma 2.1, we get

||u′
0||2 + ||v′

0||2
≤ ||u′′

0||2 + ||v′′
0||2 = ||f (t, u0(t), v0(t), u′

0(t))||2 + ||g(t, u0(t), v0(t), v′
0(t))||2

≤ a1||u0||2 + b1||v0||2 + c1||u′
0||2 + a2||u0||2 + b2||v0||2 + c2||v′

0||2
≤ a1||u′

0||2 + b1||v′
0||2 + c1||u′

0||2 + a2||u′
0||2 + b2||v′

0||2 + c2||v′
0||2

≤ (a + b + c)(||u′
0||2 + ||v′

0||2).

(3.5)

From (3.5), we have

(1 – (a + b + c))(||u′
0||2 + ||v′

0||2) ≤ 0.

We get from a + b + c < 1 that

||u′
0||2 + ||v′

0||2 = 0,

which means that

(u′
0, v′

0) = (0, 0), u0 = c0, v0 = c0.

Furthermore, we obtain that u0(0) = 0, u0(π) = 0; v0(0) = 0, v0(π) = 0, then u0 ≡ 0, v0 ≡ 0,
which contradict to the ||(u0, v0)|| = r. Hence (3.2) holds, that is, A satisfies the condition
of Lemma 2.3 in K2 ∩ ∂Ω1. By Lemma 2.3, we have

i(A, K2 ∩ Ω1, K2) = 1. (3.6)

On the other hand, we show that when R is large enough

i(A, K2 ∩ Ω2, K2) = 0. (3.7)

Now we define two cone mappings F1, G1 : K2 → C+(I) as follows

F1(u, v)(t) := F(u, v)(t) + C1, G1(u, v)(t) := G(u, v)(t) + C2, t ∈ I, (3.8)

we set

A′ = (A′
1, A′

2), A′
1 = S ◦ F1(u, v), A′

2 = S ◦ G1(u, v), (3.9)
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where C1, C2 are the positive constants in the condition (F4). Then A′ : K2 → K2 is com-
pletely continuous.

Firstly, we show that (3.7) holds. We choose e0 = sinπ t ∈ K \ {0}. Since –e′′
0(t) = π2e0(t),

from the definition of S it follows that S(π2e0(t)) = e0. By Lemma 2.2(a), e0 ∈ K \ {0}. We
show that A′ satisfies the condition of Lemma 2.4 in K2 ∩ ∂Ω2 for this e0, namely

(u, v) – A′(u, v) ≠ τ (e0, e0), τ ≥ 0, (u, v) ∈ K2 ∩ ∂Ω2. (3.10)

In fact, if (3.10) dose not hold, there exist (u1, v1) ∈ K2 ∩∂Ω2 and τ0 ≥ 0 such that (u1, v1) –
A′(u1, v1) = τ (e0, e0). Since

u1 = A′
1(u1, v1) + τ0e0 = S(F1(u1, v1) + τ0π

2e0),

v1 = A′
2(u1, v1) + τ0e0 = S(G1(u1, v1) + τ0π

2e0),

according to the definition of S, u1 is the unique solution of LBVP (2.2) for h = F1(u, v) +
τ0π

2e0 ∈ C+(I). Hence, (u1, v1) ∈ C2(I) × C2(I) satisfies the differential equations

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

–u′′
1(t) = f (t, u1(t), v1(t), u′

1(t)) + C1 + τ0π
2 sinπ t, t ∈ I,

–v′′
1(t) = g(t, u1(t), v1(t), v′

1(t)) + C2 + τ0π
2 sinπ t, t ∈ I,

u1(0) = u1(π) = 0,

v1(0) = v1(π) = 0.

(3.11)

From (3.11) and (F4), we see that

– u′′
1(t) – v′′

1(t)

= f (t, u1(t), v1(t), u′
1(t)) + C1 + τ0π

2 sinπ t + g(t, u1(t), v1(t), v′
1(t)) + C2

+ τ0π
2 sinπ t

≥ d1u1(t) + e1v1(t) + d2u1(t) + e2v1(t) + 2τ0π
2 sinπ t

≥ (d + e)(u1(t) + v1(t)).

(3.12)

Multiplying (3.12) by sin t and integrating over I, we get

–
∫︂ π

0
u′′

1(t) sin tdt –
∫︂ π

0
v′′

1(t) sin tdt ≥ (d + e)
∫︂ π

0
(u1(t) + v1(t)) sin tdt. (3.13)

Then using integration by parts for the left side, we have

–
∫︂ π

0
u′′

1(t) sinπ tdt –
∫︂ π

0
v′′

1(t) sinπ tdt =
∫︂ π

0
(u1(t) + v1(t)) sin tdt. (3.14)

Taking (3.13) and (3.14) into account, we obtain that

∫︂ π

0
(u1(t) + v1(t)) sin tdt ≥ (d + e)

∫︂ π

0
(u1(t) + v1(t)) sin tdt. (3.15)
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Since
∫︁ π

0 |u1(t)| sin tdt ≥ 4
π2 ||u1||C > 0,

∫︁ π

0 |v1(t)| sin tdt ≥ 4
π2 ||v1||C > 0 by Lemma 2.2(b),

from (3.15) it follows that (d + e) ≤ 1, which contradicts to the (F4). Hence (3.10) holds,
namely A′ satisfies the condition of Lemma 2.4 in K2 ∩ Ω2. By Lemma 2.4, we have

i(A′, K2 ∩ Ω2, K2) = 0. (3.16)

Next, we show that A and A′ satisfy the condition of Lemma 2.5 in K2 ∩ Ω2, when R is
large enough, that is

(1 – s)A(u, v) + sA′(u, v) ≠ (u, v), (u, v) ∈ K2 ∩ ∂Ω2, 0 ≤ s ≤ 1. (3.17)

In fact, if (3.17) dose not hold, there exist (u2, v2) ∈ K2 ∩ ∂Ω2 and 0 ≤ s0 ≤ 1 such that
(1 – s0)A(u2, v2) + s0A′(u2, v2) = (u2, v2). Since u2 = S((1 – s0)F(u2, v2) + s0F1(u2, v2)) ∈ C+(I),
by the definition of S, u2 is the unique solution of LBVP (2.2) for h = (1 – s0)F(u2, v2) +
s0F1(u2, v2) ∈ C+(I). Hence, (u2, v2) ∈ C2(I) × C2(I) satisfies the differential equations

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

–u′′
2(t) = f (t, u2(t), v2(t), u′

2(t)) + s0C1, t ∈ I,

–v′′
2(t) = g(t, u2(t), v2(t), v′

2(t)) + s0C2, t ∈ I,

u2(0) = u2(π) = 0,

v2(0) = v2(π) = 0.

(3.18)

From (3.18) and (F4), we see that

–u′′
2(t) – v′′

2(t) = f (t, u2(t), v2(t), u′
2(t)) + s0C1 + g(t, u2(t), v2(t), v′

2(t)) + s0C2

≥ d1u2(t) + e1v2(t) – (1 – s0)C1 + d2u2(t) + e2v2(t) – (1 – s0)C2

≥ (d1 + d2)u2(t) + (e1 + e2)v2(t) – (C1 + C2)

≥ du2(t) + ev2(t) – (C1 + C2).

(3.19)

Multiplying (3.19) by sin t and integrating over I, we get

∫︂ π

0
u2(t) sin tdt +

∫︂ π

0
v2(t) sin tdt

≥ d
∫︂ π

0
u2(t) sin tdt + e

∫︂ π

0
v2(t) sin tdt – 2(C1 + C2)

≥ m
∫︂ π

0
(u2(t) + v2(t)) sin tdt – 2(C1 + C2).

From this inequality, it follows that

∫︂ π

0
(u2(t) + v2(t)) sin tdt ≤ 2(C1 + C2)

m – 1
. (3.20)

By Lemma 2.2(b), we obtain

||u2||C + ||v2||C ≤ π2

4

∫︂ π

0
u2(t) sin tdt +

π2

4

∫︂ π

0
v2(t) sin tdt. (3.21)
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From (3.20) and (3.21), we have

||u2||C + ||v2||C ≤ π2(C1 + C2)

2(m – 1)
:= M.

From this inequality, it follows that

||u2||C ≤ M, ||v2||C ≤ M. (3.22)

For this M > 0, by the assumption (F2), there is a positive continuous function GM ∈
C(R+, R+) satisfying (1.6) such that (1.7) holds. According to (3.21) and (F2), we get

f (t, u2(t), v2(t), u′
2(t)) ≤ GM(|u′

2(t)|), g(t, u2(t), v2(t), v′
2(t)) ≤ GM(|v′

2(t)|).

Combining with (3.18), we have

–u′′
2(t) ≤ HM(|u′

2(t)|) + C1, –v′′
2(t) ≤ HM(|u′

2(t)|) + C2. (3.23)

By (1.6), we easily obtain

∫︂ +∞

0

ρ1dρ1

HM(ρ1) + C1
= +∞,

∫︂ +∞

0

ρ2dρ2

HM(ρ2) + C2
= +∞.

Hence there exist two constants M1 > M, M2 > M such that

∫︂ M1

0

ρ1dρ1

HM(ρ1) + C1
> M,

∫︂ M2

0

ρ2dρ2

HM(ρ2) + C2
> M. (3.24)

By Lemma 2.2(c), there exists ξ ∈ (0,π) such that u′
2(ξ ) = 0, v′

2(ξ ) = 0, u′
2(ξ ) ≥ 0, v′

2(ξ ) ≥ 0
for t ∈ [0, ξ ], u′

2(ξ ) ≤ 0, v′
2(ξ ) ≤ 0 for t ∈ [ξ ,π], and ||u′

2||C = max{u′
2(0), –u′

2(π)}, ||v′
2||C =

max{v′
2(0), –v′

2(π)}. Hence ||u′
2||C = u′

2(0), ||u′
2||C = –u′

2(π) or ||v′
2||C = v′

2(0), ||v′
2||C =

–v′
2(π). We only discuss the cases of that ||u′

2||C = u′
2(0), ||v′

2||C = v′
2(0), and the other

cases are similar.
Since u′

2(t) ≥ 0, v′
2(t) ≥ 0 for t ∈ [0, ξ ], multiplying both sides of the inequality (3.23) by

u′
2(t), v′

2(t), we obtain that

u′′
2(t)u′

2(t)
GM(u′

2(t)) + C1
≤ u′

2(t),
v′′

2(t)v′
2(t)

GM(v′
2(t)) + C2

≤ v′
2(t), t ∈ [0, ξ ].

Integrating both sides of these inequations over [0, ξ ] and taking ρ1 = u′(t),ρ2 = v′(t) for
the left side, we have

∫︂ u′
2(0)

0

ρ1dρ1

HM(ρ1) + C1
≤ u2(ξ ) ≤ ||u2||C ,

∫︂ v′(0)

0

ρ2dρ2

HM(ρ2) + C2
≤ v2(ξ ) ≤ ||v2||C .

From these inequations and (3.22), we have

∫︂ ||u′
2||C

0

ρ1dρ1

HM(ρ1) + C1
≤ M,

∫︂ ||v′
2||C

0

ρ2dρ2

HM(ρ2) + C2
≤ M. (3.25)
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Using these inequations and (3.24), we conclude that

||u′
2||C ≤ M1, ||v′

2||C ≤ M2. (3.26)

Hence,

||u2||C1 = max{||u2||C , ||u′
2||C} ≤ M1, ||v2||C1 = max{||v2||C , ||v′

2||C} ≤ M2. (3.27)

Let R > M1, R > M2. Since (u2, v2) ∈ ∂Ω2, by the definition of Ω2, ||u2, v2)||C1 = R >
max{M1, M2}, this contradicts to (3.27). Hence, (3.17) holds, namely A and A′ satisfy the
condition of Lemma 2.5 in K2 ∩ Ω2. By Lemma 2.5, we have

i(A, K2 ∩ Ω2, K2) = i(A′, K2 ∩ Ω2, K2). (3.28)

From (3.16) and (3.28) it follows that (3.7) holds.
It then follows from the additivity of fixed-point index, (3.6) and (3.7) that

i(A, K2 ∩ (Ω2\Ω1), K2) = i(A, K2 ∩ Ω2, K2) – i(A, K2 ∩ Ω1, K2) = –1.

Then A has a fixed point in K2 ∩ (Ω2\Ω1), which is a positive solution of BVP (2.2), it
is assumed that the odd continuation of (F1), (u∗, v∗) with a period of 2π is the odd 2π-
periodic solution of BVP(1.1). The proof of Theorem 1.1 is completed. □

Proof of Theorem 1.2 Let Ω1,Ω2 ⊂ C1(I) be defined by (3.1). We prove that the mapping
A = (S ◦ F , S ◦ G) : K2 → K2 defined by (2.13) has a fixed point in K2 ∩ (Ω2/Ω1) when r is
small enough and R large enough.

Let r ∈ (0, δ′), where δ′ is the positive constant in the condition (F5). Choose u0 = v0 =
sin t. Then u0, v0 ∈ K \ {0}. We show that A satisfies the condition of Lemma 2.4 in K2 ∩
∂Ω1, namely

(u, v) – A(u, v) ≠ τ (u0, v0), ∀(u, v) ∈ K2 ∩ ∂Ω1, τ ≥ 0. (3.29)

In fact, if (3.29) does not hold, there exist (u3, v3) ∈ K2 ∩∂Ω1 and τ0 ≥ 0 such that (u3, v3) –
A(u3, v3) = τ0(u0, v0). Since u3 = S(F(u3, v3)+τ0u0), v3 = S(G(u3, v3)+τ0v0), by the definition
of S, u3 is the unique solution of LBVP (2.2) for h = F(u3, v3)+τ0v0. Hence, (u3, v3) ∈ C2(I)×
C2(I) satisfies the differential equations

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

–u′′
3(t) = f (t, u3(t), v3(t), u′

3(t)) + τ0u0(t), t ∈ [0,π],

–v′′
3(t) = g(t, u3(t), v3(t), v′

3(t)) + τ0v0(t), t ∈ [0,π],

u3(0) = u3(π) = 0,

v3(0) = v3(π) = 0.

(3.30)

From (u3, v3) ∈ K2 ∩ ∂Ω1, the definitions of K and Ω1, we see that

u3 ≥ 0, v3 ≥ 0, ||(u, v)||C1 = r < δ′.
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From (3.30) and (F5), we get

–u′′
3(t) – v′′

3(t) = f (t, u3(t), v3(t), u′
3(t)) + g(t, u3(t), v3(t), v′

3(t)) + τ0v0(t) + τ0u0(t)

≥ d3u3(t) + e3v3(t) + d4u3(t) + e4v3(t) + τ0v0(t) + τ0u0(t)

≥ (d3 + d4)u3(t) + (e3 + e4)v3(t)

≥ d′u3(t) + e′v3(t).

Multiplying this inequality by sin t and integrating over I , then using integration by parts
for the left side, we have

∫︂ π

0
u3(t) sin tdt +

∫︂ π

0
v3(t) sin tdt ≥ d′

∫︂ π

0
u3(t) sin tdt + e′

∫︂ π

0
v3(t) sin tdt

≥ m′(
∫︂ π

0
u3(t) sin tdt +

∫︂ π

0
v3(t) sin tdt).

(3.31)

We deduce from Lemma 2.2(b) that

∫︂ π

0
|u3(t)| sin tdt ≥ 4

π2 ||u3||C > 0,
∫︂ π

0
|v3(t)| sin tdt ≥ 4

π2 ||v3||C > 0.

From (3.31), we see that m ≤ 1, which contradicts to the assumption in (F5). Hence (3.29)
holds. In view of Lemma 2.4, we have

i(A, K2 ∩ Ω1, K2) = 0. (3.32)

Let R > δ be large enough. We show that A satisfies the condition of Lemma 2.3 in K2 ∩
∂Ω2, namely

(u, v) ≠ μA(u, v), ∀(u, v) ∈ K2 ∩ ∂Ω2, 0 < μ ≤ 1. (3.33)

In fact, if (3.33) dose not hold, there exist (u4, v4) ∈ ∂Ω2 ∩ K2 and μ1 ∈ (0, 1) such that
(u4, v4) = μ1A(u4, v4). Since u4 = S(μ0F(u4, v4)), v4 = S(μ1G(u4, v4)), by the definition of
S, u4 is the unique solution of LBVP(2.2) for h = μ0F(u4, v4) ∈ C+(I). Hence, (u4, v4) ∈
C2(I) × C2(I) satisfies the differential equations

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

–u′′
4(t) = μ1f (t, u4(t), v4(t), u′

4(t)), t ∈ [0,π],

–v′′
4(t) = μ1g(t, u4(t), v4(t), v′

4(t)), t ∈ [0,π],

u4(0) = u4(π) = 0,

v4(0) = v4(π) = 0.

(3.34)

Since (u4, v4) ∈ ∂Ω2 ∩ K2, by the definitions of K and Ω2, we have

u4 ≥ 0, v4 ≥ 0, ||(u, v)||C1 = R.
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From (3.34) and (F6), we get

–u′′
4(t) – v′′

4(t) = μ1f (t, u4(t), v4(t), u′
4(t)) + μ1g(t, u4(t), v4(t), v′

4(t))

≤ f (t, u4(t), v4(t), u′
4(t)) + g(t, u4(t), v4(t), v′

4(t)).
(3.35)

Take the norm || · ||2 on both sides of (3.35), we deduce from Lemma 2.1 that

||u′
4||2 + ||v′

4||2 ≤ ||u′′
4||2 + ||v′′

4||2 =||f (t, u4(t), v4(t), u′
4(t))||2 + ||g(t, u4(t), v4(t), v′

4(t))||2
≤a3||u4||2 + b3||v4||2 + c3||u′

4||2 + a4||u4||2
+ b4||v4||2 + c4||v′

4||2
≤a3||u′

4||2 + b3||v′
4||2 + c3||u′

4||2 + a4||u′
4||2

+ b4||v′
4||2 + c4||v′

4||2
≤(a′ + b′ + c′)(||u′

4||2 + ||v′
4||2),

(3.36)

According to a′ + b′ + c′ < 1, we obtain that

||u′
4||2 + ||v′

4||2 = 0, (u′
4, v′

4) = (0, 0), u4 = c0, v4 = c0.

Furthermore, we have u4(0) = 0, u4(π) = 0 and v4(0) = 0, v4(π) = 0, then u4 ≡ 0, v4 ≡ 0,
which contradict to the ||(u0, v0)|| = R. Hence (3.33) holds, namely A satisfies the condition
of Lemma 2.3 in K2 ∩ ∂Ω2. By Lemma 2.3, we have

i(A, K2 ∩ Ω2, K2) = 1. (3.37)

Using (3.32) and (3.37), we get

i(A, K2 ∩ (Ω2\Ω1), K2) = i(A, K2 ∩ Ω2, K2) – i(A, K2 ∩ Ω1, K2) = 1.

Then A has a fixed point in K2 ∩ (Ω2\Ω1), which is a positive solution of BVP(2.2), it is
assumed that the odd continuation of (F1), (u∗, v∗) with a period of 2π is the odd 2π-
periodic solution of systems (1.1). The proof of Theorem 1.2 is completed. □

4 Example
In this section, we apply the main results of this paper to two concrete examples to obtain
the existence of positive odd 2π-periodic solutions of the systems, which further illustrates
the applicability of these conclusions.
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Example 4.1 Consider the following boundary value problems of second-order ordinary
differential equations:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

–u′′(t) = u3(t) + v3(t) + u′2(t) sin t, t ∈R,

–v′′(t) = u3(t) + 2v3(t) + v′2(t) sin t, t ∈R,

u(0) = u(2π), u′(0) = u′(2π),

v(0) = v(2π), v′(0) = v′(2π),

(4.1)

It is clear that nonlinear terms
⎧
⎨

⎩

f (t, x, y, p) = x3(t) + y3(t) + p2(t) sin t, t ∈R,

g(t, x, y, q) = x3(t) + 2y3(t) + q2(t) sin t, t ∈ R.
(4.2)

It is not difficult to see that functions f , g satisfies assumption (F1) and (F2). To verify
that condition (F3), let a = b = c = d = 1

8 and δ = 1
7 . When (t, x, y, p) ∈ I × R

+ × R
+ ×

R, |(x, y, p, q)| < δ, by definition (4.2), we have

f (t, x, y, p) + g(t, x, y, q) = x3(t) + y3(t) + sin tp2(t) + x3(t) + 2y3(t) + sin tq2(t)

≤ |x|3 + |y|3 + |p|2 + |x|3 + 2|y|3 + |q|2

≤ 2|x|3 + 3|y|3 + |p|2 + |q|2

≤ 2|(x, y, p, q)|3 + 3|(x, y, p, q)|3 + |(x, y, p, q)|2 + |(x, y, p, q)|2

≤ 7|(x, y, p, q)|2

≤ 7|(x, y, p, q)|(|x| + |y| + |p| + |q|)
≤ a|x| + b|y| + c|p| + d|q|.

Hence f , g satisfies the conditions (F3), when (t, x, y, p) ∈ I ×R
+ ×R

+ ×R, using (4.1), we
have

f (t, x, y, p) + g(t, x, y, q) = x3(t) + y3(t) + sin tp2(t) + x3(t) + 2y3(t) + sin tq2(t)

≥ x3(t) + y3(t) – 2 + x3(t) + 2y3(t) – 3

≥ 2x3(t) + 3y3(t)

≥ x(t) + y(t) – 5,

then f , g satisfies the conditions (F4). Then, Theorem 1.1 guarantees that there exists an
odd 2π-periodic solution (u∗, v∗) of BVP (4.1).

Example 4.2 Consider the following boundary value problems of second-order ordinary
differential equations:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

–u′′(t) = 3√u(t) + 3√v(t) +
√|u′(t)| sin t, t ∈R,

–v′′(t) = 3√u(t) + 3√v(t) +
√|v′(t)| sin t, t ∈R,

u(0) = u(2π), u′(0) = u′(2π),

v(0) = v(2π), v′(0) = v′(2π),

(4.3)
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It is easily seen that nonlinear terms

⎧
⎨

⎩

f (t, x, y, p) = 3√x + 3√y +
√|p| sin t, t ∈R,

g(t, x, y, q) = 3√x + 3√y +
√|q| sin t, t ∈R.

(4.4)

By some simple calculations, we obtain that nonlinear terms f , g satisfy assumption (F1).
To verify condition (F5), let d′ = e′ = 18 and δ′ = 1

27 , then when (t, x, y, p) ∈ I ×R
+ ×R

+ ×
R, 0 < |(x, y, p, q)| < δ, from (4.4), we get

f (t, x, y, p) + g(t, x, y, q) = 3√x + 3√y +
√︁|p| sin t + 3√x + 3√y +

√︁|q| sin t

≥ 2 3√x + 2 3√y

≥ 2x
|(x, y, p, q)| 2

3
+

2y
|(x, y, p, q)| 2

3

≥ 2x
δ′ 2

3
+

2y
δ′ 2

3

= 18x + 18y.

Hence f , g satisfies the condition (F5). To verify condition (F6), let a′ = b′ = c′ = d′ = 1
5 and

H = 30. When (t, x, y, p) ∈ I ×R
+ ×R

+ ×R, |(x, y, p, q)| > H , according to (4.4), we have

f (t, x, y, p) + g(t, x, y, q) = 3√x + 3√y +
√︁|p| sin t + 3√x + 3√y +

√︁|q| sin t

≤ 4|(x, y, p, q)| 1
3 + 2|(x, y, p, q)| 1

2

≤ 6|(x, y, p, q)| 1
2

≤ 6|(x, y, p, q)|
|(x, y, p, q)| 1

2

≤ 1
30

|(x, y, p, q)| ≤ a′|x| + b′|y| + c′|p| + d′|q|.

Then f , g satisfies the conditions (F6). From Theorem 1.2, we conclude that there exists a
odd 2π-periodic solution (u∗, v∗) of BVP (4.3).
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