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Abstract
In this paper, we investigate the spatiotemporal dynamics of a fractional-order
predator-prey reaction-diffusion model (frPDE) with Holling-type III functional
response. We prove that this is not the integer-order reaction-diffusion model, but the
frPDE model exhibits fraction-diffusion-induced instability (i.e., Turing instability),
which is induced by the fractional-order and diffusion together. Furthermore, via
numerical simulations, the frPDE model dynamics exhibits both fractional-order and
diffusion controlled Turing pattern formation, which shows that the dynamics of the
frPDE model is not simple, but rich and complex.
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1 Introduction
Pattern formation, Turing’s pioneering work in 1952 [1], has become a very active area
of research, motivated in part by the realization that there are many common aspects of
patterns formed by diverse physical, chemical, and biological systems and by reaction-
diffusion equations [2]. Understanding the pattern formation of interacting species is sig-
nificant interest in conservation of biology, ecology and biochemical reactions [3, 4].

It is well known that the predator-prey model plays a major role in the studies of bi-
ological invasion of foreign species or epidemic spreading [5]. Among these, the classic
predator-prey model with Holling-type III functional response can be described by the
following ordinary differential equations (ODEs) [6–8]:

⎧
⎪⎪⎨

⎪⎪⎩

du
dt

=ru
(︂

1 –
u
k

)︂
–

qu2v
u2 + a

,

dv
dt

= – cv +
pu2v

u2 + a
,

(1)

where u(t) and v(t) respectively describe the prey’s and predator’s densities at time t, a
is the prey’s density at which the predator has the maximum kill rate, q the consumption
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rate, p
q the conversion efficiency, c death rate of the predator, k the carrying capacity of the

environment, r the intrinsic growth rate. All parameters of the reaction term are positive
constants.

The corresponding reaction-diffusion model to model (1) is

⎧
⎪⎪⎨

⎪⎪⎩

∂u
∂t

=d1Δu + ru
(︂

1 –
u
k

)︂
–

qu2v
u2 + a

,

∂v
∂t

=d2Δv – cv +
pu2v

u2 + a
,

(2)

where the Laplacian operator Δ describes the random diffusion of these two species from
the higher density region to the lower, and the diffusion coefficients d1 and d2 are positive.

For simplicity, we call model (1) as ODE model, and (2) as PDE model. Obviously, these
two models have the same equilibria. And we sign the positive equilibrium as E∗ = (u∗, v∗).

Turing instability According to Turing’s idea [1], if the positive equilibrium E∗ = (u∗, v∗)

is stable for ODE model (1), but unstable with respect to solutions in the case d1 > 0 and
d2 > 0 for PDE model (2), then E∗ is called diffusion-driven instability (i.e., Turing insta-
bility), and model (2) may exhibit stationary Turing pattern.

Unfortunately, for PDE model (2), E∗ = (u∗, v∗) is stable when d1 > 0 and d2 > 0, and
hence there is nonexistence of diffusion-driven instability, and the model cannot exhibit
any stationary pattern [9, 10].

On the other hand, in recent years, much attention has been paid to incorporate frac-
tional derivatives in the population models. Typically, the fractional derivatives are incor-
porated in an ad hoc way by replacing integer order time derivatives with Caputo fractional
derivatives directly [11–14]. These models and their analysis are mathematically interest-
ing, and there are some motivations for incorporating memory effects [13]. And a number
of fractional-order reaction-diffusion models have been formulated to describe the impact
of diffusion on Turing instability and pattern formation [15–21]. Biomathematics experts
currently focus on two types of fractional-order reaction-diffusion predator-prey systems:
one is to use fractional-order operators to represent the rate of change of population den-
sity [15–17], and the other is to use the fractional-order diffusion operator to represent
the integer-order in the reaction-diffusion models [18–21]. However, the integer-order
models corresponding to these fractional-order models already exhibit Turing instability,
and the introduction of fractional order has no substantial impact on the pattern forma-
tion. It is worth pointing out that, in [10], Yin et al. investigated the Turing instability of a
fractional-order reaction-diffusion predator-prey model.

Based on the discussions above, in the present paper, we investigate the Turing instability
of the fractional-order reaction-diffusion predator-prey model with Holling III functional
response:

⎧
⎪⎪⎨

⎪⎪⎩

∂ηu
∂tη

=d1Δu + ru
(︂

1 –
u
k

)︂
–

qu2v
u2 + a

,

∂ηv
∂tη

=d2Δv – cv +
pu2v

u2 + a
,

(3)

with the positive initial conditions:

u(x, 0) > 0, v(x, 0) > 0, x ∈ Ω,
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and the zero-flux boundary conditions:

∂u
∂𝝊

=
∂v
∂𝝊

= 0, x ∈ ∂Ω,

where η ∈ (0, 1), u(x, t) and v(x, t) respectively describe the prey’s and predator’s densities
at time t on the spatial position x. Ω is the bounded open domain in R

n, 𝝊 the outward unit
normal vector on ∂Ω. We will study the stability and obtain the conditions of the Turing
instability for system (3).

And the corresponding ODE model is

⎧
⎪⎪⎨

⎪⎪⎩

dηu
dtη

=ru
(︂

1 –
u
k

)︂
–

qu2v
u2 + a

,

dηv
dtη

= – cv +
pu2v

u2 + a
,

(4)

where
dηu
dtη

is the standard Caputo’s partial derivative with respect to the time variable t
as follows:

dηu
dtη

=
1

Γ(1 – η)

∫︂ t

0

du(s)
ds

ds
(t – s)η

.

For simplicity, we call model (3) as frPDE model, and (4) as frODE model.
The main goal of this paper is to make an insight into the instability induced by the

fractional-order in model (3). Our main interest is to check whether the fractional-order
is a plausible mechanism of developing spatiotemporal pattern in model (3).

The rest of this article is organized as follows: In Sect. 2, we give the stability/instabil-
ity analysis of the models. In Sect. 3, we illustrate typical Turing patterns via numerical
simulations. Finally, conclusions and remarks are presented in Sect. 4.

2 Stability analysis
Easy to know that ODE model (1), PDE model (2) and frODE model (4), frPDE model (3)
have the same equilibria as follows:

1) Extinction equilibrium: E0 = (0, 0) (the predator and the prey go extinct);
2) Boundary equilibrium: E1 = (k, 0) (the prey dies out);
3) Coexistence equilibrium: if p > c

(︂
1 +

a
k2

)︂
, the model exhibits a unique positive equi-

librium E∗ = (u∗, v∗) (the predator and the prey exist), where

u∗ =
√︃

ac
p – c

, v∗ =
apr(k√p – c –

√
ac)

kq
√

ac(p – c)
.

It should be pointed out that the focus of the present paper is on Turing instability and
hence we only study the stability of the coexistence equilibrium E∗ in the remainder.

2.1 The case of integer-order models
Theorem 2.1 For ODE model (1), assume that p > c

(︂
1 +

a
k2

)︂
, i.e., there is a unique positive

equilibrium E∗ = (u∗, v∗). Then E∗ is stable if either of the following inequalities holds:
(H1) a ≥ k2;

(H2) a < k2 and kp + 2c
√︃ ac

p – c
> 2kc.
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Proof The Jacobian matrix of ODE (1) at E∗ is

J =

(︄
J11 J12

J21 0

)︄

=

⎛

⎜
⎜
⎜
⎜
⎝

2r
(︂

k
(︁
c – p

2
)︁

– c
√︂

ac
p–c

)︂

kp
–

cq
p

2r
[︁
k(p – c) –

√
ac(p – c)

]︁

kq
0

⎞

⎟
⎟
⎟
⎟
⎠

. (5)

The characteristic equation of (5) is

λ2 – tr(J)λ + det(J) = 0, (6)

where the trace tr(J) and the determinant det(J) of J are

tr(J) =
r
(︂

k (2c – p) – 2c
√︂

ac
p–c

)︂

kp
,

det(J) =
2cr

(︁
k(p – c) –

√
ac(p – c)

)︁

kp
=

2cr√p – c
(︁
k√p – c –

√
ac

)︁

kp
> 0.

If a ≥ k2 holds, it follows from p > c
(︂

1 +
a
k2

)︂
that p > 2c, and hence tr(J) < 0. If (H2) holds,

then tr(J) < 0. This completes the proof. □

Next, we consider the stability of E∗ for PDE model (2). For simplicity, we only consider
the special case of 2-dimensional space.

Theorem 2.2 If the conditions (H1) or (H2) of Theorem 2.1 hold, for PDE model (2), the
positive equilibrium E∗ is stable.

Proof Let u = u∗ + ũ, v = v∗ + ṽ, where |ũ| ≪ 1, |ṽ| ≪ 1. Thus, we add a small spatiotem-
porally inhomogeneous perturbation near E∗ and obtain the following linear system:

⎧
⎪⎪⎨

⎪⎪⎩

∂ũ
∂t

=d1Δũ + J11ũ + J12ṽ,

∂ ṽ
∂t

=d2Δṽ + J21ũ + J22ṽ.
(7)

According to [22], any solution of system (7) can be expanded into a Fourier series as
follows:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ũ(r, t) =
∞∑︂

n,m=0

ũnm(r, t) =
∞∑︂

n,m=0

αnm(t) sin(w · r),

ṽ(r, t) =
∞∑︂

n,m=0

ṽnm(r, t) =
∞∑︂

n,m=0

βnm(t) sin(w · r),

(8)
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where r = (x, y) and 0 < x < L, 0 < y < L. w = (wn, wm) and wn = nπ/L, wm = mπ/L are the
corresponding wave-numbers. Substituting (8) into (7), we have

⎧
⎪⎪⎨

⎪⎪⎩

dαnm

dt
=(J11 – d1w2)αnm + J12βnm,

dβnm

dt
=J21αnm – d2w2βnm,

(9)

where w2 = w2
n + w2

m.
In general, the solution of model (9) is K1eλ1t +K2eλ2t , where K1 and K2 are determined by

the initial conditions of frPDE model (3) and λ1 and λ2 are the eigenvalues of the Jacobian
matrix:

J(w) =

(︄
J11 – d1w2 J12

J21 –d2w2

)︄

. (10)

The characteristic equation of (10) is

λ2 – tr(J(w))λ + det(J(w)) = 0, (11)

where

tr(J(w)) =tr(J) – (d1 + d2)w2,

det(J(w)) =d1d2w4 – d2tr(J)w2 + det(J).

It follows from Theorem 2.1 that tr(J(w)) < 0 and det(J(w)) > 0. Therefore, the positive
equilibrium E∗ of the PDE model (2) is always stable for any wave-numbers w. □

Remark 2.3 From Theorem 2.2, obviously, there is no effect of the diffusion on the sta-
bility of the positive equilibrium E∗ of PDE model (2). That is to say, there is no diffusion-
driven instability, i.e., Turing instability, in PDE model (2).

2.2 The case of fractional-order model
We first give the definition called fraction-diffusion-induced instability as follows.

Definition 2.4 If the positive equilibrium E∗ is stable in the cases of PDE model (2) and
frODE model (4), but unstable with respect to solutions of frPDE model (3), then this
instability is called as fraction-diffusion-induced instability.

Now we study the stability of frODE model (4). The stability of the positive equilibrium
E∗ can be determined by linearizing frODE model (4) around it, which leads to the fol-
lowing linear system:

⎧
⎪⎪⎨

⎪⎪⎩

dηu
dtη

=J11u + J12v,

dηv
dtη

=J21u,
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It follows from [23] that the positive equilibrium E∗ is locally asymptotically stable if all
the eigenvalues λ of the Jacobian matrix J evaluated at the equilibrium point satisfies

|argλ| >
ηπ

2
, (12)

where λ = α ± iβ are the roots of (6) with β ≥ 0. If the positive equilibrium E∗ of ODE

model (1) is stable, i.e., α < 0, then |argλ| = arctan
β

α
+ π >

ηπ

2
holds. If α = 0, |argλ| =

π

2
>

ηπ

2
always holds. In this case, it follows that tr(J) = 0. Therefore, we only need to consider

the case of α > 0, β > 0, that is tr(J) > 0 and 4 det(J) – tr2(J) > 0. Clearly, (12) is equivalent
to

tan(argλ) =
β

α
=

√︁
4 det(J) – tr2(J)

tr(J)
> tan

(︂ηπ

2

)︂
. (13)

And hence, we can directly obtain the following results according to (13).

Theorem 2.5 For frODE model (4), if

a < k2, kp + 2c
√︃

ac
p – c

< 2kc and

√︄

4ckpr
√

p – c
(︂

k
√

p – c –
√

ac
)︂

– r2
(︂

k(2c – p) – 2c
√︃

ac
p – c

)︂2

> r
(︂

k(2c – p) – 2c
√︃

ac
p – c

)︂
tan

(︂ηπ

2

)︂
(14)

hold, then the positive equilibrium E∗ is stable.

Remark 2.6 Easy to prove that, if a < k2, kp + 2c
√︃ ac

p – c
< 2kc, and

√︃

4ckpr√p – c
(︂

k√p – c –
√

ac
)︂

– r2
(︂

k(2c – p) – 2c
√︂

ac
p–c

)︂2

= r
(︂

k(2c – p) – 2c
√︂

ac
p–c

)︂
tan

(︁
ηπ

2
)︁ (15)

hold, then frODE model (4) undergoes a Hopf bifurcation around E∗.

We next consider the instability of the positive equilibrium E∗ of frPDE model (3).
Similar to (7), after linearized frPDE model (3), we have

⎧
⎪⎪⎨

⎪⎪⎩

∂ηũ
∂tη

=d1Δũ + J11ũ + J12ṽ,

∂ηṽ
∂tη

=d2Δṽ + J21ũ + J22ṽ.
(16)
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According to [22, 24], any solution of system (16) can be expanded into a Fourier series (8).
Substituting (8) into (16), we obtain

⎧
⎪⎪⎨

⎪⎪⎩

∂ηαnm

∂tη
=(J11 – d1w2)αnm + J12βnm,

∂ηβnm

∂tη
=J21αnm – d2w2βnm.

The instability of the positive equilibrium E∗ of frPDE model (3) is more complex. For
convenience, we consider the case of det(J(w)) < 0.

Notice that det(J(w)) can achieve its minimum

min
w

det(J(w)) =
4d1d2 det(J) – d2

2tr2(J)

4d1d2

at the critical value w∗2 =
tr(J)

2d1
> 0. Consequently, for some wave numbers w ≠ 0, if

4d1d2 det(J) < d2
2tr2(J), (17)

we have det(J(w)) < 0. (17) is equivalent to

tr(J) > 2

√︄
d1

d2
det(J).

Summarizing the discussions above, we have the following results.

Theorem 2.7 Let (14) hold. For frPDE model (3), if

r
(︂

k (2c – p) – 2c
√︂

ac
p–c

)︂

kp
> 2

√︄
2d1cr√p – c

(︁
k√p – c –

√
ac

)︁

d2kp
(18)

holds, then the positive equilibrium E∗ is unstable.

From det(J(w)) = 0, we can determine w1 and w2 as

w2
1 =

d2tr(J) –
√︁

d2
2tr2(J) – 4d1d2 det(J)

2d1d2
, w2

2 =
d2tr(J) +

√︁
d2

2tr2(J) – 4d1d2 det(J)

2d1d2
.

In conclusion, if w2
1 < w2 < w2

2, then det(J(w)) < 0 and E∗ of frPDE model (3) is unstable.
That is to say, the fraction-diffusion-driven instability occurs, and frPDE model (3) may
exhibit Turing pattern formation.

For the sake of studying the fraction-diffusion-induced instability of frPDE model (3)
further, in Fig. 1, we give the bifurcation diagram in a – p space with r = 1, k = 1, c = 0.5
and q = 1. Curve C1 comes from the equation a = k2(p–c)(2c–p)2

4c3 , the Hopf bifurcation curve
C2 is determined by (15) for frODE model (4) with η = 0.8, and curve C3 is obtained from
the equality case of (18). In domain II, fraction-diffusion-induced instability occurs, in
other words, Turing instability exists.
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Figure 1 The bifurcation diagram of the parameters p and a for the system (4) with r = 1, k = 1, c = 0.5, q = 1,
η = 0.8, the position of the mark “×” is (p,a) = (0.701, 0.005), and the mark “O” is (p,a) = (0.571, 0.0165)

Figure 2 The dispersion coefficient and the real part of the roots in (11):(a) the suitable dispersion coefficient
against the wave numbers w; (b) the real part of the characteristic roots against the wave numbers w

Furthermore, in Fig. 2, we show the existence of the wave-number w. We take the pa-
rameters as r = 1, a = 0.005, c = 0.5, p = 0.701, k = 1, η = 0.8 and d1 = 1, d2 = 20, whose
position of (p, a) (marked as “×”) is in the domain II of Fig. 1, and respectively plot the
suitable dispersion coefficient det(J(w)) of the characteristic equation (11) in Fig. 2(a) and
the real part of the characteristic roots in Fig. 2(b) against the wave numbers w. We find
det(J(w)) < 0 and the real part Re(λ(w)) > 0 when 0.2490 < w < 0.4533, which indicates that
the Turing instability occurs.

3 Turing pattern formation
In this section, we perform extensive numerical simulations of frPDE model (3) to show
the qualitative results of Turing pattern formation in two- and three-dimensional space.

3.1 Numerical method
We use the Grünwald–Letnikov method [25] to discrete the Caputo fractional-order
derivative operator in system (3). The Grünwald–Letnikov fractional derivative [26] is in-
troduced as follows.
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Assume that the function y(t) satisfies some smoothness conditions in every finite in-
terval (0, t), t ≤ T . Choosing the equidistant grid

0 = τ0 < τ1 < · · · < τn+1 = t,

and taking h = τk+1 – τk , then the Grünwald–Letnikov fractional derivative of order η is
defined by

GDη

t y(t) = lim
h→0

1
hη

Δ
η

hy(t) = lim
h→0

1
hη

(︄

y(τn+1) –
n+1∑︂

ν=1

Cη
ν y(τn+1–ν)

)︄

, (19)

where

Cη
ν = (–1)ν–1

(︃
η

ν

)︃

=
–1

Γ(–η)
· Γ(ν – η)

Γ(ν + 1)
,

and the Gamma function Γ(η) is defined by the integral Γ(η) =
∫︁ ∞

0 τ η–1e–τ dτ .
The Grünwald–Letnikov definition based on finite differences is not equivalent to the

Caputo definition. Their difference is expressed by [25]

CDη
t y(t) = GDη

t y(t) –
m–1∑︂

ν=0

rη
ν (t)y(ν)(0), (20)

where rη
ν (t) = tν–η

Γ(ν+1–η) . Especially, when 0 < η < 1, (20) will be simplified as

CDη
t y(t) = GDη

t y(t) – rη
0 (t)y(0),

where rη
0 (t) = t–η

Γ(1–η) .
From (19), when the step size h → 0, the Grünwald–Letnikov approximation satisfies

GDη

t y(t) ≈ 1
hη

(︄

y(τn+1) –
n+1∑︂

ν=1

Cη
ν y(τn+1–ν)

)︄

.

Therefore, when 0 < η < 1, from the following Caputo fractional-order differential equa-
tion

CDη
t y(t) = F(y(t)), (21)

we have

1
hη

(︄

y(τn+1) –
n+1∑︂

ν=1

Cη
ν y(τn+1–ν)

)︄

– rη
0 (τn+1)y(0) ≈ F(y(τn).

Thus, (21) will be discretized into

y(τn+1) ≈
n+1∑︂

ν=1

Cη
ν y(τn+1–ν) + hηrη

0 (τn+1)y(0) + hηF(y(τn).
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Figure 3 Turing patterns of u in 2D square domain for frPDE model (3) with initial conditions
u0(i, j) = u∗ – 2e–7(xi – 0.1yj – L/2)(xi – 0.1yj – 1.5L), v0(i, j) = v∗ – 3e–5(xi – L) – 1.2e–4(yj – L/3). Times: (a) 0; (b) 150;
(c) 250; (d) 350

Figure 4 Turing patterns of u in 3D cube domain for frPDE model (3) with initial conditions
u0(i, j, k) = u∗ – 2e–7(xi – 0.1yj – 0.1zk – L/2)(xi – 0.1yj – 0.2zk – 1.5L),
v0(i, j, k) = v∗ – 3e–5(xi – L) – 1.2e–4(yj – L/3) – 0.8e–4(zk – L/2). Times: (a) 0; (b) 150; (c) 250; (d) 350

3.2 Pattern formation
We take the parameters as follows:

r = 1, k = 1, p = 0.701, c = 0.5, a = 0.005, q = 1, d1 = 1, d2 = 20,η = 0.8.

For the discretization of Laplace operator, we use a 2×2 convolution matrix for 2D square
domain and a 3 × 3 × 3 for 3D cube domain with edge wrapping method.

In the case of two-dimensional square domain L × L, we take L = 100, Δt = 0.01, Δx =
Δy = 1, and the initial conditions u0(i, j) = u∗ – 2e–7(xi – 0.1yj – L/2)(xi – 0.1yj – 1.5L),
v0(i, j) = v∗ – 3e–5(xi – L) – 1.2e–4(yj – L/3). After 3.5 ∗ 104 iterations for the discrete time,
the spatial two-dimensional frPDE model (3) ultimately converges to a steady state. The
gradual change process of the prey’s Turing patterns along time is illustrated in Fig. 3.

In the case of three-dimensional cube domain L × L × L, limited by computing power,
we take L = 30, Δx = Δy = Δz = 1 and the other parameters as the same as the above, and
the initial conditions u0(i, j, k) = u∗ – 2e–7(xi – 0.1yj – 0.1zk – L/2)(xi – 0.1yj – 0.2zk – 1.5L),
v0(i, j, k) = v∗ – 3e–5(xi – L) – 1.2e–4(yj – L/3) – 0.8e–4(zk – L/2). After the same iterations
for the discrete time, the spatial three-dimensional frPDE model (3) ultimately converges
to a steady state. The gradual change process of the prey’s Turing patterns is illustrated in
Fig. 4.

In addition, in order to check further Turing instability parameters, in the Turing insta-
bility region of Fig. 1, we take the parameters p = 0.571, a = 0.0165 in frPDE model (3),
which is labeled in Fig. 1 with the mark “O”. The other parameters are taken as the same
as before. For the case of two-dimensional square domain, we take the initial conditions
u0(i, j) = u∗, v0(i, j) = v∗ if (xi – L/2)2 + (yj – L/2)2 < L2/4 and zero otherwise. For the case of
three-dimensional cube domain, we take the initial conditions u0(i, j, k) = u∗, v0(i, j, k) = v∗
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Figure 5 Turing patterns of u in 2D square domain for frPDE model (3) with initial conditions u0(i, j) = u∗ ,
v0(i, j) = v∗ if (xi – L/2)2 + (yj – L/2)2 < L2/4 and zero otherwise. Times: (a) 0; (b) 150; (c) 350; (d) 500

Figure 6 Turing patterns of u in 3D cube domain for frPDE model (3) with initial conditions u0(i, j, k) = u∗ ,
v0(i, j, k) = v∗ if (xi – L/2)2 + (yj – L/2)2 + (zk – L/2)2 < L2/4 and zero otherwise. Times: (a) 0; (b) 150; (c) 350; (d) 500

if (xi – L/2)2 + (yj – L/2)2 + (zk – L/2)2 < L2/4 and zero otherwise. After a long time of cal-
culation, the prey’s Turing patterns are illustrated in Figs. 5 (2D) and 6 (3D), respectively.

4 Conclusions
In this paper, we study the spatiotemporal dynamics of a fractional-order predator-prey
reaction-diffusion model with Holling-type III functional response, i.e., frPDE model (3),
and obtain the conditions of fraction-diffusion-induced instability (i.e., Turing instability).

In the numerical simulation of frPDE model (3), we can easily use the Euler method to re-
alize the iterative process. However, because of the memory and heredity of the fractional-
order operator, when calculating the new iteration of fractional-order differential equa-
tions, we need to consider all the history values of the solutions. The consequence is that
in the process of discretization of frPDE model (3), we have to start calculating from u0

or v0 for every new iteration, which leads to very large memory demand and greater com-
putational power for the whole simulation. Meanwhile, as the spectral length L increases,
the computational complexity increase also significantly. Therefore, it is necessary to use
parallel computing during the simulation process.

In [18], the fractional order Laplacian operator is introduced in a three-dimensional
first-order predator-prey model. The authors believe that the order of fractional diffusion
affects the stability of the system pattern. This prompts us to introduce the fractional-
order diffusion into our fractional-order predator-prey model in our future research.

Ruan et al [27] indicated that, the continuous random walk in the predator-prey model is
a Gaussian distribution and the corresponding reaction-diffusion is the only local spatial
spread of diffusion. When we deal with the cases of the long-distance geographic spread,
the random Laplace diffusion certainly is not suitable to describe the spread diffusion be-
havior, while fractional diffusion is a more reasonable approach. That is to say, fractional
diffusion has a wider range of applications than integer diffusion. In our future research,
we will focus on fractional diffusion in the fractional-order population models.
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