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Abstract
With the deepening of commodity financialization, the risk linkage between global
commodity markets and financial markets becomes more complex. In this paper, we
investigate the risk interconnections between global financial markets and
commodity markets in the context of commodity financialization, as well as the
dynamic infectious process. To describe and analyze the risk contagion process
between the two markets, we construct a two-layer spillover network for the mixed
markets. Based on the network, we analyze the static average spillover risk and the
dynamic spillover risk of different countries and commodities. Moreover, we propose
an SIS epidemic model to discuss the dynamic contagion procession of spillover risk
in the system. By focusing on five extreme events, we find that the basic reproduction
number is great than 1 at all stages and has obvious change before and after these
events. In this model, the cross-contagion rate parameters between two markets can
be positive or negative, indicating that the spillover risks between financial markets
and commodity markets can both infect and hedge each other. This reflects the
unique nature of financial risk contagion.

Keywords: Risk contagion; Financial markets; Commodity markets; Multi-layer
networks; SIS model

1 Introduction
In the process of financialization of commodities, the connections between traditional
financial markets and various commodity markets have become increasingly intricate,
gradually forming a system in which a small disruption in any country’s financial mar-
ket or any commodity market can trigger widespread contagion, ultimately threatening
the stability of the entire system [1–5]. Since the 2008 financial crisis, many black swan
events and geopolitical conflicts have led to heightened global uncertainty, which severely
impacts both commodity and financial markets [6–9]. Continuously monitoring the in-
formation in these markets and exploring their interconnections is of great importance
for mitigating systemic financial risks.

Connectedness is essential for managing and measuring modern risks [4]. It quantifies
the interdependence among system components, effectively integrating diverse risk di-
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mensions into a unified measure [10]. Connectedness contains different metrics which
can provide varied information. Among them, the net spillover index measures each ele-
ment’s net spillover capacity within the system, with positive values indicating risk sources
and negative values indicating risk recipients. A large body of economic evidence indi-
cates that there are significant information spillover effects and interlinkages between the
international commodity markets and financial markets [11–14], with the impact of price
fluctuations in energy commodities, precious metals, and agricultural products being par-
ticularly pronounced [15–17].

Diebold, Yılmaz [18] developed a network topology analysis method, employing con-
nectedness as a network metric, which has been widely applied in risk research. In terms
of the application of these financial spillover networks, most studies are limited to single-
layer networks [19]. Single-layer networks have structural limitations, placing different
markets at the same level and easily overlooking cross-market connections. In contrast,
multi-layer networks can effectively incorporate the diverse information of complex sys-
tems along with their multi-layer structures [20]. In the current research on multi-layer
financial networks, a number of studies use multiplex networks to investigate the different
risk-connection channels within the same financial market, such as the interbank market
[21], the collateral market [22], and the stock market [23]. Additionally, interdependent
networks are more suitable for studying risks between different markets or countries, as
they better highlight the connections across markets or nations [20].

The financial system is a complex chaotic system influenced by nonlinear dynamics,
which traditional econometric methods and linear models fail to adequately capture [24].
Given the development of complex networks, researchers are turning to dynamic meth-
ods to investigate the dynamic characteristics of networks. Biondo et al. [25] proposed
a multi-layer network with propagation dynamics, simulating the process of information
dissemination and trading phases typical of financial markets. Due to the similarities in
transmission mechanisms and dynamics between financial risks and infectious diseases,
models from biological sciences are increasingly applied in financial research. Chen, Fan
[26] proposed a SIS epidemic network model to describe the dynamics of the contagion
process of liquidity crisis on the interbank lending network. Huang et al. [27] established a
two-layer Granger network connecting the Chinese and U.S. stock markets through Hong
Kong stock market, and constructed a SIR model to analyze the spread of financial shocks.

For spillover networks based on connectedness, many papers explored whether network
structure is significantly affected by certain extreme events and macroeconomic factor
[28]. In fact, in the dynamic net spillover network, the state of each node converts between
being a risk receiver and a risk transmitter over time. This provides an opportunity to study
the dynamic characteristics of the network using epidemic models. On the other hand,
many existing researches focus on specific financial sub-markets, such as the stock market
[29] or banking sector [30], and their relationships with commodity markets. However,
a country’s financial system includes various subsystems like the stock market, foreign
exchange market, and interbank market, a single index cannot adequately represent the
overall financial condition.

Motivated by these studies, in this paper, we investigate the risk interconnections be-
tween global financial markets and commodity markets in the context of commodity fi-
nancialization, as well as the dynamic infectious process. Firstly, we establish a financial
stress index for each country with a standardized approach proposed by Illing, Liu [31],
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which characterizes a country’s financial risk situation from multiple dimensions. Accord-
ing to Adhikari, Putnam [2], the index can quantify systemic financial stress and identify
disruptions in the normal functioning of financial markets. The index value is normalized
so that a value of zero indicates normal financial stress levels. A positive value signifies
above-average stress levels, while a negative value indicates below-average stress levels. In
commodity markets, we utilize the indicator of commodity returns, which is commonly
used in related studies [7, 32, 33]. Then, a two-layer network is constructed based on the
approach of Diebold, Yilmaz [34]. Secondly, the dynamic net spillover index of risk is cal-
culated using a rolling window method. Then, an SIS model is developed based on the
two-layer network to examine the dynamic evolution of the net spillover index of risk be-
fore and after five extreme events. We focus on the variations in the overall risk contagion
capability of the whole system, including both financial and commodity markets, during
each event period.

The rest of this paper is organized as follows. Section 2 focuses on the selection of fi-
nancial data from various countries and global commodity data. Section 3 discusses the
methods employed, primarily emphasizing the VAR approach, the building of two-layer
network and the SIS model. An empirical result and the variations in risk contagion ca-
pacity before and after five extreme events are given in Sect. 4 and Sect. 5. Finally, we give
a conclusion in Sect. 6.

2 Data
The data is sourced from Investing.com. This database is a free financial data platform
that provides real-time data from 250 exchanges worldwide (daily, monthly, and annually),
along with quotes, charts, breaking news, and analysis, available in 44 language versions.

The sample period spans from January 10, 2007 to December 29, 2023, which includes
a series of significant events such as the 2008 financial crisis, the 2014 oil price decline,
the 2018 U.S.–China trade war, the COVID-19 pandemic in 2020, and the Russia–Ukraine
war in 2022. A total of 4272 sample values are obtained after processing the data.

First, we select 15 countries from the top 20 nations ranked by total GDP in the World
Bank’s 2022 report, depending on data availability. The chosen countries are the United
States, China, Japan, Germany, India, the United Kingdom, France, Russia, Brazil, Aus-
tralia, South Korea, Mexico, Indonesia, Saudi Arabia, and Turkey, representing five con-
tinents: Asia, North America, South America, Europe, and Oceania. These nations are
globally representative due to their substantial economic output, which constitutes a sig-
nificant portion of global GDP, thus influencing international markets. Additionally, these
economies host the world’s major financial centers, playing a crucial role in global cap-
ital flows. Moreover, among these countries, some are clearly resource-consuming na-
tions (such as the United States, China and Japan), while others are prominent resource-
exporting countries (like Russia, Brazil, and Saudi Arabia). Their production and con-
sumption behavior serve as fundamental determinants in the commodity markets. Sub-
sequently, drawing on the methodology by Balcilar et al. [28] for constructing a financial
stress index (FSI) for 11 countries, we select stock market indices, banking or financial in-
dices, and exchange rates for 15 countries, as shown in Table 1, to construct the financial
stress index for each country using the variance-equal weighted approach.

This method is simple to compute and accurately scales financial stress, making it widely
adopted in many studies [31, 35, 36]. Indicators are selected from the banking sector, stock
market, and foreign exchange market as follows:
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Table 1 Financial data sources table

No. Country Stock Bank Foreign Exchange

1 US S&P 500 KBW DXY
2 CHN CSI 300 CSI Bank USD/CNY
3 JP TOPIX TOPIX Banks USD/JPY
4 GER DAX 30 DAX Banks EUR/USD
5 IND Nifty 50 Nifty Bank USD/INR
6 GBR FTSE 100 FTSE 350 Banks GBP/USD
7 FRA CAC 40 CAC 40 Financials EUR/USD
8 RU MOEX MOEX Financials USD/RUB
9 BRA IBOVESPA IBOVESPA Financials USD/BRL
10 AUS ASX 200 ASX 200 Banks AUD/USD
11 KOR KOSPI KRX Bank USD/KRW
12 MEX S&P/BMV IPC S&P/BMV Financials USD/MXN
13 IDN IDX IDX Finance USD/IDR
14 SA TASI TASI Bank USD/SAR
15 TUR BIST 100 BIST Banks USD/TRY

Figure 1 First difference of financial stress index (FSI) for countries

i) The banking sector consists of three main variables: systemic risk of banks (calculated
using a 60-day rolling window with the standard Capital Asset Pricing Model (CAPM)),
the negative returns of the banking index, and the volatility of the banking index.

ii) The stock market includes two variables: negative stock returns and the volatility of
the stock index.

iii) In the foreign exchange market, the volatility of the currency is selected.
Due to a negative value in the original form, FSI data have been taken in the first differ-

ence [7].
Figure 1 displays the time series plots of the first difference of FSI series for the first

4 countries we study, with the remaining countries presented in Appendix A as Fig. 1
(continued).

In terms of commodity selection, we chose ten basic commodities: gold, silver, copper,
aluminum, nickel, oil, natural gas, wheat, corn, and soybeans, using their daily closing
prices in futures, as shown in Table 2. These commodities hold significant positions in the
global market and have a substantial impact on the global economy.

We use the logarithmic returns of commodity prices, calculated as follows:

Ri,t = ln

(︃
Pi,t

Pi,t–1

)︃
. (1)
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Table 2 Commodity data sources table

Category Commodity Code

Precious Metals Gold (NYMEX) Gold
Silver (NYMEX) Silver

Industrial Metals Copper (LME) Copper
Aluminum (LME) Aluminum
Nickel (LME) Nickel

Energy WTI Crude Oil (NYMEX) WTI
Natural Gas (CME) Ngas

Grains Wheat (CBOT) Wheat
Corn (CBOT) Corn
Soybean (CBOT) Soybean

Figure 2 Logarithmic returns of commodity prices of oil, natural gas, gold, and silver prices

Here, Pi,t is the closing price of the ith commodity on day t. Figure 2 presents the loga-
rithmic returns of oil, natural gas, gold, and silver prices, while the returns of the remaining
commodities are provided in Fig. 2 (continued) in Appendix A. These time series all pass
the stationarity test.

3 Methods
In the section, we first construct a two-layer net spillover network for financial markets
and commodity markets, using the standard VAR model (Diebold, Yilmaz [34]). Second,
we establish an SIS model to describe the dynamic risk propagation process between two
markets. Third, we calculate the basic reproduction number of the SIS model before and
after five extreme events.

3.1 Connectedness measurement
Consider a N-variable covariance stationary VAR(p) model defined as Xt = V +∑︁p

i=1 ΦiXt–i + εt , Φi are N × N coefficient matrix, and εt is a normally distributed white
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noise error term, εt ∼ (0,Σ), V is the N-dimensional intercept vector. Using the Wold
decomposition theorem, the model can be transformed into the moving average repre-
sentation given by Xt = Z +

∑︁∞
i=0 Aiεt–i, where Ai denote N × N coefficient matrices fol-

lowing the recursion Ai =
∑︁p

j=1 ΦjAt–j. Then we perform generalized forecast error vari-
ance decomposition, which is invariant to the variable ordering [34]. The H-step-ahead
generalized forecast error variance for ith variable can be written as

θ
g
ij (H) =

σ –1
jj

∑︁H–1
h=0

(︁
e′

iAhej
)︁2

∑︁H–1
h=0

(︁
e′

iAhCA′
hei

)︁ , (2)

where C denotes the covariance matrix of errors, σjj denotes the standard deviation of the
disturbance term in the jth equation, and ei denotes the selection vector. Due to the fact
that the forecast error variance contributions may not be equal to 1, standardization is
required as follows:

θ̃
g
ij (H) =

θ
g
ij (H)∑︁N

j=1 θ
g
ij (H)

. (3)

Thus, the sum of the variance decompositions in individual market, including own
shocks, equals one, or

∑︁N
j=1 θ̃

g
ij (H) = 1, and the sum of the total variance decompositions

in all markets equals
∑︁N

i,j=1 θ̃
g
ij (H) = N .

Then, by transforming θ̃
g
ij (H) to a directional spillover from country i to country j, we

obtain the connectedness matrix:

S =

⎡
⎢⎢⎢⎢⎣

0 θ̃
g
21

θ̃
g
12 0

· · · θ̃
g
N1

θ̃
g
N2

...
. . .

...
θ̃

g
1N θ̃

g
2N · · · 0

⎤
⎥⎥⎥⎥⎦ . (4)

Next, we obtain three directional connectedness (risk spillover effect) measures. The
first is total directional connectedness from i to other markets, which is defined as

Cg
i→· (H) =

N∑︂
j=1,j≠i

θ̃
g
ij (H) . (5)

The second is total directional connectedness from other markets to market i, which is

Cg
i←· (H) =

N∑︂
j=1,j≠i

θ̃
g
ji (H) . (6)

The third is net total directional connectedness, which is

Cg
i (H) = Cg

i→· (H) – Cg
i←· (H) . (7)

Besides, we also obtain total connectedness index (TCI), which is

TCI =
1
N

N∑︂
i=1

N∑︂
j=1,j≠i

θ̃
g
ij (H) . (8)
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Figure 3 Diagram of the two-layer network

To alleviate the curse of dimensionality, we chose the LASSO-VAR model [37], incor-
porating a penalty term in the regression to complete parameter estimation and variable
selection.

3.2 Network
3.2.1 Network structure
A two-layer spillover network is constructed for global commodity and financial markets
based on connectedness table, as shown in Fig. 3. Nodes A, B, C, and D in layer L1 consti-
tute a commodity market, while nodes E, F, G, H, and J in layer L2 form an international
financial market. Within each layer and between layers, if there is a risk spillover effect
between two nodes, there exists a corresponding edge between them. The two-layer net-
work features both intra-layer and inter-layer structures. For example, the edge between
internal nodes A and B in L1 represents the connection between commodity markets A
and B, the edge between internal nodes E and F in L2 signifies the connection between the
financial markets of countries E and F, and the edge between A and E represents the risk
spillover relationship between commodity market A and the financial market of country E.

3.2.2 Network centrality measures
This study examines two different network centrality measurements. The degree central-
ity is a simple network analysis metric that simply counts the number of links that a node
has. The bidirectional network is divided into in-degree centrality and out-degree cen-
trality. For a node vi, the in-degree centrality is defined as: Cin (vi) =

∑︁
j≠i Aji, where Aji

indicates the existence of an edge from node vj to node vi. If the edge exists, then Aji = 1;
otherwise, Aji = 0. The out-degree centrality is defined as: Cout(vi) =

∑︁
j≠i Aij, where Aij

indicates the existence of an edge from node vi to node vj. If the edge exists, then Aij = 1;
otherwise, Aij = 0.

Total degree centrality is the sum of in-degree centrality and out-degree centrality, re-
flecting a node’s overall connectivity within the network. Total degree centrality is defined
as:

Ctotal (vi) = Cin (vi) + Cout (vi) . (9)

PageRank centrality evaluates the importance of nodes based on their connections and
link quality, helping to identify key financial markets and their interdependencies, which
is defined as:

PRv = γ
∑︂
uϵBv

PRu

Nu
+ (1 – γ ), (10)
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Figure 4 Sketch of risk spreading on the two-layer
network

where PRv represents the PageRank centrality of node v, Bv is the set of nodes pointing to
node v, Nu is the number of edges originating from node u, and γ ∈ [0, 1] is the damping
factor. In practice, we consider the more general setting in which γ = 0.85, a setting that
is typical of PageRank algorithm.

3.3 SIS epidemic model
An epidemic model is constructed based on the aforementioned interconnected two-layer
network. Each node has only two states: infected (I) and susceptible (S), and can transition
between these two states, following the Susceptible-Infected-Susceptible (SIS) model. The
entire infection process can be described as follows: The initial infected node can appear
anywhere. Then, at each time step, if a susceptible node in L1 is connected to an infected
node in L1, it will be infected at a rate of β11; if it is connected to an infected node in L2, it
will be infected at a rate of β21. If a susceptible node in L2 is connected to an infected node
in L2, it will be infected at a rate of β22; if it is connected to an infected node in L1, it will
be infected at a rate of β12. Additionally, the probabilities of recovery for infected nodes
in networks L1 and L2 are μ1 and μ2, respectively. This infection process is illustrated in
Fig. 4.

Let S1 and S2 represent the number of susceptible nodes in networks L1 and L2, respec-
tively, and I1 and I2 denote the number of infected nodes. The modified SIS model is as
follows:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

dI1
dt = β11kS1I1/N1 + β21mS1I2/N2 – μ1I1

dI2
dt = β22lS2I2/N2 + β12mS2I1/N1 – μ2I2

S1 + I1 = N1

S2 + I2 = N2

(11)

Here, k, l, m represent the degree in layer L1, L2, and the intermediate layer, respec-
tively. According to Huang et al. [27], for the convenience of subsequent differentiation
and calculation, the mean degree ⟨k⟩, ⟨l⟩, ⟨m⟩ are used to replace k, l, m:

⟨k⟩ =
M1∑︂
i=1

ip1 (i) , ⟨l⟩ =
M2∑︂
i=1

ip2 (i) , ⟨m⟩ =
M3∑︂
i=1

ip3 (i) . (12)

Here, M1, M2, M3 represent the maximum degrees in layers L1, L2 and the intermediate
layer, respectively, while p1, p2 and p3 denote the degree distributions of layers L1, L2 and
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the intermediate layer. N1 and N2 are the total number of nodes in networks L1 and L2,
respectively.

In general, the parameters β11, β22, μ1, μ2 are nonnegative. However, the estimated pa-
rameters β21 and β12 can be negative or positive. A positive cross-market infection rate
indicates a positive risk transmission relationship between the financial and commodity
markets. Conversely, if β21 or β12 is negative, it suggests the self-protection of another
node when a risk occurs at one node, such as hedging relationship found in previous stud-
ies [38, 39].

3.4 Parameter and basic reproduction number estimation
R0 is a crucial indicator in epidemic models used to measure the transmission potential of
infectious diseases [40]. It indicates the average number of secondary infections generated
by one infected individual throughout their entire infectious period, in the absence of any
interventions. If R0 > 1, it indicates that the disease is spreading, while R0 < 1 suggests that
the disease is gradually disappearing and the system is stabilizing.

According to Van den Driessche, Watmough [41], infected and uninfected compart-
ments should be defined according to epidemiological principles. Therefore, I1 and I2 are
regarded as infected compartments, while the others are considered non-infected com-
partments. Let

F =
(︃

β11 ⟨k⟩S1I1/N1 + β21 ⟨m⟩S1I2/N2

β22 ⟨l⟩S2I2/N2 + β12 ⟨m⟩S2I1/N1

)︃
, V =

(︃
μ1I1

μ2I2

)︃
, (13)

where F and V represent the rate of new infections entering the compartments and the
transfer of individuals out of the compartments, respectively.

From

F =
[︃

∂Fi

∂xj

]︃
, V =

[︃
∂Vi

∂xj

]︃
, (14)

where xi are the compartments of model (11), defined as

x = (I1, I2, S1, S2)
T . (15)

m = 2 is the number of infected compartments in model (11), 1 ≤ i, j ≤ m. Then, we give
2 × 2 Jacobi matrix F and V at disease-free equilibrium

F =

(︄
β11 ⟨k⟩ β21 ⟨m⟩N1/N2

β12 ⟨m⟩N2/N1 β22 ⟨l⟩

)︄
(16)

V =

(︄
μ1 0
0 μ2

)︄
. (17)

Consequently, the basic reproduction number here is

R0 = ρ
(︁
FV –1)︁ , (18)

where ρ(A) denotes the magnitude of spectral radius of a matrix A [41].
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The parameters of model (11) are estimated using the least squares method and numer-
ical simulation from the dynamic net spillover index. First, in terms of market state clas-
sification, the net spillover index obtained from the LASSO-VAR connectedness method
allows for the categorization of each market as either a spillover source or a spillover re-
cipient. If a market has a net spillover index greater than 0, it is classified as infected (I); if
the index is less than 0, the market is categorized as susceptible (S). Secondly, the objective
is to minimize the sum of squared distances:

min E =
n∑︂

i=1

[︃(︂
Si – Ŝi

)︂2
+

(︂
Ii – Îi

)︂2
]︃

, (19)

where Si, Ii are the true number of susceptible nodes and infected nodes respectively, and
Ŝi, Îi are the corresponding numbers from numerical simulation. n is the number of ob-
serving days in some time segment.

4 Empirical results
4.1 Full sample two-layer network
During the sample period, the connectedness table over the full sample period is obtained
according to equation (2), as shown in Table 3. From Table 3, we can find that the total
connectedness accounts for 52.52 % of the total forecast-error variance. It indicates that
those markets are highly interconnected where more than half of the total forecast error
variance can be attributed to the connectedness across the 25 nodes. Now, we construct a
two-layer network based on the connectedness Table 3. To reduce noise and information
redundancy and maintain consistency in network analysis across different periods, we
only chose the top 25% of edge weights to build network. Thus, Fig. 5 illustrates the two-
layer network constructed from the full sample. L1 represents the commodity market layer,
L2 represents the financial market layer. Especially, the cross-market layer is shown in
Fig. 6. During the full sample, the clustering results divide the network into five clusters
by using the Louvain algorithm, which can detect community structure by optimizing
network modularity [42].

The financial markets are split into two clusters: Cluster 1 (orange) includes the U.S., the
U.K., France, Germany, Mexico, Brazil, Turkey, Russia, and Saudi Arabia, while Cluster 2
(green) consists of China, South Korea, Japan, Australia, India, and Indonesia. This divi-
sion shows a strong regional pattern, with Cluster 1 primarily comprising markets from
Europe and the Americas, and Cluster 2 from Asia and Oceania. The commodity markets
are grouped into three clusters: Cluster 3 (purple) includes silver, gold, crude oil (WTI),
copper, aluminum, and nickel; Cluster 4 (blue) consists of corn, soybeans, and wheat; and
natural gas forms an independent Cluster 5 (gray).

Table 4 presents the degree centrality and PageRank rankings for the entire sample pe-
riod. In the degree centrality ranking, the UK, France, and Germany occupy the top three
positions, indicating that these major European financial centers have high direct connec-
tivity and serve as primary risk aggregation centers. Copper and oil (WTI) also exhibit
high degree centrality in the commodity market, marking them as key risk assets globally.
According to the PageRank rankings, South Korea, Australia, and Indonesia rank among
the top five in financial markets, highlighting their significant roles in the Asia–Pacific re-
gion and global risk transmission. In the commodity market, corn and silver are notably
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Figure 5 Full sample two-layer network. Note: The network is based on LASSO-VAR. Node shape indicates
node net overflow state, circle indicates positive net overflow, square indicates negative net overflow. The
node size is proportional to the net overflow strength. The color of the node indicates the cluster group. The
thickness of the edge is proportional to the directional overflow strength of each node

Figure 6 The cross-market layer of the full sample two-layer network

Table 4 Full sample network statistics

Rank Full sample

Degree centrality PageRank

1 FRA KOR
2 GRB AUS
3 GER Corn
4 Copper Silver
5 WTI IDN
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Table 5 Full sample network’s character statistics

Layer Edges Average degree Network diameter Graph density Average path length

Financial 98 6.533 4 0.467 1.801
Commodity 41 4.1 3 0.456 1.528
Intermediate 11 1.571 2 0.262 1.467

influential within the network. South Korea, Australia, and Indonesia, as major economies
in the Asia–Pacific region, play a critical role in international financial markets. Corn, as
a primary food crop, is also widely used in animal feed and biofuel production, while sil-
ver possesses both industrial and investment value. They all serve as key nodes in risk
transmission.

In the cross-market layer shown in Fig. 6, oil and copper play important roles. Oil (WTI)
primarily absorbs risk spillover from developed country financial markets, while copper’s
interactions with financial markets involve both risk spillover and risk absorption.

Table 5 presents the structural statistics of the network layers. The financial market layer
contains 98 connections, with an average of 6.533 connections per node, a network den-
sity near 0.5, and an average path length of less than 2, indicating dense connections and
rapid information transmission. In the commodity layer, there are 41 connections and an
average of 4.1 connections per node, with a network density of 0.456, suggesting sparser
connections compared to the financial layer. However, the commodity layer has a smaller
network diameter and average path length, indicating faster and more efficient informa-
tion and risk transmission among commodity markets. In the cross-market layer, despite
fewer connections, both the network diameter and average path length suggest quick risk
transmission between markets.

4.2 Calculating the dynamic net total directional connectedness
The static spillover analysis provides interesting and useful insights on the average finan-
cial connectedness among the markets over the entire sample period. However, it masks
important information on the dynamic evolution of the connectedness pattern over time.
To this end, we use the sliding window method to calculate the dynamic net total direc-
tional connectedness for mixed markets. The parameters are set as follows: the window
width ω is 200 days, the lag order p of the VAR is 2 days based on the Bayesian Information
Criterion (BIC), and the forecast period H is 10 days.

4.2.1 Individual dynamic overflow
At the micro-individual level, using equation (7) and rolling window methods, we can ob-
tain the dynamic net total directional connectedness for each market. Figure 7 and Fig. 8
present heatmaps for dynamic net total directional connectedness in the financial and
commodity markets, respectively. Deep blue indicates a negative net intensity, represent-
ing net recipients of spillover effects; green to red indicates a positive net intensity, repre-
senting net sources of spillover effects. During the sample period, the financial markets of
France, Germany, the UK, and the US were almost always net sources of spillover effects,
while the remaining financial markets predominantly acted as net recipients of spillover
effects. Between 2008 and 2014, the net spillover capacity of copper, aluminum, silver, and
crude oil significantly increased, while the spillover resilience of gold and natural gas also
improved during this period. During the COVID-19 pandemic in 2020, all commodities in
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Figure 7 Dynamic net total directional connectedness in financial markets

Figure 8 Dynamic net total directional connectedness in commodity markets

the commodity layer became net recipients of risk. However, during the Russia–Ukraine
war, the net spillover capacity of copper and silver in the commodity layer was once again
strengthened.

4.2.2 Cross-market dynamic overflow
Drawing on the methods of Wang (2023), we utilize block aggregation connectedness to
directly analyze the spillover relationships between two markets. The core idea of this
method is to sum and average all connectivity within the same market. Since the total
spillover accepted by a market is 1, subtracting the market’s internal spillover from 1 allows
us to obtain the spillover from another market.

Figure 9 displays the dynamic block spillover index. The spillover effects within mar-
kets are significantly higher than those between markets. The internal spillover effects in
financial markets are stronger than those in commodity markets, and the spillover from fi-
nancial markets to commodity markets exceeds that from commodity markets to financial
markets.
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Figure 9 Block connectedness

5 The variations in risk contagion capacity before and after five extreme events
In this section, we select five significant events to study the changes in network structure
before and after these events, and construct a two-layer epidemic model for each phase
to explore the dynamic evolution of risk. The five events are: the bankruptcy of Lehman
Brothers in 2008, the decline in oil prices in 2014, the outbreak of the U.S.–China trade
war in 2018, the emergence of the COVID-19 pandemic in 2020, and the outbreak of the
Russia–Ukraine war in 2022.

We select the 200-day window with an ending date of 15 September 2008 as the pre-
collapse period, and another 200-day window ending on 11 December 2008 as the post-
collapse period. In the second half of 2014, oil prices began to decline sharply. Therefore,
we select the window with an ending date of 15 June 2014, as the pre-decline period for oil
prices, and the window with an ending date of 12 January 2015, as the post-decline period.
On March 22, 2018, the United States announced tariffs on China. Thus, the window with
an ending date of 22 March 2018 is regarded as the pre-trade war period, and the window
with an ending date of 24 September 2018 as the post-trade war period. For the COVID-19
pandemic, the window up to January 23, 2020, is designated as pre-pandemic, while up to
May 4, 2020, serves as post-pandemic. Following the outbreak of the Russia–Ukraine war
on February 24, 2022, the window up to February 24, 2022, is chosen as the pre-war period,
and the window up to June 23, 2022, is selected as the post-war period. Each window is
200 days long, providing a sufficiently extended time series for a relatively stable network
structure.

5.1 Constructing the global financial and commodity two-layer spillover network
We construct two-layer spillover networks for the periods before and after five extreme
events. Figure 10 shows the networks before and after the bankruptcy of Lehman Brothers.
In addition, the networks for the remaining four events are shown in Appendix B as Fig. 16-
Fig. 19.
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Figure 10 Two-layer networks before and after the bankruptcy of Lehman Brothers. Note: The network is
constructed based on the LASSO-VAR model. Node shapes indicate net spillover status: circles for positive and
squares for negative spillover. Node size is proportional to spillover strength, and color represents the cluster.
Edge thickness reflects the directional spillover intensity

Table 6 Every network’s characteristics statistics

Layer Edges Average degree Network diameter Graph density Average path length

Before event 1 Financial 82 5.467 4 0.39 1.643
Commodity 62 6.3 2 0.7 1.3
Intermediate 1 0.04 1 0.002 1

After event 1 Financial 82 5.467 4 0.39 1.765
Commodity 62 6.2 2 0.689 1.311
Intermediate 5 0.2 2 0.008 1.444

Before event 2 Financial 90 6 3 0.429 1.738
Commodity 26 2.6 2 0.289 1.188
Intermediate 27 1.08 6 0.045 2.077

After event 2 Financial 87 5.8 6 0.414 2.09
Commodity 25 2.5 2 0.278 1.306
Intermediate 31 1.24 7 0.052 2.723

Before event 3 Financial 100 6.667 4 0.476 1.629
Commodity 31 3.1 2 0.344 1.262
Intermediate 13 0.52 2 0.022 1.381

After event 3 Financial 92 6.133 4 0.438 1.662
Commodity 32 3.2 2 0.356 1.111
Intermediate 19 0.76 4 0.032 1.629

Before event 4 Financial 81 5.4 5 0.386 1.898
Commodity 23 2.3 5 0.256 2.216
Intermediate 40 1.6 6 0.067 2.52

After event 4 Financial 115 7.667 4 0.548 1.586
Commodity 16 1.6 4 0.178 1.679
Intermediate 18 0.72 3 0.03 1.771

Before event 5 Financial 84 5.6 4 0.4 1.905
Commodity 34 3.4 3 0.378 1.444
Intermediate 30 1.2 4 0.05 1.99

After event 5 Financial 78 5.2 4 0.371 1.714
Commodity 52 5.2 2 0.578 1.278
Intermediate 14 0.56 3 0.023 1.52

Note: Event 1 represents the bankruptcy of Lehman Brothers, Event 2 represents oil crisis, Event 3 represents the U.S.–China
trade war, Event 4 represents the outbreak of COVID-19, and Event 5 represents the outbreak of the Russia–Ukraine war.

Table 6 displays every network’s characteristics corresponding to these events. Before
and after the bankruptcy of Lehman Brothers, the structure of financial and commod-
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ity market layers experienced little change, but remained tightly connected. The com-
modity market exhibited higher average degree and graph density, along with lower net-
work diameter and average path length, indicating stronger connectivity and a more com-
pact structure, facilitating faster information transmission. After the bankruptcy, cross-
market connections increased, with average degree and graph density rising compared
to the pre-bankruptcy period, reflecting enhanced interactions between the financial
and commodity markets following the crisis. After the decline in oil prices, the finan-
cial layer is comparatively sparse, with a graph density of 0.414 and a network diameter
of 6. The commodity layer experienced a slight decrease in graph density, while the in-
termediate layer became slightly more compact but less efficient. During the period of
the trade war, compared to the levels prior to its outbreak, the financial layer is com-
paratively sparse, with a graph density of 0.438, while the commodity layer is relatively
dense, with a graph density of 0.356, indicating a slight weakening of connections in
financial markets and a strengthening of connections in commodity markets. Besides,
the intermediate layer also became slightly more compact, but less efficient. Compared
to the pre-pandemic period, the financial layer becomes more compact, with a graph
density of 0.548 and a relatively small network diameter. The commodity layer becomes
relatively sparse, showing a decrease in graph density, while the intermediate layer ex-
hibits higher density and a smaller diameter, indicating that cross-market connections
have become more compact and risk transmission is significantly more efficient. After
the Russia–Ukraine war, the financial market’s graph density decreased, indicating re-
duced overall connectivity. In contrast, the commodity market experienced a significant
increase in connections, with a higher graph density, and a decrease in network diame-
ter and average path length, reflecting stronger interconnectivity than the financial mar-
ket. Additionally, cross-market connections have decreased compared to the pre-war pe-
riod.

Table 7 displays top five centrality of markets during these five events. It can be ob-
served that the centrality rankings change after each event occurs. Generally, the financial
markets of developed European countries such as France, Germany, and the UK are con-
sistently at the core of risk accumulation, while oil (WTI) and copper typically serve as
the central points of risk in the commodity market. The financial markets of South Ko-
rea and Australia, along with the corn commodity market, generally exhibit strong risk
transmission capabilities.

5.2 Estimating parameters
The third step is to figure out the parameters and basic reproduction number of the SIS
model. We select specific time points for these extreme events to study the conditions
within a month before and after their occurrence. During the bankruptcy of Lehman
Brothers, time segment 1 is defined as the pre-event period from August 18, 2008, to
September 15, 2008, while time segment 2 spans from September 15, 2008, to October
15, 2008 as post-collapse period. In the oil crisis, time segment 1 is from May 9, 2014, to
June 16, 2014, while time segment 2 is from June 16, 2014, to July 24, 2014. In the trade war,
the pre-event period is from January 29, 2018, to March 7, 2018, and the post-event pe-
riod is from March 7, 2018, to April 5, 2018. The pre-COVID-19 outbreak period is from
December 13, 2019, to January 21, 2020, while the post-outbreak period is from January
21, 2020, to March 15, 2020. The pre-Russia-Ukraine war period is from January 13, 2022,
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Table 7 The top five centrality of markets

Rank Before event 1 After event 1

PageRank centrality Degree centrality PageRank centrality Degree centrality

1 IDN WTI WTI GRB
2 AUS Silver AUS Copper
3 IND MEX JP GER
4 KOR Soybean Silver FRA
5 Corn Gold Copper WTI

Rank Before event 2 After event 2

PageRank centrality Degree centrality PageRank centrality Degree centrality

1 KOR GRB JP FRA
2 Silver GER Copper GRB
3 JP RU Corn US
4 Corn TUR AUS IND
5 Copper US KOR GER

Rank Before event 3 After event 3

PageRank centrality Degree centrality PageRank centrality Degree centrality

1 IND FRA Corn GRB
2 KOR GRB KOR FRA
3 AUS GER JP CHN
4 FRA IND Wheat JP
5 GER KOR Silver GER

Rank Before event 4 After event 4

PageRank centrality Degree centrality PageRank centrality Degree centrality

1 KOR US KOR FRA
2 Copper Copper Corn GRB
3 JP GER IND US
4 US RU CHN GER
5 AUS GRB Wheat IND

Rank Before event 5 After event 5

PageRank centrality Degree centrality PageRank centrality Degree centrality

1 Corn GRB IND IND
2 JP FRA KOR US
3 Soybean GER US GER
4 KOR WTI Silver FRA
5 Wheat Copper WTI GRB

Note: Event 1 represents the bankruptcy of Lehman Brothers, Event 2 represents oil crisis, Event 3 represents the U.S.–China
trade war, Event 4 represents the outbreak of COVID-19, and Event 5 represents the outbreak of the Russia–Ukraine war.

to February 23, 2022, while the post-war period is from February 23, 2022, to March 29,
2022.

Extract the net total directional connectedness sequences for each node from each time
period and classify the infection status of each node according to the previously proposed
method in Sect. 3, obtaining the values of Si, Ii in equation (19). According to Table 6,
before the bankruptcy, ⟨k⟩ = 6.3, ⟨l⟩ = 5.467, ⟨m⟩ = 0.04; after the bankruptcy, ⟨k⟩ = 6.4,
⟨l⟩ = 5.333, ⟨m⟩ = 0.2. The fitting results are shown in Fig. 11. Using numerical solution
techniques, gain the numerical solution of SIS model (11) under the constraints of equa-
tion (19). The fitted parameters obtained of model (11) for pre-bankruptcy are

[︂
β̂11, β̂22, μ̂1, μ̂2, β̂12, β̂21

]︂
= [0.0000, 0.4906, 0.2145, 1.0000, –14.9034, 29.0378].
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Figure 11 Parameters fitting for the model during the collapse of Lehman Brothers

The fitted parameters for post-bankruptcy are

[︂
β̂11, β̂22, μ̂1, μ̂2, β̂12, β̂21

]︂
= [0.0913, 0.3391, 0.3021, 0.4902, –4.1657, 0.1992].

Before the bankruptcy of Lehman Brothers, the number of infections in the commodity
market initially increased, then stabilized with a slight decline, while the internal infec-
tion rate approached zero and the external transmission rate was negative. In contrast,
the infection count in the financial market remained generally stable, with an internal in-
fection rate notably higher than that of the commodity market and a positive external
transmission rate. This indicates that the commodity market primarily absorbs spillover
risk from the financial market and acts as a hedge. Additionally, the external transmission
rate being much higher than the internal rate suggests that transmission between mar-
kets is more rapid and frequent. After the bankruptcy of Lehman Brothers, the number
of infections in the commodity market remained stable, with an increase in the internal
infection rate, while the external transmission rate remained negative, but with a signif-
icant decrease in absolute value. In the financial market, showed an upward trend, with
a slight decline in the internal infection rate compared to pre-collapse levels, though still
higher than that of the commodity market, and a notable decrease in the external trans-
mission rate, which remained positive. Additionally, the financial market’s recovery rate
declined significantly, while the commodity market’s recovery rate improved. This indi-
cates that post-collapse, a relationship of risk spillover and absorption persisted between
the two markets, but the inter-market transmission rates were much lower than before the
collapse. Internal transmission within the financial market was faster and more difficult
to recover from compared to the commodity market.

According to Table 6, before the oil price decline ⟨k⟩ = 2.6, ⟨l⟩ = 6, ⟨m⟩ = 1.08; after the
decline, ⟨k⟩ = 2.5, ⟨l⟩ = 5.8, ⟨m⟩ = 1.24. The fitting results are shown in Fig. 12.

The fitted parameters obtained before the decline in oil prices are:

[β̂11, β̂22, μ̂1, μ̂2, β̂12, β̂21] = [0.0000, 0.2647, 0.7786, 0.5657, –0.6639, 1.1386]

and those after the decline in oil prices are:

[︂
β̂11, β̂22, μ̂1, μ̂2, β̂12, β̂21

]︂
= [0.8222, 0.0000, 0.9979, 0.0379, 0.0736, –0.4003].

In mid-2014, before the decline in oil prices, the number of infections in both the com-
modity and financial markets exhibited a generally stable trend. The internal infection rate
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Figure 12 Parameters fitting for the model during the decline of oil prices

in the commodity market approached 0, with a negative external transmission rate; con-
versely, the internal infection rate in the financial market was significantly higher than that
of the commodity market, and the external transmission rate was positive. This indicates
that the commodity market was more susceptible to risk transmission from the financial
market at that time, while also serving a hedging role against risks in the financial market.
After the decline in oil prices, the number of infections in the commodity market initially
rose and then fell, with both the internal infection rate and recovery rate significantly in-
creasing, while the external transmission rate turned positive. In the financial market, the
number of infections showed a slight upward trend, with a decrease in the internal infec-
tion rate and a shift in the external transmission rate to negative. This indicates that, at
this time, the commodity market exerted a positive risk transmission effect on the financial
market, while the financial market was able to hedge the risks present in the commodity
market.

According to Table 6, before the outbreak of the trade war, ⟨k⟩ = 3.1, ⟨l⟩ = 6.667, ⟨m⟩ =
0.52; after the outbreak of the trade war, ⟨k⟩ = 3.2, ⟨l⟩ = 6.133, ⟨m⟩ = 0.76. The fitting results
are shown in Fig. 13.

The fitted parameters obtained before the outbreak of the trade war are:

[︂
β̂11, β̂22, μ̂1, μ̂2, β̂12, β̂21

]︂
= [0.0000, 0.4014, 0.1739, 1.0000, –1.5321, 0.9628],

and those after the outbreak of the trade war are:

[︂
β̂11, β̂22, μ̂1, μ̂2, β̂12, β̂21

]︂
= [0.6973, 0.0000, 0.4132, 1.0000, 1.6193, –2.4350].

Before the outbreak of the trade war, the number of infections in the commodity mar-
ket was generally stable, with the internal infection rate approaching 0 and the external

Figure 13 Parameters fitting for the model during the US–China trade war
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Figure 14 Parameters fitting for the model during the pandemic

transmission rate negative, indicating that it absorbed risk transmission from the finan-
cial market. In the financial market, the number of infections fluctuated, with the internal
infection rate higher than that of the commodity market and a positive external transmis-
sion rate, exacerbating risks in the commodity market. After the outbreak of the trade war,
the overall number of infections in the commodity market showed no significant change,
but both the internal infection rate and recovery rate in the commodity market increased
notably, with a positive external infection rate, indicating that risks from the commodity
market could be transmitted to the financial market. The overall number of infections in
the financial market exhibited a slight upward trend, with the internal infection rate ap-
proaching 0 and absorbing transmission from the commodity market. The external trans-
mission rate was negative, indicating that the financial market was able to hedge against
risks from the commodity market at that time.

According to Table 6, before the COVID-19 pandemic, ⟨k⟩ = 2.3, ⟨l⟩ = 5.4, ⟨m⟩ = 1.6;after
the outbreak of the pandemic, ⟨k⟩ = 1.6, ⟨l⟩ = 7.667, ⟨m⟩ = 0.72. The fitting results are
shown in Fig. 14.

The fitted parameters obtained before the outbreak of the pandemic are:

[︂
β̂11, β̂22, μ̂1, μ̂2, β̂12, β̂21

]︂
= [0.0000, 0.0084, 0.0187, 0.0303, 0.0001, –0.0013],

and those after the outbreak of the pandemic are:

[β̂11, β̂22, μ̂1, μ̂2, β̂12, β̂21] = [0.0000, 0.0859, 0.1308, 0.3050, –0.1693, 0.0043].

Before the outbreak of the pandemic, the number of infections in the commodity mar-
ket exhibited a downward trend, with the internal infection rate approaching 0. In the
financial market, the number of infections remained stable, with a certain internal infec-
tion rate and recovery rate. The risk transmission rate from the commodity market to the
financial market was positive, while the risk transmission rate from the financial market
to the commodity market was negative, indicating that the financial market could mit-
igate some of the risks in the commodity market. Overall, both markets were relatively
stable before the pandemic. After the outbreak, the number of infections in the commod-
ity market continued to decline, with the internal infection rate remaining at zero and the
external transmission rate turning negative. In contrast, the financial market showed an
upward trend in infections, with a slight increase in the internal infection rate compared
to the pre-pandemic period and the external transmission rate turning positive. These
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Figure 15 Parameters fitting for the model during the Russia–Ukraine war

changes highlight the commodity market’s risk hedging role for the entire financial mar-
ket.

According to Table 6, before the outbreak of the Russia-Ukraine war, ⟨k⟩ = 3.4, ⟨l⟩ = 5.6,
⟨m⟩ = 1.2; after the outbreak, ⟨k⟩ = 5.2, ⟨l⟩ = 5.2, ⟨m⟩ = 0.56. The fitting results are shown
in Fig. 15.

The fitted parameters obtained before the outbreak of the war are:

[︂
β̂11, β̂22, μ̂1, μ̂2, β̂12, β̂21

]︂
= [0.0000, 0.0435, 0.0955, 0.1163, –0.0352, 0.1557],

and those after the outbreak of the war are:

[︂
β̂11, β̂22, μ̂1, μ̂2, β̂12, β̂21

]︂
= [0.0554, 0.0000, 0.0582, 0.0567, 0.1655, –0.4142].

Before the outbreak of the Russia–Ukraine war, the number of infections in the com-
modity market showed a trend of first declining and then rising, with the internal infec-
tion rate in the commodity market at 0. The external transmission rate from the financial
market was positional contrast, the number of infections on the financial market exhib-
ited an upward trend, with the internal infection rate significantly higher than that of the
commodity market, while the external transmission rate from the commodity market was
negative, suggesting that the financial market acted as a hedge against risks from the com-
modity market. After the outbreak of the Russia–Ukraine war, the number of infections
in the commodity market showed a trend of first rising and then declining, with an in-
crease in the internal infection rate. The external transmission rate from the financial
market turned negative, making the commodity market more receptive to risk hedging
from the financial market. In contrast, the number of infections in the financial market
displayed an upward trend, with the internal infection rate decreasing towards zero, and
the external transmission rate from the commodity market turned positive, indicating that
the financial market became more susceptible to transmission from the commodity mar-
ket.

Before the outbreak of the Russia–Ukraine war, the number of infections in the com-
modity market showed a trend of first declining and then rising, with the internal infec-
tion rate in the commodity market at 0. The external transmission rate from the financial
market was positive, indicating that the commodity market absorbed risk transmission
from the financial market. In contrast, the number of infections in the financial market
exhibited an upward trend, with the internal infection rate significantly higher than that
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Table 8 Value of basic reproduction number R0

Pre-Bankruptcy Post-Bankruptcy
R0 1.7967 3.6570

Pre-Oil Price Drop Post-Oil price Drop
R0 1.4149 1.0946

Pre-Trade War After-Trade War
R0 1.5143 4.0328

Pre-Pandemic Post-Pandemic
R0 1.4940 2.1554

Pre-War Post-War
R0 1.6643 2.5527

of the commodity market, while the external transmission rate from the commodity mar-
ket was negative, suggesting that the financial market acted as a hedge against risks from
the commodity market. After the outbreak of the Russia–Ukraine war, the number of in-
fections in the commodity market showed a trend of first rising and then declining, with an
increase in the internal infection rate. The external transmission rate from the financial
market turned negative, making the commodity market more receptive to risk hedging
from the financial market. In contrast, the number of infections in the financial market
displayed an upward trend, with the internal infection rate decreasing towards zero, and
the external transmission rate from the commodity market turned positive, indicating that
the financial market became more susceptible to transmission from the commodity mar-
ket.

5.3 Calculating basic reproduction number
Then we use the equations (16)–(18) to calculate the basic reproduction number R0 before
and after the selected specific time points for these extreme events, see Table 8.

We find that R0 > 1 at all chosen periods, which means that spillover risk has always
been highly contagious in the two-layer network. Specifically, R0 is much higher after the
bankruptcy of Lehman Brothers, the outbreak of the trade war between U.S. and China,
the outbreak of the pandemic and the Russia–Ukraine war. On the contrary, it fells back
slightly after the oil price decline.

In September 2008, just before the bankruptcy, the effects of the subprime crisis had
already spread from the real estate market to broader financial markets, leading to the
accumulation of systemic risk in the global financial system. Although Lehman Brothers
announced financial difficulties in August, the market generally overestimated the likeli-
hood of government intervention, making its bankruptcy unexpected and causing global
financial markets to rapidly plunge into panic.

In February 2018, prior to the trade war, the global commodity and financial markets
were already exhibiting considerable turbulence, with sharp corrections in the U.S. stock
market and significant downward pressure in the crude oil and industrial metals markets,
indicating that the financial system had accumulated a certain level of risk transmission
capacity. In March 2018, the U.S. imposed tariffs on imported steel and aluminum prod-
ucts from China, a move that took the market by surprise, leading to declines in global
stock markets and heightened volatility in the commodity markets, further increasing the
overall risk transmission capacity of the system. This results in a significant increase in
R0. Similarly, after the outbreak of the pandemic and the Russia–Ukraine war, R0 also in-
creases rapidly.
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It is worth noting that, R0 decreases slightly after oil crisis. The possible reason is oil
prices had been rising steadily before mid-June 2014, with substantial speculative activity
in the market, leading prices to deviate from the fundamentals of supply and demand.
Following the price drop, speculative funds withdrew, and market bubbles were quickly
deflated, causing the commodity market to gradually return to its fundamentals, thereby
reducing the overall vulnerability of the market.

In summary, we think that the short-term fluctuations of the basic reproduction number
R0 before and after extreme events are related to the nature of those events. If the event
affects a large area and is more sudden and the market is unprepared, then R0 usually
increases following the event. Conversely, if the event is a local and occurs during a period
of accumulated risk and the market has expectations about it, then R0 decreases after the
event.

We also find, in the entire system, prior to extreme events, the internal risk transmis-
sion rate in financial markets is generally higher than that in commodity markets. The
commodity markets are more susceptible to risk transmission from financial markets. Af-
ter extreme events occur, the internal risk transmission rate in financial markets tends to
increase in most cases. However, if an event causes a systemic shock to the commodity
market, such as a decline in oil prices or the outbreak of a trade war, the internal trans-
mission rate within the commodity market can increase significantly, while the internal
transmission rate in the financial market may decline substantially.

6 Conclusion and discussion
In this paper, a two-layer spillover network for global financial markets and commodity
markets is constructed using the standard LASSO-VAR model. Based the network, we
discuss the average static spillover risk among the markets over the entire sample period.
Then we analyze the dynamic spillover risk of different countries and commodities using
the sliding window method. Moreover, we propose an SIS epidemic model to describe the
risk contagion procession in the global financial and commodity markets. We select five
extreme events and fit the model with actual data of about one month before and after the
events. The fitting effect is good. It is worth noting, in these models, the cross-contagion
rate parameters between two markets can be positive or negative, indicating that the risks
between financial markets and commodity markets can both infect and hedge each other.
This reflects the unique nature of financial risk contagion. Finally, we calculate the basic
reproduction numbers during different extreme events to reflect the change of risk con-
tagion ability of the system before and after the occurrence of extreme events. The results
obtained in this paper provide a new perspective to understand the dynamics propagation
process of spillover risk among global financial and commodity markets in the context of
connectivity.
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Appendix A

Figure 1 (continued) First difference of financial stress index (FSI) for countries
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Figure 2 (continued) Logarithmic returns of commodity prices of oil, natural gas, gold, and silver prices

Appendix B

Figure 16 Two-layer networks before and after the oil price decline. Note: The network is constructed based
on the LASSO-VAR model. Node shapes indicate net spillover status: circles for positive and squares for
negative spillover. Node size is proportional to spillover strength, and color represents the cluster. Edge
thickness reflects the directional spillover intensity
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Figure 17 Two-layer networks before and after US–China trade war. Note: The network is constructed based
on the LASSO-VAR model. Node shapes indicate net spillover status: circles for positive and squares for
negative spillover. Node size is proportional to spillover strength, and color represents the cluster. Edge
thickness reflects the directional spillover intensity

Figure 18 Two-layer networks before and after the outbreak of Covid-19. Note: The network is constructed
based on the LASSO-VAR model. Node shapes indicate net spillover status: circles for positive and squares for
negative spillover. Node size is proportional to spillover strength, and color represents the cluster. Edge
thickness reflects the directional spillover intensity

Figure 19 Two-layer networks before and after the outbreak of Russia–Ukraine war. Note: The network is
constructed based on the LASSO-VAR model. Node shapes indicate net spillover status: circles for positive and
squares for negative spillover. Node size is proportional to spillover strength, and color represents the cluster.
Edge thickness reflects the directional spillover intensity
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