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Abstract
In this paper, in order to study comprehensive effect of stage-structure, incomplete
immunity and spatial diffusion on the transmission dynamics of sheep brucellosis, we
formulate a reaction-diffusion brucellosis model with partial immunity and stage
structure in heterogeneous environment. Firstly, the well-posedness of the system is
investigated, including the existence of global solution and its ultimate boundedness,
and then the basic reproduction number R0 is defined using the next generation
operator. Further, the threshold criteria on the global dynamics of the model are
established in terms of R0 in two special cases. That is, if R0 < 1, the disease-free steady
state is globally asymptotically stable, while if R0 > 1, the model is uniformly persistent
and there at least exists a endemic steady state. Furthermore, for the homogeneous
space and heterogeneous diffusion model, by constructing suitable Lyapunov
functions, we obtain the global asymptotic stability for the disease-free steady-state
when R0 ≤ 1 and the global asymptotic stability endemic steady states when R0 > 1.
Finally, two simulation examples are given to verify our theoretical results.
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1 Introduction
Brucellosis is an infectious disease caused by bacteria of the genus Brucella. The disease is
primarily transmitted to humans through contact with infected animals or their products,
such as milk and meat. Common species of Brucella include Brucella abortus (primarily
infecting cattle), Brucella melitensis (primarily infecting goats and sheep), and Brucella
suis (primarily infecting pigs) [1]. The early symptoms of brucellosis include fever, night
sweats, fatigue, and joint pain. These symptoms may persist for weeks to months, and
some patients may develop a chronic form of the disease, affecting multiple organs [2].
Currently, brucellosis remains an important public health issue worldwide, especially in
areas with frequent agricultural activities, such as the Middle East, North Africa, and
South America [3].

As one of the powerful tools for studying infectious diseases, infectious disease dynam-
ics can reveal patterns of disease prevalence and predict trends in disease outbreaks with
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real data, and then provide a theoretical foundation and quantitative support for decision-
makers. Certainly, from the perspective of transmission dynamics, many researchers have
also studied brucellosis and achieved significant results [4–12] and their references. For
example, Hou et al. [4] constructed a human-sheep coupled SEIVB model to study the epi-
demic trend of brucellosis in sheep in Inner Mongolia, and their research results showed
that combining environmental disinfection with inoculation of susceptible sheep was ef-
fective way to control the spread of brucellosis in Inner Mongolia. Li et al. [5] proposed
a multi-group SEIRV dynamical model with bidirectional mixed cross-infection between
cattle and sheep investigated the influence of cross-infection of mixed feeding on the bru-
cellosis. Sun et al. [7] established a brucellosis model with direct or indirect infection
caused by herd introduction, and analyzed the global dynamics of the model. In addi-
tion, noise in the environment is ubiquitous, and noise disturbances in the environment
may trigger stress responses in animals, leading to a decline in immune system function
and increasing the risk of infection. If the stress level of livestock increases, they may
be more susceptible to Brucella infection [10, 11]. For instance, Chen et.al [10] explored
the influence of state changes on brucellosis by a stochastic brucellosis model with semi-
Markovian switchings. Wang et al. [11] formulated a stochastic brucellosis model that in-
corporates vaccination and environmental pollution transmission, and obtained the per-
sistence in the mean of disease and the existence of a stationary distribution.

In fact, there is a very clear stage structure for brucellosis in sheep populations, where
the probability of infection in lambs (from birth to 6 months) is low, while adult fattening
sheep (after 6 months) are easily infected [13, 14]. Hence, some researchers incorporating
stage-structure into dynamic model of brucellosis. For instance, Bai et al. [8] constructed a
two-stage sheep-environment coupled transmission dynamics model based on the trans-
mission characteristics of brucellosis and obtained mixed control is more beneficial to re-
duce the number of exposed sheep, infected sheep, and brucellosis in environment. Wang
and Abdurahman [15] considered a multi-stage sheep brucellosis model with incomplete
immunity and environmental white noise and get the threshold dynamics for determin-
istic model and stochastic version of the model, respectively. Recently, based on the data
of human brucellosis cases in China from 2006 to 2020, Ma et al. [16] found that human
brucellosis cases are widely distributed in northern, northeastern and western pastoral
areas of China, and scattered in other regions And the incidence rate of human brucel-
losis in China has obvious regional differences, with the passage of time, there is a trend
of spreading from north to south, from east to west, and from pastoral areas to rural and
urban areas. In view of above facts, Liu et al. [12] proposed a reaction-diffusion brucellosis
model with spatiotemporal heterogeneity and nonlocal delay to investigate the complex
transmission process of brucellosis due to animal transportation and livestock. Overall,
based on the above discussion, although there have been fruitful achievements in the study
of dynamic models of brucellosis, including stochastic brucellosis models, stage structure
models, environmental transmission brucellosis models, etc., it is not difficult to find that
the research on reaction-diffusion brucellosis dynamic models of spatial heterogeneity is
still in its infancy. Hence, in this paper, we intend to investigate the comprehensive impact
of stage structure, vaccination, environmental transmission, and spatial heterogeneity on
the spread of brucellosis. In order to model stage-structure, susceptible sheep are divided
into susceptible lambs and susceptible adult sheep, denoted by Sj and Sa, respectively. V
represents the density of vaccinated sheep and I represents the density of infectious sheep.
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And the amount of Brucella in the environment is measured by W . Based on the complex
transmission of Brucella between sheep and environment, the following model is formu-
lated,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂Sj

∂t
= ∇ · (D1(x)∇Sj) + Aj(x) – (d(x) + m(x))Sj(x) – ε(x)Sj(β(x)I + β1(x)W ),

∂Sa

∂t
= ∇ · (D2(x)∇Sa) + m(x)Sj – Sa(β(x)I + β1(x)W )

– (d(x) + θ (x))Sa + ξ (x)V ,

∂V
∂t

= ∇ · (D3(x)∇V ) + θ (x)Sa – η(x)V (β(x)I + β1(x)W ) – (d(x) + ξ (x))V ,

∂I
∂t

= ∇ · (D4(x)∇I) + (ε(x)Sj + Sa + η(x)V )(β(x)I + β1(x)W ) – (d(x) + α(x))I,

∂W
∂t

= k(x)I – (μ(x) + δ(x))W ,

(1.1)

for t > 0 and x ∈ 
 (the habitat 
 is a bounded domain), with the Neumann boundary
condition

∂Sj(t, x)

∂ϑ
=

∂Sa(t, x)

∂ϑ
=

∂V (t, x)

∂ϑ
=

∂I(t, x)

∂ϑ
= 0, x ∈ ∂
, t ≥ 0, (1.2)

where ϑ is the outward normal to ∂
, and the initial condition is

Sj(0, x) = Sj0(x) > 0, Sa(0, x) = Sa0(x) > 0, V (0, x) = V0(x) ≥ 0,

I(0, x) = I0(x) ≥ 0, W (0, x) = W0(x) ≥ 0, x ∈ 
.
(1.3)

Here, D1(x), D2(x), D3(x) and D4(x) denote the diffusion rate of Sj, Sa, I and W at position
x, respectively. The meanings of the other parameters in model (1.1) are shown in Table 1.
All the location-dependent parameters of model (1.1) are continuous, strictly positive and
uniformly bounded on 
.

The structure of this paper is as follows. In Sect. 2, the well-posedness of the system is
presented. In Sect. 3, the key index-basic reproduction number is discussed. In Sect. 4,

Table 1 The meanings of parameters in model (1.1)

Symbol Meanings

Aj(x) The constant input of Sj at position x

β(x) The infection rate of infected sheep to adult sheep at position x

β1(x) The environmental infection rate of Brucella to adult sheep at position x

m(x) The transition rate from lamb to adult sheep at position x

d(x) The natural death rate of the flock at position x

ε(x) The ratio coefficient of adult sheep infection rate to lamb infection rate at position x (0< ε < 1)

θ (x) The vaccination rate of the adult sheep at position x

ξ (x) The vaccine failure rate at position x

η(x) The ineffective vaccination rate at position x

α(x) The slaughter rate of infected sheep at position x

k(x) The brucella shedding rate in infected sheep at position x

δ(x) The natural decay rate of Brucella in the environment at position x

μ(x) The disinfection rate at position x
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we study the long-time threshold dynamics including extinction and persistence. And the
global stability for endemic equilibrium is studied under homogeneous space and hetero-
geneous diffusion environment in Sect. 5. In Sect. 6, we give some numerical simulations
to verify theoretical results. Finally, a brief summary is given in Sect. 7.

2 Well-posedness of the model
We first define the functional space for model (1.1) by X := C(
, R5) be the Banach space
with the supremum norm ∥ · ∥X. Define its cone by X+ := C(
, R5

+), then (X,X+) is a
strongly ordered Banach space. For a bounded function f (x) defined on 
, we denote
f̄ = maxx∈
 f (x) and f = minx∈
 f (x). In this section, we aim to prove that the solution of
the model (1.1) exist globally for t ∈ [0,∞) in X+, and model (1.1) admits a compact global
attractor.

Let �n(t) : C(
, R) → C(
, R) for n = 1, 2, 3, 4 be the C0-semigroup associated with ∇ ·
(Dn(x)∇) – πn(x) subjects to the Neumann boundary condition, where π1 = d(x) + m(x),
π2 = d(x) + θ (x), π3 = d(x) + ξ (x) and π4 = d(x) + α(x). Then, we have

�n(t)ψ =
∫




Tn(t, x, y)ψ(y)dy, t > 0, ψ ∈ C(
, R), (2.1)

where Tn(t, x, y) represents the Green function associated with ∇ · (Dn(x)∇) – πn(x) sub-
jects to the Neumann boundary condition. Based on [17, Corollary 7.2.3], we can obtain
that �n(t) for n = 1, 2, 3, 4 are compact and strongly positive for each t > 0. Hence, there
exist constants Mn > 0 such that ∥�n(t)∥ ≤ Mneγnt for all t ≥ 0, where γn < 0 is the prin-
cipal eigenvalue of ∇ · (Dn(x)∇) – πn(x) subjects to the Neumann boundary condition.
Furthermore, for any t ≥ 0, we define the operator �5(t) : C(
, R) → C(
, R) by

�5(t)φ = e–(μ(x)+δ(x))tφ(x) for all t ≥ 0, φ ∈ C(
, R).

Moreover, we denote by Z(t, ·,ψ) = (Sj(t, ·,ψ), Sa(t, ·,ψ), V (t, ·,ψ), I(t, ·,ψ), W (t, ·,ψ)) the
solution of model (1.1) with the initial function ψ = (ψ1,ψ2, . . . ,ψ5) and define

H1(ψ)(x) =Aj(x) – ε(x)ψ1(x)(β(x)ψ4(x) + β1(x)ψ5(x)),

H2(ψ)(x) =m(x)ψ1(x) – ψ2(x)(β(x)ψ4(x) + β1(x)ψ5(x)) + ξ (x)ψ3(x),

H3(ψ)(x) =θ (x)ψ2(x) – η(x)ψ3(x)(β(x)ψ4(x) + β1(x)ψ5(x)),

H4(ψ)(x) =(ε(x)ψ1(x) + ψ2(x) + η(x)ψ3(x))(β(x)ψ4(x) + β1(x)ψ5(x))

H5(ψ)(x) =k(x)ψ4(x),

then model (1.1) can be rewritten as the following integral equation

⎧
⎪⎨

⎪⎩

Z(t, ·,ψ) = �(t)ψ +
∫ t

0
�(t – s)H(Z(s, ·,ψ))ds,

Z(0) = ψ ,
(2.2)

where H = (H1, H2, H3, H4, H5)T and � = diag(�1,�2,�3,�4,�5).
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Lemma 2.1 For any initial function ψ = (ψ1,ψ2,ψ3,ψ4,ψ5) ∈X+, model (1.1) has a unique
nonnegative mild solution Z(t, ·,ψ) = (Sj(t, ·,ψ), Sa(t, ·,ψ), V (t, ·,ψ), I(t, ·,ψ), W (t, ·,ψ)) ∈
X+ defined on the interval [0, τ∞) with τ∞ ≤ ∞. Moreover, this solution is a classical solu-
tion.

Proof The existence and uniqueness of solution Z(t, ·,ψ) on the interval [0, τ∞) are ob-
tained based on the standard basic theory of partial differential equations. Now, we only
need to prove the nonnegativity of the solution. In fact, for any ψ ∈X+ and h ≥ 0, we have

ψ(x) + hH(ψ)(x)

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

ψ1(x) + h[Aj(x) – ε(x)Sj(β(x)I + β1(x)W )]

ψ2(x) + h[m(x)Sj – Sa(β(x)I + β1(x)W ) + ξ (x)V ]

ψ3(x) + h[θ (x)Sa – η(x)V (β(x)I + β1(x)W )]

ψ4(x) + h[(ε(x)Sj + Sa + η(x)V )(β(x)I + β1(x)W )]

ψ5(x) + hk(x)I

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

≥

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

ψ1(x) – hε(x)Sj(β(x)I + β1(x)W )

ψ2(x) – h[Sa(β(x)I + β1(x)W )]

ψ3(x) – h[η(x)V (β(x)I + β1(x)W )]

ψ4(x)

ψ5(x)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Therefore, for any given ψ ∈ X+, there is a sufficiently small number h1 = h(ψ) > 0 such
that ψ + hH(ψ) ∈ X+ for all h ∈ [0, h1]. Then, we have

lim
h→0+

1
h

dist(ψ + hH(ψ),X+) = 0, ψ ∈X+. (2.3)

Consequently, from [18, Corollary 4], we easily obtain that the solution Z(t, ·,ψ) on [0, t∞)

is nonnegative. This completes the proof. □

Theorem 2.1 For any initial function ψ = (ψ1,ψ2,ψ3,ψ4,ψ5) ∈ X+, model (1.1) has a
unique classical solution Z(t, ·,ψ) = (Sj(t, ·,ψ), Sa(t, ·,ψ), V (t, ·,ψ), I(t, ·,ψ), W (t, ·,ψ)) ∈
X+ defined on [0,∞), and the solution is also ultimately bounded.

Proof Suppose that t∞ < ∞, then from [18, Theorem 2], we have ∥Z(t, ·,ψ)∥ → ∞ as t →
t∞.

For any t ∈ [0, t∞) and x ∈ 
, we have

∂Sj

∂t
≤ ∇ · (D1(x)∇Sj) + Āj – (d + m)Sj(x), x ∈ 
, t ∈ [0, t∞). (2.4)

By the comparison principle and [19, Lemma 1], it follows that there exist a constant N > 0
such that Sj(t, x) ≤ N , for all x ∈ 
 and t ∈ [0, t∞).

Set

K(t) =
∫




(Sj(t, x) + Sa(t, x) + V (t, x) + I(t, x))dx.
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From the divergence theorem [20], we have

∫




∇ · D1(x)∇Sjdx = 0,
∫




∇ · D2(x)∇Sadx = 0,
∫




∇ · D3(x)∇V dx = 0,
∫




∇ · D4(x)∇Idx = 0.

It follows that

dK
dt

=
∫




(Aj(x) – d(x)(Sj(t, x) + Sa(t, x) + V (t, x) + I(t, x)) – α(x)I)dx

≤Āj|
| – dK , t ∈ [0, τ∞),
(2.5)

which implies K(t) ≤ max{K(0), Āj|
|
d } := N1 for all t ∈ [0, τ∞), where |
| is the Lebesgue

measure of 
. Consequently, we also have

∫




Sj(t, x)dx ≤ N1,
∫




Sa(t, x)dx ≤ N1,
∫




V (t, x)dx ≤ N1,
∫




I(t, x)dx ≤ N1 (2.6)

for all t ∈ [0, τ∞).
On the other hand, set O(t) =

∫



W (t, x)dx, from the last equation of model (1.1), one

has

dO
dt

=
∫




∂

∂t
W (t, x)dx =

∫




[k̄I – (μ + δ)W ]dx

≤k̄N1 – (μ + δ)O(t), t ∈ [0, τ∞),
(2.7)

which implies that

∫




W (t, x)dx ≤ max{
∫




W (0, x)dx,
k̄N1

μ + δ
} := N2 for all t ∈ [0, τ∞). (2.8)

Secondly, for each n = 1, 2, 3, 4, let τni (i = 1, 2, . . .) be the eigenvalues of ∇ · (Dn(x)∇) –
πn(x)(n = 1, 2, 3, 4) subject to the Neumann boundary condition with the eigenfunction
φni(x), which satisfying τn1 > τn2 ≥ τn3 ≥ · · · ≥ τni ≥ · · · . From [21, Chap. 5], we can repre-
sent

Tn(t, x, y) =
∑

i≥1

eτnitφni(x)φni(y).

Since {φni(x)}∞i=1 is uniformly bounded on 
̄, there exists ω > 0 such that

Tn(t, x, y) ≤ ω
∑

i≥1

eτnit , t > 0, x, y ∈ 
.

For each n = 1, 2, 3, 4, let ρnj be the eigenvalue of ∇ · (Dn(x)∇) –πn subject to the Neumann
boundary condition, which satisfying ρn1 = –πn > ρn2 ≥ ρn3 ≥ · · · ≥ ρnj ≥ · · · . Then, by
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[21, Theorem 2.4.7], we know that ρnj ≥ τnj for all j ∈ N+. Since ρnj decreases like –j2,
there exist ωk > 0 such that

Tn(t, x, y) ≤ ω
∑

j≥1

e–ρnjt ≤ ωne–ρn1t = ωne–πnt , t > 0, x, y ∈ 
.

Then, by (2.2), (2.6) and (2.8), we have

Sa(t, x) =�2(t)Sa(0, x) +
∫ t

0
�2(t – s)(m(x)Sj – Sa(β(x)I + β1(x)W ) + ξ (x)V )ds

≤M2eγ2t∥Sa(0, ·)∥Y +
∫ t

0

∫




T2(t – s, x, y)(m(x)Sj + ξ (x)V )dyds

≤M2eγ2t∥Sa(0, ·)∥Y +
∫ t

0
ω2e–(d+θ )(t–s)(m̄ + ξ̄ )N1ds

=M2eγ2t∥Sa(0, ·)∥Y + ω2(m̄ + ξ̄ )N1
1 – e–(d+m)t

(d + m)

≤M2∥Sa(0, ·)∥Y +
ω2(m̄ + ξ̄ )N1

(d + m)
≜ N3, t ∈ [0, τ∞).

Furthermore, from (2.2), (2.5) and (2.7), and combine the above results, using the same
argument, we can obtain that

V (t, x) =�3(t)V (0, x) +
∫ t

0
�3(t – s)(θ (x)Sa – η(x)V (β(x)I + η(x)β1(x)W ))ds

≤M3eγ3t∥V (0, ·)∥Y +
ω3θ̄N3

(d + ξ )
≜ N4, t ∈ [0, τ∞),

I(t, x) =�4(t)I(0, x) +
∫ t

0
�4(t – s)((ε(x)Sj + Sa + η(x)V )(β(x)I + β1(x)W )ds

≤M4eγ4t∥I(0, ·)∥Y +
ω4((ε̄N + N3 + η̄N5)(β̄N1 + β̄1N4)

(d + α)
≜ N5, t ∈ [0, τ∞),

and

W (t, x) = �5(t)W (0, x) +
∫ t

0
�5(t – s)k(x)Ids ≤ e–(μ+δ)t∥W (0, ·)∥Y

+
k̄N5

(μ + δ)
≜ N6, t ∈ [0, τ∞).

From the above discussions, we finally obtain that solution Z(t, x) for t ∈ [0, t∞) and x ∈

 is bounded. It contradicts the fact that ∥Z(t, ·,ψ)∥ → ∞ as t → τ∞. This implies that
solution Z(t, x) is defined for all t ∈ [0,∞).

From the inequalities (2.4), (2.5) and (2.7), we further have lim supt→∞ Sj(t, x) ≤ Āj
d+m uni-

formly for x ∈ 
̄, lim supt→∞ K(t) ≤ Āj|
|
d and lim supt→∞ O(t) ≤ k̄Āj|
|

d(μ+δ) . Therefore, Sj(t, x)

is ultimately bounded, and there exist constants N1 > 0, N2 > 0 which are independent
of any initial value ψ ∈ X+, and an enough large time t1 > 0 such that K(t) ≤ N1 and
O(t) ≤N2 for all t ≥ t1.
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For any t ≥ t1, we have

Sa(t, x) =�2(t)Sa(t1, x) +
∫ t

t1

�2(t – s)(m(x)Sj – Sa(β(x)I + β1(x)W ) + ξ (x)V )ds

≤M2eγ2(t–t1)∥Sa(t1, ·)∥Y +
∫ t

t1

∫




T2(t – s, x, y)(m(x)Sj + ξ (x)V )dyds

≤M2eγ2(t–t1)∥Sa(t1, ·)∥Y +
∫ t

t1

ω2e–(d+θ )(t–s)(m̄ + ξ̄ )N1ds

≤M2eγ2(t–t1)∥Sa(t1, ·)∥Y +
ω2(m̄ + ξ̄ )N1

(d + m)
.

Thus, lim supt→∞ ∥Sa(t, x)∥ ≤ ω2(m̄+ξ̄ )N1
(d+m) , which shows that Sa(t, x) is ultimately bounded.

By the same method, we can show that V (t, x), I(t, x) and W (t, x) also are ultimately
bounded. □

Corollary 1 All nonnegative solutions Z(t, ·,ψ) of model (1.1) generate a solution semiflow
�(t) : X+ → X+ with �(t)ψ = Z(t, ·,ψ) for any initial value ψ ∈X+ and t ≥ 0.

Now, we shall show that model (1.1)–(1.3) possesses a global compact attractor. The
main difficulty here lies in showing the the asymptotic smoothness of �(t) instead of weak
compactness, and this is caused by the fact that there are no diffusion terms in the last
equation of model (1.1). We identify the κ-contraction condition by following the proce-
dures in [22, Theorem 3]. The following lemma is to deal with the non-compactness of
semiflow �(t).

Lemma 2.2 �(t) is a κ-contracting, i.e., for any bounded set B ⊆X+,

lim
t→∞κ(�(t)B) = 0,

where κ(·) is defined by κ(B) := inf{r : B has a finite cover of diameter < r} is the Kuratowski
measure of noncompactness.

Proof Let u(t, ·,φ) = (Sj(t, ·,ψ), Sa(t, ·,ψ), V (t, ·,ψ), I(t, ·,ψ), W (t, ·,ψ)) be the solution of
model (1.1) with initial condition ψ = (ψ1(x),ψ2(x),ψ3(x),ψ4(x),ψ5(x)) ∈ X+. Obviously,
� can be decomposed as �(t) = �1(t) + �2(t), t ≥ 0, where

�1(t)ψ =
(

Sj(t, ·,ψ), Sa(t, ·,ψ), V (t, ·,ψ), I(t, ·,ψ),
∫ t

0
e–(μ(·)+δ(·))(t–s)k(·)I(s, ·,ψ)ds

)

and

�2(t)ψ =
(

0, 0, 0, 0, e–(μ(·)+δ(·))tψ5

)

.

For any bounded set B ⊆X+, since the first four equations in model (1.1) have the diffusion
terms, we directly obtain that for any t > 0, the sets {Sj(t, ·,ψ) : ψ ∈ B}, {Sa(t, ·,ψ) : ψ ∈
B}, {V (t, ·,ψ) : ψ ∈ B} and {I(t, ·,ψ) : ψ ∈ B} are precompact in C(
, R+). On the other
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hand, by [23, Lemma 2.5], it follows that the set {∫ t
0 e–(μ(·)+δ(·))(t–s)k(·)I(s, ·,ψ)ds : ψ ∈ B} is

precompact in C(
, R+). Hence, we have κ(�1(t)B) = 0, t > 0. In addition,

κ(�2(t)B) ≤ e–(μ(·)+δ(·))tκ(B) ≤ e–(μ+δ)tκ(B), t ≥ 0.

Therefore, we have

κ(�(t)B) ≤ κ(�1(t)B) + κ(�2(t)B) ≤ e–(μ+δ)tκ(B).

Consequently, �(t) is a κ-contracting. □

Based on Theorem 2.1, Lemma 2.2 and Definition 2.1.1 in [24], Theorem 3.4.6 in [25],
we easily obtain the existence of compact attractor for model (1.1) in X+.

Theorem 2.2 The solution semiflow �(t) of model (1.1) admits a global compact attractor
in X+.

3 Basic reproduction number
In this section, we will define the basic reproduction number of model (1.1). By setting
I(t, x) = W (t, x) = 0 in model (1.1), one has

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂Sj

∂t
=∇ · (D1(x)∇Sj) + Aj(x) – (d + m)Sj(x), x ∈ 
, t > 0,

∂Sa

∂t
=∇ · (D2(x)∇Sa) + m(x)Sj – (d(x) + θ (x))Sa + ξ (x)V , x ∈ 
, t > 0,

∂V
∂t

=∇ · (D3(x)∇V ) + θ (x)Sa – (d(x) + ξ (x))V , x ∈ 
, t > 0,

∂Sj

∂v
=

∂Sa

∂v
=

∂V
∂v

= 0, x ∈ ∂
, t > 0.

(3.1)

From [19, Lemma 1], we have the following results.

Lemma 3.1 Suppose that ξ (x) = 0 or D2(x) = D3(x), then model (3.1) admits a unique
positive steady state (S0

j (x), S0
a(x), V 0(x)), satisfying

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∇ · (D1(x)∇S0
j ) + Aj(x) – (d + m)S0

j (x) = 0, x ∈ 
,

∇ · (D2(x)∇S0
a) + m(x)S0

j – (d(x) + θ (x))S0
a + ξ (x)V 0 = 0, x ∈ 
,

∇ · (D3(x)∇V 0) + θ (x)S0
a – (d(x) + ξ (x))V 0 = 0, x ∈ 
,

∂S0
j

∂v
=

∂S0
a

∂v
=

∂V 0

∂v
= 0, x ∈ ∂
,

which is globally asymptotically stable in C(
, R3
+). Moreover, when Aj(·) ≡ Aj, d(·) ≡ d,

m(·) ≡ m, ξ (·) ≡ ξ and θ (·) ≡ θ are positive constants, we also have S0
j (x) ≡ Aj

d+m , S0
a(x) ≡

Ajm(d+ξ )
d(d+m)(d+θ+ξ ) , V 0(x) ≡ Ajmθ

d(d+m)(d+θ+ξ ) .
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Proof For the first equation of system (3.1), we can obtain that there exists a unique glob-
ally stable solution S0

j (x) that satisfies

∇ · (D1(x)∇S0
j ) + Aj(x) – (d + m)S0

j (x) = 0, x ∈ 
.

When ξ (x) = 0, from the second equation of system (3.1), we have the following limit
equation

⎧
⎪⎪⎨

⎪⎪⎩

∂Sa

∂t
=∇ · (D2(x)∇Sa) + m(x)S0

j (x) – (d(x) + θ (x))Sa, x ∈ 
,

∂Sa

∂v
=0, x ∈ ∂
, t > 0.

From [19, Lemma 1], we can easily obtain that there exists a unique globally stable solution
S0

a(x) satisfying

∇ · (D2(x)∇S0
a) + m(x)S0

j – (d(x) + θ (x))S0
a = 0, x ∈ 
,

and then using similar arguments to the third equation of system (3.1), we can easily get
that there exists a unique global stability solution V 0(x) satisfying

∇ · (D3(x)∇V 0) + θ (x)S0
a – d(x)V 0 = 0, x ∈ 
.

Therefore, we finally obtain that system (3.1) has a unique positive steady state (S0
j (x),

S0
a(x), V 0(x)), which is globally asymptotically stable in C(
, R3

+).
When D2(x) = D3(x), let Q(x, t) = Sa(x, t) + V (x, t), then from the second and the third

equation of system (3.1), we have the following limit system

⎧
⎪⎪⎨

⎪⎪⎩

∂Q
∂t

=∇ · (D2(x)∇Q) + m(x)S0
j (x) – d(x)Q(x, t), x ∈ 
, t > 0,

∂Q
∂v

=0, x ∈ ∂
, t > 0.

From [19, Lemma 1], we can easily obtain that there exists a unique globally stable solution
Q0(x) satisfying

∇ · (D2(x)∇Q0) + m(x)S0
j – d(x)Q0 = 0, x ∈ 
.

Let Sa(t, x) = Q0(x) – V (t, x), we have the following limit system

⎧
⎪⎪⎨

⎪⎪⎩

∂V
∂t

=∇ · (D3(x)∇V ) + θ (x)(Q0 – V ) – (d(x) + ξ (x))V , x ∈ 
, t > 0,

∂V
∂v

=0, x ∈ ∂
, t > 0.

Using similar arguments as in the above, we get that there exists a unique globally stable
solution V 0(x) satisfying

∇ · (D3(x)∇V 0) + θ (x)(Q0 – V 0) – (d(x) + ξ (x))V 0 = 0, x ∈ 
.
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From the third equation of system (3.1), we have the following limit equation

⎧
⎪⎪⎨

⎪⎪⎩

∂Sa

∂t
= ∇ · (D2(x)∇Sa) + m(x)S0

j – (d(x) + θ (x))Sa + ξ (x)V 0, x ∈ 
, t > 0,

∂Sa

∂v
= 0, x ∈ ∂
, t > 0.

It is easy to prove that this equation has a globally stable solution S0
a(x) = Q0(x) – V 0(x),

satisfying

∇ · (D2(x)∇S0
a) + m(x)S0

j – (d(x) + θ (x))S0
a + ξ (x)V 0 = 0, x ∈ 
.

Therefore, we finally obtain that system (3.1) also has a unique positive steady state
(S0

j (x), S0
a(x), V 0(x)), which is globally asymptotically stable in C(
, R3

+). □

From Lemma 3.1, there exists a unique disease-free steady state U0(x) = (S0
j (x), S0

a(x),
V 0, 0, 0) for model (1.1). Linearizing model (1.1) at U0(x) to obtain

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ω4

∂t
=∇ · (D4(x)∇ω4) + (εS0

j + S0
a + ηV 0)(βω4 + β1ω5)

– (d + α)ω4, x ∈ 
, t > 0,

∂ω5

∂t
=kω4 – (μ + δ)ω5, x ∈ 
, t > 0,

∂ω4

∂v
=0, x ∈ ∂
.

(3.2)

Let (ω4,ω5) = (eλtψ4(x), eλtψ5(x)), then we obtain the eigenvalue problem

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

λψ4(x) =∇ · (D4(x)∇ψ4(x)) + (ε(x)S0
j (x) + S0

a(x) + η(x)V 0(x))(β(x)ψ4(x)

+ β1(x)ψ5(x)) – (d(x) + α(x))ψ4(x), x ∈ 
,

λψ5(x) =k(x)ψ4(x) – (μ(x) + δ(x))ψ5(x), x ∈ 
,

∂ψ4(x)

∂v
=0, x ∈ ∂
.

(3.3)

From [17, Theorem 7.6.1], we have the following result.

Lemma 3.2 Problem (3.3) has a unique principal eigenvalue λ0 = λ0(S0
j (x), S0

a(x), V 0(x))

with positive eigenvector (ψ2(x),ψ3(x)).

Let T(t) be the C0-semigroup generated by the following system

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∂ω4

∂t
=∇ · (D4(x)∇ω4) – (d + α)ω4, x ∈ 
, t > 0,

∂ω5

∂t
=kω4 – (μ + δ)ω5, x ∈ 
, t > 0,

∂ω4

∂v
=0, x ∈ ∂
.
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Further, we define

F(x) =

(
β(x)(ε(x)S0

j (x) + S0
a(x) + η(x)V 0(x)) β1(x)(ε(x)S0

j (x) + S0
a(x) + η(x)V 0(x))

0 0

)

.

Denote by ψ(x) = (ψ4(x),ψ(x)) the initial infection distribution, then as time evolves, the
distribution of those infective numbers is T(t)ψ due to the mobility, and transfer of indi-
viduals in infected compartments. By the definition of F(x), it follows that the distribution
of new infection at time t is F(x)T(t)ψ(x). Thus,

∫ +∞
0 F(x)T(t)ψ(x)dt represents the dis-

tribution of total new infective numbers. Define the operator

L (ψ)(x) =
∫ +∞

0
F(x)T(t)ψ(x)dt. (3.4)

Obviously, L is a continuous and positive operator that maps the initial infection distri-
bution ψ to the distribution of the total infective members produced during the infection
period. Based on [26–29], we define the basic reproduction number of model (1.1) as fol-
lows,

R0 = r(L ),

where r(·) is the spectral radius of L . Furthermore, the arguments similar to those in [29,
Theorem 3.1] imply the following results.

Lemma 3.3 sign(R0 – 1) = sign(λ0).

Proof Define operator B as follows

B =

(
∇ · (D4(x)∇) – (d(x) + α(x)) 0

k(x) –(μ(x) + δ(x))

)

.

It is evident that B is resolvent-positive with s(B) < 0 and is the generator of the semi-
group T(t), where s(·) denotes the spectral bound of an operator. Moreover, by the proof of
Lemma 3.2, we see that Z = F +B is resolvent-positive, and thus, it follows from [29, Theo-
rem 3.1] that λ0 = s(Z) = s(F +B) has the same sign as r(F(–B)–1) – 1. Since L = F(–B)–1

and R0 = r(L ), which completes the proof. □

4 Threshold dynamics of the model
Firstly, the following results mainly follow from Lemma 3.1.

Lemma 4.1 Suppose that ξ (x) = 0 or D2(x) = D3(x), then for any nonnegative solution
Z(t, x) = (Sj(t, x), Sa(t, x), V (t, x), I(t, x), W (t, x)) of model (1.1), one has

lim sup
t→∞

Sj(t, x) ≤ S0
j (x), lim sup

t→∞
Sa(t, x) ≤ S0

a(x), lim sup
t→∞

V (t, x) ≤ V 0(x),

uniformly for x ∈ 
.
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Proof Directly from model (1.1), we obtain

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂Sj

∂t
≤∇ · (D1(x)∇Sj) + Aj(x) – (d + m)Sj(x), x ∈ 
, t > 0,

∂Sa

∂t
≤∇ · (D2(x)∇Sa) + m(x)Sj – (d(x) + θ (x))Sa + ξ (x)V , x ∈ 
, t > 0,

∂V
∂t

≤∇ · (D3(x)∇V ) + θ (x)Sa – (d(x) + ξ (x))V , x ∈ 
, t > 0,

∂Sj

∂v
=

∂Sa

∂v
=

∂V
∂v

= 0, x ∈ ∂
, t > 0.

(4.1)

By the comparison principle [30] and Lemma 3.1, we immediately obtain that
lim supt→∞ Sj(t, x) ≤ S0

j (x), lim supt→∞ Sa(t, x) ≤ S0
a(x) and lim supt→∞ V (t, x) ≤ V 0(x). □

Lemma 4.2 Assume that (Sj(t, x), Sa(t, x), V (t, x), I(t, x), W (t, x)) is the solution of model
(1.1) with nonnegative initial value (Sj(0, x), Sa(0, x), V (0, x), I(0, x), W (0, x)) and I(0, x) ≢ 0
for x ∈ 
. Then (Sj(t, x), Sa(t, x), V (t, x), I(t, x), W (t, x)) is positive for all t > 0 and x ∈ 
.

Proof In fact, the positivity of Sj(t, x), Sa(t, x), V (t, x) and I(t, x) can be obtained by the
maximum principle (See [21]). Furthermore, the positivity of W (t, x) can be obtain from
the inequality

∂W (t, x)

∂t
> –(μ(x) + δ(x))W (t, x)

for all t > 0 and x ∈ 
. □

4.1 Extinction of disease
Theorem 4.1 Assume that ξ (x) = 0 or D2(x) = D3(x). If R0 < 1, then U0(x) is globally
asymptotically stable in X+.

Proof Let (Sj(t, x), Sa(t, x), V (t, x), I(t, x), W (t, x)) is any solution of model (1.1) with the
nonnegative initial function (Sj(0, x), Sa(0, x), V (0, x), I(0, x), W (0, x)). If I(t, x) ≡ 0 for all
t ≥ 0 and x ∈ 
. From the fifth equation of model (1.1) we further have that W (t, x) → 0
as t → ∞ uniformly for x ∈ 
.

Now, we assume that there are t∗ ≥ 0 and x∗ ∈ 
 such that I(t∗, x∗) > 0. Then from
Lemma 4.2 we have that (Sj(t, x), Sa(t, x), V (t, x), I(t, x), W (t, x)) is positive for all t > t∗ and
x ∈ 
. From Lemma 4.1, we have

lim sup
t→∞

Sj(t, x) ≤ S0
j (x), lim sup

t→∞
Sa(t, x) ≤ S0

a(x), lim sup
t→∞

V (t, x) ≤ V 0(x),

uniformly for x ∈ 
, which implies that for any δ > 0 there exists a t2 > t∗ such that Sj(t, x) ≤
S0

j (x) + δ, Sa(t, x) ≤ S0
a(x) + δ and V (t, x) ≤ V 0(x) + δ for any t ≥ t2 and x ∈ 
. Hence, we



Zheng et al. Advances in Continuous and Discrete Models         (2025) 2025:16 Page 14 of 24

can obtain the following differential inqualities from the forth and fifth equations of model
(1.1)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂I
∂t

≤∇ · (D4(x)∇I) + ε(x)(β(x)(S0
j (x) + δ)I + β1(x)(S0

j (x) + δ)W )

+ β(x)(S0
a(x) + δ)I + β1(x)(S0

a(x) + δ)W + η(x)β(x)(V 0(x) + δ)I

+ η(x)β1(x)(V 0(x) + δ)W – (d(x) + α(x))I, x ∈ 
, t > t2,

∂W
∂t

=k(x)I – (μ(x) + δ(x))W , x ∈ 
, t > t2,

∂I
∂v

=0, x ∈ ∂
.

(4.2)

The corresponding comparison system is

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂P
∂t

=∇ · (D4(x)∇P) + ε(x)(β(x)(S0
j (x) + δ)P + β1(x)(S0

j (x) + δ)Q)

+ β(x)(S0
a(x) + δ)P + β1(x)(S0

a(x) + δ)Q + η(x)β(x)(V 0(x) + δ)P

+ η(x)β1(x)(V 0(x) + δ)Q – (d(x) + α(x))P, x ∈ 
, t > t2,

∂Q
∂t

=k(x)P – (μ(x) + δ(x))Q, x ∈ 
, t > t2,

∂P
∂v

=0, x ∈ ∂
.

(4.3)

Further, consider the eigenvalue problem

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λψ4(x) =∇ · (D4(x)∇ψ4(x)) + (ε(x)(S0
j (x) + δ) + (S0

a(x) + δ)

+ η(x)(V 0(x) + δ))(β(x)ψ4(x)

+ β1(x)ψ5(x)) – (d(x) + α(x))ψ4(x), x ∈ 
,

λψ5(x) =k(x)ψ4(x) – (μ(x) + δ(x))ψ5(x), x ∈ 
,

∂ψ4(x)

∂v
=0, x ∈ ∂
.

(4.4)

Let λ1 be the principle eigenvalue of problem (4.4) with the strictly positive eigenfunction
(ψ4(x),ψ5(x)). When R0 < 1, it follows from Lemma 3.3 that λ0 < 0. By the continuous
dependence of principle eigenvalue with respect to δ, there is an enough small δ > 0 such
that λ1 < 0. Choose a constant δ1 > 0 such that δ1(ψ4(x),ψ5(x)) ≥ (I(t2, x), W (t2, x)). The
comparison principle implies that

(I(t2, x), W (t2, x)) ≤ δ1(ψ4(x),ψ5(x))eλ1(t–t2), t ≥ t2. (4.5)

Obviously, we have that (I(t, x), W (t, x)) → 0 uniformly on x ∈ 
 as t → ∞.
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Furthermore, we get the limit system as follows

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂Sj

∂t
=∇ · (D1(x)∇Sj) + Aj(x) – (d + m)Sj(x), x ∈ 
, t > 0,

∂Sa

∂t
=∇ · (D2(x)∇Sa) + m(x)Sj – (d(x) + θ (x))Sa + ξ (x)V , x ∈ 
, t > 0,

∂V
∂t

=∇ · (D3(x)∇V ) + θ (x)Sa – (d(x) + ξ (x))V , x ∈ 
, t > 0,

∂Sj

∂v
=

∂Sa

∂v
=

∂V
∂v

= 0, x ∈ ∂
, t > 0.

(4.6)

It follows from the theory of asymptotically autonomous semiflows [31, Corollary 4.3] and
Lemma 3.1, Sj(t, x) → S0

j (x), Sa(t, x) → S0
a(x) and V (t, x) → V 0(x) uniformly on x ∈ 
 as

t → ∞. Therefore, we obtain U0(x) is globally asymptotically stable. □

4.2 Uniform persistence of disease
Theorem 4.2 If R0 > 1, then there is constant ζ > 0 such that for any initial value
ψ = (ψ1,ψ2,ψ3,ψ4,ψ5) ∈ X+ with ψ4 ≢ 0 and ψ5 ≢ 0, the solution Z(t, ·,ψ) = (Sj(t, ·,ψ),
Sa(t, ·,ψ), V (t, ·,ψ), I(t, ·,ψ), W (t, ·,ψ)) of model (1.1) satisfies

lim inf
t→∞ Sj(t, ·,ψ) ≥ζ , lim inf

t→∞ Sa(t, ·,ψ) ≥ ζ , lim inf
t→∞ V (t, ·,ψ) ≥ ζ ,

lim inf
t→∞ I(t, ·,ψ) ≥ζ , lim inf

t→∞ W (t, ·,ψ) ≥ ζ

uniformly for x ∈ 
.

Proof Firstly, from the ultimate boundedness of solutions for model (1.1) (see Theo-
rem 2.1), we easily obtain that Sj(t, x), Sa(t, x) and V (t, x) are positive for all t > 0 and x ∈ 


and uniformly persistent.
Define the set

C0 =
{
ψ = (ψ1,ψ2,ψ3,ψ4,ψ5) ∈X+ : ψ4 ≢ 0,ψ5 ≢ 0

}
.

We have

∂C0 := X+ \ C0 =
{
ψ = (ψ1,ψ2,ψ3,ψ4,ψ5) ∈X+ : ψ4 ≡ 0 or ψ5 ≡ 0

}
.

Clearly, C0 is a positively invariant set for the solution semiflow �(t) of model (1.1). Let

M∂ :=
{
ψ ∈X+ : �(t)ψ ∈ ∂C0 for all t ≥ 0

}
, M1 =

{
U0(x)

}
,

and ω(ψ) be the omega limit set of solution �(t)ψ , where U0(x) is the disease-free steady
state and �(t) is the solution semiflow of model (1.1). We give the following two claims:

Claim 1. ∪ψ∈M∂
ω(ψ) = M1. For any t ≥ 0, we have �(t)U0(x) = U0(x). Hence, M1 ⊂

∪ψ∈M∂
ω(ψ). Now, we prove ∪ψ∈M∂

ω(ψ) ⊂ M1. Since �(t)ψ ∈ ∂C0 for any given ψ ∈ M∂
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and t ≥ 0, then I(t, ·,ψ) ≡ 0 or W (t, ·,ψ) ≡ 0 for all t ≥ 0. If I(t, ·,ψ) ≡ 0, we immediately
obtain W (t, ·,ψ) ≡ 0 from the fourth equation of model (1.1). Thus, from the equations of
Sj(t, x), Sa(t, x) and V (t, x) in model (1.1), we acquire

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂Sj(t, x)

∂t
=∇ · (D1(x)∇Sj) + Aj(x) – (d(x) + m(x))Sj(x),

∂Sa(t, x)

∂t
=∇ · (D2(x)∇Sa) + m(x)Sj – (d(x) + θ (x))Sa + ξ (x)V ,

∂V (t, x)

∂t
=∇ · (D3(x)∇V ) + θ (x)Sa – (d(x) + ξ (x))V ,

∂Sj(t, x)

∂v
=

∂Sa(t, x)

∂v
=

∂V (t, x)

∂v
= 0, x ∈ ∂
.

(4.7)

From Lemma 3.1, we get limt→∞ Sj(t, x) = S0
j (x), limt→∞ Sa(t, x) = S0

a(x) and
limt→∞ V (t, x) = V 0(x) for x ∈ 
. This implies that ω(ψ) = U0(x).

If W (t, ·,ψ) ≡ 0 for t ≥ 0, then from the fifth equation of model (1.1), we have I(t, ·,ψ) ≡
0. Similarly, we also get limt→∞ Sj(t, x) = S0

j (x), limt→∞ Sa(t, x) = S0
a(x) and limt→∞ V (t, x) =

V 0(x) for x ∈ 
. This also shows ω(ψ) = U0(x).
Based on the above discussion, it follows that ∪ψ∈M∂

ω(ψ) ⊂ M1. Therefore,
∪ψ∈M∂

ω(ψ) = M1, and then Claim 1 holds.

Claim 2. U0(x) is uniform weak repeller for set C0. That is, there is a constant η > 0 such
that for any ψ ∈ C0 solution u(t, ·) with initial value u(0, ·) = ψ satisfies

lim sup
t→∞

∥u(t, ·) – U0(x)∥ ≥ η.

Supposing that Claim 2 is not true. Then for any constant η > 0 there exists a ψ ∈ C0

such that lim supt→∞ ∥u(t, ·) – U0(x)∥ < δ. This implies that there exists an enough large
t3 > 0 such that

0 < S0
j (x) – δ < Sj(t, x), 0 < S0

a(x) – δ < Sa(t, x), 0 < V 0(x) – δ < V (t, x),

I(t, x) < δ, W (t, x) < δ for all t ≥ t3, x ∈ 
.

Therefore, from model (1.1), we obtain

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂I(t, x)

∂t
≥∇ · (D4(x)∇I) + ε(x)(β(x)(S0

j (x) – δ)I + β1(x)(S0
j (x) – δ)W

+ β(x)(S0
a(x) – δ)I + β1(x)(S0

a(x) – δ)W + η(x)β(x)(V 0(x) – δ)I

+ η(x)β1(x)(V 0(x) – δ)W – (d(x) + α(x))I, x ∈ 
, t > t3,

∂W (t, x)

∂t
=k(x)I – (μ(x) + δ(x))W , x ∈ 
, t > t3,

∂I(t, x)

∂v
=0, t > t3, x ∈ ∂
.

(4.8)



Zheng et al. Advances in Continuous and Discrete Models         (2025) 2025:16 Page 17 of 24

We have the comparison system

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂y1(t, x)

∂t
=∇ · (D4(x)∇y1) + ε(x)(β(x)(S0

j (x) – δ)y1 + β1(x)(S0
j (x) – δ)y2

+ β(x)(S0
a(x) – δ)y1 + β1(x)(S0

a(x) – δ)y2 + η(x)β(x)(V 0(x) – δ)y1

+ η(x)β1(x)(V 0(x) – δ)y2 – (d(x) + α(x))y1, x ∈ 
, t > t3,

∂y2(t, x)

∂t
=k(x)y1 – (μ(x) + δ(x))y2, x ∈ 
, t > t3,

∂y1

∂v
=

∂y2

∂v
=0, t > t3, x ∈ ∂
.

(4.9)

For any initial value ψ = (ψ1,ψ2,ψ3,ψ4,ψ5) ∈ X+ with ψ4(x) ≢ 0 and ψ5(x) ≢ 0, from the
parabolic maximum principle [21], we can obtain I(t, x) > 0 and W (t, x) > 0 for all t > 0 and
x ∈ 
. By Lemma 3.3, we have λ0 > 0 when R0 > 1.

We consider the following eigenvalue problem associated with system (4.9)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λξ1(x) =∇ · (D4(x)∇ξ1(x)) + ε(x)(β(x)(S0
j (x) – δ)ξ1(x)

+ β1(x)(S0
j (x) – δ)ξ2(x) + β(x)(S0

a(x) – δ)ξ1(x)

+ β1(x)(S0
a(x) – δ)ξ2(x) + η(x)β(x)(V 0(x) – δ)ξ1(x)

+ η(x)β1(x)(V 0(x) – δ)ξ2(x) – (d(x) + α(x))ξ1(x), x ∈ 
,

λξ2(x) =∇ · (D5(x)∇ξ2(x)) + k(x)ξ1(x) – (μ(x) + δ(x))ξ2(x), x ∈ 
,

∂ξ1(x)

∂v
=

∂ξ2(x)

∂v
= 0, x ∈ ∂
.

(4.10)

Let λ0(δ) be the principle eigenvalue of problem (4.10) with the strictly positive eigen-
function (ξ1(x), ξ2(x)) for x ∈ 
 (See Lemma 3.2). Since limδ→0 λ0(δ) = λ0, there exists an
enough small constant δ ∈ (0, 1) such that λ0(δ) > 0.

It is obvious that system (4.9) has the solution (y1(t, x), y2(t, x)) = eλ0(δ)(t–t3)(ξ1(x), ξ2(x)).
Due to (I(t, x), W (t, x)) > 0 for all t > 0 and x ∈ 
, there is a constant ρ > 0 such that
(I(t3, x), W (t3, x)) ≥ ρ(ξ1(x), ξ2(x)) for x ∈ 
. Note that ρ(y1(t, x), y2(t, x)) is also the solu-
tion of system (4.9). According to the comparison principle and equation (4.8), we can
obtain (I(t, x), W (t, x)) ≥ ρ(y1(t, x), y2(t, x)) for all t > t3 and x ∈ 
. Owing to λ0(δ) > 0, we
get limt→∞ yi(t, x) = ∞ (i = 1, 2). This implies limt→∞ I(t, x) = ∞ and limt→∞ W (t, x) = ∞,
which is a contradiction with the boundedness of (I(t, x), W (t, x)). Therefore, Claim 2
holds.

Define a continuous function l : X+ → R+ as follows:

l(ψ) = min
{

min
x∈


ψ3(x), min
x∈


ψ4(x)
}

, ψ ∈ X+.

Obviously, l–1(0, +∞) ⊂ C0. By the parabolic maximum principle [21], we can obtain that
I(t, x) > 0 and W (t, x) > 0 for all t ≥ 0 and x ∈ 
 when ψ4(x) ≢ 0 and ψ5(x) ≢ 0. Thus, if
l(ψ) > 0, then l(�(t)ψ) > 0. By the definition of the generalized distance function (See [32,
Theorem 3]), we know that l is a generalized distance function for semiflow �(t) : X+ →
X+.
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From the discussion in Claim 1 and Claim 2, we can see that U0(x) is isolated invari-
ant set in X+ and W s(U0(x)) ∩ C0 = ∅, where W s(U0(x)) is the stable set of U0(x). Thus,
W s(U0(x)) ∩ p–1(0,∞) = ∅. It follows from [32, Theorem 3] that there is a constant ρ3 > 0
such that lim inft→∞ p(�(t)ψ) ≥ ρ3 for all ψ ∈ C0. This completes the proof. □

Corollary 2 When R0 > 1, model (1.1) has at least one endemic equilibrium P∗(x) =
(S∗

j (x), S∗
a(x), V ∗(x), I∗(x), W ∗(x)).

Remark 4.1 We here have proved the existence of endemic equilibrium, but its uniqueness
and stability are still an open question. In the following section, we will prove the global
asymptotic stability of endemic equilibrium in the spatial homogeneous environment.

5 Global stability in spatial homogeneous environment
In this section, we consider a special case of model (1.1) to establish the complete results
for the global stability of model (1.1). This special case exactly is the spatial homogeneous
environment. That is, all parameters of model (1.1) are positive constants. As a result,
model (1.1) becomes into

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂Sj

∂t
=D1�Sj + Aj – (d + m)Sj – ε(βSjI + β1SjW ), t ≥ 0, x ∈ 
,

∂Sa

∂t
=D2�Sa + mSj – βSaI – β1SaW – (d + θ )Sa + ξV , t ≥ 0, x ∈ 
,

∂V
∂t

=D3�V + θSa – ηβVI – ηβ1VW – (d + ξ )V , t ≥ 0, x ∈ 
,

∂I
∂t

=D4�I + ε(βSjI + β1SjW ) + βSaI + β1SaW

+ ηβVI + ηβ1VW – (d + α)I, t ≥ 0, x ∈ 
,

∂W
∂t

=kI – (μ + δ)W , t ≥ 0, x ∈ 
.

(5.1)

Obviously, model (5.1) has always disease-free equilibrium P0 = (S0
j , S0

a, V 0, 0, 0) with S0
j =

Aj
d+m , S0

a = Ajm(d+ξ )
d(d+m)(d+θ+ξ ) and V 0 = Ajmθ

d(d+m)(d+θ+ξ ) . Then, we can get that model (5.1) has the
basic reproduction number

R0 =
εS0

j + S0
a + ηV 0

d + α

(

β +
kβ1

μ + δ

)

.

From Corollary 2, we can obtain that when R0 > 1, model (5.1) has an endemic equilibrium
P∗ = (S∗

j , S∗
a, V ∗, I∗, W ∗) satisfying the following equations

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Aj – (d + m)S∗
j – ε(βS∗

j I∗ + β1S∗
j W ∗) = 0,

mS∗
j – βS∗

aI∗ – β1S∗
aW ∗ – (d + θ )S∗

a + ξV ∗ = 0,

θS∗
a – ηβV ∗I∗ – ηβ1V ∗W ∗ – (d + ξ )V ∗ = 0,

ε(βS∗
j I∗ + β1S∗

j W ∗) + βS∗
aI∗ + β1S∗

aW ∗ + ηβV ∗I∗ + ηβ1V ∗W ∗ – (d + α)I∗ = 0,

kI∗ – (μ + δ)W ∗ = 0.

(5.2)
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Theorem 5.1 If R0 ≤ 1, then the disease-free equilibrium P0 = (S0
j , S0

a, V 0, 0, 0) of model
(5.1) is globally asymptotically stable.

Proof If R0 < 1, we can directly obtain that disease-free equilibrium P0 = (S0
j , S0

a, V 0, 0, 0)

of model (5.1) is globally asymptotically stable from Theorem 4.1.
Now, we consider the case of R0 = 1. Choose the Lyapunov function

L1(t) =
∫




(

Sj – S0
j – S0

j ln
Sj

S0
j

+ Sa – S0
a – S0

a ln
Sa

S0
a

+ V – V 0 – V 0 ln
V
V 0 + I

+
εβ1S0

j + β1S0
a + ηβ1V 0

μ + δ
W

)

dx.

Then along any positive solution (Sj(t, x), Sa(t, x), V (t, x), I(t, x), W (t, x)) of model (5.1),
combining the divergence theorem and the Neumann boundary conditions, we can get

dL1(t)
dt

≤
∫




(

(d + α)(R0 – 1)I + dS0
j (2 –

S0
j

Sj
–

Sj

S0
j

) + dS0
a(3 –

S0
j

Sj
–

Sa

S0
a

–
SjS0

a

S0
j Sa

)

+ dV 0(4 –
S0

j

Sj
–

SjS0
a

S0
j Sa

–
SaV 0

S0
aV

–
V
V 0 ) + ξV 0(2 –

S0
aV

SaV 0 –
SaV 0

S0
aV

)

)

dx

≤0.

(5.3)

Obviously, dL1(t)
dt ≤ 0 when R0 = 1, and dL1(t)

dt ≡ 0 implies that Sj(t, x) ≡ S0
j , Sa(t, x) ≡ S0

a and
V (t, x) ≡ V 0. Directly from model (5.1), it follows that I(t, x) ≡ 0 and W (t, x) ≡ 0. Thus,
by LaSalle’s invariable principle, we get that the equilibrium P0 is globally asymptotically
stable when R0 = 1. This completes the proof. □

Theorem 5.2 The endemic equilibrium P∗ = (S∗
j , S∗

a, V ∗, I∗, W ∗) of model (5.1) is global
asymptotically stable if R0 > 1.

Proof Define a Lyapunov function as follows:

L2(t) =
∫




(

Sj – S∗
j – S∗

j ln
Sj

S∗
j

+ Sa – S∗
a – S∗

a ln
Sa

S∗
a

+ V – V ∗ – V ∗ ln
V
V ∗ + I – I∗

– I∗ ln
I
I∗ +

εβ1S∗
j W ∗ + β1S∗

aW ∗ + ηβ1V ∗W ∗

μ + δ
(W – W ∗ – W ∗ ln

W
W ∗ )

)

dx.

Calculating the time derivative of L2, we have

dL2(t)
dt

=
∫




{

(1 –
S∗

j

Sj
)[D1�Sj + Aj – (d + m)Sj – ε(βSjI + β1SjW )]

+ (1 –
S∗

a
Sa

)[D2�Sa + mSj – βSaI – β1SaW – (d + θ )Sa + ξV ]

+ (1 –
V ∗

V
)[D3�V + θSa – ηβVI – ηβ1VW – (d + ξ )V ]
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+ (1 –
I∗

I
)[D4�I + ε(βSjI + β1SjW ) + βSaI + β1SaW

+ ηβVI + ηβ1VW – (d + α)I]

+
εβ1S∗

j W ∗ + β1S∗
aW ∗ + ηβ1V ∗W ∗

μ + δ
(1 –

W ∗

W
)[kI – (μ + δ)W ]

}

dx

=
∫




{

– D1S∗
j
||∇Sj||2

S2
j

– D2S∗
a
||∇Sa||2

S2
a

– D3V ∗ ||∇V ||2
V 2 – D4I∗ ||∇I||2

I2

–
εβ1S∗

j W ∗ + β1S∗
aW ∗ + ηβ1V ∗W ∗

μ + δ
D5W ∗ ||∇W ||2

W 2

+ εβ1S∗
j W ∗(3 –

S∗
j

Sj
–

IW ∗

I∗W
–

SjWI∗

S∗
j W ∗ I

) + (dS∗
a + βS∗

aI∗)(3 –
S∗

j

Sj
–

Sa

S∗
a

–
SjS∗

a

SaS∗
j

)

+ (dV ∗ + ηβV ∗I∗)(4 –
S∗

j

Sj
–

SjS∗
a

S∗
j Sa

–
SaV ∗

S∗
aV

–
V
V ∗ )

+ ξV ∗(2 –
SaV ∗

S∗
aV

–
S∗

aV
SaV ∗ ) + (dS∗

j + εβS∗
j I∗)(2 –

Sj

S∗
j

–
S∗

j

Sj
)

+ β1S∗
aW ∗(4 –

S∗
j

Sj
–

SjS∗
a

S∗
j Sa

–
IW ∗

I∗W
–

SaWI∗

S∗
aW ∗I

)

+ ηβ1V ∗W ∗(5 –
S∗

j

Sj
–

SjS∗
a

S∗
j Sa

–
SaV ∗

S∗
aV

–
IW ∗

I∗W
–

VWI∗

V ∗W ∗I
)

}

dx ≤ 0.

Thus, we know that dL2(t)
dt ≤ 0. Furthermore, we know that dL2(t)

dt = 0 if and only if Sj = S∗
j ,

Sa = S∗
a , V = V ∗, I = I∗ and W = W ∗. Thus, by LaSalle’s invariable principle, it is clear that

endemic equilibrium P∗ is globally asymptotically stable. This completes the proof. □

6 Numerical simulations
In this section, we mainly give two examples to verify our theoretical results for the spatial
heterogeneous model (1.1) and the spatial homogeneous model (5.1).

Example 1 In order to verify Theorem 4.1, we set the diffusion rate D2(x) = D3(x) = 0.4 ×
(1 + 0.05 sin(2πx)), Aj(x) = 160 × (1 + 0.05 sin(2πx)), β1(x) = 1.2 × 10–5(1 + 0.5 sin(2πx)),
α(x) = 0.2 × (1 + 0.05 sin(2πx)) and the other parameters in model (1.1) as follows:

m(x) = 0.8 × (1 + 0.05 sin(2πx)), d(x) = 0.00274 × (1 + 0.05 sin(2πx)), ε(x)

= 0.5 × (1 + 0.04 sin(2πx)),

β(x) = 1.8 × 10–5(1 + 0.5 sin(2πx)),μ(x) = 2.3 × (1 + 0.04 sin(2πx)), θ (x)

= 0.8 × (1 + 0.05 sin(2πx)),

η(x) = 0.1 × (1 + 0.05 sin(2πx)), ξ (x) = 0.056 × (1 + 0.05 sin(2πx)), k(x)

= 2 × (1 + 0.05 sin(2πx)),

δ(x) = 8 × (1 + 0.05 sin(2πx)), D1(x) = 0.32 × (1 + 0.05 sin(2πx)), D4(x)

= 0.4 × (1 + 0.05 sin(2πx)).
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Figure 1 The global asymptotically stability of the disease-free steady state U0(x) = (S0j (x), S
0
a(x),V

0(x), 0, 0) with

initial values Sj(0, x) = 320× e–10(x–5)
2
, Sa(0, x) = 32,000× e–10(x–5)

2
, V(0, x) = 500× e–10(x–5)

2
,

I(0, x) = 400× e–10(x–5)
2
,W(0, x) = 100× e–10(x–5)

2

Using above parameters, we can easily calculate the basic reproduction number R0 ≈

0.9535 < 1, and the corresponding spatiotemporal evolution solution trajectory is shown
in the Fig. 1. From Fig. 1, we can find that the disease-free steady state U0(x) is globally
asymptotically stable, which is consist with the conclusion in Theorem 4.1.

In addition, although we have theoretically demonstrated that there at least exits one
endemic steady-state in spatially heterogeneous model, we can only provide its global
asymptotic stability in heterogeneous diffusion spatially homogeneous model. Therefore,
we speculate that the endemic steady-state solution in spatially heterogeneous models is
unique and globally asymptotically stable. Therefore, we intend to show the spatiotem-
poral evolution behavior of the solution under spatially heterogeneous environment with
the help of Matlab.

Example 2 Keep the other parameters unchanged, we just change:

β(x) = 5.8 × 10–5(1 + 0.5 sin(2πx)),β1(x) = 4.2 × 10–5(1 + 0.5 sin(2πx)),

Using above parameters, we can easily calculate the basic reproduction number R0 ≈

3.1027 < 1, and the corresponding spatiotemporal evolution solution trajectory is shown
in the Fig. 2. From Fig. 2, we can find that the endemic steady state P∗(x) is globally asymp-
totically stable.
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Figure 2 The global asymptotically stability of the disease-free steady state P∗(x) with initial values

Sj(0, x) = 320× e–10(x–5)
2
, Sa(0, x) = 32,000× e–10(x–5)

2
, V(0, x) = 500× e–10(x–5)

2
, I(0, x) = 400× e–10(x–5)

2
,

W(0, x) = 100× e–10(x–5)
2

7 Conclusion
In this paper, we investigate the global dynamics of a reaction-diffusion brucellosis model
with partial immunity and stage structure in heterogeneous environment. Firstly, we ob-
tain the global well-posedness and dissipativity of the model by the semigroup theory.
Then, we discuss the existence of global compact attractor. Due to the facts that there
are no diffusion terms in the last equation of model (1.1), the asymptotic smoothness of
solution map �(t) instead of weak compactness cannot be obtained. We identify the κ-
contraction condition by following the procedures in [22, Theorem 3]. Moreover, the ba-
sic reproduction number R0 is defined as the spectral radius of the next infection operator
that determines the extinction and persistence of disease. As a whole, the following is our
main threshold dynamics results:

(a) Extinction: we obtain the global asymptotically stable of the disease-free steady state
for spatially heterogeneous model in the following two conditions: (A) the vaccine failure
rate ξ (x) = 0, (B) the diffusion rate D2(x) = D3(x) is same. That is to say, if R0 < 1 and
condition (A) or (B) hold, the unique disease-free steady state is global asymptotically
stable and there is no endemic steady state, which demonstrates the disease is extinction.

(b) Persistence: if R0 > 1, the disease is persistent and there is at least one endemic steady
state, which need neither (A) nor (B) hold. Moreover, we investigate the homogeneous
space and heterogeneous diffusion model (all parameters are constants except the dif-
fusion rate Di(x)) and further obtain that when R0 ≤ 1 and (A) or (B) hold, the unique
disease-free steady state is global asymptotically stable and when R0 > 1, the disease is
persistent and there is at least one endemic steady state, which need neither (A) nor (B)
hold. In particular, for the homogeneous space and heterogeneous diffusion model, the
endemic steady state is global asymptotically stable when R0 > 1.
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