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Abstract
We investigate the comprehensive impact of dynamic changes in CEA
(carcinoembryonic antigen) and E2 (estradiol) values on the survival prognosis of
breast cancer patients in Xinjiang, as well as predict their long-term mortality
probabilities. This work is based on the longitudinal and survival data of female breast
cancer patients followed up by the Affiliated Tumor Hospital of Xinjiang Medical
University. Firstly, the Boruta algorithm was used to screen the independent
prognostic factors that related with the breast cancer patients in Xinjiang. Moreover,
a bivariate Bayesian joint model for longitudinal and time-to-event data was
constructed to investigate how the dynamical changes of CEA and E2 values
collectively affect the survival prognosis of breast cancer patients in Xinjiang. The
predictive performance of the model was assessed by using ROC curves and
calibration curves. As a result, the variable screen results of the Boruta algorithm
indicated that CEA, E2, clinical stage, received neoadjuvant treatment, etc., were
identified as independent prognostic factors of breast cancer patients in Xinjiang. In
addition, it was shown that the association coefficients of the joint model α1 and α2

were statistically significant. When all other baseline variables were unchanged,
patients’ death risk separately increases by approximately 1.577 times (HR = 2.577,
95%CI: (1.803, 3.563)) and 0.887 times (HR = 1.887, 95%CI: (1.472, 2.454)) with the
one-unit collective increase in the log (CEA) and log (E2). Moreover, the joint model
had good discrimination and calibration with an AUC value of 0.778. So the collective
increase of CEA and E2 would be associated with the breast cancer patients’ poor
survival prognosis. It would be essential to monitor the dynamical changes of CEA
and E2 values of breast cancer patients in clinical practice in order to provide more
accurate individualized treatment for breast cancer patients.

Keywords: Breast cancer; Carcinoembryonic antigen; Estradiol; Longitudinal data;
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Breast cancer is a malignant tumor, dependent on sex hormone receptors formed by the
abnormal proliferation of mammary epithelial cells. According to Global Cancer Statistics
report in 2022, approximately 2.3 million women were diagnosed with breast cancer, with
66,000 deaths [1]. In 2022, the number of new female breast cancer cases in China was
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about 350,000, accounting for 16.51% of new female cancer cases [2]. In recent years, the
incidence of female breast cancer in Xinjiang has been significantly increased, which is
higher than the national average [3].

The occurrence and development of breast cancer were closely related to the continu-
ous increase of estradiol (E2) values [4]. E2 is a kind of steroid hormone that could pene-
trate the cell membrane and interact with estrogen receptors, leading estrogen receptors
to dimerize and promote the proliferation of breast cancer cells [5]. On the other hand,
carcinoembryonic antigen (CEA) plays an important role in tumor cell proliferation and
differentiation, and its overexpression could lead to the progression of epithelial cancers
[6]. When breast cancer tumor cells lose their polarity, CEA may be shed from the plasma
membrane to form vesicles and enter the blood circulation. Moreover, more CEA will ac-
cumulate in the blood as the tumor size increases [7].

At present, patients’ biomarker values are usually measured longitudinally to analyze the
impact of dynamic changes of biomarkers on patients’ disease progression and in order
to observe the time trend of disease progression in clinical practice [8]. Survival data are
common in clinical research, which could estimate patients’ survival probability within
the follow-up times and identify the independent prognostic factors that related with the
breast cancer patients in Xinjiang [9]. However, analyzing longitudinal and survival data
separately and ignoring their potential association will lead to bias [10]. A joint model
for longitudinal and time-to-event data was widely used in the research of survival prog-
nosis of breast cancer patients, which could overcome the problem that a single model
could not adapt to diverse data types, avoid biases caused by separately modeling, accu-
rately describe the potential association between longitudinal and survival processes, and
enhance the predictive accuracy and interpret ability of the model [11–14]. However, it
is clear that CEA and E2 measures different aspects of the disease progression of breast
cancer patients, and they are biologically interrelated. In addition, there is poor signifi-
cance to investigate the breast cancer patients’ survival prognosis when E2 is used as a
single biomarker [15]. Moreover, CEA as a biomarker does not have the high specificity
and sensitivity required for breast cancer diagnosis. In clinical practice, better sensitivity
and specificity could be achieved by combining CEA with other biomarkers [6]. Current
research shows that CEA combined with E2 can independently predict the survival prog-
nosis of breast cancer patients with a high diagnostic value [16]. Bivariate Bayesian joint
model could overcome the problem that a univariate joint model cannot be applied to
multiple types of longitudinal data and could comprehensively analyze the association be-
tween dynamic changes of multiple longitudinal data and the breast cancer patients’ sur-
vival prognosis, as well as to describe the correlation within multiple longitudinal data,
which improves predictions compared to the separate analysis per marker [17].

On the other hand, there were many studies based on a single biomarker to study its
impact on the survival and prognosis of breast cancer patients in Xinjiang. For instance,
Zhang et al. [18] found that the continuous increase of CEA values was the independent
prognostic factor of breast cancer patients’ recurrence and metastasis after radical opera-
tion in Xinjiang. Wu et al. [14] proposed a Bayesian joint model to analyze the association
between E2 and the breast cancer patients’ survival prognosis in Xinjiang. There were rel-
atively few studies which investigated the comprehensive impact of dynamic changes in
CEA and E2 values on the survival prognosis of breast cancer patients in Xinjiang.
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Motivated by the aforementioned research, based on information from patients who
were diagnosed with breast cancer at the Affiliated Cancer Hospital of Xinjiang Medical
between January, 2015 and December, 2019, first, the independent prognostic factors for
breast cancer patients were identified by using Boruta algorithm. Moreover, linear mixed
effects model and Cox proportional risk model were used to fit the longitudinal data(lon-
gitudinal submodel) and survival data(survival submodel) of breast cancer patients, re-
spectively, a bivariate Bayesian joint model of longitudinal and survival data which based
on longitudinal measurements of CEA and E2 were further established to investigate how
the dynamical changes of CEA and E2 values collectively influence the survival prognosis
of breast cancer patients in Xinjiang. The predictive performance of the joint model was
assessed using ROC and calibration curves. Therefore, the joint model could provide a
theoretical basis for the prevention and treatment of breast cancer patients in Xinjiang.

1 Objects and methods
1.1 Patient information extraction and selection
In this paper, 1241 patients diagnosed with breast cancer were followed up by the Affili-
ated Cancer Hospital of Xinjiang Medical University between January 2015 and December
2019 by using the follow-up and electronic medical record system. In addition, this hospi-
tal is the only cancer research center in Xinjiang. The starting point of the follow-up was
the time when patients were diagnosed with breast cancer and the outcome event was the
death due to breast cancer. The follow-up time was measured in days, and the deadline of
the follow-up was December 31, 2019.

Basic demographic, clinicopathological, and survival information for patients was gath-
ered, including CEA values, E2 values, age, clinical stage, T-stage, N-stage, M-stage, the
type of operation, preoperative chemotherapy, preoperative targeted therapy, preopera-
tive radiotherapy, and received neoadjuvant therapy. The serum E2 values (pg/ml) and
serum CEA (ug/L) were measured longitudinally. Inclusion and exclusion criteria were as
follows:

Patients were included if they met all three criteria: 1) diagnosed through biopsy or
other clinical diagnostic methods; 2) without other serious disease; and 3) with complete
clinicopathological and follow-up information.

Exclusion criteria were: 1) breast cancer patients whose longitudinal observations of
CAE or E2 were fewer than two because of the loss to follow-up; 2) breast cancer pa-
tients who had no critical information; and 3) breast cancer patients who were pregnant
or breastfeeding.

Therefore, 971 patients were included with a total of 2690 CEA and E2 person-times.
These values were longitudinally measured 3 times per person on average. The follow-
up rate was 92.98%. The follow-up duration for each patient was 26–2389 days with a
median follow-up time of 690 days. This study involving breast cancer participants was
censored and approved by the Medical Ethics Committee of the Affiliated Cancer Hospi-
tal of Xinjiang Medical University (approval number: K2023001). The instances fulfilling
the criteria were gradually screened out in accordance with the inclusion and exclusion
criteria (see Fig. 1). Baseline data chart for female breast cancer patients in Xinjiang are
shown in Table 1.
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Figure 1 Breast Cancer Patient Screening Flowchart

1.2 A joint model of longitudinal and time-to-event data
The change trends of CEA and E2 values over time were fitted by different linear mixed-
effects model, respectively. Let y1i(t) and y2i(t) represent the longitudinal measurements
of CEA and E2 of the patient i (i = 1, . . . , n) at a specific time point t, respectively. The
models are then listed below:

y1i (t) = xT
1i (t)𝜷1 + zT

1i (t) b1i + ε1i (t) = m1i (t) + ε1i (t) ,

y2i(t) = xT
2i (t)𝜷2 + zT

2i (t) b2i + ε2i (t) = m2i(t) + ε2i (t) ,

where xT
1i (t) and xT

2i are the design vectors for the fixed effects regression coefficients
𝜷1 and 𝜷2; zT

1i (t) and zT
2i (t) are the design vectors for the random effects b1i and b2i ; the

complete vector of random effects bi = (bT
1i, bT

2i) is assumed to follow a multivariate normal
distribution with mean zero and variance–covariance matrix D, that is, bi ∼ MVN (0, D);
ε1i (t) and ε2i (t) are the random errors following normal distribution, i.e., ε1i (t) ∼ N(0,σ 2

1 )

and ε2i (t) ∼ N(0,σ 2
2 ); m1i(t) and m2i(t) represent the true longitudinal processes of CEA

and E2 for the patient i (i = 1, . . . , n) at a specific time point t, respectively. We assume a
proportional hazard model for the risk of the event as follows:

h (t |Mi (t) ,𝝎i; ) = lim
Δt→0

P
(︁
t ≤ T∗

i ≤ t + Δt | T∗
i ≥ t,Mi,𝝎i

)︁

Δt

= λ0 (t) exp
(︁
𝝎T

i 𝜸 + α1m1i (t) + α2m2i(t)
)︁

,

where Mi = {M1i,M2i}; M1i = {m1i (s) , 0 < s < t}; M2i = {m2i (s) , 0 < s < t}; Ti =
min

(︁
T∗

i , Ci
)︁

represents the true observation time when the outcome event occurs for
patient i, and Ci represents the censoring time of patient i; 𝝎i is the time-independent q-
dimensional fixed effect covariates, 𝜸 was the coefficient vector of 𝝎T

i ; λ0 (t) is the baseline
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Table 1 Baseline Data Chart for Female Breast Cancer Patients in Xinjiang from January 2015 to
December 2019

Variables Total (n = 971) Survival (n = 855) Death (n = 116)

Follow up-time 690.52 ± 50.98 725.12 ± 60.98 670.52 ± 45.28
CEA 5.66 ± 0.87 3.64 ± 0.21 21.01 ± 7.28
E2 154.56 ± 4.55 132.71 ± 4.04 320.39 ± 22.07
Age 48.17 ± 1.87 48.58 ± 0.17 45.09 ± 0.432
Neoadjuvant therapy

yes 720 (74.15%) 609 (71.23%) 111 (95.69%)
no 251 (25.85%) 246 (28.77%) 5 (4.31%)

Clinical stage
I 477 (49.12%) 438 (51.23%) 39 (33.62%)
II 293 (30.18%) 261 (30.53%) 32 (27.59%)
III 181 (18.64%) 145 (16.96%) 36 (31.03%)
IV 20 (2.06%) 11 (1.29%) 9 (7.76%)

Preoperative chemotherapy
yes 701 (72.19%) 617 (72.16%) 84 (72.41%)
no 270 (27.81%) 238 (27.84%) 32 (27.59%)

Preoperative targeted therapy
yes 896 (92.28%) 787 (92.05%) 109 (93.97%)
no 75 (7.72%) 68 (7.95%) 7 (6.03%)

Preoperative radiotherapy
Yes 697 (71.78%) 627 (73.33%) 70 (60.34%)
No 274 (28.21%) 228 (26.66%) 46 (39.65%)

T-stage
I 387 (39.86%) 347 (40.58%) 40 (34.48%)
II 460 (47.37%) 403 (47.13%) 57 (49.14%)
III 64 (6.59%) 53 (6.20%) 11 (9.48%)
IV 60 (6.18%) 52 (6.08%) 8 (6.90%)

N-stage
I 425 (43.77%) 384 (44.91%) 41 (35.34%)
II 347 (35.74%) 302 (35.32%) 45 (38.79%)
III 96 (9.89%) 85 (9.94%) 11 (9.48%)
IV 103 (10.61%) 84 (9.82%) 19 (16.38%)

M-stage
I 923 (95.06%) 821 (96.02%) 102 (87.93%)
II 48 (4.94%) 34 (3.98%) 14 (12.07%)

Operations
nonsurgical 128 (13.18%) 100 (11.70%) 28 (24.14%)
radical surgery 684 (70.44%) 612 (71.58%) 72 (62.07%)
breast conserving surgery 146 (15.04%) 133 (15.56%) 13 (11.21%)
breast reconstruction surgery 13 (1.34%%) 10 (1.17%) 3 (2.59%)

hazard function. The parameter α1 and α2 quantify the strength of association between
m1i(t) and m2i(t) and the death risk at the same time point.

1.3 Parameter estimation method
MCMC is widely applied for parameter estimation of Bayesian methods. The basic idea
of MCMC is to establish a stable posterior distribution by using Markov chain, to ob-
tain multiple samples through random sampling, and to infer the posterior expectation
of parameters based on these samples. The posterior distribution of the parameters is as
follows:

p
(︁
𝜽 , bi | Ti, y1i,y2i, δi

)︁ ∝
n∏︂

i=1

p
(︁
y1i,y2i | bi; 𝜽y

)︁
p (Ti, δi | bi; 𝜽 t)p (bi; D)p (𝜽) ,

where 𝜽 represents the set of all the unknown parameters in the joint model, i.e., 𝜽 =
{︁
𝜷1,𝜷2,α1,α2,λ0,γ , D,σ1,σ2

}︁
; 𝜽y represents the set of all the unknown parameters in lon-
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Figure 2 Histograms and probability density plot of CEA and E2 of breast cancer patients

gitudinal processes, i.e., 𝜽y =
{︁
𝜷1,𝜷2, D,σ1,σ2

}︁
; 𝜽 t represents the set of all the unknown

parameters in the survival processes, i.e., 𝜽 t = {λ0,γ ,α1,α2}; p (𝜽) represent the prior dis-
tribution of 𝜽 .

2 Research results
2.1 The results of the descriptive research
The results of the normality test indicated that CEA and E2 values of breast cancer pa-
tients showed a skewed distribution (Fig. 2, (A) and (C)). However, longitudinal data in a
linear mixed model was required to (approximately) follow the normal distribution. Thus,
by logarithmically transforming the original CEA and E2 values of patients, as shown in
Figs. 2(B) and 2(D), to log(CEA) and log(E2), respectively, we obtained approximately nor-
mal distributions.

2.2 Variable screening based on Boruta algorithm
Nine independent prognostic markers, including E2, CEA, T-stage, neoadjuvant treat-
ment, age, N-stage, clinical stage, M-stage, and operations, were identified by applying
Boruta algorithm (see Fig. 3). Here “shadowmean”, “shadowmin”, and “shadowmax” are
the mean, minimum, and maximum importance scores of all shadow features, respec-
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Figure 3 The results of variable screening based on Boruta algorithm

tively. When the feature variables’ score was greater than the shadow max, the variable
was considered significant and related to the survival prognosis of breast cancer patients.
Particularly, within the independent prognostic factors of breast cancer patients, E2 was
the strongest, followed by CEA, while operations was the weakest variable.

2.3 Bivariate Bayesian joint model of longitudinal and time-to-event data
2.3.1 Longitudinal submodel outcomes
The dynamical changes of patients’ log(CEA) and log(E2) values were respectively fitted by
two linear mixed models, and the fitting results are shown in Table 2. The final longitudinal
submodel was identified as follows:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

y1i (t) = β0 + β1XFollow up-time + β2Xage + β3Xoperations + b0

+ b1iXFollow up-time + ε1i (t) ,
y2i (t) = β4 + β5XFollow up-time + β6Xage + β7Xclinical stage

+ b1 + b2iXFollow up-time + ε2i (t) .

2.3.2 Survival submodel
As shown in Table 3, neoadjuvant therapy, clinical stage, and age were significant to the
survival prognosis of breast cancer patients in Xinjiang by using univariate and multivari-
ate Cox regression. The optimal survival submodel was identified as follows:

hi (t) = λ0 (t) exp{γ1ωNeoadjuvant therapy + γ2ωclinical stage + γ3ωage + α1m1i (t) + α2m2i(t)}.
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Table 2 Parameter estimation results for the longitudinal submodel

Variables CEA E2

Coeff Std P Coeff Std P

Follow up-time 1× 10–4 5× 10–5 <0.05∗ 3× 10–4 6× 10–5 <0.01∗
T-stage – – – – – –

II 0.042 0.052 0.418 0.018 0.038 0.632
III 0.116 0.097 0.231 –0.244 0.071 <0.05∗
IV 0.062 0.102 0.541 –0.354 0.076 <0.05∗

N-stage – – – – – –
II –0.041 0.051 0.424 –0.097 0.038 <0.05∗
III –0.049 0.077 0.527 –0.473 0.057 <0.01∗
IV 0.259 0.080 <0.05∗ –0.383 0.059 <0.01∗

M-stage – – – – – –
II 0.230 0.222 0.300 –0.113 0.164 0.490

Neoadjuvant therapy – – – – – –
yes 0.087 0.053 0.099 –0.069 0.039 <0.05∗

Age 0.007 0.002 <0.05∗ –0.022 0.001 <0.01∗
Clinical stage – – – – – –

II –0.001 0.040 0.968 1.171 0.033 <0.05∗
III –0.050 0.046 0.277 2.294 0.038 <0.01∗
IV 0.088 0.085 0.301 2.962 0.072 <0.01∗

Operations – – – – – –
radical surgery –0.201 0.066 <0.05∗ 0.029 0.049 0.542
breast conserving surgery –0.252 0.084 <0.05∗ 0.016 0.062 0.789
breast reconstruction surgery –0.226 0.098 <0.05∗ 0.144 0.148 0.331

∗ Indicates that the variable is statistically significant at P < 0.05.

Table 3 Parameter estimation results for the survival submodel

Variables Univariate Cox regression Multivariate Cox regression

Coeff HR P Coeff HR P

Neoadjuvant therapy – – – – – –
yes –2.132 0.118 <0.05∗ –1.545 0.213 <0.05∗

age –0.020 0.979 0.091 –0.024 0.975 <0.05∗
Clinical stage – – – – – –

II 0.416 1.516 <0.01∗ 0.460 1.585 <0.05∗
III 1.369 3.935 <0.01∗ 0.980 2.665 <0.05∗
IV 1.336 3.805 <0.01∗ 1.617 5.042 <0.05∗

T-stage – – – – – –
II 0.440 1.553 <0.05∗ – – –
III 0.194 1.215 0.567 – – –
IV 0.037 1.038 0.096 – – –

N-stage – – – – – –
II 0.704 2.021 0.844 – – –
III –0.210 1.635 0.258 – – –
IV 0.561 1.601 0.165 – – –

M-stage – – – – – –
II 0.933 2.542 0.167 – – –

Operations – – – – – –
radical surgery –1.180 0.307 0.069 – – –
breast conserving surgery –1.148 0.317 <0.05∗ – – –
breast reconstruction surgery –1.151 0.501 0.056

∗ Indicates that the variable is statistically significant at P < 0.05.
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Table 4 Parameter estimation for the Bayesian multivariate joint model

Variables Coeff HR (95%CI) P

Neoadjuvant therapy – – –
yes –1.966 0.136 (0.048, 0.35) <0.05∗

Age 0.0042 1.004 (0.98, 1.03) 0.773
Clinical stage – – –

II 0.130 1.133 (1.032, 2.201) <0.05∗
III 0.724 2.051 (1.152, 3.593) <0.05∗
IV 1.560 4.758 (1.993, 11.02) <0.05∗

Association coefficients – – –
α1 0.947 2.577 (1.803, 3.563) <0.01∗
α2 0.635 1.887 (1.472, 2.454) <0.01∗

∗ Indicates that the variable is statistically significant at P < 0.05.

2.4 Joint model
A bivariate Bayesian joint model was established to investigate the effect of dynamical
changes of CEA and E2 values on the breast cancer patients’ survival prognosis. It was

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

y1i (t) = β0 + β1XFollow up-times + β2Xage + β3Xoperations + b0

+ b1iXFollow up-times + ε1i (t) ,
y2i (t) = β4 + β5XFollow up-times + β6Xage + β7Xclinical stage + b1

+ b2iXFollow up-times + ε2i (t) ,
hi (t) = λ0 (t) exp{γ1ωNeoadjuvant therapy + γ2ωclinical stage

+ γ3ωage + α1m1i (t) + α2m2i (t) .

As shown in Table 4, the association coefficients α1 and α2 are statistically signifi-
cant and patients’ death risk increases by approximately 1.577 times (HR = 2.577, 95%CI:
(1.803, 3.563)) and 0.887 times (HR = 1.887, 95%CI: (1.472, 2.454)), respectively, with the
one-unit increase of log (CEA) and log(E2).

2.5 The predictive performance and goodness of fit of the joint model
Finally, four patients were randomly selected to predict their long-term mortality prob-
ability. As shown in Fig. 4, four patients’ death risk would increase gradually when their
CEA and E2 values increased. In particular, with the increase of the measure times for CEA
and E2 values, the confidence intervals of survival curves became narrower, which indi-
cates that the estimation of patients’ long-term mortality probability was more accurate
and the prediction of patients’ survival status was more reliable (see Fig. 4B). As shown in
Fig. 4C, the CEA and E2 outlier values could have a certain impact on the predicted pre-
cision of Bayesian joint model. Moreover, the patient’s death risk sharply increased and
the long-term mortality was higher than 80% when the patient’s CEA and E2 values had a
significant upward trend (see Fig. 4D).

The ROC and calibration curves were plotted to assess the predictive performance of
the joint model. As shown in Fig. 5A, the predictive performance of the joint model was
within a reasonable range with an AUC value of 0.778. The model’s prediction value was
more closely aligned with the 45° reference line, which indicated that the model had a high
degree of calibration performance (see Fig. 5B).
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Figure 4 Prediction of four patients’ long-term mortality probability

Figure 5 ROC and calibration curves of the joint model

3 Discussion
Bivariate Bayesian joint models for longitudinal and time-to-event data could comprehen-
sively analyze the association between dynamic changes of multiple longitudinal data and
the breast cancer patients’ survival prognosis, as well as describe the correlation within
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multiple longitudinal data. In this paper, based on the independent prognostic factors
screened by Boruta algorithm, a bivariate Bayesian joint model for longitudinal and time-
to-event data was proposed to investigate the impact of dynamical changes of CEA and
E2 values of breast cancer patients’ survival prognosis in Xinjiang.

First, it was shown from parameter estimation results of the joint model that the collec-
tive increase of CEA and E2 values was an independent factor of breast cancer patients’
survival prognosis in Xinjiang. And when all other baseline variables were unchanged, pa-
tients’ death risk separately increased by approximately 1.577 times (HR = 2.577, 95%CI:
(1.803, 3.563)) and 0.887 times (HR = 1.887, 95%CI: (1.472, 2.454)) with the one-unit col-
lective increase in log (CEA) and log (E2). This result was similar to the conclusions of
Shao et al. [19] and Li et al. [20]. This may be due to the reason that CEA is a mem-
ber of the cell surface glycoprotein family and it is one of the tumor markers for various
glandular cancers in clinical practice [7]. With the increase of CEA values, the body’s in-
hibition on immune and T cells would be enhanced, which could lead to the weakening of
the inhibitory effect of the immune system on cancer cellular oncogenesis, proliferation,
differentiation, and metastasis. And it would start up a vicious circle, further increasing
the expression values of CEA [21]. In addition, E2 could affect cellular immune response
processes by facilitating the polarization of macrophages toward an immune-suppressive
state in the tumor microenvironment, leading to immune cell dysfunction and develop-
ment of breast cancer [22]. Resent research found that E2 could also decrease the num-
ber of peripheral eosinophils and tumor-associated tissue eosinophilia by inhibiting the
proliferation and survival of maturing eosinophils, and it would lead to tumor growth
of breast cancer [23]. In addition, breast cancer patients’ survival prognosis was closely
related to the expression of estrogen in their body. And this may due to the imbalance
between E2 and antiestrogen, which promotes the further proliferation of breast cancer
cells, leading to the deterioration of the patients’ condition [24]. Patients’ survival progno-
sis would be greatly improved by using selective estrogen receptor modulators (tamoxifen,
raloxifene, toremifene, etc.), elective estrogen-receptor downregulators and aromatase in-
hibitors such as anastrozole, letrozole, and astmestane [25]. Therefore, continuously and
simultaneously measuring CEA and E2 would be beneficial for monitoring breast can-
cer patients’ process, and could assess the risk of early recurrence or metastasis of breast
cancer patients.

Moreover, it was shown from parameter estimation results of the joint model that the
death risks of the patients in clinical stage II (HR = 1.133, 95%CI: (1.032, 2.201)), stage III
(HR = 2.051, 95%CI: (1.152, 3.593)), and stage IV (HR = 4.758, 95%CI: (1.993, 11.02)) were
higher than the death risk in stage I (we used stage I as the reference category). This result
was similar to the conclusions of DeSantis et al. [26] and Walters et al. [27]. The higher the
patient’s clinical stage, the larger the tumor. And then, it would lead to the high probability
of lymph node and distant metastasis, and finally cause the high risk of death. Therefore,
it was suggested that breast cancer patients should regularly assess their clinical stage to
enhance treatment efficacy and improve survival outcomes.

Last but not least, parameter estimation results also indicated that the neoadjuvant ther-
apy for breast cancer patients could significantly reduce their death risk (HR = 0.136,
95%CI: (0.048, 0.35)), which is consistent with the results in [28–30]. The reasons for
this result might be that the neoadjuvant therapy could reduce the tumor volume, make
those patients temporarily unable to undergo surgery become eligible for surgery, and
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make those patients not suitable for breast-conserving surgery become feasible for breast-
conserving surgery, thereby improving breast cancer patients’ survival prognosis [6].

There are some limitations in this paper. First of all, due to the small sample size of this
study, the 95% confidence intervals of the association coefficients in the model were rel-
atively wider, and the probabilities of finding the parameters within these intervals were
relatively lower [31, 32]. Therefore, the sample size would need to be expanded in our
future study. In addition, α-fetoprotein, human chorionic gonadotrophin, and casein in
human body, which would interact with each other, play vital roles in the occurrence and
development of breast cancer [33]. Hence, multivariate Bayesian joint models could be ap-
plied to explore the comprehensive impact of biomarkers such as α-fetoprotein, etc., on
the prognosis of breast cancer patients [34, 35]. On the other hand, although the traditional
Bayesian joint model can investigate the effect of the conditional mean of the longitudi-
nal outcomes on the survival prognosis of patients, it cannot determine the effect of the
median or lower/higher quantile of the longitudinal outcome on the survival prognosis of
patients. Therefore, the Bayesian joint model based on quantile regression could be estab-
lished to analyze the effect of different quantile of biomarkers on the survival prognosis of
breast cancer patients in a further study [36].

4 Conclusions
In conclusion, CEA, E2, etc., were identified as independent prognostic factors of breast
cancer patients in Xinjiang based on Boruta algorithm. Moreover, a bivariate Bayesian
joint model of longitudinal and time-to-event data was established to investigate the im-
pact of dynamical changes in CEA and E2 values on the survival prognosis of breast cancer
patients in Xinjiang. It was indicated that a collective increase of CEA and E2 values could
increase the risk of early recurrence or metastasis of breast cancer patients.
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