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Abstract
Exploring the dynamics of the CD4+ T regulatory network holds paramount
significance in scientific research, as it deepens our understanding of the immune
system’s intricacies and drives the development of innovative interventions for
immune-related disorders. Despite the numerous studies conducted, further research
is essential to elucidate the roles of exogenous cytokines in immune dynamics. This
endeavor is of great importance in advancing targeted therapies and optimizing
disease treatment regimens. Based on the bifurcation theory, we conduct a
systematic perturbation analysis of the CD4+ T cell regulatory network. Initially, we
treat exogenous cytokines as model parameters and conduct single-parameter
bifurcation analysis to identify specific exogenous cytokines that can trigger various
cell fate transitions. Additionally, based on relevant biological backgrounds,
combinatorial perturbation analysis is performed to screen synergistic perturbation
combinations. Three distinct types of synergistic combinations are successfully
identified. The mechanisms by which different types of combinatorial perturbations
exert their effects are also distinct. The individual and combinatorial perturbation
analysis provides insights into how exogenous cytokines act synergistically and how
these interactions influence the dynamics of CD4+ T cell networks.
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1 Introduction
CD4+ T cells, also known as T-helper (Th) cells, play important roles in orchestrating
adaptive immune responses to various infectious agents (Borst et al. [4]). They are also
involved in the induction of autoimmune and allergic diseases. Naïve CD4+ T cells (Th0)
differentiate into at least four subsets, Th1, Th2, Th17, and inducible regulatory T cells,
each with unique functions for pathogen elimination (Fathman and Lineberry [12], Zhu
and Paul [55], Christie and Zhu [10]). Th0 are activated when they recognize an antigen
in a secondary lymphoid organ. Depending on the cytokine milieu and other signals in
their micro-environment, CD4+ T cells attain different cell fates (Sallusto and Monticelli
[43], Zhu et al. [56], Vahedi et al. [46], Yamane and Paul [49]). The seminal research by
Mosmann and Coffman in the 1980s laid the groundwork by describing the Th1 and Th2
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cells, two subsets of T helper cells, and elucidating the regulatory effects of their cytokine
secretions on cellular and humoral immunity (Mosmann and Coffman [35]). Subsequent
technological advancements allowed for further discoveries. Sakaguchi and colleagues ex-
tended the foundation by investigating regulatory T cells (Tregs), which are essential for
understanding CD4+ T cell tolerance and preventing autoimmune diseases (Sakaguchi
et al. [42]). Advancements in high-throughput sequencing and transcriptomics have pro-
vided us with the tools to delve deeper into CD4+ T cell gene expression patterns, clar-
ifying the molecular underpinnings of cellular differentiation and function. Notably, the
work of Zhu et al. has significantly contributed to our understanding of the transcriptional
networks involved in T cell differentiation, enhancing our capability to accurately manipu-
late these cells for treating relevant diseases (Zhu et al. [56]). Furthermore, the research by
Bettelli et al. has broadened our perspective on the diversity within CD4+ T cells through
their studies on Th17 and its implication in autoimmune diseases (Bettelli et al. [3]).

When investigating the dynamics of nonlinear systems, perturbation method and bi-
furcation theory stand out as indispensable and crucial tools (Luongo and Paolone [31],
Gorochov et al. [19], Sastry [44], Luo et al. [30], Tang et al. [45], Hu et al. [24]). They offer
valuable insights into how parametric modifications can influence a system’s dynamics,
encompassing both quantitative and qualitative changes in its behavior. Such approaches
are particularly relevant in immunological research involving CD4+ T cell networks, as
they can reveal the dynamical behaviors of these cells in response to various perturbations.
For instance, Yusuf et al. demonstrated the dynamical interplay between regulatory T cells
(Tregs) and antigen-specific CD4+ T cells, underscoring the significance of perturbations
in modulating immune responses (Yusuf et al. [51]). Additionally, Wang et al. deployed
non-local reaction-diffusion models with time delays to elucidate the complex dynamics
influencing CD4+ T cell population fluctuations (Wang et al. [48]). Moreover, synergistic
analyses of combinatorial perturbations are acknowledged widely for their essential roles
in deciphering complex systems, especially in pharmacology, where drug interactions may
result in multiplicative effects. Researchers have long adopted such synergistic strategies
to assess drug interactions, determining the conditions under which drug combinations
yield additive, antagonistic, or synergistic effects. Their methodologies have become the
cornerstone for current combination treatment strategies, directing dosage plans to max-
imize therapeutic efficacy while minimizing adverse effects (Chou and Talalay [9], Chou
[8]). In molecular biology, synergistic perturbation analysis has been crucial for disentan-
gling the interactions within biological pathways. Using these analyses, researchers were
able to merge molecular dynamics with nuclear magnetic resonance data, illuminating the
intricate interplay of proteins and ligands within cellular environments (Olivier Fisette and
Morin [15]).

Furthermore, translating Boolean network models into continuous paradigms offers a
more elaborate representation of biological dynamics and regulatory mechanisms (Villar-
real et al. [47]). Recently, Martinez-Sanchez et al. converted Boolean networks into con-
tinuous dynamical models, enabling partial polarization and plasticity analyses within the
CD4+ T cell network (Martinez-Sanchez et al. [33, 34]). A more thorough investigation
is nonetheless required into how specific highly expressed molecules within continuous
CD4+ T cell networks undergo alterations, as well as the synergistic impacts of exoge-
nous cytokine combinations. Therefore, this study treats all exogenous cytokines within
the CD4+ T cell regulatory network as parameters and primarily performs systematic per-
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turbation and bifurcation analysis. Especially when combinatorial perturbations are ap-
plied, three distinct types of synergistic combinations are identified. The mechanisms by
which different types of combinatorial perturbations exert their effects are also distinct.
The analysis of both single and combinatorial perturbations offers theoretical strategies
for regulating CD4+ T cell fate transitions and their control.

2 Material and methods
To uncover changes in highly expressed molecules that are intimately associated with var-
ious cellular states within the CD4+ T cell regulatory network, a comprehensive approach
incorporating perturbation and bifurcation analysis is employed. This approach not only
identifies individual cytokines but also their combinations, providing novel insights into
the dynamical and intricate regulatory mechanisms that govern cell fate transitions.

2.1 Mathematical modeling
CD4+ T cells exhibit remarkable functional diversity and plasticity, governed by intricate
regulatory networks comprising cytokines, transcription factors, and signaling molecules.
These networks orchestrate the differentiation and dynamical transitions among various
subsets, enabling swift adaptation to environmental cues during immune responses (Mur-
phy and Weaver [36], Geginat et al. [17]). For instance, CD4+ T cells have the capacity
to transition between Th1, Th2, Th17, or regulatory T cell (Treg) states, depending on
the cytokine milieu and intracellular signaling cascades (Zhou et al. [53]). The regulatory
mechanisms underlying these state transitions involve both deterministic and stochastic
processes, making mathematical modeling an essential tool for understanding their dy-
namics. Specifically, ordinary differential equations (ODEs) offer a suitable framework for
modeling the complex nonlinear regulations between cytokines and transcription factors
within these networks (Hirsch [23], Fischer [14], Perko [41]). Without loss of generality,
we consider an n-node network whose dynamics can be described by

dx
dt

= f (x; p), (1)

where x = (x1, x2, . . . , xn)T ∈ Rn is a vector of nodes, which represents concentrations of all
molecules, f = (f1, f2, . . . , fn)T is a vector of functions representing the regulations between
individual molecules, and the parameter vector p = (p1, . . . , pm)T ∈ Rm represents environ-
mental conditions which can be perturbed individually or combinatorially so as to change
or control the system dynamics.

The CD4+ T cell regulatory network consists of 21 nodes (Martinez-Sanchez et al. [33]),
as shown in Fig. 1. The five nodes at the bottom (blue rectangles) represent transcription
factors: TBET, GATA3, FOXP3, RORGT, and BCL6. The seven central nodes (blue ovals)
represent signaling pathways that integrate signal transducers, including STAT proteins,
interleukin receptors, and autocrine cytokines, specifically IFNG, IL2, IL4, IL10, TGFB,
IL9, and IL21. The nine topmost nodes (pink diamonds) signify exogenous cytokines gen-
erated by distinct cells within the immune system. Consequently, as input signals to the
network, these functions comprise IFNGe, IL12e, IL2e, IL4e, IL10e, IL27e, TGFBe, IL6e,
and IL21e. These cytokines are distinctively identified by an “e” suffix (denoting exoge-
nous) to clearly distinguish them as externally produced cytokines serving as inputs to
the network.
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Figure 1 CD4+ T cell regulatory network. The network includes transcription factors (rectangles), signaling
pathways and autocrine cytokines, autocrine cytokines (ovals), and exogenous cytokines (diamonds).
Activation is represented by green arrows, while inhibition is represented by red flat arrows. In the dynamic
model, the transcription factors and autocrine cytokines serve as state variables, whereas exogenous
cytokines are represented as parameters

We select nine exogenous factors as the parameter vector p and other molecules as the
system variables x. For the construction of the CD4+ T cell regulatory network, as well
as the identification of key highly expressed cytokines, please refer to (Martinez-Sanchez
et al. [33, 34]) for more details. It is worth noting that the Th0 cell state encompasses two
distinct yet stable precursor states (Th1/Th2 precursors), characterized by the absence of
cytokine expression, with the exception of IL2. However, upon reaching an optimal level
of IL2e, i.e., mathematically, under the perturbation to IL2e, a bifurcation occurs, leading
to a significant up-regulation of IL2 expression. Therefore, we deliberately divide the Th0
state into Th0 and Th0_2, as shown in Table 1. Similarly, in order to more clearly reflect
the state transition under relevant perturbations, we also divide the Th2 state into two
states: Th2 and Th2_2, as shown in Table 1 and Table 2.

The regulatory function f between individual molecules and the specific ODEs of the
CD4+ T network are given in the Appendix.

2.2 Perturbation analysis based on bifurcation
Cell fate transition stands as a pivotal milestone in organismal development, intricately
shaping the diversity and functionality of cells. In unraveling the intricate regulatory pro-
cess, the bifurcation and perturbation analysis of nonlinear dynamical systems are crucial
analytical methods. They can offer profound insights into the intricate dynamics of gene
expression, thereby facilitating a deeper understanding of how cells adopt their distinct
identities and roles within the organism (Bargaje et al. [1], Bose and Pal [5]).

From the perspective of nonlinear dynamics, cell fate transition can be regarded as a
bistable or ultrasensitive switch, intricately guiding the complex transitions among diverse
cellular identities (Nakajima and Kaneko [38], Marco et al. [32]). When a certain parame-
ter, such as the concentration of a signaling molecule, reaches a critical value, a bifurcation
occurs, inducing the transition from one cell state to another. This state transition process
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may involve complex dynamics, such as periodic oscillations and chaos, which can all be
systematically studied using bifurcation analysis.

In this study, our model consists of a set of nonlinear ODEs that describe the regula-
tions among transcription factors, signaling pathways, and autocrine cytokines within the
CD4+ T cell network. To determine the steady states of different T cell subtypes (e.g.,
Th0, Th1, Th2, Th3, Tfh, and Tr1) under specific environmental conditions, we employ
numerical simulation methods. The stable, steady state is identified as the state where the
changes in system variables tend towards zero over a sufficient period of time.

In the combinatorial perturbation analysis, we examine the effects of simultaneous per-
turbation on two parameters. The primary concern is to evaluate how the fate of CD4+
T cells is altered in response to simultaneous changes in multiple exogenous cytokines.
Specifically, we utilize the mathematical tool MATCONT, which is widely applied in the
analysis of bifurcations within dynamical systems. By defining the parameter ranges and
step sizes, we can accurately capture vital information during the bifurcation analysis. This
methodology allows us to detect bifurcation points or loci within the parameter spaces,
indispensable for understanding the qualitative changes in system dynamics.

In the subsequent sections, we will analyze the intricate dynamics of the CD4+ T cell
regulatory network, utilizing bifurcation and perturbation analysis. The detailed method-
ologies employed are outlined as follows.

2.2.1 Acquisition of initial steady state
Table 1 presents various CD4+ T cell types, Th0_2, Th1, Th2 (Perez et al. [40], Kanhere
et al. [27]), Th3 (Gol-Ara et al. [18]), Tfh (Johnston et al. [25]), Tr1 (Grazia Roncarolo et al.
[20]), along with their corresponding highly expressed cytokines and active input nodes.
In this context, the high expression level xhigh is defined as x ∈ [0.5, 1], whereas the low
expression level xlow is defined as x ∈ [0, 0.5). According to Table 1, for each cellular phe-
notype, we set xhigh = 0.7, (i = 1, . . . , nhigh) and xlow = 0.1, (i = 1, . . . , nlow), where nhigh and
nlow denote the number of cytokines corresponding to high and low expression levels in
each state, respectively. By setting the parameter vector p = 0, we can calculate the steady-
state data corresponding to each phenotype. It is important to note that the Tr1 phenotype
requires the involvement of exogenous cytokines, i.e., IL27e and IL10e. Specifically, their
values can be set to 0.6 and 0.4, respectively, to obtain the steady-state solutions for the
Tr1 phenotype.

2.2.2 Single-parameter perturbation
We consider all exogenous cytokines as a parameter set: P = {p1, p2, . . . , p9}. In each single-
parameter perturbation, the parameters are divided into two subsets: the perturbed pa-
rameter set: S1 = {pi}, pi ∈ P, and the non-perturbed parameter set (kept constant):

Table 1 Distinct cell states, key highly expressed cytokines, and corresponding exogenous cytokines

Cell states Highly expressed cytokines Active input nodes

Th0 - -
Th0_2 IL2 IL2e
Th1 TBET, IFNG IL12e, IFNGe
Th2 GATA3, IL4 IL4e
Th3 TGFB TGFBe
Tfh IL21, BCL6 IL6e, IL21e
Tr1 IL10 IL10e, IL27e
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S2 = P \ S1. Under this setup, the dynamical system Eq. (1) can be expressed as:

dx
dt

= f (x, pi, pfixed), (2)

where:
• pi: the perturbed parameter, which typically varies within a specific range, i.e.,

pi ∈ [pi,min, pi,max]. In this study, pi,min = 0, pi,max = 1;
• pfixed = [pj | pj ∈ S2]: the nonperturbed parameters. The unperturbed parameters are

set to zero, unless stated otherwise.
By adjusting the value of pi, we study the system’s dynamics, such as steady-state

solutions x∗ or bifurcation. The steady-state solution satisfies the following condition:
f (x∗, pi, pfixed) = 0, where x∗ is the steady-state solution corresponding to the parameter
pi.

2.2.3 Combinatorial perturbations
In the case of two-parameter perturbations, the parameter set P is divided into two sub-
sets:

• The perturbed parameter set: S1 = {pa, pb}, pa, pb ∈ P, where pa and pb are the two
parameters subjected to simultaneous perturbation.

• The nonperturbed parameter set (kept constant): S2 = P \ S1 = {pk | pk ∈ P, pk /∈ S1}.
These parameters remain fixed during the analysis.

Under two-parameter perturbations, the dynamical system can be written as:

dx
dt

= f (x, pa, pb, pfixed), (3)

where:
• pa and pb: the two perturbed parameters, which vary within specified ranges:

pa ∈ [pa,min, pa,max] and pb ∈ [pb,min, pb,max];
• pfixed = [pk | pk ∈ S2]: the set of nonperturbed parameters, which remains constant.
The steady-state solution satisfies the following condition: f (x∗, pa, pb, pfixed) = 0, where

x∗ is the steady state, which depends on the parameter values of pa and pb.

3 Results
Our primary objective in this section is to identify distinct cell states within the CD4+ T
cell network, utilizing key, highly expressed cytokines as indicators of cellular states. To
explore the dynamics of cell transitions between these diverse fates, we employ perturba-
tion and bifurcation analysis as our analytical approaches.

3.1 Single-parameter perturbation analysis
Exogenous cytokines, i.e., active input (rightmost column), can induce different cell state
transformations (leftmost column), as shown in Table 1. The middle column corresponds
to the highly expressed cytokines under the specific perturbations. In this subsection, we
explore how these highly expressed cytokines change under individual perturbations. We
first perturb the parameters IL12e, IFNGe, IL2e, IL4e, IL6e, IL21e, TGFBe, IL10e, and
IL27e, respectively. These specific individual perturbations induce different system dy-
namics, e.g., bistable and ultrasensitive switches, as shown in Fig. 2.
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Figure 2 The dynamics under individual perturbations. (a)–(d) Bistable switches under the perturbations to
IL12e, IFNGe, IL2e, IL4e, IL6e, IL21e, and TGFBe. (h) Ultrasensitive switch under the perturbation to IL10e. (i) The
perturbation to IL27e does not induce any state transition

When the system resides in the Th0 state, the gradual increase in IL12e level triggers a
modest increase in the TBET expression, maintaining the system’s stability within the Th0
state. However, upon reaching a threshold of approximately 0.35, the system undergoes a
bifurcation characterized by an abrupt jump in the TBET expression. This critical occur-
rence marks a transition from the Th0 to the Th1 state, as illustrated in Fig. 2(a). As IL12e
continues to increase, the expression level of TBET remains unchanged, and the system
remains in the Th1 state.

The system demonstrates the phenomenon of bistability within the interval of [0, 0.35],
indicating its ability to maintain two stable states concurrently. From a biological perspec-
tive, when a cell remains in the Th0 state and is continuously exposed to the exogenous
cytokine IL12e, it does not initially undergo any immediate apparent change in its state.
However, upon reaching a critical threshold concentration of IL12e, the cell undergoes a
definitive transition in its fate, shifting from the Th0 state to the Th1 state. Conversely,
when the cell remains in the Th1 state, the decrease or absence of the external cytokine
IL12e does not trigger a return to the Th0 state, highlighting the one-way or irreversible
nature of the cell fate transition.

Similarly, various exogenous cytokines such as IFNGe, IL2e, IL4e, IL6e, IL21e, or TGFBe
can induce distinct cell fate transitions through saddle-node bifurcations. For instance,
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exogenous cytokine IFNGe can also trigger the transitions from Th0 to the Th1 state,
whereas exogenous cytokine IL4e, IL6e, or TGFBe can respectively induce the cell fate
transition from Th0 to Th2, Tfh, or Th3 state, as shown in Figs. 2(b)–2(g). However, ex-
ogenous cytokine IL10e induces an ultrasensitive switch, as shown in Fig. 2(h). As the
concentration of IL10e increases, the expression of IL10 follows an S-shaped pattern, in-
dicating a substantial change in IL10 level. This response is indicative of an ultrasensitive
response mechanism (Haney et al. [22], Ferrell and Ha [13], Zhang et al. [52]). In contrast,
exogenous cytokine IL27e does not lead to any bifurcation, thereby precluding any cell
fate transition. Despite IL10 being a target of IL27e, the expression of IL10 remains largely
insensitive to variations in IL27e concentration, as shown in Fig. 2(i).

3.2 Combinatory perturbation analysis
During cell fate transitions, synergistic effects of combinatorial perturbations are crucial.
Multiple exogenous cytokines can interact to synergistically regulate gene expression and
determine cell fate transitions (Yan et al. [50], Choi et al. [7]). In this part, we identify
three different types of synergistic effects of exogenous cytokines on cell fate transitions
by combinatorial perturbation analysis. Type I: those parameters which, when individually
perturbed, do not cause any bifurcation i.e., (IL10e, IL27e) (Murugaiyan et al. [37]); Type
II: those parameters which, when individually perturbed, induce the same types of cell fate
transitions, i.e., (IL12e, IFNGe) (Lexberg et al. [29]) and (IL6e, IL21e) (Eto et al. [11]); and
Type III: those parameters which, when individually perturbed, induce the different types
of cell fate transitions, i.e., (IL2e, TGFBe) (Freudenberg et al. [16]), (IL2e, IL4e) (Burke et al.
[6]), (IL4e, TGFBe) (Beriou et al. [2]) and (IL21e, TGFBe) (Zhou et al. [54]), as outlined in
Table 2.

3.2.1 Type I
The single perturbation to IL10e induces the fate transition from Th0 to Tr1 by an ultra-
sensitive switch, as shown in Fig. 2(h). The single perturbation to IL27e does not induce
any bifurcation and therefore no cell fate transitions occur, as shown in Fig. 2(i). How-
ever, when they are simultaneously perturbed, saddle-node bifurcations occur, meaning
the occurrence of cell fate transitions, as shown in Fig. 3(a).

In order to explore the intricate relationship between simultaneous perturbations to
IL10e and IL27e, when perturbing IL10e, we systematically vary the levels of IL27e, set-
ting its values to 0, 0.28, 0.5, and 0.8, respectively. When IL27e = 0.28, two saddle-node

Table 2 Three combination types, cell states, and highly expressed cytokines under combinatorial
perturbations

Types Combinatorial perturbations Cell states Highly expressed cytokines

Type I (IL10e, IL27e) Tr1 IL10

Type II (IL12e, IFNGe) Th1 TBET, IFNG
(IL6e, IL21e) Tfh IL21, BCL6

Type III (IL2e, IL4e) Th2_2 GATA3, IL2, IL4
(IL21e, TGFBe) Th17 RORGT, IL21, TGFB
(IL2e, TGFBe) iTreg IL2, IL4, FOXP3, TGFB
(IL4e, TGFBe) Th9 IL4, TGFB, IL9, IL10
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Figure 3 Combinatorial perturbation analysis. (a) The perturbation to IL10e when IL27e is 0, 0.28, 0.6, and 0.8,
respectively. (b) The perturbation to IL27e when IL10e is 0.3, 0.4, 0.42, and 0.5 respectively. (c) The bifurcation
diagram of combinatorial perturbations to IL10e and IL27e

bifurcation points nearly coincide. This approach allows us to obtain a comprehensive
understanding of how these two exogenous cytokines influence each other under differ-
ent conditions. As the perturbation to IL27e is strong enough, saddle-node bifurcations
may occur. In addition, as the concentration of IL27e rises, the bifurcation occurs ear-
lier, suggesting an enhanced sensitivity to the perturbation to IL10e, as shown in Fig. 3(a).
Especially when IL27e reaches a sufficiently high level, the cell fate transition becomes
irreversible. In other words, only the transition from Th0 to Tr1 is possible.

Similarly, we perturb IL27e by adjusting IL10e at different levels (specifically, 0.3, 0.4,
0.42 and 0.5). As IL10e increases, the initial response in IL27e exhibits bifurcation. How-
ever, the bifurcation subsequently diminishes, and the system undergoes a gradual, con-
tinuous change, as shown in Fig. 3(b). The two-parameter bifurcation diagram is shown
in Fig. 3(c). The pink background region signifies the occurrence of bifurcation during the
perturbation process, whereas the gray region denotes the absence of bifurcation, indicat-
ing that the system undergoes continuous changes.

In summary, when both perturbations are imposed, the transition occurs via saddle-
node bifurcations, indicating the synergistic effects of the combinatorial perturbations
in the CD4+ T cell regulatory network. Two perturbations cooperate to compensate for
respective inefficiency in inducing the bistable switch and thus the transition from Th0
to Tr1. During the transition, the perturbation to IL10e plays a decisive role, while the
perturbation to IL27e functions as an auxiliary factor.
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Figure 4 Combinatorial perturbation analysis. (a) The two-parameter bifurcation diagram when IL2e and
IFNGe are simultaneously perturbed. (b) The two-parameter bifurcation diagram when IL6e and IL21e are
simultaneously perturbed

3.2.2 Type II
A single perturbation to IL27e fails to induce any discernable cell fate transition, whereas
an isolated perturbation to IL10e triggers an ultrasensitive switching mechanism. How-
ever, when both IL27e and IL10e are simultaneously perturbed, they collaborate to facil-
itate cell fate transitions through bistable switches. Additionally, some individual pertur-
bations can independently induce specific cell fate transitions, as shown in Figs. 2(a)–(h).
For instance, a single perturbation to IL12e or IFNGe can drive the transition from Th0
to Th1, while a single perturbation to IL21e or IL6e can realize the transition from Th0 to
Tfh.

For combinatorial perturbations, the interplay between IL12e and IFNGe in inducing
the transition from Th0 to Th1 is depicted in the two-parameter bifurcation diagram
(Fig. 4(a)). Similarly, the combinatorial effects of IL21e and IL6e on the transition from
Th0 to Tfh are shown in Fig. 4(b). In both cases, the perturbations exhibit a negative cor-
relation, where an increase in one reduces the requirement for the other to achieve the
transitions. These findings highlight how the perturbations compensate for each other’s
inefficiencies in inducing cell fate transitions.

Specifically, for the Th0-to-Th1 transition, an additional perturbation to IL12e reduces
the requirement for IFNGe and vice versa. Similarly, for the Th0-to-Tfh transition, IL21e
and IL6e cooperate, with each perturbation mitigating the need for the other. In Type II
combinatorial perturbations, both components play similar roles in facilitating cell fate
transitions by lowering the bifurcation thresholds when introduced simultaneously.

3.2.3 Type III
Combinatorial perturbations not only orchestrate the system’s state in a synergistic man-
ner but also produce potentially novel cell states. Here, we focus on four combinatorial
perturbations: (IL2e, TGFBe), (IL2e, IL4e), (IL4e, TGFBe), and (IL21e, TGFBe), which
are comprehensively outlined in Table 2. These cytokine combinations offer insights into
intricate mechanisms of combinatorial regulations, which can drive the system towards
other functional states.

A. Combinatorial perturbations to IL2e and TGFBe
When IL2e is imposed, the cell fate transition from Th0 to Th0_2 can be realized, as

shown in Fig. 2(c). At an appropriate concentration of TGFBe, the cell fate transition from
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Figure 5 Combinatorial perturbation analysis. (a) The bifurcation diagram with IL2e as the control parameter
at TGFBe = 0.6. (b) The bifurcation diagram with TGFBe as the control parameter at IL2e = 0.6. (c) The
bifurcation diagram of combinatorial perturbations to IL2e and TGFBe

Th0 to Th3 can be achieved, as shown in Fig. 2(g). Following this, we perform combina-
torial perturbation analysis. For instance, at TGFBe = 0.6, the system stabilizes in the Th3
state (Fig. 2(g)). However, when an additional perturbation to IL2e is applied under this
condition, the system transitions from the Th3 state to the iTreg state (Fig. 5(a)).

Similarly, at IL2e = 0.6, the system stabilizes in the Th0_2 state (Fig. 2(c)). Upon the
introduction of a further perturbation to TGFBe, the system transitions from the Th0_2
state to the iTreg state (Fig. 5(b)). These results indicate that the transition from Th0 to
iTreg can only be realized through combinatorial perturbations.

The transition from the Th0 state to the iTreg state is facilitated through either the
Th0_2 or Th3 intermediate state, depending on the specific combination and manner of
the perturbations employed (Fig. 5(c)). These findings emphasize the critical roles of com-
binatorial perturbations in uncovering synergistic effects and inducing novel cell states.

B. Combinatorial perturbations to IL2e and IL4e
When IL4e is applied at an optimal concentration, the cell fate transition from Th0 to

Th2 can be successfully achieved, as demonstrated in Fig. 2(d). The single perturbation
to IL2e induces a transition within the Th0 lineage, particularly to a state resembling Th0
but with high levels of IL2, as shown in Fig. 2(c). Different individual perturbations lead
to distinct cell fate transitions. Through combinatorial perturbations, the transition from
Th0 to Th2_2 can be effectively achieved. For instance, at IL4e = 0.6, the system stabilizes
in the Th2 state (Fig. 2(d)). Upon the application of additional perturbations, the system
transitions from Th2 to Th2_2 (Fig. 6(a)).
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Figure 6 Combinatorial perturbation analysis. (a) The bifurcation diagram with IL2e as the control parameter
at IL4e = 0.6. (b) The bifurcation diagram with IL4e as the control parameter at IL2e = 0.6. (c) The bifurcation
diagram of combinatorial perturbations to IL2e and IL4e

Similarly, at IL2e = 0.6, the system remains in the Th0_2 state (Fig. 2(c)). When the per-
turbation to IL4e is further introduced, the system undergoes a transition from the Th0_2
state to the Th2_2 state, as shown in Fig. 6(b).

These findings demonstrate that the transition from Th0 to Th2_2, which cannot be
achieved by individual perturbation to IL2e or IL4e alone, requires the synergistic action
of both cytokines in combinatorial perturbations and can proceed via either Th2 or Th0_2
intermediate states, depending on how the perturbations are applied (Fig. 6(c)).

C. Combinatorial perturbations to IL4e and TGFBe, and to IL21e and TGFBe
The exogenous cytokine IL4e can induce the cell fate transition from Th0 to Th2, as

shown in Fig. 2(d). While exogenous cytokine TGFBe can realize the cell fate transition
from Th0 to Th3, as shown in Fig. 2(g). Different individual perturbations induce different
cell fate transitions. When combinatorial perturbations are performed, the cell fate tran-
sition from Th0 to Th9 can be realized. For instance, at a strong enough TGFBe level, e.g.,
TGFBe = 0.6, the further transition from Th3 to Th9 is realized through an ultrasensitive
switch which enables sharp transitions between two different cell states and is essential
for cells to respond to environmental cues with high fidelity, as shown in Fig. 7(a). Sim-
ilarly, at the concentration of IL4e = 0.6, the system remains in the Th2 state, as shown
in Fig. 2(d). When the perturbation to TGFBe is further introduced, the system under-
goes a transition from the Th2 state to the Th9 state, as shown in Fig. 7(b). These findings
demonstrate that the transition from Th0 to Th9 can be effectively achieved through com-
binatory perturbations. The transition from Th0 to Th9 can be accomplished via either
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Figure 7 Combinatorial perturbation analysis. (a) The ultrasensitive switch induced by the perturbation to
IL4e at TGFBe = 0.6. (b) The bifurcation diagram with TGFBe as the control parameter at IL4e = 0.6. (c) The
dynamics under the combinatorial perturbations to IL4e and TGFBe

Th2 or Th3 intermediate, depending on the specific manners in which the combinatorial
perturbations are applied, as shown in the two-parameter bifurcation diagram Fig. 7(c).

The exogenous cytokine IL21e can induce the cell fate transition from Th0 to Tfh, as
shown in Fig. 2(f ). While exogenous cytokine TGFBe can realize the cell fate transition
from Th0 to Th3, as shown in Fig. 2(g). When combinatorial perturbations are performed,
the cell fate transition from Th0 to Th17 can be realized. For instance, at a strong enough
IL21e level, e.g., IL21e = 0.6, the further transition from Tfh to Th17 is realized through an
ultrasensitive switch, as shown in Fig. 8(a). Similarly, at the concentration of TGFBe = 0.6,
the system remains in the Th3 state, as shown in Fig. 2(g). When the perturbation to IL21
is further introduced, the system undergoes a transition from the Th3 state to the Th17
state, as shown in Fig. 8(b). These findings demonstrate that the transition from Th0 to
Th9 can be effectively achieved through combinatory perturbations. The transition from
Th0 to Th17 can be accomplished via either Th3 or Tfh intermediate, depending on the
specific manners in which the combinatorial perturbations are applied, as shown in the
two-parameter bifurcation diagram Fig. 8(c).

In summary, during the induction of cell fate transitions, three distinct combinatorial
perturbations exhibit synergistic yet different mechanisms. Specifically, for the first type,
only the single perturbation to IL10e is sufficient to elicit the transition from Th0 to Tr1
cell fate. The addition of exogenous cytokine IL21e functions as an adjuvant, facilitating
the transition process from Th0 to Tr1 and making the transition easier. For the second
type, each individual perturbation is capable of independently achieving the transition. In
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Figure 8 Combinatorial perturbation analysis. (a) The ultrasensitive switch induced by the perturbation to
TGFBe at IL21e = 0.6. (b) The bifurcation diagram with IL21e as the control parameter at TGFBe = 0.6. (c) The
dynamics under the combinatorial perturbations to IL21e and TGFBe

addition, when combined, these perturbations exhibit a synergistic effect, with both cy-
tokines collaborating to facilitate the same type of cell fate transition even more efficiently.
Regarding the third type, within each perturbation pair, each distinct perturbation triggers
a different cell fate transition. Furthermore, combinatorial perturbations work synergisti-
cally and give rise to novel cell fate transitions.

4 Conclusion and discussion
This study conducts a dynamic analysis of the CD4+ T cell regulatory network, employ-
ing nonlinear dynamics and bifurcation theory. Initially, we carried out single-parameter
perturbations on nine exogenous cytokines. The system undergoes bifurcation when in-
dividually perturbing IL12e, IFNGe, IL2e, IL4e, IL6e, IL21e, and TGFBe. Specifically, an
ultrasensitive switch occurs under the perturbation to IL10e. These single-parameter per-
turbation analyses provide valuable insights for further combinatorial perturbation anal-
ysis.

When combinatorial perturbations are applied, three distinct types of synergistic com-
binations are identified. Specifically, in the first type of combination, only one perturba-
tion is sufficient to induce a cell fate transition, while the addition of another exogenous
cytokine acts as an adjuvant, enhancing and facilitating the process. In the second type,
each individual perturbation can independently induce cell fate transitions. When com-
bined, they collaborate to facilitate the same type of transition even more efficiently. As
for the third type, within each pair of perturbations, each distinct perturbation triggers a
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different cell fate transition. Also, when combined synergistically, these perturbations give
rise to novel cell fate transitions.

The analysis of both single and combinatorial perturbations offers theoretical strategies
for regulating CD4+ T cell fate transitions (O’Shea and Paul [39], Geginat et al. [17]). The
methodology presented herein can be extended to other biological networks to uncover
crucial mechanisms or molecules pertinent to cell fate decisions and transitions. Further-
more, it may aid in the design of novel combinatorial perturbations, thereby presenting
fresh perspectives for targeted therapeutic strategies (Haghverdi et al. [21], Kakaradov
et al. [26], Lähnemann et al. [28]). Nevertheless, there remains room for improvement.
Specifically, the network nodes are restricted, and the ODE model grounded in Boolean
networks has the potential for further enhancement.

Appendix: The model
The dynamics of CD4+ T cell network is described by ODEs as follows (Martinez-Sanchez
et al. [33]):

d [TBET]

dt
=

1
1 + exp (–b ∗ (wTBET – 0.5))

– kTBET ∗ [TBET] ,

d [IFNG]

dt
=

1
1 + exp (–b ∗ (wIFNG – 0.5))

– kIFNG ∗ [IFNG] ,

d [GATA3]

dt
=

1
1 + exp (–b ∗ (wGATA3 – 0.5))

– kGATA3 ∗ [GATA3] ,

d [IL2]

dt
=

1
1 + exp (–b ∗ (wIL2 – 0.5))

– kIL2 ∗ [IL2] ,

d [IL4]

dt
=

1
1 + exp (–b ∗ (wIL4 – 0.5))

– kIL4 ∗ [IL4] ,

d [RORGT]

dt
=

1
1 + exp (–b ∗ (wRORGT – 0.5))

– kRORGT ∗ [RORGT] ,

d [IL21]

dt
=

1
1 + exp (–b ∗ (wIL21 – 0.5))

– kIL21 ∗ [IL21] ,

d [FOXP3]

dt
=

1
1 + exp (–b ∗ (wFOXP3 – 0.5))

– kFOXP3 ∗ [FOXP3] ,

d [TGFB]

dt
=

1
1 + exp (–b ∗ (wTGFB – 0.5))

– kTGFB ∗ [TGFB] ,

d [IL10]

dt
=

1
1 + exp (–b ∗ (wIL10 – 0.5))

– kIL10 ∗ [IL10] ,

d [IL9]

dt
=

1
1 + exp (–b ∗ (wIL9 – 0.5))

– kIL9 ∗ [IL9] ,

d [BCL6]

dt
=

1
1 + exp (–b ∗ (wBCL6 – 0.5))

– kBCL6 ∗ [BCL6] .

wTBET = (([IFNG] + pIL12e ∗ (1 – [IL21]) ∗ (1 – [IL4]) ∗ (1 – [IL10])

–[IFNG] ∗ pIL12e ∗ (1 – [IL21]) ∗ (1 – [IL4]) ∗ (1 – [IL10])
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+ [TBET] – ([IFNG] + pIL12e ∗ (1 – [IL21]) ∗ (1 – [IL4]) ∗ (1 – [IL10])

– [IFNG] ∗ pIL12e ∗ (1 – [IL21])) ∗ (1 – [IL4]) ∗ (1 – [IL10]) ∗ [TBET])

∗ (1 – IL4) ∗ (1 – GATA3) ∗ (1 – IL21) ∗ (1 – BCL6)) ,

wIFNG = (pIFNGe + ([IFNG] + [TBET] – [IFNG] ∗ [TBET]) ∗ (1 – [GATA3])

∗ (1 – [TGFB]) – pIFNGe ∗ ([IFNG] + [TBET] – [IFNG] ∗ [TBET])

∗ (1 – [GATA3]) ∗ (1 – [TGFB]) ∗ (1 – [IL21]) ∗ (1 – [IL4])

∗ (1 – [IL10]) ∗ (1 – [BCL6]) ∗ (1 – [IL9])) ,

wGATA3 = (([IL2] ∗ [IL4] + [IL4] – [IL2] ∗ [IL4] ∗ [IL4]) + [GATA3]

– ([IL2] ∗ [IL4] + [IL4] – [IL2] ∗ [IL4] ∗ [IL4]) ∗ [GATA3])

∗ (1 – [TBET]) ∗ (1 – [TGFB]) ∗ (1 – [IL21]) ∗ (1 – [IFNG])

∗ (1 – [BCL6]) ,

wIL2 = ((pIL2e + [IL2] ∗ (1 – [FOXP3]) – pIL2e ∗ [IL2] ∗ (1 – [FOXP3])) (1 – [INFG]))

∗ (1 – [IL21]) ∗ ([FOXP3] + (1 – [IL10]) – [FOXP3] ∗ (1 – [IL10])) ,

wIL4 = (pIL4e + [GATA3] ∗ ([IL2] + [IL4] – [IL2] ∗ [IL4]) ∗ (1 – [TBET])

–pIL4e ∗ [GATA3] ∗ ([IL2] + [IL4] – [IL2] ∗ [IL4]) ∗ (1 – [TBET]))

∗ (1 – [IFNG]) ∗ (1 – [IL21]) ,

wTBET = (([IFNG] + pIL12e ∗ (1 – [IL21]) ∗ (1 – [IL4]) ∗ (1 – [IL10])

–[IFNG] ∗ pIL12e ∗ (1 – [IL21]) ∗ (1 – [IL4]) ∗ (1 – [IL10])

+ [TBET] – ([IFNG] + pIL12e ∗ (1 – [IL21]) ∗ (1 – [IL4]) ∗ (1 – [IL10])

– [IFNG] ∗ pIL12e ∗ (1 – [IL21])) ∗ (1 – [IL4]) ∗ (1 – [IL10]) ∗ [TBET])

∗ (1 – IL4) ∗ (1 – GATA3) ∗ (1 – IL21) ∗ (1 – BCL6)) ,

wIFNG = (pIFNGe + ([IFNG] + [TBET] – [IFNG] ∗ [TBET]) ∗ (1 – [GATA3])

∗ (1 – [TGFB]) – pIFNGe ∗ ([IFNG] + [TBET] – [IFNG] ∗ [TBET])

∗ (1 – [GATA3]) ∗ (1 – [TGFB]) ∗ (1 – [IL21]) ∗ (1 – [IL4])

∗ (1 – [IL10]) ∗ (1 – [BCL6]) ∗ (1 – [IL9])) ,

wGATA3 = (([IL2] ∗ [IL4] + [IL4] – [IL2] ∗ [IL4] ∗ [IL4]) + [GATA3]

– ([IL2] ∗ [IL4] + [IL4] – [IL2] ∗ [IL4] ∗ [IL4]) ∗ [GATA3])

∗ (1 – [TBET]) ∗ (1 – [TGFB]) ∗ (1 – [IL21]) ∗ (1 – [IFNG])

∗ (1 – [BCL6]) ,

wIL2 = ((pIL2e + [IL2] ∗ (1 – [FOXP3]) – pIL2e ∗ [IL2] ∗ (1 – [FOXP3])) (1 – [INFG]))

∗ (1 – [IL21]) ∗ ([FOXP3] + (1 – [IL10]) – [FOXP3] ∗ (1 – [IL10])) ,

wIL4 = (pIL4e + [GATA3] ∗ ([IL2] + [IL4] – [IL2] ∗ [IL4]) ∗ (1 – [TBET])

–pIL4e ∗ [GATA3] ∗ ([IL2] + [IL4] – [IL2] ∗ [IL4]) ∗ (1 – [TBET]))
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∗ (1 – [IFNG]) ∗ (1 – [IL21]) ,

wRORGT = [IL21] ∗ [TGFB] ∗ (1 – [TBET]) ∗ (1 – [FOXP3]) ∗ (1 – [GATA3])

∗ (1 – [BCL6]) ,

wIL21 = ((((pIL6e + pIL21e – pIL6e ∗ pIL21e) + [IL21] – (pIL6e + pIL21e – pIL6e ∗ pIL21e) ∗ [IL21])

+ [RORGT] – ((pIL6e + pIL21e – pIL6e ∗ pIL21e) + [IL21] – (pIL6e + pIL21e – pIL6e ∗ pIL21e)

∗ [IL21]) ∗ [RORGT]) + [BCL6] – (((pIL6e + pIL21e – pIL6e ∗ pIL21e) + [IL21]

– (pIL6e + pIL21e – pIL6e ∗ pIL21e) ∗ [IL21]) + [RORGT] – ((pIL6e + pIL21e – pIL6e ∗ pIL21e)

+ [IL21] – (pIL6e + pIL21e – pIL6e ∗ pIL21e) ∗ [IL21]) ∗ [RORGT]) ∗ [BCL6])

∗ (1 – [IFNG]) ∗ (1 – [IL4]) ∗ (1 – [IL10]) ∗ (1 – [IL2]) ∗ (1 – [IL9]),

wFOXP3 = [IL2] ∗ ([TGFB] + [FOXP3] – [TGFB] ∗ [FOXP3]) ∗ (1 – [IL21])

∗ (1 – [RORGT]) ∗ (1 – [IL4]) ,

wIL9 = [IL4] ∗ ([IL10] ∗ [IL2] + [TGFB] – [IL10] ∗ [IL2] ∗ [TGFB])

∗ (1 – [IFNG]) ∗ (1 – [IL21]) ∗ (1 – [FOXP3]) ,

wBCL6 = ([IL21] + [IFNG] – [IL21] ∗ [IFNG]) ∗ (1 – [TBET]) ∗ (1 – [IL2])

∗ (1 – [TGFB]) ,

wTGFB = pTGFBe + ([TGFB] + [FOXP3] – [TGFB] ∗ [FOXP3]) ∗ (1 – [IL21])

– pTGFBe ∗ ([TGFB] + [FOXP3] – [TGFB] ∗ [FOXP3]) ∗ (1 – [IL21]) ,

wIL10 = pIL10e + [IL10]

∗ (((([IFNG] + [IL21] – [IFNG] ∗ [IL21]) + [TGFB] – ([IFNG] + [IL21]

– [IFNG] ∗ [IL21]) ∗ [TGFB]) + [GATA3] – (([IFNG] + [IL21] – [IFNG] ∗ [IL21])

+ [TGFB] – ([IFNG] + [IL21] – [IFNG] ∗ [IL21]) ∗ [TGFB]) ∗ [GATA3]) + pIL27e

– ((([IFNG] + [IL21] – [IFNG] ∗ [IL21]) + [TGFB] – ([IFNG] + [IL21]

– [IFNG] ∗ [IL21]) ∗ [TGFB]) + [GATA3] – (([IFNG] + [IL21] – [IFNG] ∗ [IL21])

+ [TGFB] – ([IFNG] + [IL21] – [IFNG] ∗ [IL21]) ∗ [TGFB]) ∗ [GATA3]) ∗ pIL27e

– pIL10e ∗ [IL10] ∗ (((([IFNG] + [IL21] – [IFNG] ∗ [IL21]) + [TGFB] – ([IFNG]

+ [IL21] – [IFNG] ∗ [IL21]) ∗ [TGFB]) + [GATA3] – (([IFNG] + [IL21]

– [IFNG] ∗ [IL21]) + [TGFB] – ([IFNG] + [IL21] – [IFNG] ∗ [IL21]) ∗ [TGFB])

∗ [GATA3]) + pIL27e – ((([IFNG] + [IL21] – [IFNG] ∗ [IL21]) + [TGFB]

– ([IFNG] + [IL21] – [IFNG] ∗ [IL21]) ∗ [TGFB]) + [GATA3] – (([IFNG]

+ [IL21] – [IFNG] ∗ [IL21]) + [TGFB] – ([IFNG] + [IL21] – [IFNG] ∗ [IL21])

∗ [TGFB]) ∗ [GATA3]) ∗ pIL27e) .
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