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Abstract
In this paper, a delayed double-strain influenza model with vaccination and
cross-immunity is proposed to explore the effect of coinfection of double-strain on
disease spread. First, the nonnegativity and ultimate boundedness of solution are
proved. Second, the basic reproduction numbers of strains 1, 2, and the whole model
are defined respectively, by which criteria on the local and global asymptotic stability
of (disease-free, dominant) equilibria are established. The uniform persistence of
(strains 1, 2 coexistent) disease is obtained as well. Finally, the validity of the
theoretical results is demonstrated by numerical simulations. We find that neglecting
cross-immunity and vaccination would misestimate the size of influenza outbreaks.
Cross-type multivalent vaccines will be the main direction for effective control
measure for influenza.
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1 Introduction
Influenza is a viral respiratory infection and usually includes four types, i.e., A, B, C, and
D of the orthomyxoviridae family, in which the first three types of viruses can infect and
spread between humans [1]. Influenza A and B viruses often appear with seasonal alter-
nation, cause localized outbreaks, even worldwide pandemics [2]. Influenza virus can be
transmitted not only by respiratory droplets and aerosols, but also by direct or indirect
contact with mucous membranes [3]. Due to the rapid spread of influenza between the
crowds, there are approximately 1 billion cases of influenza, with 290,000–650,000 respi-
ratory disease-related deaths and 3–5 million severe cases globally a year, in which 99%

of deaths in developing countries are among children under 5 years of age [1, 4], posing a
serious threat to global human health.

Influenza can lead to nonrespiratory complications, e.g., it can further aggravate the
condition with chronic illness even to death, such as cardiovascular diseases [5], espe-
cially dangerous for pregnant women, infants, young children, etc. [2, 4]. Vaccination is
the most cost-effective preventive measure against influenza, which significantly reduces
the risk of infection and serious complications [6]. However, current influenza vaccines
mainly target the variable region of viral hemagglutinin surface glycoprotein, which can-

© The Author(s) 2025. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit
to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The
images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise
in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

https://doi.org/10.1186/s13662-025-03886-z
https://crossmark.crossref.org/dialog/?doi=10.1186/s13662-025-03886-z&domain=pdf
https://orcid.org/0000-0002-5125-0224
mailto:longzhang_xj@sohu.com
http://creativecommons.org/licenses/by/4.0/


Gao et al. Advances in Continuous and Discrete Models         (2025) 2025:20 Page 2 of 29

not fully protect people against influenza before a pandemic, since it is only effective for
routine immunization against specific variants of seasonal influenza and require annual
vaccine updates [7]. Wu et al. [8] proposed a double-strain epidemic model with vaccina-
tion and amplification to research the interaction between amplified strain and common
strain. Zou and Rahman [9] proposed a double-strain influenza model with single effective
vaccine as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ṡ(t) = � – β1I1S – β2I2S – rS – μS,

V̇1(t) = rS – kI2V1 – μV1,

İ1(t) = β1I1S – γ1I1 – μI1 – ν1I1,

İ2(t) = β2I2S + kI2V1 – γ2I2 – μI2 – ν2I2,

Ṙ(t) = γ1I1 + γ2I2 – μR,

(1)

where S, V1, I1, I2, R represent the number of susceptible, strain 1 vaccinated, strain 1 in-
fected, strain 2 infected, and recovered individuals, respectively. The recruitment rate for
susceptible individuals is �, βi is the infection rate of strain i, k represents the infection
rate of strain 1 vaccinated individuals, μ represents the natural mortality rate, r represents
the vaccination rate, νi represents the cause-specific mortality rate of strain i infected in-
dividuals, γi represents the recovery rate of strain i infected individuals, where i = 1, 2.
In addition, influenza virus coinfection with other respiratory viruses could lead to more
serious complications, e.g., SARS-CoV-2 and influenza coinfection would be more severe
than any single infection of one virus [10].

Due to the rapid evolution of recurrent influenza [11], seasonal influenza A and B viruses
could evade human humoral immunity primarily through amino-acid substitutions, in-
sertions, or deletions encoding epitopes of hemoglobin and neuraminidase, which allow
the viruses to escape key antibodies induced by prior infection, vaccination, i.e., antigenic
drift, and eventually drives the annual prevalence of influenza [2]. Due to antigenic drift,
different strains of virus subtype could coexist, in which the antigenic deviation between
two different strains could affect partial immunity to some extent, make the host acquire
immunity with one strain but susceptible to the other, i.e., so called cross-immunity [12].
Casagrandi et al. [12] established SIRC epidemic models with cross-immunity to study
the dynamic behavior of influenza. Chuang and Lui [13] found that if the cross-immune
difference between two strains is large enough, then there is a risk that the stability of in-
ternal steady state may change and the cycle solution may bifurcate. Fudolig and Howard
[14] established a type of SIR multistrain epidemic model with cross-immunity to explore
the spread dynamic. Pell et al. [15] proposed the following delayed double-strain epidemic
model:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Ṡ(t) = � – β1SI1 – β2SI2 – μS,

İ1(t) = β1SI1 – γ1I1 – μI1 – ν1I1,

İ2(t) = β2SI2 + β2RlI2 – γ2I2 – μI2 – ν2I2,

Ṙl(t) = γ1I1(t – τ ) – β2RlI2 – μRl,

(2)
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Table 1 Biological interpretations of parameters

Parameter Description

� Recruitment of individuals
1
μ Average time of life expectancy
r Rate of vaccination with strain 1
k Infection rate of vaccinated individuals to strain 2
βi Infection rate of strain i
μi Mortality rate of individuals infected with strain i
γi Recovery rate of individuals infected with strain i
τi The incubation period of strain i
e–μτi The probability of surviving time period from t – τi to time t

where Rl represents the number of strain 1 recovered individuals but susceptible to
strain 2. τ represents the immune delay. They found that due to immune evasion, the ba-
sic reproduction number of original strain should be much higher than that of emerging
strain to ensure the stability of the original strain dominant equilibrium.

Furthermore, the infection and recovery process of disease are usually not instantaneous
processes, but with some time delays, e.g., COVID-19 and influenza [4, 16], which could
greatly influence the dynamic of disease spread. Farah et al. [17] proposed a type of de-
layed double-strain epidemic model to investigate the effect of infection delay. Goel et al.
[18] proposed an SIRC epidemic model to explore the impact of incubation and immunity
delays on multistrain epidemics; they found that once the delays exceed a certain thresh-
old, it could induce oscillatory behavior of the system. Chen et al. [19] proposed a class
of delayed mixed-strain HIV infection models; they found that the infection delay could
yield a Hopf branch and a chaotic phenomenon.

Motivated by the above consideration, we propose a delayed double-strain influenza
model based on the following scenarios. Due to mutations (antigenic drift), the new strain
shows cross-immunity with the original strain, and the vaccines are partially effective
against the new influenza strain. Since the incubation period of influenza A virus infection
is about 2–4 days [2, 4], latency delay is included in the model. The detailed model is as
follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ṡ(t) = � – β1I1(t)S(t) – β2I2(t)S(t) – rS(t) – μS(t),

V̇ (t) = rS(t) – kV (t)I2(t) – μV (t),

İ1(t) = β1S(t – τ1)I1(t – τ1)e–μτ1 – γ1I1(t) – μ1I1(t),

İ2(t) = (β2S(t – τ2) + kV (t – τ2) + β2R1(t – τ2))I2(t – τ2)e–μτ2 – γ2I2(t) – μ2I2(t),

Ṙ1(t) = γ1I1(t) – β2R1(t)I2(t) – μR1(t),

Ṙ2(t) = γ2I2(t) – μR2(t),

(3)

where Ri represents the number of recovered individuals of strains i. The parameter mean-
ings are shown in Table 1, where i = 1, 2. Since the influenza vaccine may produce low lev-
els of herd cross-immunity and reduce transmission and susceptibility [20], in this paper
we assume k ≤ β2.
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Since the sixth equation of model (3) is decoupled from the other equations, we can
obtain the following degenerated model:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ṡ(t) = � – β1I1S – β2I2S – rS – μS,

V̇ (t) = rS – kVI2 – μV ,

İ1(t) = β1S(t – τ1)I1(t – τ1)e–μτ1 – γ1I1 – μ1I1,

İ2(t) = (β2S(t – τ2) + kV (t – τ2) + β2R1(t – τ2))I2(t – τ2)e–μτ2 – γ2I2 – μ2I2,

Ṙ1(t) = γ1I1 – β2R1I2 – μR1.

(4)

The organization of this article is as follows. In Sect. 2, the nonnegativity and bounded-
ness of solution are proved, the basic reproduction numbers of strains 1, 2 and the whole
model are derived, and the existence of equilibria are obtained. In Sect. 3, the threshold
criteria on the stability of (disease-free, dominant) equilibria are obtained, and the uniform
persistence of (strains 1, 2 coexistent) disease and the existence of strains 1, 2 coexistent
equilibrium are discussed respectively. In Sect. 4, the theoretical results are demonstrated
through numerical simulations. Finally, a brief conclusion and discussion are given in the
last section.

2 Basic properties
Denote τ = max{τ1, τ2}, define the Banach space C := C([–τ , 0], R5), and the positive cone

of C is defined as C+ := C([–τ , 0], R5
+). ||φ|| =

5∑

i=1
||φi||∞, where ||φi||∞ = sup

–τ≤θ≤0
|φi(θ )|, θ =

(θ1, θ2, θ3, θ4, θ5) ∈ C.
The initial conditions for model (4) are

S(θ ) = φ1(θ ), V (θ ) = φ2(θ ), I1(θ ) = φ3(θ ), I2(θ ) = φ4(θ ), R1(θ ) = φ5(θ ), θ ∈ [–τ , 0], (5)

where φ = (φ1(t),φ2(t),φ3(t),φ4(t),φ5(t)) ∈ C([–τ , 0], R5
+), φi(0) > 0, i = 1, 2, . . . , 5.

2.1 Nonnegativity and boundedness of solutions
In this subsection, with respect to the nonnegativity and boundedness of solutions for
model (4), we have the following result.

Theorem 2.1 Any solution of model (4) with initial condition (5) is nonnegative and ulti-
mately bounded for all t ∈ [0, +∞).

Proof For any φ ∈ C+, define

f (t,φ) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

� – β1φ1(0)φ3(0) – β2φ1(0)φ4(0) – rφ1(0) – μφ1(0)

rφ1(0) – kφ2(0)φ4(0) – μφ2(0)

β1φ1(–τ1)φ3(–τ1)e–μτ1 – γ1φ3(0) – μ1φ3(0)

[β2φ1(–τ2) + kφ2(–τ2) + β2φ5(–τ2)]φ4(–τ2)e–μτ2 – γ2φ4(0) – μ2φ4(0)

γ1φ3(0) – (β2φ4(0) + μ)φ5(0)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Since f (t,φ) is continuous and Lipschitz, we can obtain that model (4) has a unique so-
lution u(t,φ) on its maximal existence interval [0,σφ), and by Theorems 2.2.1 and 2.2.3
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of the existence of solution for delay differential equations (DDEs) in [21]. If φi(0) = 0
for i ∈ {1, . . . , 5}, then fi(t,φ) ≥ 0. Therefore, by Theorem 5.2.1 in [21], it is obtained that
ut(φ) = u(t,φ) is nonnegative.

Denote

K(t) = S(t) + eμτ1 I1(t + τ1) + V (t), M(t) = K(t) + eμτ2 I2(t + τ2) + R1(t),

we have

K̇(t) ≤ � – μS(t) – μV (t) – μeμτ1 I1(t + τ1) ≤ � – μK(t),

by the principle of comparison, lim sup
t→∞

K(t) ≤ �
μ

, then I1(t) ≤ �
μ

.

Let G(t) = M(t) + γ1
∫ t+τ1

t I1(s) ds, then we further have

Ġ(t) = Ṡ(t) + V̇ (t) + eμτ1 İ1(t + τ1) + eμτ2 İ2(t + τ2) + Ṙ1(t) + γ1I1(t + τ1) – γ1I1(t)

≤ � – μS(t) – μV (t) – μ1eμτ1 I1(t + τ1) – μ2eμτ2 I2(t + τ2) – μR1(t)

≤ � – μM(t) = � + μγ1

∫ t+τ1

t
I1(s) ds – μG(t)

≤ � + μγ1τ1
�

μ
– μG(t) = � + γ1τ1� – μG(t),

by the comparison principle, we have lim sup
t→∞

G(t) ≤ �+γ1τ1�

μ
.

Since M(t) ≤ G(t), M(t) is bounded on [0,σφ). By Theorem 2.3.1 in [22], the extension
theorem for delayed differential equations: σφ = ∞, i.e., the solution of model (4) is non-
negative and ultimately bounded on [0,∞). □

Further we obtain the positive invariant set of model (4):


 = {(S(t), V (t), I1(t), I2(t), R1(t)) ∈ C5
+ : M(t) ≤ � + γ1τ1�

μ
}.

2.2 The existence of equilibria
In this subsection, the various types of equilibrium and basic reproduction number of
model (4) are obtained.

Obviously, there exists a disease-free equilibrium (DFE) E0 = (S0, V0, 0, 0, 0) = ( �
r+μ

,
r�

(r+μ)μ , 0, 0, 0) for model (4). According to the next generation method of R0 for functional
differential equations (FDEs) model in [23], we have

R0 = ρ(FV –1) = max{R01,R02},

where R01 = β1�e–μτ1
(r+μ)(γ1+μ1) , R02 = β2�e–μτ2

(r+μ)(γ2+μ2) + kr�e–μτ2
(r+μ)(γ2+μ2)μ denotes the basic reproduction

number of strains 1, 2, respectively. Next, we will explain the meaning of each term in the
R01 and R02 expressions.

• βi�e–μτi
(r+μ)(γi+μi)

represents the average number of secondary infections caused by contact
with susceptible individuals during the infection period of a strain i infected individual.

• kr�e–μτ2
(r+μ)(γ2+μ2)μ represents the average number of secondary infections caused by contact

with vaccinated individuals during the infection period of a strain 2 infected individual.
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Here, βiS0 = βi�
(r+μ) is the product of the infection rates of susceptible individuals (unvac-

cinated) and individuals infected with strain i. kV0 = kr�
(r+μ)μ is the product of the infection

rates of vaccinated individuals and individuals infected with strain 2. 1
(γi+μi)

is the average
time duration of infection with strain i. e–μτi is the probability of surviving time period
from t – τi to time t, i = 1, 2.

Remark 1 By the definition of R0 in [24], the basic reproduction number is defined as the
expected number of secondary cases generated by a typical infected individual in a fully
susceptible population. Since there are no recovered individuals infected with strain 1 in
the completely susceptible population, the number of new infections generated by cross
immunity will not affect the size of the basic reproduction number.

When R01 > 1, model (4) has the strain 1 dominant equilibrium E1 = (S̄, V̄ , Ī1, 0, R̄1),
where

S̄ =
(γ1 + μ1)eμτ1

β1
, Ī1 =

β1�e–μτ1 – (r + μ)(γ1 + μ1)

β1(γ1 + μ1)
=

R01 – 1
β1(γ1 + μ1)

,

V̄ =
r(γ1 + μ1)eμτ1

β1μ
, R̄1 =

γ1β1�e–μτ1 – γ1(r + μ)(γ1 + μ1)

β1μ(γ1 + μ1)
=

γ1(R01 – 1)

β1μ(γ1 + μ1)
.

WhenR02 > 1, model (4) has the strain 2 dominant equilibrium E2 = (S̃, Ṽ , 0, Ĩ2, 0), where

S̃ =
�

β2 Ĩ2 + r + μ
, Ṽ =

r�
(β2 Ĩ2 + r + μ)(μ + kĨ2)

,

Ĩ2 is determined by the following quadratic equation:

(γ2 + μ2)kβ2Ĩ2
2 + [(γ2 + μ2)

(
μβ2 + (r + μ)k

)
– β2k�e–μτ2 ]Ĩ2

+ [(r + μ)(γ2 + μ2)μ – β2μ�e–μτ2 – kr�e–μτ2 ] = 0.
(6)

Denote Eq. (6) as

a2 Ĩ2
2 + a1 Ĩ2 + a0 = 0, (7)

where a2 > 0, a0 = (r + μ)(γ2 + μ2)μ(1 – R02) < 0, Eq. (7) has a unique positive root.
Using a similar method as discussed in [25], the following two thresholds are calculated:

R1
2 =

β2e–μτ2 S̄ + ke–μτ2 V̄ + β2e–μτ2 R̄1

γ2 + μ2
, R2

1 =
β1e–μτ1 S̃
γ1 + μ1

,

where R1
2, R2

1 denote the number of invasion reproduction of strain 2 and strain 1, re-
spectively.

There exists the strains 1, 2 coexistent equilibrium Ec = (S∗, V ∗, I∗
1 , I∗

2 , R∗
1) of system (4),

where

S∗ =
(γ1 + μ1)eμτ1

β1
, I∗

2 =
r(γ1 + μ1)eμτ1 – μβ1V ∗

kβ1V ∗ ,

R∗
1 =

β1(γ2 + μ2)eμτ2 – β2(γ1 + μ1)eμτ1 – β1kV ∗

β1β2
,
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I∗
1 =

(kβ2
1� + μβ1β2(γ1 + μ1)eμτ1 – kβ1(r + μ)(γ1 + μ1)eμτ1 )V ∗ – β2r(γ1 + μ1)2e2μτ1

kβ2
1 (γ1 + μ1)eμτ1

.

V ∗ is determined by the following quadratic function:

(k – β2)kμ(γ1 + μ1)β2
1 eμτ1 (V ∗)2

+
[
kγ1β

2
1β2� + β1β2(γ1 + μ1)eμτ1 [γ1μβ2 – kγ1(r + μ)

+ kr(γ1 + μ1)eμτ1 ]

+ (k – β2)μβ1(γ1 + μ1)eμτ1 [β2(γ1 + μ1)eμτ1 – β1(γ2 + μ2)eμτ2 ]
]
V ∗

+ β2r(γ1 + μ1)2e2μτ1 [β2(γ1 + μ1)eμτ1 – β2γ1 – β1(γ2 + μ2)eμτ2 ] = 0.

(8)

Denote Eq. (8) as

s2(V ∗)2 + s1V ∗ + s0 = 0, (9)

since k ≤ β2, it follows that s2 ≤ 0. By the Descartes rule of signs [26], when s2 < 0, the root
V ∗ of Eq. (9) can be determined by the following cases:

Case 1. Equation (9) has no positive roots if (a) : s0 < 0, s1 < 0, s2 < 0 hold.
Case 2. Equation (9) has one root if one of the following cases holds:

(b) : s0 > 0, s1 < 0, s2 < 0; (c) : s0 > 0, s1 > 0, s2 < 0.

Case 3. Equation (9) has two or no positive roots if (d) : s0 < 0, s1 > 0, s2 < 0 hold.

Remark 2 Similar results can be obtained if one of the parameters s1, s0 is zero; here we
assume that s1 ≠ 0, s0 ≠ 0.

When s2 = 0, i.e., β2 = k, Eq. (9) becomes a primary function, and we have s1 > 0. There
are the following two cases.

Case 4. Equation (9) has no positive roots if (e) : s2 = 0, s1 > 0, s0 > 0 hold.
Case 5. Equation (9) has a unique positive root if (f ) : s2 = 0, s1 > 0, s0 < 0 hold.
Thus, we can conclude the following results and summarize them in Table 1.

Proposition 2.2 (1) If the assumptions of Case 1. (a): s0 < 0, s1 < 0, s2 < 0 and Case 4.
(e): s2 = 0, s1 > 0, s0 > 0 hold, Eq. (9) has no positive roots.

(2) If the assumptions of Case 2. (b): s0 > 0, s1 < 0, s2 < 0; (c): s0 > 0, s1 > 0, s2 < 0, and
Case 5. (f ): s2 = 0, s1 > 0, s0 < 0 hold, Eq. (9) has a unique positive root.

(3) If the assumptions of Case 3. (d): s0 < 0, s1 > 0, s2 < 0 hold, Eq. (9) has two or no positive
roots.

Remark 3 Proposition 2.2 can only give a sufficient condition for V ∗ to have positive roots,
and the existence of coexistent equilibrium for model (4) requires the following additional
condition:

r(γ1 + μ1)eμτ1 – μβ1V ∗ > 0, β1(γ2 + μ2)eμτ2 – β2(γ1 + μ1)eμτ1 – β1kV ∗ > 0,
(

kβ2
1� + μβ1β2(γ1 + μ1)eμτ1 – kβ1(r + μ)(γ1 + μ1)eμτ1

)
V ∗ – β2r(γ1 + μ1)2e2μτ1 > 0.
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Table 2 The situation of roots under different parameter symbols

Case 1 s0 < 0, s1 < 0, s2 < 0 no positive roots

Case 4 s0 > 0, s1 > 0, s2 = 0

Case 2 s0 > 0, s1 < 0, s2 < 0 a unique positive root
s0 > 0, s1 > 0, s2 < 0

Case 5 s0 < 0, s1 > 0, s2 = 0

Case 3 s0 < 0, s1 > 0, s2 < 0 two or no positive roots

3 Stability of equilibria
This section focuses on the stability of model (4), the criteria on the local and global
asymptotic stability of equilibria E0, E1, and E2 are obtained, and the uniform persistence
of (strain 1, 2 coexistent) disease and the existence of strain 1, 2 coexistent equilibrium Ec

are obtained.

3.1 Local stability of equilibria
In this subsection, we prove the local asymptotic stability (LAS) of all feasible equilibria,
i.e., E0, E1, E2 of model (4).

Theorem 3.1 If R0 < 1, then DFE E0 of model (4) is locally asymptotically stable.

Proof The Jacobi matrix at E0 is as follows:

J(E0) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

–(r + μ) 0 –β1S0 –β2S0 0
r –μ 0 –kV0 0
0 0 A 0 0
0 0 0 B 0
0 0 γ1 0 –μ

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

where

A = β1e(–λτ1–μτ1)S0 – (γ1 + μ1), B = (β2S0 + kV0)e(–λτ2–μτ2) – (γ2 + μ2).

The characteristic equation at E0 can be calculated as

(λ + μ)2(λ + r + μ)(λ – A)(λ – B) = 0. (10)

The characteristic equation (10) has characteristic roots λ1 = λ2 = –μ, λ3 = –r – μ. The
other characteristic roots are determined by (λ – A)(λ – B) = 0, i.e., λ4 = A, λ5 = B.

When τ1 = 0, τ2 = 0, R01 = β1�

(r+μ)(γ1+μ1) , R02 = β2μ�+kr�
(r+μ)(γ2+μ2)μ .

λ4 = β1S0 – (γ1 + μ1) =
β1�

(r + μ)
– (γ1 + μ1) = (γ1 + μ1)(R01 – 1) < 0,

λ5 = β2S0 + kV0 – (γ2 + μ2) = (γ2 + μ2)(R02 – 1) < 0.

Thus, if τ1 = 0, τ2 = 0, then E0 is LAS.
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When τ1 > 0, τ2 > 0, λ4 satisfies the following equation:

λ – β1e(–λτ1–μτ1)S0 + (γ1 + μ1) = 0.

Let λ = x0 + y0i, assuming x0 ≥ 0, we have

1 =
e–λτ1 β1�e–μτ1

r+μ

λ + (γ1 + μ1)
≤ |e–λτ1 | β1�e–μτ1

r+μ

|λ + (γ1 + μ1)| ≤ e–x0τ1 β1�e–μτ1
r+μ

γ1 + μ1
= e–x0τ1R01,

since x0 ≥ 0, e–x0τ1R01 < 1, this is a contradiction; therefore, λ4 has a negative real part.
The characteristic root of λ5 satisfies the following equation:

λ – β2e(–λτ2–μτ2)S0 – ke(–λτ2–μτ2)V0 + (γ2 + μ2) = 0.

Let λ = x1 + y1i, assuming x1 ≥ 0, we have

1 =
e–λτ2 β2�μe–μτ2 +kr�e–μτ2

(r+μ)μ

λ + (γ2 + μ2)
≤ | e–λτ2 | β2�μe–μτ2 +kr�e–μτ2

(r+μ)μ

| λ + (γ2 + μ2) | ≤ e–x1τ2R02,

since x1 ≥ 0, e–x1τ2R02 < 1, this is a contradiction; therefore λ5 has a negative real part as
well. Thus, if τ2 > 0, τ1 > 0, then E0 is LAS.

When τ1 = 0, τ2 > 0 and τ1 > 0, τ2 = 0, the proofs are the same as in the discussion above,
so we omit them here. □

Using a similar method, we prove the LAS of E1 in the next theorem.

Theorem 3.2 If R01 > 1, R1
2 < 1, then the strain 1 dominant equilibrium E1 of model (4) is

LAS.

Proof The Jacobi matrix at E1 is as follows:

J(E1) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

–β1 Ī1 – (r + μ) 0 –β1S̄ –β2S̄ 0
r –μ 0 –kV̄ 0

β1e(–λτ1–μτ1) Ī1 0 A1 0 0
0 0 0 B1 0
0 0 γ1 –β2R̄1 –μ

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

where

A1 = β1e(–λτ1–μτ1)S̄ – (γ1 + μ1), B1 = (β2S̄ + kV̄ + β2R̄1)e(–λτ2–μτ2) – (γ2 + μ2).

The characteristic equation at E1 can be calculated as

(λ + μ)2(λ – B1)
[
λ2 +

(
β1 Ī1 + (r + μ) – β1e(–λτ1–μτ1)S̄ + (γ1 + μ1)

)
λ

+ (β1 Ī1 + r + μ)(γ1 + μ1 – β1e(–λτ1–μτ1)S̄) + β2
1 e(–λτ1–μτ1)S̄Ī1

]
= 0.

(11)

Obviously, there are two characteristic roots λ1 = λ2 = –μ < 0.
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When τ1 = τ2 = 0, we have R1
2 = β2 S̄+kV̄ +β2R̄1

γ2+μ2
, the other characteristic roots of Eq. (11)

satisfy

λ3 = β2S̄ + kV̄ + β2R̄1 – (γ2 + μ2) = (γ2 + μ2)(R1
2 – 1) < 0,

λ4 + λ5 = –(β1 Ī1 + (r + μ) – β1S̄ + (γ1 + μ1)),

λ4λ5 = (β1 Ī1 + r + μ)(γ1 + μ1 – β1S̄) + β2
1 S̄Ī1.

Since τ1 = 0, β1S̄ = (γ1 + μ1), therefore λ4 + λ5 < 0, λ4λ5 > 0, according to Veda’s theorem,
we have λ4 < 0, λ5 < 0. Thus, if τ1 = 0, τ2 = 0, then E1 is LAS.

When τ1 > 0, τ2 > 0, from Eq. (11), we have λ3 satisfying

λ – (β2S̄ + kV̄ + β2R̄1)e(–λτ2–μτ2) + (γ2 + μ2) = 0.

Let λ = x2 + y2i, assuming x2 ≥ 0, we have

1 =
e–λτ2 (β2S̄ + kV̄ + β2R̄1)e–μτ2

λ + γ2 + μ2
≤ | e–λτ2 | (β2S̄ + kV̄ + β2R̄1)e–μτ2

| λ + γ2 + μ2 | ≤ e–x2τ2R1
2,

since x2 ≥ 0, e–x2τ2R1
2 < 1, this is a contradiction, therefore λ3 has a negative real part.

The rest two characteristic roots of Eq. (11) satisfy

λ2 +
(
β1 Ī1 + (r + μ) – β1e(–λτ1–μτ1)S̄ + (γ1 + μ1)

)
λ

+ (β1 Ī1 + r + μ)(γ1 + μ1 – β1e(–λτ1–μτ1)S̄) + β2
1 e(–λτ1–μτ1)S̄Ī1 = 0,

(12)

if λ = iω(ω > 0) is a root of Eq. (12), substituting it into Eq. (12) and separating the real and
imaginary parts leads to

–ω2 + β1 Ī1(γ1 + μ1) + (r + μ)(γ1 + μ1) = (γ1 + μ1)(sinωτ1)ω + (γ1 + μ1)(r + μ) cosωτ1,
(
β1 Ī1 + (r + μ) + (γ1 + μ1)

)
ωi = (γ1 + μ1)(cosωτ1)ωi

– (γ1 + μ1)(r + μ)(sinωτ1)i.

Squaring the above two equations and adding them together, we have

ω4 + (β2
1 Ī2

1 + 2(r + μ)β1 Ī1

+ (r + μ)2)ω2 + β2
1 Ī2

1 (γ1 + μ1)2 + 2β1 Ī1(γ1 + μ1)(r + μ) = 0.
(13)

Denoting v = ω2, Eq. (13) is transformed as follows:

v2 + (β2
1 Ī2

1 + 2(r + μ)β1 Ī1

+ (r + μ)2)v + β2
1 Ī2

1 (γ1 + μ1)2 + 2β1 Ī1(γ1 + μ1)(r + μ) = 0.
(14)

Equation (14) has no positive root, so Eq. (12) cannot have any purely imaginary root. By
Theorem 4.1 in [27], it can be shown that τ1 > 0, τ2 > 0, E1 is LAS.

When τ1 = 0, τ2 > 0 and τ1 > 0, τ2 = 0, the proofs are the same as above, so we omit them
here. □
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Using a similar method as the above theorem, the following theorem proves the LAS
of E2.

Theorem 3.3 If R02 > 1, R2
1 < 1, the strain 2 dominant equilibrium E2 of model (4) is LAS.

Proof The Jacobi matrix at E2 is as follows:

J(E2) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

–β2 Ĩ2 – (r + μ) 0 –β1S̃ –β2S̃ 0
r –kĨ2 – μ 0 –kṼ 0
0 0 A2 0 0

β2e(–λτ2–μτ2) Ĩ2 ke(–λτ2–μτ2) Ĩ2 0 B2 β2e(–λτ2–μτ2) Ĩ2

0 0 γ1 0 –β2 Ĩ2 – μ

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

where

A2 = β1e(–λτ1–μτ1)S̃ – (γ1 + μ1), B2 = (β2S̃ + kṼ )e(–λτ2–μτ2) – (γ2 + μ2).

The characteristic equation at E2 can be calculated as follows:

(λ + β2 Ĩ2 + μ)(λ – A2)
[
λ3 +

(
(β2 Ĩ2 + r + μ) + (kĨ2 + μ) + (γ2 + μ2)

)
λ2

+
(

(β2 Ĩ2 + r + μ)(kĨ2 + μ) + (β2 Ĩ2 + r + μ)(γ2 + μ2) + (kĨ2 + μ)(γ2 + μ2)
)
λ

+ (β2 Ĩ2 + r + μ)(kĨ2 + μ)(γ2 + μ2)

+
[

– (γ2 + μ2)λ2 +
(

– (β2 Ĩ2 + r + μ)(γ2 + μ2)

– (kĨ2 + μ)(γ2 + μ2) + β2
2 e–μτ2 Ĩ2S̃ + k2e–μτ2 Ĩ2Ṽ

)
λ + β2kre–μτ2 Ĩ2S̃ + β2

2 e–μτ2 Ĩ2S̃

× (kĨ2 + μ) + k2e–μτ2 Ĩ2Ṽ (β2 Ĩ2 + r + μ)

– (β2 Ĩ2 + r + μ)(kĨ2 + μ)(γ2 + μ2)
]
e–λτ2

]
= 0.

(15)

Equation (15) has a characteristic root λ1 = –β2 Ĩ2 – μ < 0.
When τ1 = τ2 = 0, we have R02 = β2μ�+kr�

(γ2+μ2)(r+μ)μ , R2
1 = β1S̃

γ1+μ1
. The characteristic root λ2 of

Eq. (15) satisfies

λ2 = β1S̃ – (γ1 + μ1) = (γ1 + μ1)(R2
1 – 1) < 0.

Substituting τ2 = 0 and β2S̃ + kṼ – (γ2 + μ2) = 0 into Eq. (15), the rest of eigenvalues are
determined by the following equation:

λ3 +
[
(β2Ĩ2 + r + μ) + (kĨ2 + μ)

]
λ2 +

[
(β2 Ĩ2 + r + μ)(kĨ2 + μ) + β2

2 S̃Ĩ2 + k2 Ĩ2Ṽ
]
λ

+ β2krĨ2S̃ + β2
2 Ĩ2S̃(kĨ2 + μ) + k2 Ĩ2Ṽ (β2 Ĩ2 + r + μ) = 0.

(16)

Note that Eq. (16) can be denoted as λ3 + a1λ
2 + a2λ + a3 = 0, where

a1 = (β2 Ĩ2 + r + μ) + (kĨ2 + μ), a2 = (β2Ĩ2 + r + μ)(kĨ2 + μ) + β2
2 S̃Ĩ2 + k2 Ĩ2Ṽ ,

a3 = β2krĨ2S̃ + β2
2 Ĩ2S̃(kĨ2 + μ) + k2 Ĩ2Ṽ (β2 Ĩ2 + r + μ).
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The sequential principal subequations are as follows:

�1 = a1, �2 =

∣
∣
∣
∣
∣

a1 1
a3 a2

∣
∣
∣
∣
∣

= a1a2 – a3,

a1a2 – a3 = β2
2�Ĩ2 + k2rS̃Ĩ2 – β2krS̃Ĩ2 +

[
(β2 Ĩ2 + r + μ) + (kĨ2 + μ)

]
(β2 Ĩ2 + r + μ).

Since β2 ≥ k, it can be obtained that

β2
2�Ĩ2 – β2krS̃Ĩ2 ≥ β2kĨ2(� – rS̃) > 0.

Therefore, �1 > 0, �2 > 0. By the Hurwitz criterion, λ3, λ4, λ5 all have negative real parts.
Therefore, if τ1 = 0, τ2 = 0, then E2 is LAS.

When τ1 > 0, τ2 > 0, from Eq. (15), we have λ2 satisfying

λ – β1S̃e(–λτ1–μτ1) + (γ1 + μ1) = 0.

Let λ = x3 + y3i, if x3 ≥ 0, we have

1 =
e–λτ1β1S̃e–μτ1

λ + γ1 + μ1
≤ | e–λτ1 | β1S̃e–μτ1

| λ + γ1 + μ1 | ≤ e–x3τ2R2
1,

since x3 ≥ 0, e–x3τ1R2
1 < 1, this is a contradiction; therefore λ2 has a negative real part. The

remaining three roots of (15) satisfy

[
λ3 +

(
(β2 Ĩ2 + r + μ) + (kĨ2 + μ) + (γ2 + μ2)

)
λ2 +

(
(β2 Ĩ2 + r + μ)(kĨ2 + μ)

+ (β2 Ĩ2 + r + μ)(γ2 + μ2) + (kĨ2 + μ)(γ2 + μ2)
)
λ + (β2 Ĩ2 + r + μ)(kĨ2 + μ)

× (γ2 + μ2)
]

+
[

– (γ2 + μ2)λ2 +
(

– (β2 Ĩ2 + r + μ)(γ2 + μ2) – (kĨ2 + μ)(γ2 + μ2)

+ β2
2 e–μτ2 Ĩ2S̃ + k2e–μτ2 Ĩ2Ṽ

)
λ + β2kre–μτ2 Ĩ2S̃ + β2

2 e–μτ2 Ĩ2S̃(kĨ2 + μ)

+ k2e–μτ2 Ĩ2Ṽ (β2 Ĩ2 + r + μ) – (β2Ĩ2 + r + μ)(kĨ2 + μ)(γ2 + μ2)
]
e–λτ2 = 0.

(17)

Assume that λ = iω(ω > 0) is a root of Eq. (17); substituting it into Eq. (17) and separating
the real and imaginary parts gives

[
(β2 Ĩ2 + r + μ)(kĨ2 + μ) + (β2Ĩ2 + r + μ)(γ2 + μ2) + (β2 Ĩ2 + r + μ)(γ2 + μ2)

]
ωi – ω3i

=
[
(γ2 + μ2)ω2 + β2kre–μτ2 Ĩ2S̃

+ β2
2 e–μτ2 Ĩ2S̃(kĨ2 + μ) + k2e–μτ2 Ĩ2Ṽ (β2 Ĩ2 + r + μ)

– (β2 Ĩ2 + r + μ)(kĨ2 + μ)(γ2 + μ2)
]
(sin τ2ω)i +

[
(β2 Ĩ2 + r + μ)(γ2 + μ2)

+ (kĨ2 + μ)(γ2 + μ2) – β2
2 e–μτ2 Ĩ2S̃ – k2e–μτ2 Ĩ2Ṽ

]
(cos τ2ω)ωi,

(18)
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[
(β2 Ĩ2 + r + μ) + (kĨ2 + μ) + (γ2 + μ2)

]
ω2 – (β2 Ĩ2 + r + μ)(kĨ2 + μ)(γ2 + μ2)

=
[
(γ2 + μ2)ω2 + β2kre–μτ2 Ĩ2S̃ + β2

2 e–μτ2 Ĩ2S̃(kĨ2 + μ) + k2e–μτ2 Ĩ2Ṽ (β2 Ĩ2 + r + μ)

– (β2 Ĩ2 + r + μ)(kĨ2 + μ)(γ2 + μ2)
]
(cos τ2ω) –

[
(β2 Ĩ2 + r + μ)(γ2 + μ2)

+ (kĨ2 + μ)(γ2 + μ2) – β2
2 e–μτ2 Ĩ2S̃ – k2e–μτ2 Ĩ2Ṽ

]
(sin τ2ω)ω.

(19)

Squaring and adding both sides of Eq. (18) and Eq. (19), we have

ω6 +
[
(β2 Ĩ2 + r + μ)2 + (kĨ2 + μ)2

]
ω4 +

[
((β2Ĩ2 + r + μ)(kĨ2 + μ))2 – 2β2kre–μτ2 Ĩ2S̃

× (γ2 + μ2) – (β2
2 e–μτ2 Ĩ2S̃)2 – (k2e–μτ2 Ĩ2Ṽ )2 + 2k2e–μτ2 Ĩ2Ṽ (kĨ2 + μ)(γ2 + μ2)

+ 2β2
2 e–μτ2 Ĩ2S̃(β2 Ĩ2 + r + μ)(γ2 + μ2) – 2β2

2 e–μτ2 Ĩ2S̃k2e–μτ2 Ĩ2Ṽ
]
ω2

+
[
2(β2 Ĩ2 + r + μ)

× (kĨ2 + μ)(γ2 + μ2) – β2kre–μτ2 Ĩ2S̃ – β2
2 e–μτ2 Ĩ2S̃(kĨ2 + μ)

– k2e–μτ2 Ĩ2Ṽ (β2 Ĩ2 + r + μ)
]

×
[
β2kre–μτ2 Ĩ2S̃ + β2

2 e–μτ2 Ĩ2S̃(kĨ2 + μ) + k2e–μτ2 Ĩ2Ṽ (β2 Ĩ2 + r + μ)
]

= 0.

(20)

Denote Eq. (20) as

ω6 + b1ω
4 + b2ω

2 + b3 = 0, (21)

since (γ2 + μ2) = β2e–μτ2 S̃ + ke–μτ2 Ṽ , substituting it into b2, b3, we have

(β2 Ĩ2 + r + μ)(kĨ2 + μ)(β2e–μτ2 S̃ + ke–μτ2 Ṽ ) – β2kre–μτ2 Ĩ2S̃ – β2
2 e–μτ2 Ĩ2S̃(kĨ2 + μ)

– k2e–μτ2 Ĩ2Ṽ (β2 Ĩ2 + r + μ) = β2kμe–μτ2 Ĩ2(S̃ + Ṽ ) + (β2μe–μτ2 S̃ + kμe–μτ2 Ṽ )(r + μ),

therefore b3 > 0.
Due to

2k2e–μτ2 Ĩ2Ṽ (kĨ2 + μ)(β2e–μτ2 S̃ + ke–μτ2 Ṽ ) – 2(k2e–μτ2 Ĩ2Ṽ )2 > 0,

2β2
2 e–μτ2 Ĩ2S̃(β2 Ĩ2 + r + μ)(γ2 + μ2) – 2β2kre–μτ2 Ĩ2S̃(γ2 + μ2) – 2(β2

2 e–μτ2 Ĩ2S̃)2 > 0,

therefore b2 > 0.
Let p = ω2, Eq. (21) is transformed as follows:

g(p) = p3 + b1p2 + b2p + b3 = 0. (22)

We further have

ġ(p) = 3p2 + 2b1p + b2,
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when p ≥ 0, we have ġ(p) > 0, g(p) is monotonically increasing on [0, +∞), and g(0) =
b3 > 0.

Since Eq. (22) has no positive root, Eq. (17) cannot have any purely imaginary root. By
Theorem 4.1 in [27], it can be seen that τ1 > 0, τ2 > 0, E2 is LAS.

When τ1 = 0, τ2 > 0 and τ1 > 0, τ2 = 0, the proofs are the same as above, we omit them
here. □

Remark 4 Since the existence of strains 1, 2 coexistent equilibrium Ec of model (4) is
too complicated to obtain directly, we will deal with it by the uniform persistence of the
strains 1, 2 coexistence through Theorem 3.7 and demonstrate its stability through nu-
merical simulations.

3.2 Global stability of equilibria
Theorem 3.4 If R0 < 1, then DFE E0 of model (4) is globally asymptotically stable (GAS).

Proof Construct the Lyapunov functional U0(t) as follows:

U0(t) = I1(t)eμτ1 + β1

∫ t

t–τ1

I1(v)S(v) dv.

Deriving U0(t) along any positive solution of model (4), we have

U̇0(t) = β1I1(t – τ1)S(t – τ1) – (γ1 + μ1)eμτ1 I1(t) + β1S(t)I1(t) – β1I1(t – τ1)S(t – τ1)

≤ (β1S0 – (γ1 + μ1)eμτ1 )I1(t)

≤ (γ1 + μ1)eμτ1 (R01 – 1)I1(t) ≤ 0,

U̇0(t) = 0 if and only if I1 = 0, by applying LaSalle’s invariance principle [28], all solutions
of model (4) converge to I1 = 0 as t → ∞, i.e., lim

t→∞ I1 = 0.
When I1 → 0, for sufficiently small constant ε1 > 0, there exists constant t1 > 0, for all

t > t1, such that γ1I1(t) < ε1. Thus

Ṙ1(t) = γ1I1(t) – β2I2(t)R1(t) – μR1(t) ≤ ε1 – μR1(t).

Therefore, lim sup
t→∞

R1(t) ≤ ε1
μ

, when ε1 → 0, there is lim sup
t→∞

R1(t) ≤ 0. Since R1 is nonneg-

ative, there is lim
t→∞ R1(t) = 0.

Since lim
t→∞ I1(t) = 0, lim

t→∞ R1(t) = 0, the three-dimensional limit system is as follows:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Ṡ(t) = � – β2I2(t)S(t) – rS(t) – μS(t),

V̇ (t) = rS(t) – kI2(t)V (t) – μV (t),

İ2(t) = (β2e–μτ2 S(t – τ2) + ke–μτ2 V (t – τ2))I2(t – τ2) – (γ2 + μ2)I2(t).

(23)

According to the limit system theory in [29], model (4) has the same dynamic behavior as
model (23). Let h(z) = z – ln z – 1 and construct the Lyapunov functional U1(t) as follows:

U1(t) = S0h(
S
S0

) + V0h(
V
V0

) + eμτ2 I2(t) + β2

∫ t

t–τ2

I2(x)S(x) dx + k
∫ t

t–τ2

I2(x)V (x) dx.
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Deriving U1(t) along any positive solution of model (23), there are

U̇1(t) =
(

1 –
S0

S(t)

)
Ṡ(t) +

(
1 –

V0

V (t)

)
V̇ (t) + eμτ2 İ2(t) + β2[S(t)I2(t) – I2(t – τ2)S(t – τ2)]

+ k[S(t)I2(t) – I2(t – τ2)S(t – τ2)]

=
(

1 –
S0

S(t)

)
(� – (r + μ)S(t)) +

(
1 –

V0

V (t)

)
(rS(t) – μV (t)) + β2I2(t)S0 + kI2(t)V0

– eμτ2 (γ2 + μ2)I2(t)

=μS0

(
2 –

S0

S(t)
–

S(t)
S0

)
+ rS0

(
3 –

S0

S(t)
–

V (t)
V0

–
V0S(t)
V (t)S0

)
+ (β2S0 + kV0

– eμτ2 (γ2 + μ2))I2(t).

Since R0 = max{R01,R02} < 1, we further have

2 –
S0

S(t)
–

S(t)
S0

≤ 0, 3 –
S0

S(t)
–

V (t)
V0

–
V0S(t)
V (t)S0

≤ 0,

β2S0 + kV0 – eμτ2 (γ2 + μ2)I2(t) = eμτ2 (γ2 + μ2)(R02 – 1) < 0.

Therefore, U̇1(t) ≤ 0, U̇1(t) = 0 if and only if S(t) = S0, V (t) = V0, I2 = 0. The maximal
invariant set is {(S, V , 0, I2, 0) ∈ C+

5 |S(t) = S0, V (t) = V0, I2(t) = 0}. By LaSalle’s invariance
principle [28], which implies that S → S0, V → V0, I2 → 0 as t → ∞, all solutions of
model (4) converge to E0, therefore E0 is GAS. □

Theorem 3.5 If R01 > 1, R1
2 < 1, β2(�+γ1τ1�)

μ(γ2+μ2)eμτ2 < 1, the strain 1 dominant equilibrium E1 of
model (4) is GAS.

Proof Consider the Lyapunov functional U2(t) as follows:

U2(t) = eμτ2 I2(t) + β2

∫ t

t–τ2

I2(v)S(v) dv + k
∫ t

t–τ2

I2(v)V (v) dv + β2

∫ t

t–τ2

I2(v)R1(v) dv.

Deriving U2(t) along any positive solution of model (4), we have

U̇2(t) = β2I2(t)S(t) + kI2(t)V (t) + β2I2(t)R1(t) – eμτ2 (γ2 + μ2)I2(t)

≤ β2(S(t) + V (t) + R1(t))I2(t) – eμτ2 (γ2 + μ2)I2(t)

≤ β2
� + γ1τ1�

μ
I2(t) – eμτ2 (γ2 + μ2)I2(t)

= eμτ2 (γ2 + μ2)I2(t)
(β2(� + γ1τ1�)

μ(γ2 + μ2)eμτ2
– 1

)
≤ 0,

U̇2(t) = 0 if and only if I2 = 0. According to LaSalle’s invariant principle [28], all solutions
of model (4) converge to I2 = 0 as t → ∞, i.e., lim

t→∞ I2 = 0.
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Since lim
t→∞ I2(t) = 0, the four-dimensional limiting system of model (4) can be obtained

as follows:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Ṡ(t) = � – β1S(t)I1(t) – rS(t) – μS(t),

V̇ (t) = rS(t) – μV (t),

İ1(t) = β1e–μτ1 S(t – τ1)I1(t – τ1) – γ1I1(t) – μ1I1(t),

Ṙ1(t) = γ1I1(t) – μR1(t).

(24)

According to the limit system theory in [29], model (4) has the same dynamic behavior as
model (24). Since R1(t) does not affect the model dynamics, only the behavior of the first
three equations of the four-dimensional system is considered.

Using a similar method, constructing the Lyapunov functional U3(t), and deriving it
along with any positive solution of model (24), we have

U3(t) = S̄h
(S

S̄

)
+ V̄ h

(V
V̄

)
+ eμτ1 Ī1h

( I1

Ī1

)
+ β1 Ī1S̄

∫ t

t–τ1

h
( I1(x)S(x)

Ī1S̄

)
dx.

U̇3(t) =
(

1 –
S̄

S(t)

)
(� – β1I1(t)S(t) – (r + μ)S(t))

+
(

1 –
V̄

V (t)

)
(rS(t) – μV (t)) + (γ1 + μ1)eμτ1

× (Ī1 – I1(t)) –
β1I1(t – τ1)S(t – τ1)Ī1

I1(t)

+ β1S(t)I1(t) – β1S̄Ī1 ln
S(t)I1(t)

S(t – τ1)I1(t – τ1)

= μS̄
(

2 –
S̄

S(t)
–

S(t)
S̄

)
+ rS̄

(
3 –

V (t)
V̄

–
S̄

S(t)
–

S(t)V̄
S̄V (t)

)

+ [β1S̄ – (γ1 + μ)eμτ1 ]I1(t)

+ β1S̄Ī1

(
2 –

S(t – τ1)I1(t – τ1)

S̄I(t)
–

S̄
S(t)

– ln
S(t)I1(t)

S(t – τ1)I1(t – τ1)

)
.

Since

3 –
V (t)

V̄
–

S̄
S(t)

–
S(t)V̄
S̄V (t)

≤ 0, 2 –
S̄

S(t)
–

S(t)
S̄

≤ 0, β1S̄ – (γ1 + μ1)eμτ1 = 0,

2 –
S(t – τ1)I1(t – τ1)

S̄I(t)
–

S̄
S(t)

– ln
S(t)I1(t)

S(t – τ1)I1(t – τ1)

= –h
( S̄

S(t)

)
– h

( I1(t – τ1)S(t – τ1)

I(t)S̄

)
≤ 0,

therefore, U̇3(t) ≤ 0. U̇3(t) = 0 if and only if S(t) = S̄, V (t) = V̄ , I1(t) = Ī1. Thus, the maximal
invariant set is {(S, V , I1, 0, R1) ∈ C+

5 |S(t) = S̄, V (t) = V̄ , I1(t) = Ī1}. According to LaSalle’s
invariance principle [28],

lim
t→∞ S(t) = S̄, lim

t→∞ V (t) = V̄ , lim
t→∞ I1(t) = Ī1.
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Ṙ1(t) = γ1I1(t) – μR1(t), lim
t→∞ R1(t) =

γ Ī1

μ
= R̄1.

all solutions of model (4) converge to E1, E1 is GAS. □

Theorem 3.6 IfR02 > 1,R2
1 < 1,R01 < 1, the strain 2 dominant equilibrium E2 of model (4)

is GAS.

Proof SinceR01 < 1, referring to Theorem 3.4, we easily obtain lim
t→∞ I1(t) = 0, lim

t→∞ R1(t) = 0,
which yields the three-dimensional limit system (23). Construct the Lyapunov functional
U4(t) as follows:

U4(t) =S̃h
(S

S̃

)
+ Ṽ h

(V
Ṽ

)
+ eμτ2 Ĩ2h

( I2

Ĩ2

)
+ β2 Ĩ2S̃

∫ t

t–τ2

h
( I1(x)S(x)

Ĩ1S̃

)
dx

+ β2 Ĩ2Ṽ
∫ t

t–τ2

h
( I2(x)V (x)

Ĩ2Ṽ

)
dx.

Derivative of U̇4(t) along any positive solution of model (4) gives

U̇4(t) =
(

1 –
S̃

S(t)

)
(� – [β2I2(t) + (r + μ)]S(t))

+
(

1 –
Ṽ

V (t)

)
(rS(t) – kI2(t)V (t) – μV (t))

+
(

1 –
Ĩ2

I2(t)

)
[(β2S(t – τ2) + kV (t – τ2))e–μτ2 I2(t – τ2) – γ2I2(t) – μ2I2(t)]

+
(
β2S(t)I2(t) – β2S(t – τ2)I2(t – τ2) – β2 Ĩ2S̃ ln

S(t)I2(t)
S(t – τ2)I2(t – τ2)

)

+
(

kV (t)I2(t) – kV (t – τ2)I2(t – τ2) – kĨ2Ṽ ln
V (t)I2(t)

V (t – τ2)I2(t – τ2)

)

=
(

1 –
S̃

S(t)

)
(β2 Ĩ2S̃ + (r + μ)(S̃ – S(t))) + β2I2(t)S̃

+
(

1 –
Ṽ

V (t)

)(
rS(t) + kĨ2(t)V (t)

–
rS̃V (t)

Ṽ

)
+ kI2(t)Ṽ –

β2S(t – τ2)I2(t – τ2)Ĩ2

I2(t)
–

kV (t – τ2)I2(t – τ2)Ĩ2

I2(t)

– (γ2 + μ2)

× eμτ2 I2(t) + β2 Ĩ2S̃ + kĨ2Ṽ

– β2 Ĩ2S̃ ln
S(t)I2(t)

S(t – τ2)I2(t – τ2)
– kĨ2Ṽ ln

V (t)I2(t)
V (t – τ2)I2(t – τ2)

= rS̃
(

3 –
S̃

S(t)
–

V (t)
Ṽ

–
Ṽ S(t)
S̃V (t)

)
+ μS̃

(
2 –

S̃
S(t)

–
S(t)

S̃

)

+ (β2S̃ + kṼ – (γ2 + μ2)eμτ2 )

× I2(t) + β2 Ĩ2S̃
(

2 –
S̃

S(t)
–

S(t – τ2)I2(t – τ2)

I2(t)S̃
– ln

S(t)I2(t)
S(t – τ2)I2(t – τ2)

)
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Table 3 The existence and stability of the various types of equilibria

Equilibrium Existence LAS GAS

E0 always exist R0 < 1 R0 < 1

E1 R01 > 1 R01 > 1,R1
2 < 1 R01 > 1,R1

2 < 1, β2(�+γ1τ1�)
μ(γ2+μ2)e

μτ2 < 1

E2 R02 > 1 R02 > 1,R2
1 < 1 R02 > 1,R2

1 < 1,R01 < 1

Ec see Table 2 – –

+ kĨ2Ṽ
(V (t)

Ṽ
–

V (t – τ2)I2(t – τ2)

I2(t)Ṽ
– ln

V (t)I2(t)
V (t – τ2)I2(t – τ2)

)
.

Note that rS̃ = kĨ2Ṽ + μṼ , we have

rS̃
(

3 –
S̃

S(t)
–

V (t)
Ṽ

–
Ṽ S(t)
S̃V (t)

)
= (kĨ2Ṽ + μṼ )

(
3 –

S̃
S(t)

–
V (t)

Ṽ
–

Ṽ S(t)
S̃V (t)

)
.

Since

3 –
S̃

S(t)
–

V (t)
Ṽ

–
S(t)Ṽ
S̃V (t)

≤ 0, 2 –
S(t)

S̃
–

S̃
S(t)

≤ 0, β2S̃ + kṼ – (γ2 + μ2)eμτ2 = 0,

2 –
S̃

S(t)
–

S(t – τ2)I2(t – τ2)

I2(t)S̃
– ln

S(t)I2(t)
S(t – τ2)I2(t – τ2)

= –h
( S̃

S(t)

)
– h

(S(t – τ2)I2(t – τ2)

I2(t)S̃

)
,

(
3 –

S̃
S(t)

–
V (t)

Ṽ
–

Ṽ S(t)
S̃V (t)

)
+

(V (t)
Ṽ

–
V (t – τ2)I2(t – τ2)

I2(t)Ṽ
– ln

V (t)I2(t)
V (t – τ2)I2(t – τ2)

)

= –h
( Ṽ S(t)

S̃V (t)

)
– h

( S̃
S(t)

) – h
(V (t – τ2)I2(t – τ2)

I2(t)Ṽ

)
≤ 0,

therefore U̇4(t) ≤ 0 and U̇4(t) = 0 if and only if S(t) = S̃, V (t) = Ṽ , I2(t) = Ĩ2. Thus, the maxi-
mal invariant set is {(S, V , 0, I2, 0) ∈ C+

5 |S(t) = S̃, V (t) = Ṽ , I2(t) = Ĩ2}. According to LaSalle’s
invariance principle [28], all solutions of system (4) converge to E2, and E2 is GAS. □

Based on the above theorem, we summarize the existence and stability of the various
types of equilibria discussed in Table 3.

Remark 5 We do not derive the GAS of the strains 1, 2 coexistent equilibrium Ec of
model (4), which is an interesting open question for the future. From numerical simu-
lation, we will demonstrate the strains 1, 2 coexistent equilibrium Ec dynamic behavior
(see Fig. 4a, 4b).

3.3 Uniform persistence
Theorem 3.7 If R2

1 > 1, R0 > 1, and R1
2 > 1, model (4) is uniformly persistent, i.e., there

exists constant ε > 0 such that for all solutions of model (4) satisfying

lim inf
t→∞ S(t) > ε, lim inf

t→∞ V (t) > ε, lim inf
t→∞ Ii(t) > ε, lim inf

t→∞ R1(t) > ε, i = 1, 2,

for initial conditions φ = (S(θ ), V (θ ), I1(θ ), I2(θ ), R1(θ )) ∈ 
, where I1(0) + I2(0) > 0, and
model (4) has at least one coexistent equilibrium Ec = (S∗, V ∗, I∗

1 , I∗
2 , R∗

1).
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Proof Define

X0 = {(S, V , I1, I2, R1) ∈ X : I2 > 0, I1 > 0},
∂X0 = X\X0 = {(S, V , I1, I2, R1) ∈ X : I2 = 0 or I1 = 0},
M∂ = {x0 ∈ ∂X0 : φt(x0) ∈ ∂X0,∀t ≥ 0}, M0 = {E0, E1, E2},
Q1 = {x0 ∈ X : I1 = 0}, Q2 = {x0 ∈ X : I2 = 0}.

First, we prove that M∂ = Q1
⋃

Q2, i.e., if x0 ∈ M∂ , then x(t) ∈ Q1 or x(t) ∈ Q2. Assume that
there exists a constant t1 > 0 such that I2(t1) > 0 and I1(t1) > 0. Notice that

⎧
⎨

⎩

İ1(t) ≥ –(γ1 + μ1)I1,

İ2(t) ≥ –(γ2 + μ2)I2.
(25)

So, if there is a constant t1 > 0 such that I2(t1) > 0, I1(t1) > 0, then we can obtain I2(t) > 0,
I1(t) > 0 for any t > t1. Therefore (I1(t), I2(t)) /∈ ∂X0, this is a contradiction. So, M∂ =
Q1

⋃
Q2. M0 = {E0, E1, E2} is isolated and acyclic. According to Theorem 4.6 in [30], we

just need to prove that

X0
⋂

W s(E0) = ∅, X0
⋂

W s(E1) = ∅, X0
⋂

W s(E2) = ∅.

Next, we prove X0
⋂

W s(E0) = ∅. Suppose that there exists a solution φt(x0) ∈ X0 such
that: lim

t→∞φt(x0) ∈ X0 = E0 for t ≥ 0, where x0 ∈ X0. That is, for any given sufficiently small
constant δ > 0, there exists a constant t2 > 0 such that, for all t ≥ t2, we have

S0 – δ < S(t) < S0 + δ, V0 – δ < V (t) < V0 + δ, 0 < I1(t) < δ,

0 < I2(t) < δ, 0 < R1(t) < δ.

For large enough t > t2, we have

⎧
⎨

⎩

İ1(t) ≥ [β1e–μτ1 (S0 – δ) – (γ1 + μ1)]I1,

İ2(t) ≥ [β2e–μτ2 (S0 – δ) + ke–μτ2 (V0 – δ) – (γ2 + μ2)]I2.

Define a linear comparison system

dĪ(t)
dt

= (F – V – δD)Ī(t),

where Ī(t) = (Ī1(t), Ī2(t))T , D = diag{β1S0
1–e–μτ1

δ
+ β1e–μτ1 ,β2S0

1–e–μτ2
δ

+ β2e–μτ2 +
kV0

1–e–μτ2
δ

+ ke–μτ2}. Since σ (F – V ) > 0 if and only if R0 > 1, here σ (F – V ) is the sta-
ble modulus of the matrix F – V . Thus, when R0 > 1, given sufficiently small constant
δ1 > 0 such that

σ (F – V – δD) > 0 for 0 ≤ δ ≤ δ1.
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Notice that F – V – δD has a positive eigenvector with a positive eigenvalue σ (F – V – δD).
By the comparison principle, we have lim

t→∞ I1(t) = ∞, lim
t→∞ I2(t) = ∞, this is a contradiction.

Therefore, X0
⋂

W s(E0) = ∅.
Suppose that there exists a solution φt(x0) ∈ X0 such that: lim

t→∞φt(x0) = E1, where x0 ∈ X0.
That is, for any fixed constant δ > 0, there exists a constant t3 > 0 such that, for all t > t3,
we have

S̄ – δ < S(t), V̄ – δ < V (t), 0 < I2(t) < δ, R̄1 – δ < R1(t).

For large enough t > t3, we have

İ2(t) ≥ [β2e–μτ2 (S̄ – δ) + ke–μτ2 (V̄ – δ) + β2e–μτ1 (R̄1 – δ) – (γ2 + μ2)]I2.

Define the following auxiliary comparison system:

dĪ(t)
dt

= (F1 – V1 – δD1)Ī(t),

where Ī(t) = Ī2(t), F1 = β2e–μτ2 S̄ + ke–μτ2 V̄ + β2e–μτ1 R̄1, V1 = (γ2 + μ2), D1 =
(
β2S̄ 1–e–μτ2

δ
+

β2e–μτ2 + kV̄ 1–e–μτ2
δ

+ ke–μτ2 + β2R̄1
1–e–μτ2

δ
+ β2e–μτ2

)
.

Since R1
2 > 1 if and only if σ (F1 – V1) > 0, here σ (F1 – V1) is the stable modulus of the

matrix F1 – V1. Therefore, when R1
2 > 1, given a sufficiently small constant δ2 > 0 such that

σ (F1 – V1 – δD1) > 0 for 0 ≤ δ ≤ δ2.

Notice that F1 – V1 – δD1 has a positive eigenvector with a positive eigenvalue σ (F1 – V1 –
δD1). By the comparison principle, we have lim

t→∞ I2(t) = ∞, this is a contradiction. Thus,
X0

⋂
W s(E1) = ∅.

Similarly, X0
⋂

W s(E2) = ∅ (R2
1 > 1), the proofs are the same as above, so we omit them

here.
From model (4), we can obtain that

Ṡ(t) = � – (β2I2(t) + β1I1(t) + r + μ)S(t)

≥ � –
(

max{β2,β1}� + γ1τ1�

μ
+ r + μ

)
S(t).

By the comparison principle, we have lim inf
t→∞ Si ≥ �

max{β1,β2} �+γ1τ1�
μ +r+μ

.

V̇ (t) = rS(t) – kI2(t)V (t) – μV (t) ≥ rS(t) –
(

k
� + γ1τ1�

μ
+ μ

)
V (t).

The uniform persistence of V (t) can be guaranteed by the uniform persistence of S(t).

Ṙ1(t) = γ1I1(t) – β2R1(t)I2(t) – μR1(t) ≥ γ1I1(t) –
(
β2

� + γ1τ1�

μ
+ μ

)
R1(t).

The uniform persistence of R1(t) can be guaranteed by the uniform persistence of I1(t).
From Theorem 4.6 in [30], we know that model (4) is uniformly persistent with respect to

(X0, ∂X0), Theorem 2.1 means that φt(x0) is point dissipative. According to Theorem 2.4 in
[31], model (4) has at least a strains 1, 2 coexistent equilibrium Ec = (S∗, V ∗, I∗

1 , I∗
2 , R∗

1). □
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Figure 1 Time series phases of solutions (S(t),V(t), I1(t), I2(t),R1(t))T and 3-dimension phases of solutions S(t),
V(t), I1(t) of model (4). (1a), (1b): initial functions (S(i),V(i), I1(i), I2(i),R1(i)) = (1000 + 20 ∗w + 10 ∗ sin(i ∗ h),
2000+20∗w+10∗ sin(i∗h), 300+10∗w+10∗ sin(i∗h), 300+12∗w+10∗ sin(i∗h), 300+13∗w+10∗ sin(i∗h)),
w = 1, . . . , 15, i = 1, . . . , 100, respectively

Remark 6 Based on the real circumstances of influenza transmission, the interaction be-
tween the two strains 1, 2 gradually shifts from coexistence to predominance of strain 2
(mutant strain) as it emerges, which is more consistent with the real disease spread.

4 Numerical simulation
This section focuses on the numerical simulation to illustrate the theoretical results of the
four types of equilibria of model (4).

The DFE E0 is simulated in Fig. 1, where � = 200, β1 = 0.00003, β2 = 0.00002, k =
0.00001, r = 0.3, μ = 0.02, τ1 = 2, γ1 = 0.07, μ1 = 0.1, τ2 = 2, γ2 = 0.09, μ2 = 0.1. By cal-
culation, we have R01 = 0.106 < 1 and R02 = 0.5373 < 1. As shown in Fig. 1, the DFE
E0 = (625, 9375, 0, 0, 0) is GAS, which means that Theorem 3.4 is true.

The strain 1 dominant equilibrium E1 is simulated in Fig. 2, where � = 200, β1 = 0.003,
β2 = 0.00002, k = 0.00001, r = 0.6, τ1 = 2, γ1 = 0.07, μ1 = 0.1, μ = 0.02, μ2 = 0.1, τ2 = 2,
γ2 = 0.09. By calculation, we have R01 = 5.4694 > 1 and R02 = 0.522 < 1. As shown in Fig. 2,
the strain 1 dominant equilibrium E1 = (59, 1769, 924, 0, 3233) is GAS, which means that
Theorem 3.5 is true.

The strain 2 dominant equilibrium E2 is simulated in Fig. 3, where � = 200, β1 = 0.00003,
β2 = 0.002, k = 0.00001, r = 0.6, γ1 = 0.07, μ = 0.02, τ1 = 2, μ1 = 0.1, γ2 = 0.09, τ2 = 2,
μ2 = 0.1. By calculation, we have R01 = 0.0547 < 1 and R02 = 3.7518 > 1. As shown in
Fig. 3, the strain 2 dominant equilibrium E2 = (89, 1908, 0, 809, 0) is GAS, which means
that Theorem 3.6 is true.

The strain 1, 2 coexistent equilibrium Ec is simulated in Fig. 4, where � = 200, β1 =
0.0005, β2 = 0.0003, k = 0.0001, r = 0.4, μ = 0.02, τ1 = 2, γ1 = 0.1, μ1 = 0.03, τ2 = 2, γ2 = 0.2,
μ2 = 0.03. By calculation, we have R01 = 1.7597 > 1 and R02 = 4.5752 > 1. As shown in
Fig. 4, we can see that the strain 1, 2 coexistent equilibrium Ec = (271, 1253, 240, 664, 110)

is GAS.
As shown in Fig. 5, we compare the dynamical behavior of the strains 1, 2 coexistent

equilibrium Ec between model (1) and models (2) and (4), corresponding to Fig. 5a (with-
out cross-immunity), Fig. 5b (without vaccination), and Fig. 5c (with cross-immunity and
vaccination), respectively. The values of the parameters in Fig. 5 are the same as in Fig. 4,
except r = 0 and k = 0 in Fig. 5b.
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Figure 2 Time series phases of solutions (S(t),V(t), I1(t), I2(t),R1(t))T and 3-dimension phases of solutions S(t),
I1(t), R1(t) of model (4). (2a), (2b): initial functions (S(i),V(i), I1(i), I2(i),R1(i)) = (400 + 10 ∗w + 10 ∗ sin(i ∗ h),
1300+ 25 ∗w+25 ∗ sin(i ∗ h), 600 + 10 ∗w+5 ∗ sin(i ∗ h), 50 + 1 ∗w+1 ∗ sin(i ∗ h), 2300+ 30 ∗w+30 ∗ sin(i ∗ h)),
w = 1, . . . , 15, i = 1, . . . , 100, respectively

Figure 3 Time series phases of solutions (S(t),V(t), I1(t), I2(t),R1(t))T and 3-dimension phases of solutions S(t),
V(t), I2(t) of model (4). (3a), (3b): initial functions (S(i),V(i), I1(i), I2(i),R1(i)) = (100 + 10 ∗w + 10 ∗ sin(i ∗ h),
1200+20∗w+20∗ sin(i∗h), 200+10∗w+5∗ sin(i∗h), 400+15∗w+15∗ sin(i∗h), 100+10∗w+10∗ sin(i∗h)),
w = 1, . . . , 15, i = 1, . . . , 100, respectively

Figure 4 Time series phases of solutions (S(t),V(t), I1(t), I2(t),R1(t))T and 3-dimension phases of solutions V(t),
I1(t), I2(t) of model (4). (4a), (4b): initial functions (S(i),V(i), I1(i), I2(i),R1(i)) = (150 + 10 ∗w + 10 ∗ sin(i ∗ h),
1000+15∗w+20∗ sin(i∗h), 150+10∗w+10∗ sin(i∗h), 500+10∗w+15∗ sin(i∗h), 70+5∗w+10∗ sin(i∗h)),
w = 1, . . . , 15, i = 1, . . . , 100, respectively
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Figure 5 Time series phases of solutions (S(t),V(t), I1(t), I2(t),R1(t))T and 3-dimension phases of solutions I1(t),
I2(t), R1(t) of model (4). (5a), (5b), (5c): coexistence equilibrium Ec of model (1) without cross-immunity,
model (2) without vaccination, model (4) with cross-immunity and vaccination

First, we compare Fig. 5a and 5c to research the effect of cross-immunity. As shown in
Fig. 5c, the final size of the infected individuals of strains 1 and 2 is slightly higher than
that in Fig. 5a, while the final size of the recovered individuals of strain 1 in Fig. 5a is much
higher than that in Fig. 5c. According to the real circumstances of influenza [1, 2, 12], the
recovered individuals of original strain would be most likely infected by the new strain
with mutation (antigenic drift), so Fig. 5c (with cross-immunity) is more consistent with
the actual situation of influenza transmission.

Next, we compare Figs. 5b and 5c to examine the impact of vaccines. As shown in Fig. 5b,
the number of the infected and recovered individuals from strain 1 is much larger than that
in Fig. 5c, the number of infected individuals from strain 2 in Fig. 5c is slightly larger than
that in Fig. 5b, thus vaccination plays an important role in influenza prevention, although
vaccines only target a single strain of the virus.

As with the above comparisons, we find that considering cross-immunity and vaccina-
tion in model (4) is necessary to research influenza transmission.

4.1 Sensitivity analysis
R0 plays an important role as a threshold for the spread of influenza. Sensitivity of model
parameters may affectR0. Therefore, we used the latin hypercube sampling (LHS) method
to rank the effects of model parameters on R0 from the perspective of global sensitivity
analysis. The value ranges of parameters are shown in Table 4.

Figure 6 analyzes the influence of vaccination rate r on the final size of infected indi-
viduals of double strains, the values of the parameters in Fig. 6 are the same as in Fig. 4.
From Fig. 6a, it can be seen that as the vaccination rate r increases, the number of infected
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Table 4 The baseline values and ranges of parameters

Parameter Baseline (Range) Parameter Baseline (Range)

� 100(0.1 – 200) μ 0.02(0.001 – 0.3)
μ1 0.1(0.001 – 0.5) μ2 0.1(0.001 – 0.5)
β1 0.0003(0.00001 – 0.3) β2 0.0002(0.00001 – 0.2)
k 0.0001(0.00001 – 0.1) r 0.3(0.0001 – 0.6)
γ1 0.07(0.01 – 0.6) γ2 0.09(0.01 – 0.6)
τ1 2(0.1 – 4) τ2 2(0.1 – 4)

Figure 6 The impact of vaccination rate r on the number of infected individuals I1 and I2, with r = 0.3,
r1 = 0.25, r2 = 0.2, r3 = 0.15, r4 = 0.1

individuals with strain 1 decreases. From Fig. 6b, we find that as the vaccination rate r in-
creases, the final number of infected individuals with strain 2 slightly increases. Therefore,
increasing the vaccination rate r would reduce the scale of influenza outbreaks, although
vaccines are only effective against a single strain, the final size of influenza infections has
significantly decreased.

Figure 7 analyzes the correlation between R0 and the rates of infection, recovery, mor-
tality, as well as time delay. As shown in Fig. 7a, it can be seen that as β1 and β2 increase,
R0 is positively correlated with β1 and β2. As shown in Fig. 7b, it can be seen that as γ1

and γ2 increase, R0 is negatively correlated with γ1 and γ2. As shown in Fig. 7c, it can be
seen that as μ1 and μ2 increase, R0 is negatively correlated with μ1 and μ2. As shown in
Fig. 7d, it can be seen that as τ1 and τ2 increase, R0 is negatively correlated with τ1 and
τ2, which means that ignoring the delay may incorrectly estimate the outbreak and size
of the disease. Increasing the rate of recovery from disease and decreasing the rate of in-
fection through appropriate means would reduce the size of epidemic outbreaks. As seen
from Fig. 7a, 7b, 7c, 7d, each plot is composed of two smooth surfaces, which is due to
the fact that R0 = max{R01,R02}, when the infection rate, recovery rate, and time delay of
infection of two strains are variable, the basic reproduction number R0 will switch to R01

or R02 when the infection and recovery rates, and infection time delay of the two strains
change.

Figure 8 analyzes the correlation between each parameter and R0 using the LHS and
PRCC method. As seen from Fig. 8, these parameters �, βi, k are positively correlated
with R0, and γi, μ, μi, r are negatively correlated with R0, where i = 1, 2.

5 Conclusion
Based on the characteristics of influenza transmission, this paper proposes a class of de-
layed SVIR double-strain influenza model with vaccination and cross-immunity. The exis-
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Figure 7 3-dimension phases, sensitivity analysis betweenR0 and infection, recovery and mortality rates,
time delay, (7a): β1 ∈ [0, 0.0025], β2 ∈ [0, 0.003], (7b): γ1 ∈ [0, 1], γ2 ∈ [0, 1], (7c): μ1 ∈ [0, 0.6], μ2 ∈ [0, 0.6],
(7d): τ1 ∈ [0, 6], τ2 ∈ [0, 6]

Figure 8 Sensitivity indicators ofR01,R02,R0 for different parameters
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tence of all feasible equilibria is obtained, and the basic reproduction number of strains 1,
2 and the whole model is derived, the threshold criteria on stability of equilibria E0, E1, and
E2 are established. The uniform persistence of disease and the existence of the strains 1,
2 coexistent equilibrium Ec are obtained. By numerical simulation, the theoretical results
are illustrated, and sensitivity analysis of parameters is performed. The dependence of R0

on the parameters is analyzed based on LHS and PRCC, by which we can see that these
parameters �, β1, β2, and k are crucial on disease control, there is a negative correlation
between vaccination rate r and R0 as well. Overall, increase in the level of protection for
susceptible and infected populations is critical to influenza control.

In addition, we compare the dynamical behavior of models (1), (2), and model (4), by
which we find that neglecting cross-immunity and vaccination would misestimate the
size of influenza outbreaks. Increasing the vaccination rate r would reduce the scale of
influenza outbreaks, although vaccines are only effective against a single strain, the final
size of influenza infections would significantly decreased.

Furthermore, vaccination is an effective control measure against influenza transmission
and can prevent large-scale outbreaks. However, current vaccines are only used for routine
immunization against specific variants of seasonal influenza and are not widely available,
especially for new mutant strains. In [32], it is mentioned that current flu vaccines have
some shortcomings, e.g., long production cycle, limited vaccine capacity, effectiveness in
some populations, and lack of cross-reactivity. The variability of influenza viruses affects
the effectiveness of influenza vaccines. Therefore, the cross-immunity mechanism should
be emphasized on the spread of influenza viruses, which should be effectively designed in
vaccine production and applicability.

This article does not obtain a specific expression for the coexistence equilibrium and
further study of its stability other than illustrating it through numerical simulation, which
would be an open question in the future. In addition, when considering the factor of vac-
cines, we did not take into account the factor of vaccine failure. On the other hand, we will
investigate the influence of both mutation of strains and cross immunity on the transmis-
sion of disease.

Appendices
A.1 The derivation of model (3)
Before giving our final model, we first consider the following SVEIR influenza model:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ṡ(t) = � – β1I1(t)S(t) – β2I2(t)S(t) – rS(t) – μS(t),

V̇ (t) = rS(t) – kV (t)I2(t) – μV (t),

Ė1(t) = β1I1(t)S(t) – μE1(t) – G1(t),

Ė2(t) = β2I2(t)S(t) + kV (t)I2(t) + β2R1(t)I2(t) – μE2(t) – G2(t),

İ1(t) = G1(t) – γ1I1(t) – μ1I1(t),

İ2(t) = G2(t) – γ2I2(t) – μ2I2(t),

Ṙ1(t) = γ1I1(t) – β2R1(t)I2(t) – μR1(t),

Ṙ2(t) = γ2I2(t) – μR2(t),

(26)
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A.2 G1(t) is derived
We derived a functional differential equation from the Mckendrick–von Foersier equa-
tion [33] to describe the latent process from susceptibility to infection. When susceptible
individuals come into contact with individuals infected with strain 1, strain 1 has a latent
period τ in the susceptible individual’s body, and τ ≥ 0. Susceptible individuals begin to
infect and become latent individuals with no infectious ability at t = 0, and they become in-
fected individuals with infectious ability at τ1. Let e1(t, τ ) be the density of infected strain 1
latent individuals among susceptible individuals. So, when τ ∈ [0, τ1], the total number of
strain 1 latent individuals at time t is

E1(t) =
∫ τ1

0
e1(t, τ ) dτ . (27)

To obtain the equation to determine the change in the number of the latent compart-
ment of strain 1, the Mckendrick–von Foersier equation [33] is used to describe the change
of e1(t, τ ):

∂e1(t, τ )

∂τ
+

∂e1(t, τ )

∂t
= –μe1(t, τ ),

where μe1(t, τ ) is the loss of strain 1 latent individuals due to natural death.
When τ = 0, we have e1(t, 0) = β1S(t)I1(t). According to Eq. (27), we can get

dE1(t)
dt

=
∂

∂t

∫ τ1

0
e1(t, τ ) dτ =

∫ τ1

0

∂

∂t
e1(t, τ ) dτ

=
∫ τ1

0
(–μe1(t, τ ) –

∂e1(t, τ )

∂τ
) dτ

= –μ

∫ τ1

0
e1(t, τ ) dτ –

∫ τ1

0
(
∂e1(t, τ )

∂τ
) dτ

= –μE1(t) – e1(t, τ ) + e1(t, 0).

To determine e1(t, τ ), let eε
1(τ ) = e1(τ + ε, τ ), we can obtain

eε
1(τ )

dτ
=

∂e1(τ + ε, τ )

∂τ
=

∂e1(τ + ε, τ )

∂(τ + ε)
+

∂e1(τ + ε, τ )

∂τ

= –μe1(τ + ε, τ ) = –μeε
1(τ ).

That is, eε
1(τ ) = eε

1(0)e–μτ .
Let τ = τ1, since

et–τ1
1 (τ ) = e1(t – τ1 + τ , τ ), et–τ1

1 (0) = e1(t – τ1, 0),

we have

e1(t, τ1) = e1(t + τ1 – τ1, τ1) = e1(t – τ1, 0)e–μτ = β1S(t – τ1)I1(t – τ1)e–μτ1 .

We can get the equation for E1(t):

Ė1(t) = β1I1(t)S(t) – μE1(t) – β1S(t – τ1)I1(t – τ1)e–μτ1 ,
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and then

G1(t) = β1S(t – τ1)I1(t – τ1)e–μτ1 .

A.3 G2(t) is derived
Similar to the derivation process of G1(t). Let e2(t, τ ) be the density of infected strain 2
latent individuals among susceptible individuals. So, when τ ∈ [0, τ2], the total number of
latent individuals at time t is

E2(t) =
∫ τ2

0
e2(t, τ ) dτ .

To obtain the equation to determine the change in the number of the latent compartment
of strain 2, the Mckendrick–von Foersier equation is used to describe the change of e2(t, τ ):

∂e2(t, τ )

∂τ
+

∂e2(t, τ )

∂t
= –μe2(t, τ ),

where μe2(t, τ ) is the loss of strain 2 latent individuals due to natural death.
When τ = 0, e2(t, 0) = β2I2(t)S(t) + kV (t)I2(t) + β2R1(t)I2(t). The rest of the derivation

process is similar to the G1(t) derivation process, which will not be repeated here.
We can get the equation for E2(t):

Ė2(t) = β2I2(t)S(t) + kV (t)I2(t) + β2R1(t)I2(t) – μE2(t)

– (β2S(t – τ2) + kV (t – τ2) + β2R1(t – τ2))I2(t – τ2)e–μτ2 ,

and then

G2(t) = (β2S(t – τ2) + kV (t – τ2) + β2R1(t – τ2))I2(t – τ2)e–μτ2 .

Finally, based on the above derivation, substitute G1(t) and G2(t) into model (26). We can
obtain an influenza model with latent time delay, vaccination, and cross immunity.

Decoupling E1(t) and E2(t) in model (26), we can obtain model (3).
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