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Abstract
Graph neural networks empowered by the Transformer’s self-attention mechanism
have arisen as a preferred solution for many graph classification and prediction tasks.
Despite their efficacy, these networks are often hampered by their quadratic
computational complexity and large model size, which pose significant challenges
during graph training and inference. In this study, we present an innovative approach
to heterogeneous graph transformation that adeptly navigates these limitations by
capturing the rich diversity and semantic depth of graphs with various node and
edge types. Our method, which streamlines the key–value interaction to a
straightforward linear layer operation, maintains the same level of ranking accuracy
while significantly reducing computational overhead and accelerating model
training. We introduce the “EHG” model, a testament to our approach’s efficacy,
showcasing remarkable performance in multiclass node classification on
heterogeneous graphs. Our model’s evaluation on the DBLP, ACM, OGBN-MAG, and
OAG datasets reveals its superiority over existing heterogeneous graph models under
identical hyperparameter configurations. Notably, our model achieves a reduction of
approximately 25% in parameter count and nearly 20% savings in training time
compared to the leading heterogeneous graph-transformer models.

Keywords: Graph Neural Networks; Representation Learning; Graph Attention;
Heterogeneous Graph; Graph Analysis; Graph Transformer; Knowledge Graph

1 Introduction
In the real world, network architectures frequently manifest as large-scale heterogeneous
graphs, encompassing social networks, recommendation systems, academic graphs, and
knowledge graphs. These heterogeneous graphs are comprised of a diverse array of nodes
and edges, where (node-type, edge-type, node-type) triplets signify underlying semantic
relationships, also known as metarelations. A case in point is the triplet (“Author”, “writes”,
“Paper”) found within the Open Graph Benchmark – Microsoft Academic Graph (OGBN-
MAG) [1], which articulates distinct semantic information and epitomizes the most suc-
cinct metapath.

Over the past decade, there has been a surge in research dedicated to the exploration
of heterogeneous graphs, with a particular emphasis on graph representation. Traditional
nondeep-learning methodologies, such as DeepWalk [2], metapath2vec [3], PathSim [4],
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and ESim [5], predominantly focus on characterizing node features by measuring similar-
ities between nodes or extracting structural insights through the navigation of metapaths.
Conversely, deep-learning strategies leverage the principles of message passing and aggre-
gation [6] within Graph Neural Networks (GNNs) [7], integrating advanced techniques
like graph convolution, LSTM, attention mechanisms, and the Transformer. These have
culminated in the creation of diverse architectural frameworks, including GCN [8], GAT
[9], HAN [10], HetGNN [11], and HGT [12]. In the context of large-scale heterogeneous
graphs, the conventional approach of loading the entire graph into memory for batch pro-
cessing has been supplanted by more sophisticated subgraph sampling techniques. Inno-
vations such as HGSampling [12], GraphSAGE [13], and FastGCN [14] have emerged to
address these challenges. While Graph Neural Networks (GNNs) fortified with attention
mechanisms have demonstrated remarkable success across a spectrum of downstream
applications, they are not without their challenges, facing three issues:

Issue 1: They restrict their scope to n-hop local message passing among adjacent nodes
and edges by uniformly distributing weights across a single level, and concurrently ag-
gregate metapath semantic information on a different level, neglecting the broader global
context of the entire graph.

Issue 2: The performance of the model is critically tied to the efficacy of the customized
metapaths, which can lead to unstable or inadequate training process. Moreover, the se-
lection of an inappropriate metapath might trigger gradient vanishing as a result of the
recurrent cycles within the path.

Issue 3: The Graph Transformer’s matrix multiplication operations for the Q (query), K
(key), and V (value) matrices are computationally costly, often necessitating substantial
memory and computational resources, particularly during the model-training phase.

Drawing inspiration from the advances in Vision Transformers (ViTs), specifically
linear self-attention [15], separable self-attention [16], and efficient additive attention
[17], we have developed an efficient transformer-based architecture designed for node-
classification tasks within heterogeneous graphs. The essence of the separable self-
attention [15, 16] approach entails the computation of context scores relative to a latent
token. These scores are then used to reweight the input tokens and produce a context
vector that encodes global information. This adjustment results in reducing the com-
plexity of multiheaded self-attention (MHA) in transformers from O

(︁
n2)︁ to O (n), with

n being the token count. In the realm of graph applications, input tokens can be viewed
as representations of nodes. To enhance inference efficiency, the separable self-attention
mechanism has supplanted the costly MHA dot product operations with simpler element-
wise summation and element-wise multiplication operations. Similarly, efficient additive
attention [17] introduces a hybrid model that maintains linear complexity, only focusing
on element-wise interactions between queries and keys with tunable attention weights,
rather than the traditional dot-product approach, thereby enhancing inference speed. In
our framework, the input tokens are interpreted as graph embeddings, with context scores
acting as global graph signals. On the one hand, we streamlined the interaction among Q
(query), K (key), and V (value) by dispensing with the value computation and incorporat-
ing a learnable triplet tensor to extract global graph context, transcending the limitations
of localized messaging. On the other hand, we employ element-wise operations to model
query–key interactions instead of dot products, enhancing both training and inference
speed.
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Table 1 Time-complexity analysis of GAT, MLP, HAN, HGT, and our approach EHG

Feature Projection Neighbor aggregation Semantic fusion Total

GAT O
(︁
nd2

)︁
O (ed) / O

(︁
nd2 + ed

)︁

MLP O
(︁
nd2

)︁
/ O

(︁
nd2

)︁

GCN O
(︁
nd2

)︁
O

(︁
ne2

)︁
/ O

(︁
nd2 + ne2

)︁

HAN O
(︁
nd2

)︁
O (nkemd) O

(︁
nd2k

)︁
O

(︁
nd2k + ndem

)︁

HGT O
(︁
nd2

)︁
O (ne1d) O (ne1d) O

(︁
n2d2e21 + nd2

)︁

EHG O
(︁
nd2

)︁
O (ne1d) O (1) O

(︁
nd2 + nde1

)︁

Our approach, termed EHG, markedly reduces the time complexity on heterogeneous
graphs from O

(︁
n2)︁ to O (n) [7, 18, 19], as delineated in Table 1. For the baseline models

presented below, we presume a single-layered structure with a single attention head. Here,
n represents the number of target-type nodes, d denotes the dimensions of both the input
and hidden vectors, e quantifies the graph’s edges, e1 denotes the average number of one-
hop neighbors, and em indicates the average number of neighbors within metapath graphs
on the HAN model, with k representing the total number of metapaths.

The EHG model not only significantly boosts the efficiency of model training and infer-
ence but also marginally enhances the ranking accuracy of classifying nodes within het-
erogeneous graphs. It adeptly learns and adjusts the significance of various metarelations
by substituting the V matrix with edge-type specific tensors. This innovation empowers
the model to generate node embeddings that more effectively encapsulate the intricate
global context and semantic richness inherent in heterogeneous graphs. After that, the
model can be fine tuned to produce accurate node embeddings through backpropagation,
customized to meet the specific demands of various downstream tasks.

The key contributions of our work are as follows:
• Through an indepth analysis of self-attention mechanisms within heterogeneous

graphs, we have uncovered crucial insights. These insights not only highlight the redun-
dancy of the V matrix but also establish the efficacy of employing element-wise operations
for interactions between the Q and K matrices in graph transformers.

• Armed with these insights, we have developed the EHG model, which reduces the time
complexity from quadratic to linear. EHG innovatively leverages learnable semantic ten-
sors to autonomously generate metarelation importance scores and capture graph global
context information, eliminating the reliance on predefined metapaths.

• Our extensive experiments on four diverse and widely adopted datasets confirm EHG’s
superiority over existing state-of-the-art models. It achieves superior ranking accuracy
and expedites training, marking a significant advancement in the field.

2 Preliminaries and related work
In this section, we delve into the fundamental concepts and theoretical frameworks of
heterogeneous graphs, complemented by an overview of the latest advancements in het-
erogeneous graph neural networks. Subsequently, in the forthcoming section, we analyze
and highlight the differences between our approach and existing methodologies, explain-
ing why EHG outperforms them in the multiclass node-classification task.

2.1 Heterogeneous graph data mining
Definition 2.1 Heterogeneous graphs. A heterogeneous graph is a directed graph denoted
as G = (V ,E ,A,R), consists of a node set V and an edge set E , where each υ ∈ V is associ-
ated with a node-type mapping function τ (υ) : V → A and each e ∈ E is associated with
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Figure 1 The schema and metarelations of OGBN-MAG (Open Graph Benchmark – Microsoft Academic
Graph). As an example of a heterogeneous graph, the academic network OGBN-MAG exhibits two main
characteristics: a) the assignment of unique types to each node and edge, which together constitute the
graph’s schema; b) the one-hop edges that link source nodes to target nodes, embodying metarelations and
transmitting the semantic information of the graph

an edge-type mapping function ϕ (e) : E → R. A and R denote the sets of predefined
node types and edge types, where |A| + |R| > 2.

Definition 2.2 Metarelation and Metapath. For an edge e = (s, t) linked from source node
s to target node s, its metarelation is denoted as ⟨τ (s) ,ϕ (e) , τ (t)⟩. A metapath is defined
as a path that describes a composite metarelation between different nodes.

Example As shown in Fig. 1, two papers can be linked via the metarelation “Papers-Cites-
Papers”, while authors and fields of study are connected through the metapath “Authors-
Writes-Papers-has_topic-Fields of Study.” Different metapaths capture distinct semantic
meanings and uncover relationships between various nodes and edges.

2.2 Graph attention and graph transformer
The Graph Attention Networks (GATs) integrate an attention mechanism into the frame-
work of Graph Convolutional Networks (GCNs), endowing nodes with the capability to
selectively aggregate information from neighboring nodes. In essence, the features of each
neighbor are processed via a shared, learnable matrix, followed by a normalization step
that yields unique attention scores. These scores are then multiplied with the target node’s
features from the previous layer, thereby aggregating its representation at the current level.
To elucidate this concept, we will initially explore the scenario of single-head attention:

h(l+1)
i = σ (

∑︂

j∈N(i)

a(l)
ij W(l)h(l)

i ), (1)

where h(l+1)
i represents the embedding of node i in the l + 1 layer, while N (i) means all the

neighbor nodes of node i. a(l)
ij is the attention score between node i and its neighboring

node j after normalization. To obtain the normalized attention score a(l)
ij , GAT [9] compute

them across all choices of j using the Softmax function:

a(l)
ij = Softmaxj∈N(i)

(︂
LeakyRelu

(︂
a(l)

(︂
W(l)h(l)

i ∥W(l)h(l)
j

)︂)︂)︂
. (2)
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Here, a(l) is a learnable vector, and W (l) is a learnable matrix. Softmax normalization is
applied to each node pair after the concatenation operation and LeakyReLU [20] activa-
tion. ∥ is the contraction operation. In the original GAT paper, W (l) and a(l) actually share
the same weights across all layers.

In multihead attention calculation, K represents the number of attention heads, and k
refers to the kth attention head. the output features of each attention head are concate-
nated after nonlinear activation before reaching the final prediction layer:

h(l)
i =∥K

k=1 σ

⎛

⎝
∑︂

j∈N(i)

ak
ijW

kh(l–1)
j

⎞

⎠ . (3)

Next, all the neighbor node embeddings are summed up via attention transformation,
averaged by the number of attention heads, and then a nonlinear activation is applied in
the last layer for downstream classification task:

h(l+1)
i = σ

⎛

⎝ 1
K

K∑︂

k=1

∑︂

j∈N(i)

ak
ijW

kh(l)
j

⎞

⎠ . (4)

The aforementioned equations succinctly delineate the three pivotal stages inherent in
graph-attention mechanisms: initially, the computation of the attention score a(l)

ij for each
pair of neighboring nodes; subsequently, the aggregation of attention scores and neigh-
boring node embeddings; and ultimately, the activation of an aggregated message from the
previous stage. GATs predominantly consider the structural information of graphs, often
neglecting the influences emanating from different node and edge types. It can engen-
der substantial redundant computation, especially in graphs where neighborhoods often
highly overlap. Consequently, while GATs excel in node-classification tasks within homo-
geneous graphs, they often fall short in adequately capturing the semantic information in
heterogeneous graphs.

In order to integrate semantic information, the heterogeneous graph attention network
(HAN) [10] introduces a metapath-based hierarchical model. This model learns node-
level and semantic-level attention in two separate phases. Nevertheless, the selection of
metapaths is a manual process, and improper selection may adversely affect the classifi-
cation outcomes. Moreover, the model’s complexity is linear to the number of metapaths;
consequently, an increase in metapaths leads to a substantial rise in training time.

Heterogeneous Graph Transformer (HGT) [12], inspired by the architecture design of
Transformer [21], avoids the need for customized metapaths and being scalable to Web-
scale graphs. It projects the target node into a Query vector and source node into a Key
vector, with their dot product being utilized to compute attention. HGT introduces ma-
trices that cater to diverse edge types and employs adaptive scaling tensors tailored for
metarelations, empowering the model to autonomously learn and dynamically adjust the
attention importance of various edge and node types.

For MHA calculation, source node s and target node t are connected by a directed edge
e, each source–target node pair is normalized to obtain the attention score before aggre-
gation as shown in equations (5) and (6):

Attention (s, e, t) = Softmax∀s∈N(t)
(︁∥K

k=1ATT – headk (s, e, t)
)︁

(5)
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ATT – headk (s, e, t) =
(︁
Kk (s) WATT

𝝓(e)Q
k (t)T)︁ · μ⟨τ(s),ϕ(e),τ(t)⟩√

d
(6)

Kk (s) = K – Lineark
τ(s)

(︁
h(l)

s
)︁

(7)

Qk (t) = Q – Lineark
τ(t)

(︂
h(l)

t

)︂
, (8)

where τ (·) represents the node type, and ϕ (·) represents the edge type. Kk (s) and Qk (t)
denote the kth head key and query vectors after linear transformation. The functions
Q – Lineark

τ(t) and K – Lineark
τ(s) are linear projections Rd → R

d
K , where d

K is the vector
dimension per head. Unlike the direct dot product between Q vectors and K vectors in a
vanilla transformer, HGT introduces a distinct WATT

𝝓(e) ∈ R
d
K × d

K matrix for each edge type,
accounting for the influence of different edge types, and providing more accurate seman-
tic information from various node and edge types. Additionally, since each metarelations
contributes differently to the target node, a tensor μ⟨τ(s),ϕ(e),τ(t)⟩ is introduced to further
scale the attention.

For message passing, HGT calculates a pair of nodes multihead message information as
follows:

Message(s,e,t) =∥K
k=1 V k (s) WMSG

𝝓(e) (9)

V k (s) = V – Lineark
τ(s)

(︁
h(l)

s
)︁

. (10)

A source node s of τ (s)-type is projected into the kth message vector with a linear pro-
jection V –Lineark

τ(s) : Rd → R
d
K to generate the V vectors. Subsequently, the matrix WMSG

𝝓(e)

is applied to incorporate the edge dependency. After contracting all message heads, each
node pair Message(s,e,t) is formed.

The final step involves aggregating the previous calculated attention and message infor-
mation, then mapping the vector of node t into its type-specific distribution using projec-
tion A – Linearτ(t), followed by a residual connection [22]. Each node embedding h(l)

t can
then be fed into various models to conduct downstream heterogeneous network tasks,
such as node classification and link prediction:

h(l)
t = ⊕∀s∈N(t)

(︁
Attention (s, e, t) · Message (s, e, t)

)︁
(11)

h(t)
t = A – Linearτ(t)

(︂
σ

(︂
h(l)

t

)︂)︂
+ h(l–1)

t . (12)

Both HGT and HAN outperform GAT in node-classification tasks on heterogeneous
graphs, with HGT having a particular advantage in handling more complex and large-
scale heterogeneous graphs.

3 The proposed architecture
Recent studies have confirmed the efficacy of attention mechanisms in addressing a spec-
trum of challenges in graph-node classification and link prediction. Typical graph trans-
formers encode relevance scores for the contextual information of input features, rely-
ing on the interactions among the trio of attention components (Q, K, V). However, this
approach exacts a high computational toll, with complexity increasing significantly, es-
pecially when dealing with large heterogeneous graphs and complex metarelations that



Wang et al. Advances in Continuous and Discrete Models         (2025) 2025:28 Page 7 of 18

Figure 2 The Overall Architecture of an Efficient Heterogeneous Graph Transformer. A heterogeneous
subgraph is sampled with target node and its source nodes, where each node or edge is tagged with its
corresponding type identifier before being sent to the type-specific linear layer. The subsequent operations
are orchestrated as follows: 1) The computation of attention scores based on the Q (Query) and K (Key)
matrices, 2) The multiplication of context messages to facilitate message passing, and 3) The aggregation of
the vectors from each target–source pair into one, which is subsequently activated and sent to the next layer

involve numerous node and edge types. Research on efficient adaptive attention [11] has
shown that the removal of key–value interactions does not compromise performance; in-
stead, a focused and effective encoding of query–key interactions, incorporated by a linear
projection layer, is sufficient to learn the interrelationships among embeddings. Therefore,
we integrate an adaptive mechanism into heterogeneous graphs, as depicted in Fig. 2,
which consists of three stages: attention calculation, message passing, and information
aggregation.

First, to calculate the source–target node pair attention, we use a simplified metarelation
scale-learnable tensor R⟨ϕ(e),k⟩, which is initialized as a tensor of ones for each edge type
per attention head. Additionally, we introduce a global query tensor qϕ(·) to scale the query
matrix across each dimension. To simplify the explanation, we treat the Key vector of
source node s after linear projection and reshaping to Rk× d

K as the K matrix, and the Query
vector of target node t after linear projection and reshaping to Rk× d

K as the Q matrix,
respectively. Next, the key matrix K is multiplied by WATT

𝝓(e), followed by an element-wise
addition, multiplication or dot product with the Q matrix. The result is then multiplied by
R⟨ϕ(e),k⟩, which adjusts the attention scores according to specific edge type. The changes
during training of R⟨ϕ(e),k⟩ reveal the edge-type importance and implicit global semantic
information. Under certain conditions, we have observed that element-wise operations on
the Q and K matrices outperform dot product. Equation (13), (14), (15), and (16) illustrate
the complete mathematical attention calculation process:

ATT – headEHG–sum (s, e, t) =
(︁
KWATT

𝝓(e) + Qq𝝓(·)
)︁ R⟨ϕ(e),k⟩√

d
(13)

ATT – headEHG–mul (s, e, t) =
(︁
KWATT

𝝓(e) ⊗ Qq𝝓(·)
)︁ R⟨ϕ(e),k⟩√

d
(14)

ATT – headEHG–dot (s, e, t) =
(︁
KWATT

𝝓(e) ⊙ Qq𝝓(·)
)︁ R⟨ϕ(e),k⟩√

d
(15)

AttentionEHG (s, e, t) = Softmax∀s∈N(t) (ATT – headEHG (s, e, t)) . (16)
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Second, we entirely remove the V -liner layer and edge-type specific matrix WMSG
𝝓(e) from

the original HGT. Instead, we directly use Q from the attention stage, rather than V , as
the context message. Q serves as the target-node value the model is searching for, which is
added to the attention output after applying Softmax function. The rationale behind this
approach is that Q already integrates information from target-node type, while the atten-
tion calculation has already combined the source-node type and edge-node type. By doing
so, shared weights are strengthened from the perspective of the graph’s global metarela-
tions and global query embeddings, rather than being limited to local query–key–value
interactions. This retains the benefits of the self-attention mechanism and allows us to
capture information from heterogeneous edges and node types. Take the EHG-sum ap-
proach for instance:

h(l)
t = ⊕∀s∈N(t)

(︃
Q + Softmax∀s∈N(t)

(︃
(︁
KWATT

𝝓(e) + Q
)︁ R⟨ϕ(e),k⟩√

d

)︃)︃
. (17)

Third, we apply a linear transformation A–Linearτ(t) layer to the query–key interactions
to learn the hidden representation of the nodes. We use the GELU (Gaussian Error Linear
Unit) [23] activation function because it outperforms RELU in transformer models by
better fitting the data distribution. The final output embedding vector of the target node
can be described as (18). For downstream tasks like the node classification, it is used to
generate prediction results:

h(l)
t = A – Linearτ(t)

(︂
Gelu

(︂
h(l)

t

)︂)︂
+ h(l–1)

t . (18)

Compared to HGT, our proposed method directly uses the global query Q matrix de-
rived from the attention phase as the message for passing, instead of introducing an addi-
tional learnable V matrix. This streamlined strategy achieves a dual objective: it minimizes
the number of parameters and bolsters computational efficiency. The embeddings for the
target nodes are generated through the aggregation of attention scores and messages from
all associated source nodes. These refined node embeddings can subsequently be deployed
in a variety of downstream applications, including node classification and link prediction.
Algorithm 1 provides a comprehensive breakdown of the EHG’s overall process.

4 Analysis and comparison with different self-attention modules
In this section, we analyze the relationship between vision transformers and graph trans-
formers, and explain why EHG maintains efficiency on heterogeneous graphs by stream-
lining the V matrix and employing element-wise operations exclusively for interactions
between the Q and K matrices.

The attention mechanism has quadratic complexity due to the dot-product operation
between the Q and K matrices, followed by a Softmax normalization for each token. In the
original transformer model developed for the Natural Language Processing (NLP) domain
[21], each word in a sequence of n words must attend to every other word to understand
its context, resulting in n × n pairwise interactions. Positional encoding further enables
the transformer model to capture both local and global positional relationships within the
sequence.

Vision transformers (ViTs), which are built on self-attention mechanisms, can effec-
tively model interactions between input tokens and have demonstrated remarkable suc-
cess across various vision tasks. Although ViTs outperform convolutional neural networks
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Algorithm 1 The overall process of EHG

Input: The heterogeneous graph G = (V , E, A, R); the node-type numbers |A|; the
edge-type numbers |R|; the node features {hi,∀i ∈ V }; the number of attention heads K ;
output feature dimension d.
Parameters: Feature projection linear layers: K – Lineark

τ(·), Q – Lineark
τ(·), and

A – Lineark
τ(·); global query tensor qϕ(·); edge-type-based matrix W ATT

ϕ(·) ; edge-type-based
scale-learnable tensor R⟨ϕ(·),k⟩.
Output: The final embeddings {Zi,∀i ∈ V }.
1: Initialize K , Q, A linear layers for each node type
2: Initialize tensor R⟨ϕ(·),k⟩ with shape

(︁|R| , K , d
K
)︁

3: Initialize tensor qϕ(·) with shape
(︁|R| , d

K
)︁

4: Initialize random and uniform matrix W ATT
ϕ(·) for each head and each edge type with

shape
(︁|R| , K , d

K , d
K
)︁

# attention-score calculation
5: For each (source-node type, edge-node type, target node type) in G by edge type do:
6: Gsubgraph ← G sampled by (source-node type, edge-node type, target-node type)
7: K matrix ← K – Lineark

τ(s). reshape
(︁
K , d

K
)︁

8: Q matrix ← Q – Lineark
τ(t). reshape

(︁
K , d

K
)︁

9: K matrix ← K ⊙ W ATT
ϕ(e)

10: Q matrix ← Q × qϕ(·)
11: attention_score ← Q ⊙ K × R⟨ϕ(·),k⟩ /

√︂
d
K

12: attention_score ← Softmax attention_score by subgraph edge type
# message passing
13: For each edge type do:
14: Message M from edges that point to target node t ← Q+ attention_score
15: update target node feature ht by mean value of M
# information aggregation
16: For each node type do:
17: ht ← A – Lineark

τ(t)(t)
18: Concatenate the learned node features from all attention heads
19: Apply activation function GELU and transfer out to next level until the end of
forward propagation
20: Calculate Crossentropy
21: Back propagation and update parameters in EHG
22: return the output presentation of nodes

(CNNs) in capturing global features, deploying them on resource-constrained mobile de-
vices for real-time applications remains challenging due to their quadratic complexity.
This challenge has led to the development of efficient alternatives, such as linear self-
attention [15], separable self-attention [16], and efficient additive attention [17].

Graph transformers, which closely follow the original transformer architecture [21], take
as input a graph with nodes and edges representing relationships between the nodes [24].
However, similar to ViTs, they encounter efficiency challenges, particularly when handling
large-scale, complex heterogeneous graphs. During the preprocessed graph loading phase
and local neighbor message-passing phase, these challenges often result in out-of-memory
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(OOM) issues or excessively long processing times [25]. Here, we conduct a comprehen-
sive analysis and comparison of our proposed method with several transformer models, as
well as the Heterogeneous Graph Transformer (HGT) model, to highlight its advantages
and efficacy as shown in Fig. 3:

Our EHG model is based on the recently introduced Effective Additive Attention mech-
anism, which produces more robust contextual representations, as demonstrated by its
performance on computer vision tasks. We combine this mechanism with the HGT model
to effectively represent heterogeneous graph nodes. Since graph features tend to become
smooth through global node-type and edge-type aggregation at the subgraph level, encod-
ing query–key interactions by incorporating a linear projection layer—without the need
for value–matrix interactions—is sufficient to capture the relationship between target-
node features and source-node features. Furthermore, we introduce learnable global query
vectors, denoted as qϕ(·), to fine tune node features by dividing the feature dimension by
the number of attention heads. These global query vectors also capture global edge-type
features, which help produce the global query matrix and extract global node features.

In summary, the EHG model is carefully designed to efficiently encode both local and
global representations in the attention calculation, and then propagate the normalized
message through one-hop metarelations. This design enables EHG to achieve both effi-
ciency and effectiveness in handling complex heterogeneous graphs.

5 Evaluation
5.1 Datasets
We employ four datasets of varying sizes to perform node-classification tasks. The statis-
tics for each dataset are listed in Table 2. The DBLP dataset contains 26,128 nodes and
239,566 edges, with authors labeled into 4 categories. The ACM dataset includes 30,003
nodes and 160,686 edges, where papers are classified based on the conference they were
published in, resulting in 14 classes. The OGBN-MAG dataset consists of 1,939,743 nodes
and 21,111,007 edges, with papers labeled according to their venue, which results in 349
classes. The OAG-Venue dataset contains 1,116,162 nodes and 13,985,692 edges, where
papers are also labeled based on their venue, classifying them into 2506 classes. It is impor-
tant to note that DBLP and ACM are connected heterogeneous graphs, while OGB-MAG
and OAG-Venue are not. A connected heterogeneous graph means that each edge has
a corresponding reverse edge, ensuring that any node is reachable from any other node.
Among these datasets, DBLP and ACM are small heterogeneous graphs, while OGBN-
MAG and OAG-Venue are large heterogeneous graphs.

5.2 Baselines
We compare the proposed EHG with a suite of established heterogeneous graph neural
network-based approaches baselines, such as GAT, MLP, RGCN, HAN, and HGT, to ver-
ify its effectiveness. The EHG model is further delineated into EHG-sum, EHG-mul, and
EHG-dot, which correspond to the application of element-wise addition, element-wise
multiplication, and dot product in the attention-head calculation, respectively, as delin-
eated in Equations (13), (14), and (15).

Graph Attention Networks (GAT) [9], which adopt multihead additive attention on
neighbors and assigns different importances to nodes of the same neighborhood.

Relational Graph Convolutional Networks (RGCN) [26], which simply average the
neighbor’s embedding followed by linear projection.
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Figure 3 Comparison with different transformer models. (a) is the typical transformer self-attention module.
(b) is the separable self-attention that uses element-wise operations to compute the context vector from the
interactions of Q and K matrices. The context vector is then multiplied by the V matrix to produce the final
output. (c) is efficient additive self-attention where the query matrix is multiplied by learnable weights and
pooled to produce global queries. Then, the matrix K is element-wise multiplied by the broadcasted global
queries to generate the global context representation. (d) The HGT self-attention module projects the
d-dimension node features into k-head Q, K , and V matrices. The K matrix is then multiplied by
edge-type-specific tensor weights and then dot product with the Qmatrix to compute attention scores for
each node pair. After applying Softmax normalization, these scores are used to weight the contributions of
each edge pointing to the target node t. Finally, the V matrices of source nodes are aggregated to compute
the output representation for node t. (e) The proposed EHG self-attention mechanism operates differently.
The query matrix is first multiplied by learnable edge-type weights qϕ(·) and pooled to generate a global
query matrix. The matrix K is then element-wise calculated with the broadcasted global query matrix to
produce a global context matrix. Messages from source nodes are integrated into this global context matrix,
which is subsequently added directly to the query matrix to construct the representation of the target node t

Heterogeneous Graph Attention Networks (HAN) [10] design hierarchical attentions to
aggregate neighbor information via different metapaths.
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Table 2 Summary of the datasets used in our experiment

Dataset DBLP ACM OGBN-MAG OAG-Venue

#nodes 26,128 30,003 1,939,743 1,116,162
*edges 239,566 160,686 21,111,007 13,985,692
edge types 6 6 8 15
node types 4 3 4 5
target type #author #paper #paper #paper
classes 4 14 349 3506

Heterogeneous Graph Transformer (HGT) [5] introduces a node-type and edge-type
dependent attention mechanism. Its transformer convolution architecture can incorpo-
rate information from high-order neighbors of different types through message passing
across layers.

5.3 Experiment settings and results
We used a single NVIDIA RTX 3090 GPU with 24 GB of VRAM for training on the DBLP
and ACM datasets, a single NVIDIA A800 GPU with 80 GB of VRAM for training on the
OGBN-MAG and OAG-Venue datasets. The ratio of the training, validation, and test sets
was set to 6:2:2. For ACM and DBLP, the input dimension was set to 256, with 16 attention
heads and 4 layers. Due to memory constraints per epoch for larger graphs, the input
dimension for OGBN-MAG and OAG-Venue were set to 128, with 4 attention heads and
2 layers. The input features we used were not pretrained but rather randomly generated
vectors, which theoretically should better represent the actual performance learned by
the model itself. For parameter setting, in order to compare performance fairly among
these models, we set all the hyperparameters with the same learning rate, steps, and Adam
optimizer.

5.4 Performance and time-consumption analysis
The performance of our approaches and baselines are shown in Table 3 and Table 4. In
Table 3, we observed Accuracy, Macro-F1, Micro-F1, NDCG, and MRR metrics. Table 4
provides time-consumption metrics, such as model size, inference latency on GPU (in
milliseconds), inference latency on CPU (in milliseconds), and training time (in seconds)
across datasets of varying sizes. Fig. 4 shows the accuracy and NDCG scores relative to
the average time consumption per training epoch for these models. All model parameter
sizes on different datasets are computed under consistent configurations of input-feature
dimensions, network layers, and attention head settings. The results for our model variant
are highlighted in bold. Given the high variance often observed in graph-structured data,
we repeat the experiments 10 times and report the average values of the metrics. Based
on these results, we draw the following conclusions:

• EHG demonstrates superior overall effectiveness across all baselines and datasets,
regardless of graph size. It also effectively balances time constraints with model perfor-
mance, achieving an optimal tradeoff in terms of cost-effectiveness. Compared to HGT,
EHG reduces the number of parameters by approximately 25% and decreases training
time by around 20%, without compromising the accuracy of model rankings. These im-
provements are largely attributed to the removal of the value matrix (V ) and the efficiency
gained from performing element-wise operations instead of dot products.

• While EHG-dot slightly outperforms EHG-sum in terms of accuracy, its training time
is longer due to the greater computational cost of the dot-product operation compared
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Table 4 Time Consumption on four datasets of varying sizes

Model Params (M) Training Time(s) CPU Latency (ms) GPU Latency (ms)

(a) DBLP Time Consumption
MLP 0.07 0.39 0.22 0.52
GAT 0.07 2.49 3.6 4.03
RGCN 0.10 3.3 4.36 5.03
HAN 0.40 28.65 29.87 41.98
HGT 1.23 30.39 29.2 30.71
EHG-sum 0.91 20.46 26.78 27.64
EHG-mul 0.91 21.77 27.69 29.17
EHG-dot 0.91 24.09 28.98 29.14

(b) ACM Time Consumption
MLP 0.20 0.49 0.18 0.57
GAT 2.38 12.93 21.22 22.09
RGCN 0.42 3.79 4.26 6.45
HAN 3.23 169.84 37.56 265.56
HGT 3.56 30.27 29.11 30.25
EHG-sum 2.67 22.82 33.45 32.57
EHG-mul 2.67 23.57 29.54 28.82
EHG-dot 2.67 24.18 27.32 29.71

(c) OGBN-MAG Time Consumption
MLP 0.11 32.13 465.96 42.99
GAT 0.25 1063.18 20,549.68 1244.66
RGCN 0.24 89.89 3052.63 178.97
HAN 0.31 184.49 9650.65 164.86
HGT 0.71 1615.79 10,100.99 1776.06
EHG-sum 0.54 1396.21 8672.86 1801.28
EHG-mul 0.54 1403.19 8600.81 1797.48
EHG-dot 0.54 1439.01 8662.91 1755.44

(d) OAG-Venue Time Consumption
MLP 0.53 86.34 1158.65 37.96
GAT OOM OOM OOM OOM
RGCN OOM OOM OOM OOM
HAN 1.93 170.5 7532.97 256.76
HGT 1.44 739.6 10,609.21 1209.67
EHG-sum 1.16 606.97 10,512.85 1177.86
EHG-mul 1.16 615.57 10,474.49 1171.3
EHG-dot 1.16 615.84 10,440.39 1142.37

to the sum operation. However, no distinct improvement is observed in GPU inference
time or CPU inference time across the different EHG models. This phenomenon can be
attributed to the fact that GPU inference latency is heavily contingent upon the architec-
ture of the hardware platform. The high degree of parallelism inherent in GPU matrix
operations mitigates any significant variation in inference time.

• GAT, RGCN, and HAN can become inefficient when handling large datasets, often
encountering out-of-memory (OOM) issues and excessively long training times. This in-
efficiency arises primarily from the complexity of large graphs and the need to maintain
separate attention vectors for each edge at every layer. As the number of layers, edges, or
edge types increases, memory consumption grows significantly, resulting in OOM errors
during training.

• The performance and training time of HAN are strongly influenced by the selection of
metapaths. In the context of complex graphs, the disconnected nature of the graph limits
the availability of metapaths, resulting in reduced parameter efficiency and overall perfor-
mance on large datasets. In our experiment, only one metapath is available for training on
the OAG-Venue and OGBN-MAG datasets, which leads to insufficient training.
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Figure 4 Performance and training time of different methods on small and large datasets

• Performance differences among these baselines are minimal on smaller datasets, how-
ever, models with more complex architectures, such as EHG, HGT, and HAN, exhibit a
distinct advantage over GAT and RGCN when applied to larger datasets.

In conclusion, EHG computation complexity is lower, its element-wise operations di-
rectly manipulate the features within each dimension of the nodes, allowing the model
to capture more localized and contextual information. In contrast, dot-product attention
tends to emphasize the overall relationships. Depending on the requirement to accen-
tuate either the global graph structure or localized details, the dot-product approach or
element-wise operations may be more suitable, respectively. EHG integrates both local and
global information, enhancing its overall performance. With an escalation in the number
of classes and the expansion of graph scale, there is a discernible decrease in NDCG and
MRR metrics, potentially due to oversmoothing—a well-known challenge in graph neural
networks. This downward trend could also be related to the heterogeneous graph dyscon-
nectivity in the OGBN-MAG and OAG-Venue datasets, which constrains the available
metapath options in HAN. However, EHG retains significant merit in revealing the im-
portance of metapaths and being applied to large-scale heterogeneous graphs.

5.5 Attention visualization and interpretability analysis
In EHG, the variation in weights WATT

𝝓(e) across different attention heads within each layer
provides insight into the influence exerted by diverse edge types. Figure 5 shows the heat
map of the average attention matrix for each edge type in the final layer. We observe a
highly discrete distribution rather than clustering, which indicates that our model demon-
strates strong generalization and effectively captures global contextual information.

Furthermore, scaling tensors R⟨ϕ(e),k⟩ are automatically learned, revealing which metare-
lations are important. By visualizing the average score of R⟨ϕ(e),k⟩ in each layer, we can infer
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Figure 5 Averaging attention heat map for each edge type in ACM

Figure 6 Metarelation score visualization across different layers

that EHG tends to implicitly learn to construct important metapaths. For example, in the
ACM dataset, the ‘Papers-Cited-Papers’ and ‘Author-Writes-Papers’ paths have a greater
impact on the downstream node-classification task, as shown in Fig. 6.

6 Discussion and conclusion
In this study, we present EHG, an efficient heterogeneous graph neural network model.
It reduces training time while maintaining robust multiclass classification performance.
This improvement is primarily due to a nearly 25% reduction in parameter size, resulting
from the simplification of the V-linear transformation and message passing. During the
computation of query–key interactions in each attention head, element-wise operations
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show a slight efficiency enhancement over the dot product, enabling the EHG model to
capture both local and global contextual relationships effectively.

Further solidifying the capabilities of the EHG model, we conducted a thorough analysis
and visualization of the attention matrices corresponding to various edge types and the
scaling scores associated with metarelations. The experiment results show that EHG is
capable of revealing the diversity of node and edge types within heterogeneous graphs. It
adeptly establishes implicit metarelations replete with semantic information, and achieves
strong generalization. Importantly, the EHG model stands out in its ability to generate
node embeddings for vast knowledge graphs, including those in the biomedical domain
[27]—biomedical graphs being quintessential heterogeneous graphs [19]. The insights
gleaned from EHG regarding node classification and predictions are expected to signifi-
cantly deepen our comprehension of intricate biological systems. Additionally, our find-
ings indicate that EHG is more effective in connected graphs as opposed to disconnected
ones, a testament to the pivotal role connectivity plays in distilling meaningful semantic
insights. These observations will guide our future research direction.
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9. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph Attention Networks (2018). http://arxiv.
org/abs/1710.10903

https://doi.org/10.14778/3402707.3402736
https://arxiv.org/abs/1610.09769
https://doi.org/10.1109/TKDE.2020.2981333
https://doi.org/10.1109/TKDE.2020.2981333
http://arxiv.org/abs/1710.10903
http://arxiv.org/abs/1710.10903


Wang et al. Advances in Continuous and Discrete Models         (2025) 2025:28 Page 18 of 18

10. Wang, X., Ji, H., Shi, C., Wang, B., Ye, Y., Cui, P., Yu, P.S.: Heterogeneous graph attention network. In: The World Wide
Web Conference, pp. 2022–2032. Assoc. Comput. Mach., New York (2019)

11. Zhang, C., Song, D., Huang, C., Swami, A., Chawla, N.V.: Heterogeneous graph neural network. In: Proceedings of the
25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 793–803. Assoc. Comput.
Mach., New York (2019)

12. Hu, Z., Dong, Y., Wang, K., Sun, Y.: Heterogeneous graph transformer. In: Proceedings of the Web Conference 2020,
pp. 2704–2710. Assoc. Comput. Mach., New York (2020)

13. Hamilton, W.L., Ying, R., Leskovec, J.: Inductive representation learning on large graphs. In: Proceedings of the 31st
International Conference on Neural Information Processing Systems, pp. 1025–1035. Curran Associates, Red Hook
(2017)

14. Chen, J., Ma, T., Xiao, C.: FastGCN: fast learning with graph convolutional networks via importance sampling. In: 6th
International Conference on Learning Representations, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018,
Conference Track Proceedings (2018). OpenReview.net

15. Wang, S., Li, B.Z., Khabsa, M., Fang, H., Ma, H.: Linformer: Self-Attention with Linear Complexity. CoRR. (2020). arXiv:
2006.04768

16. Mehta, S., Rastegari, M.: Separable Self-attention for Mobile Vision Transformers (2022). http://arxiv.org/abs/2206.
02680

17. Shaker, A., Maaz, M., Rasheed, H., Khan, S., Yang, M.-H., Khan, F.S.: SwiftFormer: Efficient Additive Attention for
Transformer-based Real-time Mobile Vision Applications (2023). http://arxiv.org/abs/2303.15446

18. Wu, Q., Yang, C., Zhao, W., He, Y., Wipf, D., Yan, J.: DIFFormer: Scalable (Graph) Transformers Induced by Energy
Constrained Diffusion (2023). http://arxiv.org/abs/2301.09474

19. Yao, J., Sun, W., Jian, Z., Wu, Q., Wang, X.: Effective knowledge graph embeddings based on multidirectional semantics
relations for polypharmacy side effects prediction. Bioinformatics 38, 2315–2322 (2022). https://doi.org/10.1093/
bioinformatics/btac094

20. Maas, A.L., Hannun, A.Y., Ng, A.Y.: Rectifier nonlinearities improve neural network acoustic models. In: Proceedings of
the 30th International Conference on Machine Learning, vol. 28, pp. 3 (2013). References - Scientific Research
Publishing. https://www.scirp.org/reference/referencespapers?referenceid=2747334

21. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you
need. In: Advances in Neural Information Processing Systems. Curran Associates, Red Hook (2017)

22. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer
Vision and Pattern Recognition, CVPR 2016, Las Vegas, NV, USA, June 27-30, 2016, pp. 770–778. IEEE Comput. Soc.,
New York (2016)

23. Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://ui.adsabs.harvard.edu/abs/
2016arXiv160608415H

24. Dwivedi, V.P., Bresson, X.: A Generalization of Transformer Networks to Graphs (2021). http://arxiv.org/abs/2012.09699
25. Hu, J., Hooi, B., He, B.: Efficient heterogeneous graph learning via random projection. IEEE Trans. Knowl. Data Eng.

36(12), 8093–8107 (2024). https://doi.org/10.1109/TKDE.2024.3434956
26. Schlichtkrull, M., Kipf, T.N., Bloem, P., van den Berg, R., Titov, I., Welling, M.: Modeling relational data with graph

convolutional networks. In: Gangemi, A., Navigli, R., Vidal, M.-E., Hitzler, P., Troncy, R., Hollink, L., Tordai, A., Alam, M.
(eds.) The Semantic Web, pp. 593–607. Springer, Cham (2018)

27. Su, X., Hu, P., You, Z.-H., Yu, P.S., Hu, L.: Dual-channel learning framework for drug-drug interaction prediction via
relation-aware heterogeneous graph transformer. In: Proceedings of the AAAI Conference on Artificial Intelligence,
vol. 38, pp. 249–256 (2024). https://doi.org/10.1609/aaai.v38i1.27777

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://arxiv.org/abs/2006.04768
https://arxiv.org/abs/2006.04768
http://arxiv.org/abs/2206.02680
http://arxiv.org/abs/2206.02680
http://arxiv.org/abs/2303.15446
http://arxiv.org/abs/2301.09474
https://doi.org/10.1093/bioinformatics/btac094
https://doi.org/10.1093/bioinformatics/btac094
https://www.scirp.org/reference/referencespapers?referenceid=2747334
https://ui.adsabs.harvard.edu/abs/2016arXiv160608415H
https://ui.adsabs.harvard.edu/abs/2016arXiv160608415H
http://arxiv.org/abs/2012.09699
https://doi.org/10.1109/TKDE.2024.3434956
https://doi.org/10.1609/aaai.v38i1.27777

	EHG: efficient heterogeneous graph transformer for multiclass node classification
	Abstract
	Keywords

	Introduction
	Preliminaries and related work
	Heterogeneous graph data mining
	Graph attention and graph transformer

	The proposed architecture
	Analysis and comparison with different self-attention modules
	Evaluation
	Datasets
	Baselines
	Experiment settings and results
	Performance and time-consumption analysis
	Attention visualization and interpretability analysis

	Discussion and conclusion
	References

