Wang et al. Advances in Continuous and Discrete Models (2025) 2025:28 Advances in Continuous

https://doi.org/10.1186/s13662-025-03885-0 .
P 9 and Discrete Models

RESEARCH Open Access

Check for
updates

EHG: efficient heterogeneous graph
transformer for multiclass node classification

Man Wang'"®, Shougiang Liu' and Zhen Deng?®’

“Correspondence:
wangman@scnu.edu.cn; Abstract
dengzhencn83@smu.edu.cn

1School of Artificial Intelligence Graph neural networks empowered by the Transformer’s self-attention mechanism

South China Normal University, have arisen as a preferred solution for many graph classification and prediction tasks.
Foshan, 528000, China Despite their efficacy, these networks are often hampered by their quadratic
2Neurology Department of Nanfang . | lexi dl del si hich ianif hall

Hospital, Southern Medical computational complexity and large model size, which pose significant challenges
University, Guangzhou, 510000, during graph training and inference. In this study, we present an innovative approach

China to heterogeneous graph transformation that adeptly navigates these limitations by

capturing the rich diversity and semantic depth of graphs with various node and
edge types. Our method, which streamlines the key-value interaction to a
straightforward linear layer operation, maintains the same level of ranking accuracy
while significantly reducing computational overhead and accelerating model
training. We introduce the "EHG"” model, a testament to our approach’s efficacy,
showcasing remarkable performance in multiclass node classification on
heterogeneous graphs. Our model’s evaluation on the DBLP, ACM, OGBN-MAG, and
OAG datasets reveals its superiority over existing heterogeneous graph models under
identical hyperparameter configurations. Notably, our model achieves a reduction of
approximately 25% in parameter count and nearly 20% savings in training time
compared to the leading heterogeneous graph-transformer models.

Keywords: Graph Neural Networks; Representation Learning; Graph Attention;
Heterogeneous Graph; Graph Analysis; Graph Transformer; Knowledge Graph

1 Introduction

In the real world, network architectures frequently manifest as large-scale heterogeneous
graphs, encompassing social networks, recommendation systems, academic graphs, and
knowledge graphs. These heterogeneous graphs are comprised of a diverse array of nodes
and edges, where (node-type, edge-type, node-type) triplets signify underlying semantic
relationships, also known as metarelations. A case in point is the triplet (“Author’, “writes’,
“Paper”) found within the Open Graph Benchmark — Microsoft Academic Graph (OGBN-
MAQG) [1], which articulates distinct semantic information and epitomizes the most suc-
cinct metapath.

Over the past decade, there has been a surge in research dedicated to the exploration
of heterogeneous graphs, with a particular emphasis on graph representation. Traditional
nondeep-learning methodologies, such as DeepWalk [2], metapath2vec [3], PathSim [4],
© The Author(s) 2025. Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives
4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format,
as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and
indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived
from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons

licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons
licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain

L]
@ Sprlnger permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/

4.0/.

https://doi.org/10.1186/s13662-025-03885-0
https://crossmark.crossref.org/dialog/?doi=10.1186/s13662-025-03885-0&domain=pdf
https://orcid.org/0009-0002-6556-7799
mailto:wangman@scnu.edu.cn
mailto:dengzhencn83@smu.edu.cn
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Wang et al. Advances in Continuous and Discrete Models (2025) 2025:28 Page 2 of 18

and ESim [5], predominantly focus on characterizing node features by measuring similar-
ities between nodes or extracting structural insights through the navigation of metapaths.
Conversely, deep-learning strategies leverage the principles of message passing and aggre-
gation [6] within Graph Neural Networks (GNNs) [7], integrating advanced techniques
like graph convolution, LSTM, attention mechanisms, and the Transformer. These have
culminated in the creation of diverse architectural frameworks, including GCN [8], GAT
[9], HAN [10], HetGNN [11], and HGT [12]. In the context of large-scale heterogeneous
graphs, the conventional approach of loading the entire graph into memory for batch pro-
cessing has been supplanted by more sophisticated subgraph sampling techniques. Inno-
vations such as HGSampling [12], GraphSAGE [13], and FastGCN [14] have emerged to
address these challenges. While Graph Neural Networks (GNNs) fortified with attention
mechanisms have demonstrated remarkable success across a spectrum of downstream
applications, they are not without their challenges, facing three issues:

Issue 1: They restrict their scope to n-hop local message passing among adjacent nodes
and edges by uniformly distributing weights across a single level, and concurrently ag-
gregate metapath semantic information on a different level, neglecting the broader global
context of the entire graph.

Issue 2: The performance of the model is critically tied to the efficacy of the customized
metapaths, which can lead to unstable or inadequate training process. Moreover, the se-
lection of an inappropriate metapath might trigger gradient vanishing as a result of the
recurrent cycles within the path.

Issue 3: The Graph Transformer’s matrix multiplication operations for the Q (query), K
(key), and V (value) matrices are computationally costly, often necessitating substantial
memory and computational resources, particularly during the model-training phase.

Drawing inspiration from the advances in Vision Transformers (ViTs), specifically
linear self-attention [15], separable self-attention [16], and efficient additive attention
[17], we have developed an efficient transformer-based architecture designed for node-
classification tasks within heterogeneous graphs. The essence of the separable self-
attention [15, 16] approach entails the computation of context scores relative to a latent
token. These scores are then used to reweight the input tokens and produce a context
vector that encodes global information. This adjustment results in reducing the com-
plexity of multiheaded self-attention (MHA) in transformers from O (nz) to O (n), with
n being the token count. In the realm of graph applications, input tokens can be viewed
as representations of nodes. To enhance inference efficiency, the separable self-attention
mechanism has supplanted the costly MHA dot product operations with simpler element-
wise summation and element-wise multiplication operations. Similarly, efficient additive
attention [17] introduces a hybrid model that maintains linear complexity, only focusing
on element-wise interactions between queries and keys with tunable attention weights,
rather than the traditional dot-product approach, thereby enhancing inference speed. In
our framework, the input tokens are interpreted as graph embeddings, with context scores
acting as global graph signals. On the one hand, we streamlined the interaction among Q
(query), K (key), and V (value) by dispensing with the value computation and incorporat-
ing a learnable triplet tensor to extract global graph context, transcending the limitations
of localized messaging. On the other hand, we employ element-wise operations to model
query-key interactions instead of dot products, enhancing both training and inference
speed.

Wang et al. Advances in Continuous and Discrete Models (2025) 2025:28 Page 3 0f 18

Table 1 Time-complexity analysis of GAT, MLP, HAN, HGT, and our approach EHG

Feature Projection Neighbor aggregation Semantic fusion Total
GAT 0 (nd?) O (ed) / O (nd* + ed)
MLP 0(nd?) / 0(nd?)
GCN 0 (nd?) 0(ne?) / O (nd” + ne?)
HAN 0 (nd?) O (nkemd) O (nd?k) O (nd?k + ndey,)
HGT 0(nd?) O(ne;d) O(neid) O(n’de? + nd?)
EHG 0 (nd?) O(ned) o(1) O (nd? + ndey)

Our approach, termed EHG, markedly reduces the time complexity on heterogeneous
graphs from O (n2) to O (n) [7, 18, 19], as delineated in Table 1. For the baseline models
presented below, we presume a single-layered structure with a single attention head. Here,
n represents the number of target-type nodes, d denotes the dimensions of both the input
and hidden vectors, e quantifies the graph’s edges, e; denotes the average number of one-
hop neighbors, and e, indicates the average number of neighbors within metapath graphs
on the HAN model, with k representing the total number of metapaths.

The EHG model not only significantly boosts the efficiency of model training and infer-
ence but also marginally enhances the ranking accuracy of classifying nodes within het-
erogeneous graphs. It adeptly learns and adjusts the significance of various metarelations
by substituting the V matrix with edge-type specific tensors. This innovation empowers
the model to generate node embeddings that more effectively encapsulate the intricate
global context and semantic richness inherent in heterogeneous graphs. After that, the
model can be fine tuned to produce accurate node embeddings through backpropagation,
customized to meet the specific demands of various downstream tasks.

The key contributions of our work are as follows:

e Through an indepth analysis of self-attention mechanisms within heterogeneous
graphs, we have uncovered crucial insights. These insights not only highlight the redun-
dancy of the V matrix but also establish the efficacy of employing element-wise operations
for interactions between the Q and K matrices in graph transformers.

e Armed with these insights, we have developed the EHG model, which reduces the time
complexity from quadratic to linear. EHG innovatively leverages learnable semantic ten-
sors to autonomously generate metarelation importance scores and capture graph global
context information, eliminating the reliance on predefined metapaths.

e Our extensive experiments on four diverse and widely adopted datasets confirm EHG’s
superiority over existing state-of-the-art models. It achieves superior ranking accuracy
and expedites training, marking a significant advancement in the field.

2 Preliminaries and related work

In this section, we delve into the fundamental concepts and theoretical frameworks of
heterogeneous graphs, complemented by an overview of the latest advancements in het-
erogeneous graph neural networks. Subsequently, in the forthcoming section, we analyze
and highlight the differences between our approach and existing methodologies, explain-

ing why EHG outperforms them in the multiclass node-classification task.

2.1 Heterogeneous graph data mining

Definition 2.1 Heterogeneous graphs. A heterogeneous graph is a directed graph denoted
as G = (V,&, A, R), consists of a node set V and an edge set £, where each v € V is associ-
ated with a node-type mapping function t (v) : V — A and each e € £ is associated with

Wang et al. Advances in Continuous and Discrete Models (2025) 2025:28 Page 4 of 18

Field of
Study

Author writes Paper

b

Paper cites Paper
dffiliated_with

has_topic
Paper has_topic Field of Study
writes Author affilicated_with Institution
ites.

a) Graph schema b) Meta relations

Figure 1 The schema and metarelations of OGBN-MAG (Open Graph Benchmark — Microsoft Academic
Graph). As an example of a heterogeneous graph, the academic network OGBN-MAG exhibits two main
characteristics: a) the assignment of unique types to each node and edge, which together constitute the
graph’s schema; b) the one-hop edges that link source nodes to target nodes, embodying metarelations and
transmitting the semantic information of the graph

an edge-type mapping function ¢ (e) : £ — R. A and R denote the sets of predefined
node types and edge types, where | A| + |R| > 2.

Definition 2.2 Metarelation and Metapath. For an edge e = (s, t) linked from source node
s to target node s, its metarelation is denoted as (z (s), ¢ (e), T (£)). A metapath is defined
as a path that describes a composite metarelation between different nodes.

Example Asshown in Fig. 1, two papers can be linked via the metarelation “Papers-Cites-
Papers’, while authors and fields of study are connected through the metapath “Authors-
Writes-Papers-has_topic-Fields of Study” Different metapaths capture distinct semantic

meanings and uncover relationships between various nodes and edges.

2.2 Graph attention and graph transformer

The Graph Attention Networks (GATs) integrate an attention mechanism into the frame-
work of Graph Convolutional Networks (GCNs), endowing nodes with the capability to
selectively aggregate information from neighboring nodes. In essence, the features of each
neighbor are processed via a shared, learnable matrix, followed by a normalization step
that yields unique attention scores. These scores are then multiplied with the target node’s
features from the previous layer, thereby aggregating its representation at the current level.
To elucidate this concept, we will initially explore the scenario of single-head attention:

I+1 l l
B =0 (Y afwOnd),)
JEN()

where h;m) represents the embedding of node i in the / + 1 layer, while N (i) means all the

neighbor nodes of node i. af-jl) is the attention score between node i and its neighboring
nodej after normalization. To obtain the normalized attention score ag) , GAT [9] compute

them across all choices of j using the Softmax function:

m('/l) = Softmaxjen <L€aknglM (a(l) (W(I)h’@ I WU)h}h))) ’ ®

Wang et al. Advances in Continuous and Discrete Models (2025) 2025:28 Page 5 of 18

Here, a¥) is a learnable vector, and W is a learnable matrix. Softmax normalization is
applied to each node pair after the concatenation operation and LeakyReLU [20] activa-
tion. || is the contraction operation. In the original GAT paper, W and a¥ actually share
the same weights across all layers.

In multihead attention calculation, K represents the number of attention heads, and k
refers to the kth attention head. the output features of each attention head are concate-
nated after nonlinear activation before reaching the final prediction layer:

1) K ki (I-1
n =l o | D adwknY). (3)
JEN()

Next, all the neighbor node embeddings are summed up via attention transformation,
averaged by the number of attention heads, and then a nonlinear activation is applied in
the last layer for downstream classification task:

K
1
I i
WV eo [2303 dwhi?). @
k=1 jeN(i)

The aforementioned equations succinctly delineate the three pivotal stages inherent in
graph-attention mechanisms: initially, the computation of the attention score al(,/l) for each
pair of neighboring nodes; subsequently, the aggregation of attention scores and neigh-
boring node embeddings; and ultimately, the activation of an aggregated message from the
previous stage. GATs predominantly consider the structural information of graphs, often
neglecting the influences emanating from different node and edge types. It can engen-
der substantial redundant computation, especially in graphs where neighborhoods often
highly overlap. Consequently, while GATs excel in node-classification tasks within homo-
geneous graphs, they often fall short in adequately capturing the semantic information in
heterogeneous graphs.

In order to integrate semantic information, the heterogeneous graph attention network
(HAN) [10] introduces a metapath-based hierarchical model. This model learns node-
level and semantic-level attention in two separate phases. Nevertheless, the selection of
metapaths is a manual process, and improper selection may adversely affect the classifi-
cation outcomes. Moreover, the model’s complexity is linear to the number of metapaths;
consequently, an increase in metapaths leads to a substantial rise in training time.

Heterogeneous Graph Transformer (HGT) [12], inspired by the architecture design of
Transformer [21], avoids the need for customized metapaths and being scalable to Web-
scale graphs. It projects the target node into a Query vector and source node into a Key
vector, with their dot product being utilized to compute attention. HGT introduces ma-
trices that cater to diverse edge types and employs adaptive scaling tensors tailored for
metarelations, empowering the model to autonomously learn and dynamically adjust the
attention importance of various edge and node types.

For MHA calculation, source node s and target node ¢ are connected by a directed edge
e, each source—target node pair is normalized to obtain the attention score before aggre-
gation as shown in equations (5) and (6):

Attention (s, e, t) = Softmaxvsen((||Ik<:1ATT — head" (s,e, t)) (5)

Wang et al. Advances in Continuous and Discrete Models (2025) 2025:28 Page 6 of 18

ATT - head" (s,e,t) = (K* (s Wiig Q“ (1)) - M<r<s>j<§>,r<:>> ©)
Kf(s)=K - Linear* © (hgl)) @)
Q" (t) = Q- LinearX,, (h;l)) , (8)

where 7 () represents the node type, and ¢ (+) represents the edge type. K* (s) and Q (¢)
denote the kth head key and query vectors after linear transformation. The functions
Q- Linearf(t) and K — Linear’;(s) are linear projections R — R%, where % is the vector
dimension per head. Unlike the direct dot product between Q vectors and K vectors in a
vanilla transformer, HGT introduces a distinct ng) € RE*% matrix for each edge type,
accounting for the influence of different edge types, and providing more accurate seman-
tic information from various node and edge types. Additionally, since each metarelations
contributes differently to the target node, a tensor fi(z(s) ()t is introduced to further
scale the attention.

For message passing, HGT calculates a pair of nodes multihead message information as

follows:
Message ., =llt.1 V¥ (s) Wit ©)
vk () =V- Linearf(s) (hil)) . (10)

A source node s of t (s)-type is projected into the kth message vector with a linear pro-
jection V — Linear® © " RY — Rf to generate the V vectors. Subsequently, the matrix Wg'(se?
is applied to incorporate the edge dependency. After contracting all message heads, each
node pair Message, , , is formed.

The final step involves aggregating the previous calculated attention and message infor-
mation, then mapping the vector of node ¢ into its type-specific distribution using projec-
tion A — Linear.), followed by a residual connection [22]. Each node embedding 1P can
then be fed into various models to conduct downstream heterogeneous network tasks,

such as node classification and link prediction:

hgl) = OvseN(r) (Attention (s,e,t) - Message (s, e, t)) (11)

h?) = A — Linear, (U <W>) + hﬁl_l). (12)

Both HGT and HAN outperform GAT in node-classification tasks on heterogeneous
graphs, with HGT having a particular advantage in handling more complex and large-

scale heterogeneous graphs.

3 The proposed architecture

Recent studies have confirmed the efficacy of attention mechanisms in addressing a spec-
trum of challenges in graph-node classification and link prediction. Typical graph trans-
formers encode relevance scores for the contextual information of input features, rely-
ing on the interactions among the trio of attention components (Q, K, V). However, this
approach exacts a high computational toll, with complexity increasing significantly, es-
pecially when dealing with large heterogeneous graphs and complex metarelations that

Wang et al. Advances in Continuous and Discrete Models (2025) 2025:28 Page 7 of 18

n-Layers

' |
| |
Residual Connection- T > T
1 1
Jobal c i |
context i H
i rarget nod i v
J— ! imemedateoupu |
'
|

1 | Target node
v output

1 | embedding
'

@— | Targetnode | }
input + Q-Linear(Lid) > i
embedding | 1 sy
I3 ! :
edge type:e_id 1
; | @
H
)t Watt(e_id)

-
'
1
Source node | }
input 1> K-Linear(s_id)

embedding | 1

1 Stage Liattention calculation

Heterogeneous
Sub-Graph

® dot product @mmom-wmnmlnpnmunn @ 1

Figure 2 The Overall Architecture of an Efficient Heterogeneous Graph Transformer. A heterogeneous
subgraph is sampled with target node and its source nodes, where each node or edge is tagged with its
corresponding type identifier before being sent to the type-specific linear layer. The subsequent operations
are orchestrated as follows: 1) The computation of attention scores based on the Q (Query) and K (Key)
matrices, 2) The multiplication of context messages to facilitate message passing, and 3) The aggregation of
the vectors from each target—source pair into one, which is subsequently activated and sent to the next layer

involve numerous node and edge types. Research on efficient adaptive attention [11] has
shown that the removal of key—value interactions does not compromise performance; in-
stead, a focused and effective encoding of query—key interactions, incorporated by a linear
projection layer, is sufficient to learn the interrelationships among embeddings. Therefore,
we integrate an adaptive mechanism into heterogeneous graphs, as depicted in Fig. 2,
which consists of three stages: attention calculation, message passing, and information
aggregation.

First, to calculate the source—target node pair attention, we use a simplified metarelation
scale-learnable tensor R4 k), which is initialized as a tensor of ones for each edge type
per attention head. Additionally, we introduce a global query tensor gg. to scale the query
matrix across each dimension. To simplify the explanation, we treat the Key vector of
source node s after linear projection and reshaping to R % asthe K matrix, and the Query
vector of target node ¢ after linear projection and reshaping to R %% as the Q matrix,
respectively. Next, the key matrix K is multiplied by WQZ), followed by an element-wise
addition, multiplication or dot product with the Q matrix. The result is then multiplied by
Ri¢(e),4)» which adjusts the attention scores according to specific edge type. The changes
during training of Ry« reveal the edge-type importance and implicit global semantic
information. Under certain conditions, we have observed that element-wise operations on
the Q and K matrices outperform dot product. Equation (13), (14), (15), and (16) illustrate
the complete mathematical attention calculation process:

Rige
ATT - headgr-gum (s.¢,0) = (KWATT + Qgy)) ~ 220 (13)
Vd
Rige
ATT — headgu-mu (5,¢,t) = (KW © Qqgq,) =2 (14)
Vd
R
ATT — headEHg,d,,t (S, e, t) = (I(sz.) © Qq¢(.)) GO (15)

Vd

Attentiongug (s, e, t) = Softmaxysen (ATT — headruc (s,e,t)) . (16)

Wang et al. Advances in Continuous and Discrete Models (2025) 2025:28 Page 8 of 18

Second, we entirely remove the V-liner layer and edge-type specific matrix Wg'(sg from

the original HGT. Instead, we directly use Q from the attention stage, rather than V, as
the context message. Q serves as the target-node value the model is searching for, which is
added to the attention output after applying Softmax function. The rationale behind this
approach is that Q already integrates information from target-node type, while the atten-
tion calculation has already combined the source-node type and edge-node type. By doing
so, shared weights are strengthened from the perspective of the graph’s global metarela-
tions and global query embeddings, rather than being limited to local query—key—value
interactions. This retains the benefits of the self-attention mechanism and allows us to
capture information from heterogeneous edges and node types. Take the EHG-sum ap-
proach for instance:

h® = @usene <Q + Softmaxysen(s ((ng{; +Q) %)) . (17)
Third, we apply a linear transformation A — Linear,) layer to the query—key interactions
to learn the hidden representation of the nodes. We use the GELU (Gaussian Error Linear
Unit) [23] activation function because it outperforms RELU in transformer models by
better fitting the data distribution. The final output embedding vector of the target node
can be described as (18). For downstream tasks like the node classification, it is used to
generate prediction results:

hgl) =A - Linear, (Gelu (E)) + hgl_l). (18)

Compared to HGT, our proposed method directly uses the global query Q matrix de-
rived from the attention phase as the message for passing, instead of introducing an addi-
tional learnable V matrix. This streamlined strategy achieves a dual objective: it minimizes
the number of parameters and bolsters computational efficiency. The embeddings for the
target nodes are generated through the aggregation of attention scores and messages from
all associated source nodes. These refined node embeddings can subsequently be deployed
in a variety of downstream applications, including node classification and link prediction.
Algorithm 1 provides a comprehensive breakdown of the EHG’s overall process.

4 Analysis and comparison with different self-attention modules

In this section, we analyze the relationship between vision transformers and graph trans-
formers, and explain why EHG maintains efficiency on heterogeneous graphs by stream-
lining the V' matrix and employing element-wise operations exclusively for interactions
between the Q and K matrices.

The attention mechanism has quadratic complexity due to the dot-product operation
between the Q and K matrices, followed by a Softmax normalization for each token. In the
original transformer model developed for the Natural Language Processing (NLP) domain
[21], each word in a sequence of # words must attend to every other word to understand
its context, resulting in # x n pairwise interactions. Positional encoding further enables
the transformer model to capture both local and global positional relationships within the
sequence.

Vision transformers (ViTs), which are built on self-attention mechanisms, can effec-
tively model interactions between input tokens and have demonstrated remarkable suc-
cess across various vision tasks. Although ViTs outperform convolutional neural networks

Wang et al. Advances in Continuous and Discrete Models (2025) 2025:28 Page 9 of 18

Algorithm 1 The overall process of EHG

Input: The heterogeneous graph G = (V, E, A, R); the node-type numbers |A|; the
edge-type numbers |R|; the node features {/;, Vi € V}; the number of attention heads K;
output feature dimension d.

Parameters: Feature projection linear layers: K — Linear® o Q- Linear® (- and

A - Linear® (> global query tensor gy.,; edge-type-based matrix Wj(T)T; edge-type-based
scale-learnable tensor Rs(.) k-

Output: The final embeddings {Z;,Vi € V}.

1: Initialize K, Q, A linear layers for each node type

2: Initialize tensor Ry« with shape (|R|, K, £)

3: Initialize tensor g4, with shape (|R| , %)

4: Initialize random and uniform matrix W for each head and each edge type with
shape (|R| K, %, %)

attention-score calculation

5: For each (source-node type, edge-node type, target node type) in G by edge type do:

6: Gubgraph <— G sampled by (source-node type, edge-node type, target-node type)
7: K matrix < K — Lineur’t‘(s). reshape (K, %)

8: Q matrix < Q - Linear’;(t). reshape (1(, %)

9: K matrix < Ko W,lT

10: Q matrix <~ Q X gg(,

11: attention_score <— Q © K x Rg(. k) / \/%

12: attention_score <— Softmax attention_score by subgraph edge type

message passing

13: For each edge type do:

14: Message M from edges that point to target node ¢ <— Q+ attention_score
15: update target node feature /1, by mean value of M

information aggregation

16: For each node type do:

17: < A - Linear’ , (t)

18: Concatenate the learned node features from all attention heads

19: Apply activation function GELU and transfer out to next level until the end of
forward propagation

20: Calculate Crossentropy

21: Back propagation and update parameters in EHG

22: return the output presentation of nodes

(CNNs) in capturing global features, deploying them on resource-constrained mobile de-
vices for real-time applications remains challenging due to their quadratic complexity.
This challenge has led to the development of efficient alternatives, such as linear self-
attention [15], separable self-attention [16], and efficient additive attention [17].

Graph transformers, which closely follow the original transformer architecture [21], take
as input a graph with nodes and edges representing relationships between the nodes [24].
However, similar to ViTs, they encounter efficiency challenges, particularly when handling
large-scale, complex heterogeneous graphs. During the preprocessed graph loading phase
and local neighbor message-passing phase, these challenges often result in out-of-memory

Wang et al. Advances in Continuous and Discrete Models (2025) 2025:28 Page 10 of 18

(OOM) issues or excessively long processing times [25]. Here, we conduct a comprehen-
sive analysis and comparison of our proposed method with several transformer models, as
well as the Heterogeneous Graph Transformer (HGT) model, to highlight its advantages
and efficacy as shown in Fig. 3:

Our EHG model is based on the recently introduced Effective Additive Attention mech-
anism, which produces more robust contextual representations, as demonstrated by its
performance on computer vision tasks. We combine this mechanism with the HGT model
to effectively represent heterogeneous graph nodes. Since graph features tend to become
smooth through global node-type and edge-type aggregation at the subgraph level, encod-
ing query—key interactions by incorporating a linear projection layer—without the need
for value—matrix interactions—is sufficient to capture the relationship between target-
node features and source-node features. Furthermore, we introduce learnable global query
vectors, denoted as g4(.), to fine tune node features by dividing the feature dimension by
the number of attention heads. These global query vectors also capture global edge-type
features, which help produce the global query matrix and extract global node features.

In summary, the EHG model is carefully designed to efficiently encode both local and
global representations in the attention calculation, and then propagate the normalized
message through one-hop metarelations. This design enables EHG to achieve both effi-
ciency and effectiveness in handling complex heterogeneous graphs.

5 Evaluation

5.1 Datasets

We employ four datasets of varying sizes to perform node-classification tasks. The statis-
tics for each dataset are listed in Table 2. The DBLP dataset contains 26,128 nodes and
239,566 edges, with authors labeled into 4 categories. The ACM dataset includes 30,003
nodes and 160,686 edges, where papers are classified based on the conference they were
published in, resulting in 14 classes. The OGBN-MAG dataset consists of 1,939,743 nodes
and 21,111,007 edges, with papers labeled according to their venue, which results in 349
classes. The OAG-Venue dataset contains 1,116,162 nodes and 13,985,692 edges, where
papers are also labeled based on their venue, classifying them into 2506 classes. It is impor-
tant to note that DBLP and ACM are connected heterogeneous graphs, while OGB-MAG
and OAG-Venue are not. A connected heterogeneous graph means that each edge has
a corresponding reverse edge, ensuring that any node is reachable from any other node.
Among these datasets, DBLP and ACM are small heterogeneous graphs, while OGBN-
MAG and OAG-Venue are large heterogeneous graphs.

5.2 Baselines
We compare the proposed EHG with a suite of established heterogeneous graph neural
network-based approaches baselines, such as GAT, MLP, RGCN, HAN, and HGT, to ver-
ify its effectiveness. The EHG model is further delineated into EHG-sum, EHG-mul, and
EHG-dot, which correspond to the application of element-wise addition, element-wise
multiplication, and dot product in the attention-head calculation, respectively, as delin-
eated in Equations (13), (14), and (15).
Graph Attention Networks (GAT) [9], which adopt multihead additive attention on
neighbors and assigns different importances to nodes of the same neighborhood.
Relational Graph Convolutional Networks (RGCN) [26], which simply average the
neighbor’s embedding followed by linear projection.

Wang et al. Advances in Continuous and Discrete Models

(2025) 2025:28

(c) Efficient Additive Attention

v
(@) Vanilla Self-attention (b) Separable Self-attention =2
Ky

1 ¥ e

| | Eem

v v v v L]

[Linear | [Linear | [Linear | [Linear |
Ky v, K v é

Global
Context
nxd

EEE-
EEE~
UL
EEN-
mEE-
LL LK

DOE
[[
EEE

a

Transpos
ranspose nx

nxd Context Global queries
scores 1xd
nx1
2 O, —aaE s
nxn Py Contextvector 2

1xd

(d) Heterogeneous Graph Transformer (HGT)
(e) Efficient Heterogeneous Graph Self-attention (EHG)

Iterate sub graph for each meta relation

v ! v
he {hs}
v
— Linear, iq| Linear, iq|
Q. Kl Vy rv‘lf'm\
12k 12 Tk 12 k S0 0 amxan
HE i exan HE B} i B8 B kxam EE ®
HE-E EE-E oE-E Edge type
HE B EE E HE = weights
kxd/k
l w)'id

ol
T
Edge relation weights
d/fkex dfk

]
N u
N

Edge message weights
dfkxd/k

Global query
+) EHG-sum
kxk/d

Wi Global contextvalue

[T
e R
1

Attention value

EE
CE [kxdfk !
H W

T80 0 kx1

Scale by edge type
tensor Rig ()

Scale by edge-type

tensor Rig() k)

@ Softmax @ Dot product @ Element-wise multiplication @ Element-wise summation

Figure 3 Comparison with different transformer models. (a) is the typical transformer self-attention module.
(b) is the separable self-attention that uses element-wise operations to compute the context vector from the
interactions of Q and K matrices. The context vector is then multiplied by the V matrix to produce the final
output. () is efficient additive self-attention where the query matrix is multiplied by learnable weights and
pooled to produce global queries. Then, the matrix K is element-wise multiplied by the broadcasted global
queries to generate the global context representation. (d) The HGT self-attention module projects the
d-dimension node features into k-head Q, K, and V matrices. The K matrix is then multiplied by
edge-type-specific tensor weights and then dot product with the Q matrix to compute attention scores for
each node pair. After applying Softmax normalization, these scores are used to weight the contributions of
each edge pointing to the target node t. Finally, the V matrices of source nodes are aggregated to compute
the output representation for node t. (e) The proposed EHG self-attention mechanism operates differently.
The query matrix is first multiplied by learnable edge-type weights gg,.) and pooled to generate a global
query matrix. The matrix K is then element-wise calculated with the broadcasted global query matrix to
produce a global context matrix. Messages from source nodes are integrated into this global context matrix,
which is subsequently added directly to the query matrix to construct the representation of the target node t

Heterogeneous Graph Attention Networks (HAN) [10] design hierarchical attentions to

aggregate neighbor information via different metapaths.

Page 11 of 18

Wang et al. Advances in Continuous and Discrete Models (2025) 2025:28 Page 12 of 18

Table 2 Summary of the datasets used in our experiment

Dataset DBLP ACM OGBN-MAG OAG-Venue
#nodes 26,128 30,003 1,939,743 1,116,162
*edges 239,566 160,686 21,111,007 13,985,692
edge types 6 6 8 15

node types 4 3 4 5

target type #author #paper #paper #paper
classes 4 14 349 3506

Heterogeneous Graph Transformer (HGT) [5] introduces a node-type and edge-type
dependent attention mechanism. Its transformer convolution architecture can incorpo-
rate information from high-order neighbors of different types through message passing
across layers.

5.3 Experiment settings and results

We used a single NVIDIA RTX 3090 GPU with 24 GB of VRAM for training on the DBLP
and ACM datasets, a single NVIDIA A800 GPU with 80 GB of VRAM for training on the
OGBN-MAG and OAG-Venue datasets. The ratio of the training, validation, and test sets
was set to 6:2:2. For ACM and DBLP, the input dimension was set to 256, with 16 attention
heads and 4 layers. Due to memory constraints per epoch for larger graphs, the input
dimension for OGBN-MAG and OAG-Venue were set to 128, with 4 attention heads and
2 layers. The input features we used were not pretrained but rather randomly generated
vectors, which theoretically should better represent the actual performance learned by
the model itself. For parameter setting, in order to compare performance fairly among
these models, we set all the hyperparameters with the same learning rate, steps, and Adam

optimizer.

5.4 Performance and time-consumption analysis

The performance of our approaches and baselines are shown in Table 3 and Table 4. In
Table 3, we observed Accuracy, Macro-F1, Micro-F1, NDCG, and MRR metrics. Table 4
provides time-consumption metrics, such as model size, inference latency on GPU (in
milliseconds), inference latency on CPU (in milliseconds), and training time (in seconds)
across datasets of varying sizes. Fig. 4 shows the accuracy and NDCG scores relative to
the average time consumption per training epoch for these models. All model parameter
sizes on different datasets are computed under consistent configurations of input-feature
dimensions, network layers, and attention head settings. The results for our model variant
are highlighted in bold. Given the high variance often observed in graph-structured data,
we repeat the experiments 10 times and report the average values of the metrics. Based
on these results, we draw the following conclusions:

e EHG demonstrates superior overall effectiveness across all baselines and datasets,
regardless of graph size. It also effectively balances time constraints with model perfor-
mance, achieving an optimal tradeoff in terms of cost-effectiveness. Compared to HGT,
EHG reduces the number of parameters by approximately 25% and decreases training
time by around 20%, without compromising the accuracy of model rankings. These im-
provements are largely attributed to the removal of the value matrix (V) and the efficiency
gained from performing element-wise operations instead of dot products.

e While EHG-dot slightly outperforms EHG-sum in terms of accuracy, its training time
is longer due to the greater computational cost of the dot-product operation compared

Page 13 0of 18

(2025) 2025:28

Wang et al. Advances in Continuous and Discrete Models

[4x3°)1] 1989°0 655C0 /SE0 Se6v0 LS9t°0 se6v'0 91890 LvvL'0 [43 1] L6€6°0 [4343] 10p-D5H3
89¢90 6/90 L9T°0 789¢€°0 66/70 VA1 40) 66/70 75990 88¢/0 1560 8/16°0 1560 INW-H5H3
86¢90 91890 S99C°0 6£9€°0 610 85910 610 8¥89°0 S9vL0 0v6°0 S€6°0 0v6°0 wns-5H3
90€90 95890 IZ4%40] ¢SLED L1¥0 SEVY0 LLY0 8¢/90 €€L0 L1260 €9160 L1260 15H
11090 9/£90 L9110 /510 88/¥0 4040 88/70 81/90 6€€L0 GG88°0 LL[80 GG88°0 NVH

NOO WOO Pell'o ¢s1lo 8/8¢0 61¥¢0 8/8¢°0 €€650 5C590 [qrd 87160 clee0 NDSY
WNOO WOO 6eLL0 71SL0 £9¢10 ¢0€00 £9¢10 Lere0 718¢0 /980 6/580 /980 v
GECLO ¥65C0 €900 €1800 L1210 18¢00 L1210 1/8C0 6€C0 ¥56C°0 8500 560 dTN

ddN 001@9DAN dd SL@®ODAN L4-ODIN L4-01oe Aoeindoy dd S®9DAN L4-ODIN L4-010e N Aseindoy
SNUSA-HYO OVIN-NE50 WOV d1dd 19sereqd

$9ZIS BUlAIRA JO S195B1ED INOJ UO 9DUBWIONS] € d|geL

Wang et al. Advances in Continuous and Discrete Models (2025) 2025:28 Page 14 of 18

Table 4 Time Consumption on four datasets of varying sizes

Model Params (M) Training Time(s) CPU Latency (ms) GPU Latency (ms)
(a) DBLP Time Consumption

MLP 0.07 0.39 0.22 0.52
GAT 0.07 249 36 4.03
RGCN 0.10 33 436 5.03
HAN 040 28.65 29.87 41.98
HGT 1.23 30.39 292 30.71
EHG-sum 091 2046 26.78 27.64
EHG-mul 091 2177 27.69 29.17
EHG-dot 091 24.09 2898 29.14
(b) ACM Time Consumption

MLP 0.20 049 0.18 0.57
GAT 238 12.93 2122 22.09
RGCN 042 379 4.26 6.45
HAN 323 169.84 37.56 265.56
HGT 3.56 30.27 29.11 30.25
EHG-sum 267 22.82 3345 3257
EHG-mul 267 23.57 29.54 28.82
EHG-dot 267 2418 2732 29.71
(c) OGBN-MAG Time Consumption

MLP 0.11 3213 465.96 4299
GAT 0.25 1063.18 20,549.68 1244.66
RGCN 0.24 89.89 3052.63 17897
HAN 0.31 184.49 9650.65 164.86
HGT 0.71 1615.79 10,100.99 1776.06
EHG-sum 0.54 1396.21 8672.86 1801.28
EHG-mul 0.54 1403.19 8600.81 179748
EHG-dot 0.54 1439.01 866291 1755.44
(d) OAG-Venue Time Consumption

MLP 0.53 86.34 1158.65 37.96
GAT OOM OOM ooM ooM
RGCN OooM OooM OOM OOM
HAN 1.93 170.5 753297 256.76
HGT 144 739.6 10,609.21 1209.67
EHG-sum 1.16 606.97 10,512.85 1177.86
EHG-mul 1.16 615.57 10,474.49 11713
EHG-dot 1.16 615.84 10,440.39 1142.37

to the sum operation. However, no distinct improvement is observed in GPU inference
time or CPU inference time across the different EHG models. This phenomenon can be
attributed to the fact that GPU inference latency is heavily contingent upon the architec-
ture of the hardware platform. The high degree of parallelism inherent in GPU matrix
operations mitigates any significant variation in inference time.

e GAT, RGCN, and HAN can become inefficient when handling large datasets, often
encountering out-of-memory (OOM) issues and excessively long training times. This in-
efficiency arises primarily from the complexity of large graphs and the need to maintain
separate attention vectors for each edge at every layer. As the number of layers, edges, or
edge types increases, memory consumption grows significantly, resulting in OOM errors
during training.

e The performance and training time of HAN are strongly influenced by the selection of
metapaths. In the context of complex graphs, the disconnected nature of the graph limits
the availability of metapaths, resulting in reduced parameter efficiency and overall perfor-
mance on large datasets. In our experiment, only one metapath is available for training on
the OAG-Venue and OGBN-MAG datasets, which leads to insufficient training.

Wang et al. Advances in Continuous and Discrete Models (2025) 2025:28 Page 15 0f 18

DBLP ACM
100% — = . 8% tHg-dot
0% 9 9212% EHG-dot 92.17% 50% Aogs% HAN
80% Gar 94.329% AN =% “e Her
.32% 47.88%
70% g6.74% 88.55% 20% . RGCN 47.70%
g 60% z 38.78%
g
5 50% 5 30%
g 40% g
< <
30% @ MLP 20% GAT
9
0% - 2254% 109 @ P1367%
6
1% 12 77%
0% %
0 5 10 15 20 25 30 35 0 50 100 150 200
Training Time (s) Training Time (s)
OGBN-MAG OAG-Venue
40% o EHG-mul 80%
35% 3682% 70% TR ® -
30% ® 3150% 60% 63.76% EHG-dot ~ HGT
25% 50% 68.61% 68.56%
<] RGCN
8 20% 15.20% 8 40%
20%
= GAT =
15% HAN @ 30% MLP
15.77% 15.14% . 9
10% M 20% 25.94%
sy | 8.13% 10%
0% 0%
0 500 1000 1500 2000 0 100 200 300 400 500 600 700 800
Training Time (s) Training Time (s)
® MLP @®GAT RGCN HAN @HGT @ EHG-dot
Figure 4 Performance and training time of different methods on small and large datasets

e Performance differences among these baselines are minimal on smaller datasets, how-
ever, models with more complex architectures, such as EHG, HGT, and HAN, exhibit a
distinct advantage over GAT and RGCN when applied to larger datasets.

In conclusion, EHG computation complexity is lower, its element-wise operations di-
rectly manipulate the features within each dimension of the nodes, allowing the model
to capture more localized and contextual information. In contrast, dot-product attention
tends to emphasize the overall relationships. Depending on the requirement to accen-
tuate either the global graph structure or localized details, the dot-product approach or
element-wise operations may be more suitable, respectively. EHG integrates both local and
global information, enhancing its overall performance. With an escalation in the number
of classes and the expansion of graph scale, there is a discernible decrease in NDCG and
MRR metrics, potentially due to oversmoothing—a well-known challenge in graph neural
networks. This downward trend could also be related to the heterogeneous graph dyscon-
nectivity in the OGBN-MAG and OAG-Venue datasets, which constrains the available
metapath options in HAN. However, EHG retains significant merit in revealing the im-
portance of metapaths and being applied to large-scale heterogeneous graphs.

5.5 Attention visualization and interpretability analysis

In EHG, the variation in weights ng) across different attention heads within each layer

provides insight into the influence exerted by diverse edge types. Figure 5 shows the heat

map of the average attention matrix for each edge type in the final layer. We observe a

highly discrete distribution rather than clustering, which indicates that our model demon-

strates strong generalization and effectively captures global contextual information.
Furthermore, scaling tensors R4 () k) are automatically learned, revealing which metare-

lations are important. By visualizing the average score of R4 () x) in each layer, we can infer

Wang et al. Advances in Continuous and Discrete Models (2025) 2025:28

edge type 0 relation_att matrix edge type 1 relation_att matrix edge type 2 relation_att matrix

0015 0.015

0.010

0010 0.010
0.005
0.005 0.005
0.000
0.000 0.000

—o00s 01 I | .:l:‘.

"L
-0.010 .

-0.015

-0.005
~0.005

-0.010 12 0010

14
-0.015 -0.015

0.020
0.010 0.010

0.015

0.005
0.005 0.010

0.005
0.000 0.000

0.000

-0.005 ~0.005

-0.005

~0.010 —0.010 -0.010
14

~0.015

Figure 5 Averaging attention heat map for each edge type in ACM

meta-relation scale

layerl 0.999 0.999 0.999

layer2 1.027 1.012

layer3

layerd

Figure 6 Metarelation score visualization across different layers

that EHG tends to implicitly learn to construct important metapaths. For example, in the
ACM dataset, the ‘Papers-Cited-Papers’ and ‘Author-Writes-Papers’ paths have a greater

impact on the downstream node-classification task, as shown in Fig. 6.

6 Discussion and conclusion

In this study, we present EHG, an efficient heterogeneous graph neural network model.
It reduces training time while maintaining robust multiclass classification performance.
This improvement is primarily due to a nearly 25% reduction in parameter size, resulting
from the simplification of the V-linear transformation and message passing. During the

computation of query—key interactions in each attention head, element-wise operations

Page 16 of 18

Wang et al. Advances in Continuous and Discrete Models (2025) 2025:28 Page 17 of 18

show a slight efficiency enhancement over the dot product, enabling the EHG model to
capture both local and global contextual relationships effectively.

Further solidifying the capabilities of the EHG model, we conducted a thorough analysis
and visualization of the attention matrices corresponding to various edge types and the
scaling scores associated with metarelations. The experiment results show that EHG is
capable of revealing the diversity of node and edge types within heterogeneous graphs. It
adeptly establishes implicit metarelations replete with semantic information, and achieves
strong generalization. Importantly, the EHG model stands out in its ability to generate
node embeddings for vast knowledge graphs, including those in the biomedical domain
[27]—Dbiomedical graphs being quintessential heterogeneous graphs [19]. The insights
gleaned from EHG regarding node classification and predictions are expected to signifi-
cantly deepen our comprehension of intricate biological systems. Additionally, our find-
ings indicate that EHG is more effective in connected graphs as opposed to disconnected
ones, a testament to the pivotal role connectivity plays in distilling meaningful semantic
insights. These observations will guide our future research direction.

Acknowledgements
Not applicable.

Author contributions

Man Wang contributed to the conception and implementation of the study and wrote the manuscript. Shougiang Liu
contributed to reviewing and editing. Zhen Deng worked on reviewing and guiding. All of the authors read the
manuscript and approved the final manuscript.

Funding
This work is supported by the Basic and Applied Basic Research Foundation of Guangdong Province, China
(2022A1515012525); Basic and Applied Basic Research Foundation of Guangdong Province, China (2021A1515011027).

Data availability
The datasets used and analyzed during the current study are available from the corresponding author on reasonable
request.

Declarations

Competing interests
The authors declare that they have no competing interests.

Received: 9 October 2024 Accepted: 12 January 2025 Published online: 04 February 2025

References

1. Hu, W, Fey, M, Zitnik, M., Dong, Y, Ren, H., Liu, B, Catasta, M., Leskovec, J.: Open graph benchmark: datasets for
machine learning on graphs. In: Advances in Neural Information Processing Systems, pp. 22118-22133. Curran
Associates, Red Hook (2020)

2. Perozzi, B, Al-Rfou, R, Skiena, S.: DeepWalk: online learning of social representations. In: Proceedings of the 20th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 701-710. Assoc. Comput. Mach.,
New York (2014)

3. Dong, Y, Chawla, N.V, Swami, A metapath2vec: scalable representation learning for heterogeneous networks. In:
Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
pp. 135-144. Assoc. Comput. Mach., New York (2017)

4. Sun, Y, Han, J, Yan, X, Yu, PS, Wu, T.: PathSim: meta path-based top-K similarity search in heterogeneous information
networks. Proc. VLDB Endow. 4, 992-1003 (2011). https://doi.org/10.14778/3402707.3402736

5. Shang, J, Qu, M, Liu, J, Kaplan, LM, Han, J,, Peng, J.: Meta-Path Guided Embedding for Similarity Search in
Large-Scale Heterogeneous Information Networks. CoRR. (2016). arXiv:1610.09769

6. Defferrard, M., Bresson, X, Vandergheynst, P: Convolutional neural networks on graphs with fast localized spectral
filtering. In: Advances in Neural Information Processing Systems. Curran Associates, Red Hook (2016)

7. Zhang, Z, Cui, P, Zhu, W.: Deep learning on graphs: a survey. [EEE Trans. Knowl. Data Eng. 34, 249-270 (2022). https://
doi.org/10.1109/TKDE.2020.2981333

8. Kipf, TN., Welling, M.: Semi-supervised classification with graph convolutional networks. In: 5th International
Conference on Learning Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track Proceedings
(2017). OpenReview.net

9. Velickovi¢, P, Cucurull, G, Casanova, A, Romero, A, Lio, P, Bengio, Y:: Graph Attention Networks (2018). http://arxiv.
org/abs/1710.10903

https://doi.org/10.14778/3402707.3402736
https://arxiv.org/abs/1610.09769
https://doi.org/10.1109/TKDE.2020.2981333
https://doi.org/10.1109/TKDE.2020.2981333
http://arxiv.org/abs/1710.10903
http://arxiv.org/abs/1710.10903

Wang et al. Advances in Continuous and Discrete Models (2025) 2025:28 Page 18 of 18

20.

21.

22.

23.

24.
25.

26.

27.

Wang, X, Ji, H,, Shi, C, Wang, B, Ye, Y, Cui, P, Yu, PS.: Heterogeneous graph attention network. In: The World Wide
Web Conference, pp. 2022-2032. Assoc. Comput. Mach., New York (2019)

. Zhang, C, Song, D,, Huang, C,, Swami, A, Chawla, N.V.: Heterogeneous graph neural network. In: Proceedings of the

25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 793-803. Assoc. Comput.
Mach., New York (2019)

Hu, Z, Dong, Y, Wang, K., Sun, Y Heterogeneous graph transformer. In: Proceedings of the Web Conference 2020,
pp. 2704-2710. Assoc. Comput. Mach., New York (2020)

. Hamilton, W.L, Ying, R, Leskovec, J.: Inductive representation learning on large graphs. In: Proceedings of the 31st

International Conference on Neural Information Processing Systems, pp. 1025-1035. Curran Associates, Red Hook
(2017)

. Chen, J, Ma, T, Xiao, C.: FastGCN: fast learning with graph convolutional networks via importance sampling. In: 6th

International Conference on Learning Representations, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018,
Conference Track Proceedings (2018). OpenReview.net

. Wang, S, Li, B.Z, Khabsa, M., Fang, H., Ma, H.: Linformer: Self-Attention with Linear Complexity. CoRR. (2020). arXiv:

2006.04768

. Mehta, S, Rastegari, M.: Separable Self-attention for Mobile Vision Transformers (2022). http://arxiv.org/abs/2206.

02680

. Shaker, A, Maaz, M, Rasheed, H., Khan, S., Yang, M.-H., Khan, F.S.: SwiftFormer: Efficient Additive Attention for

Transformer-based Real-time Mobile Vision Applications (2023). http://arxiv.org/abs/2303.15446
Wu, Q, Yang, C, Zhao, W, He, Y., Wipf, D,, Yan, J.: DIFFormer: Scalable (Graph) Transformers Induced by Energy
Constrained Diffusion (2023). http://arxiv.org/abs/2301.09474

. Yao, J, Sun, W, Jian, Z,, Wu, Q, Wang, X.. Effective knowledge graph embeddings based on multidirectional semantics

relations for polypharmacy side effects prediction. Bioinformatics 38, 2315-2322 (2022). https://doi.org/10.1093/
bioinformatics/btac094

Maas, AL, Hannun, AY, Ng, A.Y.: Rectifier nonlinearities improve neural network acoustic models. In: Proceedings of
the 30th International Conference on Machine Learning, vol. 28, pp. 3 (2013). References - Scientific Research
Publishing. https://www.scirp.org/reference/referencespapers?referenceid=2747334

Vaswani, A, Shazeer, N., Parmar, N., Uszkoreit, J, Jones, L, Gomez, A.N,, Kaiser, £., Polosukhin, I.: Attention is all you
need. In: Advances in Neural Information Processing Systems. Curran Associates, Red Hook (2017)

He, K, Zhang, X, Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer
Vision and Pattern Recognition, CVPR 2016, Las Vegas, NV, USA, June 27-30, 2016, pp. 770-778. IEEE Comput. Soc,,
New York (2016)

Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://ui.adsabs.harvard.edu/abs/
2016arXiv160608415H

Dwivedi, V.P, Bresson, X.: A Generalization of Transformer Networks to Graphs (2021). http://arxiv.org/abs/2012.09699
Hu, J, Hooi, B, He, B. Efficient heterogeneous graph learning via random projection. IEEE Trans. Knowl. Data Eng.
36(12),8093-8107 (2024). https://doi.org/10.1109/TKDE.2024.3434956

Schlichtkrull, M., Kipf, TN., Bloem, P, van den Berg, R, Titov, |, Welling, M.: Modeling relational data with graph
convolutional networks. In: Gangemi, A, Navigli, R, Vidal, M.-E,, Hitzler, P, Troncy, R, Hollink, L., Tordai, A., Alam, M.
(eds.) The Semantic Web, pp. 593-607. Springer, Cham (2018)

Su, X, Hu, P, You, Z-H., Yu, PS,, Hu, L.: Dual-channel learning framework for drug-drug interaction prediction via
relation-aware heterogeneous graph transformer. In: Proceedings of the AAAI Conference on Artificial Intelligence,
vol. 38, pp. 249-256 (2024). https://doi.org/10.1609/aaai.v38i1.27777

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Submit your manuscript to a SpringerOpen®
journal and benefit from:

» Convenient online submission

» Rigorous peer review

» Open access: articles freely available online
» High visibility within the field

» Retaining the copyright to your article

Submit your next manuscript at » springeropen.com

https://arxiv.org/abs/2006.04768
https://arxiv.org/abs/2006.04768
http://arxiv.org/abs/2206.02680
http://arxiv.org/abs/2206.02680
http://arxiv.org/abs/2303.15446
http://arxiv.org/abs/2301.09474
https://doi.org/10.1093/bioinformatics/btac094
https://doi.org/10.1093/bioinformatics/btac094
https://www.scirp.org/reference/referencespapers?referenceid=2747334
https://ui.adsabs.harvard.edu/abs/2016arXiv160608415H
https://ui.adsabs.harvard.edu/abs/2016arXiv160608415H
http://arxiv.org/abs/2012.09699
https://doi.org/10.1109/TKDE.2024.3434956
https://doi.org/10.1609/aaai.v38i1.27777

	EHG: efficient heterogeneous graph transformer for multiclass node classification
	Abstract
	Keywords

	Introduction
	Preliminaries and related work
	Heterogeneous graph data mining
	Graph attention and graph transformer

	The proposed architecture
	Analysis and comparison with different self-attention modules
	Evaluation
	Datasets
	Baselines
	Experiment settings and results
	Performance and time-consumption analysis
	Attention visualization and interpretability analysis

	Discussion and conclusion
	References

