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Abstract
In the present paper we study the existence and stability problems of positive
periodic solutions to a Gilpin–Ayala competitive model with periodic coefficients on
time scales. Firstly, based on Schauder’s fixed theorem, some sufficient conditions for
the existence of positive periodic solution to the considered system are obtained.
Furthermore, we establish asymptotic behavior by using the existence of periodic
solutions. Since the considered system is based on an arbitrary time scale, our results
are applicable to both discrete and continuous scenarios. We provide a specific
example to verify the above results.
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1 Introduction
In 1973, Ayala, Gilpin and Eherenfeld [1] introduced the following competition population
model:

dU(t)
dt

= a1U(t)
[︃

1 –
(︃

U(t)
β1

)︃α1

– b12
V (t)
β2

]︃
,

dV (t)
dt

= a2V (t)
[︃

1 –
(︃

V (t)
β2

)︃α2

– b21
U(t)
β1

]︃
,

(1.1)

where U(t) and V (t) denote the population density at time t, a1 and a2 denote inherent
growth ratios, b12 and b21 denote the measures of competition between species, β1 and β2

represent the maximum number of species in a completely noncompetitive environment,
positive constants α1 and α2 can measure the degree of influence of nonlinear terms. Sys-
tem (1.1) is the so-called AG model which is a generalization of Lotka–Volterra system.
After that, many results for the AG model and its generalizations have been obtained.
Chen [2, 3] studied the permanence and extinction of nonautonomous GA competition
model with delays. In [4], the authors investigated the GA competitive model with the
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effect of a toxic substance as follows:

x′
1(t) = x1(t)[a1(t) – b1(t)xα1

1 (t) – c1(t)xα2
2 (t) – d1(t)xα1

1 (t)xα2
2 (t)],

x′
2(t) = x2(t)[a2(t) – b2(t)xα1

1 (t) – c2(t)xα2
2 (t) – d2(t)xα1

1 (t)xα2
2 (t)].

(1.2)

Based on a comparison theorem, some sufficient conditions for the extinction of system
(1.2) have been obtained. For attraction, persistence and extinction, see [5–8]; for existence
and stability, see [9, 10]; for the GA model with mixed delays and impulses, see [11–14].

In this article, we focus on the periodic solution problems of the AG model. Zhao [15]
studied global exponential stability of positive periodic solutions for a class of multiple-
species Gilpin–Ayala system with infinite distributed delays. Next, Zhao [16] further stud-
ied the following GA model with infinite distributed delays on time scales:

UΔ(t) = a1(t) – b11(t)[eU(t)]α1 – b12(t)
∫︂ 0

–∞
k1(s)eV (t+s)Δs – ϕ1(t)e–U(t),

V Δ(t) = a2(t) – b22(t)[eV (t)]α2 – b21(t)
∫︂ 0

–∞
k2(s)eU(t+s)Δs – ϕ2(t)e–V (t),

(1.3)

where t ∈ T which is a time sale and Δ is the delta (or Hilger) derivative. When T = R,
letting u(t) = eU(t) and v(t) = eV (t), the system (1.3) is changed into the following form:

u′(t) = u(t)
[︃

a1(t) – b11(t)[u(t)]α1 – b12(t)
∫︂ 0

–∞
k1(s)v(t + s)ds

]︃
– ϕ1(t),

v′(t) = v(t)
[︃

a2(t) – b22(t)[v(t)]α2 – b21(t)
∫︂ 0

–∞
k2(s)u(t + s)ds

]︃
– ϕ2(t).

(1.4)

We find that if the system (1.3) has a solution (U(t), V (t))T , then the system (1.4) has a
positive solution (eU(t), eV (t))T for t ∈ T. However, a positive periodic solution of the sys-
tem (1.4) is represented by e exponential functions, not general positive functions. In this
paper, we attempt to obtain the general form of a positive periodic solution for the system
(1.4) on time scales. Hence, we study the following periodic GA model on time scales:

uΔ(t) = a1(t)u(σ (t)) – b11(t)[u(t)]α1+1 – b12(t)u(t)
∫︂ 0

–∞
k1(s)v(t + s)Δs – ϕ1(t),

vΔ(t) = a2(t)v(σ (t)) – b22(t)[v(t)]α2+1 – b21(t)v(t)
∫︂ 0

–∞
k2(s)u(t + s)Δs – ϕ2(t),

(1.5)

where t ∈ T, which is a periodic time scale (see Definitions 2.1, 2.2), Δ is the delta (or
Hilger) derivative, u(t) and v(t) denote the population densities at time t, a1, a2 > 0 de-
note inherent growth ratios, bij > 0 (i, j = 1, 2) denote measures of interaction between
species, positive constants α1 and α2 can measure the degree of influence of nonlinear
terms, k1(t), k2(t) > 0 denote kernel functions corresponding to infinite distributed de-
lays, ϕ1(t), ϕ2(t) > 0 denote the measurement constants of nonlinear interference within
species. The time scale dynamical system includes continuous and discrete systems, and
its research has always been one of the hot topics in the study of differential dynamic sys-
tems, see [17–19].
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The main contributions of this paper are listed as follows:
(1) We first study the GA model on time scales and obtain the existence of positive

periodic solutions which have general forms which is different from corresponding results
in [15, 16].

(2) We develop Schauder’s fixed-point theorem for investigating differential systems on
time scales.

(3) This study enriches and develops the research on the GA model, which can promote
further research on the aforementioned system.

The remaining of the paper is organized as follows: Sect. 2 gives the preliminaries. In
Sect. 3, some sufficient conditions for the existence of positive periodic solution of the
system (1.5) are given. Section 4 gives asymptotic behavior of the system (1.5). In Sect. 5,
an example is provided to show theoretical results. Finally, we provide some conclusions.

2 Preliminaries
A time scale T is a nonempty closed subset of R. The specific meanings of the following
symbols can be found in the book [20]: the backward jump operator is ρ , the forward jump
operator is σ , regressive functions are denoted by R and positive regressive functions by
R+. The interval [x, y]T means [x, y] ∩ T. The intervals (x, y]T, (x, y)T, and [x, y)T are de-
fined similarly. Also Crd([a,∞)T) denotes the set of all rd-continuous functions on [a,∞)T.

For s, t ∈ T, the exponential function eδ(t, s) is defined by eδ(t, s) = exp

(︃∫︁ t
s ξμ(τ )(δ(τ ))Δτ

)︃
,

where

ξμ(τ )(δ(τ )) =

⎧⎨
⎩

1
μ(τ ) log(1 + μ(τ )δ(τ )), μ(τ ) > 0,

δ(τ ), μ(τ ) = 0.

Lemma 2.1 ([20]) Let ϕ,ψ ∈R. Then
[i] e0(t, s) ≡ 1 and eϕ(t, t) ≡ 1;

[ii] eϕ(ρ(t), s) = (1 – μ(t)ϕ(t))eϕ(t, s);
[iii] eϕ(t, s)eψ (t, s) = eϕ⊕ψ (t, s).
[iv] eϕ(t, s) = 1

eϕ (s,t) = e⊖ϕ(s, t);
[v] eϕ(t, s)eϕ(s, r) = eϕ(t, r).

Definition 2.1 ([21]) A time scale T is periodic if there exists ω > 0 such that for each
v ∈ T one has v ± ω ∈ T. For T ≠ R, the smallest such positive ω is the period of the time
scale.

Definition 2.2 ([21]) Let T ≠ R be a periodic time scale with period ω. A function f :
T → R is periodic with period μ if there exists a natural number n such that μ = nω and
f (v ± μ) = f (v) for each v ∈ T. When T = R, f is a periodic function if κ is the smallest
positive number such that f (v ± κ) = f (v) for each v ∈ T.

Lemma 2.2 (Schauder’s fixed point theorem [22]) Let Ξ be a convex, closed, and nonempty
subset of a Banach space B. Let Γ : Ξ → Ξ be a continuous mapping such that Γ(Ξ) is a
relatively compact subset of B. Then Γ has at least one fixed point in Ξ.
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3 Main results
Let

B = {z = (z1, z2)T : z1, z2 ∈ Crd(T,R), zi(t + ω) = zi(t), i = 1, 2}

with the norm ||z|| = supt∈T |z1(t)| + supt∈T |z2(t)|, where z ∈ B and T is a periodic time
scale. Under the above norm, B is a Banach space. For L1, L2 > 0, let

Pω(L1, L2) = {z = (u, v)T ∈ B : L1 ≤ u(t) ≤ L2, L1 ≤ v(t) ≤ L2, t ∈ T}.

Lemma 3.1 Let –a1, –a2 ∈R+, and z = (u, v)T ∈ Pω(L1, L2). The system (1.5) has a periodic
solution z = (u, v)T ∈ Pω(L1, L2) if only if

u(t) =
1

e⊖(–a1)(t, t – ω) – 1

∫︂ t

t–ω

[︃
b11(s)[u(s)]α1+1

+ b12(s)u(s)
∫︂ 0

–∞
k1(τ )v(s + τ )Δτ + ϕ1(s)

]︃
e⊖(–a1)(t, s)Δs,

v(t) =
1

e⊖(–a2)(t, t – ω) – 1

∫︂ t

t–ω

[︃
b22(s)[v(s)]α2+1

+ b21(s)v(s)
∫︂ 0

–∞
k2(τ )u(s + τ )Δτ + ϕ2(s)

]︃
e⊖(–a2)(t, s)Δs.

(3.1)

Proof Change the first equation of the system (1.5) into the following form:

uΔ(t) – a1(t)u(σ (t)) = –b11(t)[u(t)]α1+1 – b12(t)u(t)
∫︂ 0

–∞
k1(s)v(t + s)Δs – ϕ1(t). (3.2)

Multiplying both sides of (3.2) by e–a1 (t, 0) and integrating them from t – ω to t, we obtain

∫︂ t

t–ω

[e–a1 (s, 0)u(s)]ΔΔs =
∫︂ t

t–ω

[︃
b11(s)[u(s)]α1+1

+ b12(s)u(s)
∫︂ 0

–∞
k1(τ )v(s + τ )Δτ + ϕ1(s)

]︃
e–a1 (s, 0)Δs.

(3.3)

Dividing both sides of (3.3) by e–a1 (t, 0), we get

u(t) =
1

e⊖(–a1)(t, t – ω) – 1

∫︂ t

t–ω

[︃
b11(s)[u(s)]α1+1

+ b12(s)u(s)
∫︂ 0

–∞
k1(τ )v(s + τ )Δτ + ϕ1(s)

]︃
e⊖(–a1)(t, s)Δs.

Similar to the above proof, we obtain that the second equation of the system (3.1) holds.
The proof is completed. □
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Remark 3.1 We can verify that e⊖(–a1)(t, t – ω) and e⊖(–a2)(t, t – ω) do not depend on t. In
fact, from the definition of e⊖a(t, s), we have

e⊖(–a1)(t, t – ω) = exp

(︃∫︂ t

t–ω

log(1 + ⊖(–a1(s))μ(s))
μ(s)

Δs
)︃

= exp

(︃∫︂ 0

t–ω

log(1 + ⊖(–a1(s))μ(s))
μ(s)

Δs

+
∫︂ ω

0

log(1 + ⊖(–a1(s))μ(s))
μ(s)

Δs

+
∫︂ t

ω

log(1 + ⊖(–a1(s))μ(s))
μ(s)

Δs
)︃

.

Using the periodicity of a1 and μ, letting s = u – ω, we have

∫︂ 0

t–ω

log(1 + ⊖(–a1(s))μ(s))
μ(s)

Δs = –
∫︂ ω

t

log(1 + ⊖(–a1(u))μ(u))

μ(u)
Δu.

Thus,

e⊖(–a1)(t, t – ω) = exp
(︃∫︂ ω

0

log(1 + ⊖(–a1(s))μ(s))
μ(s)

Δs
)︃

.

We also obtain that e⊖(–a2)(t, t – ω) does not depend on t.

Remark 3.2 Using the periodicity of the function e⊖(–a1)(t, s) for s, t ∈ [0,ω]T, we can give
its bounds as follows:

e⊖(–a1)(t, s) = exp

(︃∫︂ t

s

log(1 + ⊖(–a1(u))μ(u))

μ(u)
Δu

)︃

= exp

(︃∫︂ t

s

log 1
1–a1(u)μ(u)

μ(u)
Δu

)︃
.

Thus,

λ1 := exp

(︃
–

∫︂ ω

0

log 1
1–a1(u)μ(u)

μ(u)
Δu

)︃
≤ e⊖(–a1)(t, s)

≤ exp

(︃∫︂ ω

0

log 1
1–a1(u)μ(u)

μ(u)
Δu

)︃
:= λ2.

(3.4)

Similar to the above proof, we also have

λ3 ≤ e⊖(–a2)(t, s) ≤ λ4, (3.5)

where λ3 = exp

(︃
–

∫︁ ω

0
log 1

1–a2(u)μ(u)

μ(u) Δu
)︃

, λ4 = exp

(︃∫︁ ω

0
log 1

1–a2(u)μ(u)

μ(u) Δu
)︃

.

Now, we show that the system (1.5) has at least one positive periodic solution by the use
of Schauder’s fixed point theorem. For this, define the mapping Γ : Pω(L1, L2) → B by

(Γz)(t) = ((Γu)(t), (Γv)(t))T , t ∈ T, z = (u, v)T ,
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where

(Γu)(t) =
1

e⊖(–a1)(t, t – ω) – 1

∫︂ t

t–ω

[︃
b11(s)[u(s)]α1+1

+ b12(s)u(s)
∫︂ 0

–∞
k1(τ )v(s + τ )Δτ + ϕ1(s)

]︃
e⊖(–a1)(t, s)Δs,

(Γv)(t) =
1

e⊖(–a2)(t, t – ω) – 1

∫︂ t

t–ω

[︃
b22(s)[v(s)]α2+1

+ b21(s)v(s)
∫︂ 0

–∞
k2(τ )u(s + τ )Δτ + ϕ2(s)

]︃
e⊖(–a2)(t, s)Δs.

(3.6)

In view of Lemma 3.1, the fixed points of Γ are solutions of the system (1.5). Since
Pω(L1, L2) is equicontinuous and uniformly bounded, by Arzelá–Ascoli theorem, Pω(L1,
L2) is compact. Obviously, for each z ∈ Pω(L1, L2), then Γz ∈ B. So, Γ is well defined.
To apply Schauder’s fixed point theorem, it suffices to prove that Γ is continuous and
Γ(Pω(L1, L2)) ⊂ Pω(L1, L2). Letting f (t) ∈ Crd(T,R) be a bounded function, denote

f M = sup
t∈T

|f (t)|, f l = inf
t∈T

|f (t)|.

Throughout this paper, we need the following assumptions:
(H1) The functions ai(t), ϕi(t), bij(t) ∈ Crd(T,R) are all ω-periodic, where i, j = 1, 2.
(H2) The kernel functions k1(t) and k2(t) satisfy

∫︂ 0

–∞
k1(s)Δs = K1,

∫︂ 0

–∞
k2(s)Δs = K2,

where K1 and K2 are given positive constants.
(H3) The following inequalities are satisfied:

η1λ1ω

(︃
bl

11Lα1+1
1 + bl

12L2
1K1 + ϕl

1

)︃
≥ L1, (3.7)

η1λ2ω

(︃
bM

11Lα1+1
2 + bM

12L2
2K1 + ϕM

1

)︃
≤ L2, (3.8)

η2λ3ω

(︃
bl

22Lα2+1
1 + bl

21L2
1K2 + ϕl

2

)︃
≥ L1, (3.9)

η2λ4ω

(︃
bM

22Lα2+1
2 + bM

21L2
2K2 + ϕM

2

)︃
≤ L2, (3.10)

where η1 and η2 are defined by (3.11), λ1 and λ2 are defined by (3.4), λ3 and λ4 are defined
by (3.5), K1 and K2 are defined by (H2), L1 and L2 are positive constants with L1 < L2.

(H4) The following inequalities are satisfied:

η1

(︃
2bM

11Lα1+1
2 λ2 + 2λ2ϕ

M
1 + bM

11Lα1+1
2 ζ1 + 2bM

12L2
2K1λ2 + bM

12L2
2ζ1

)︃
≤ M,

η2

(︃
2bM

22Lα2+1
2 λ4 + 2λ4ϕ

M
2 + bM

22Lα2+1
2 ζ2 + 2bM

21L2
2K2λ4 + bM

21L2
2ζ2

)︃
≤ M,

where M > 0 is a given constant, ζ1 and ζ2 are defined by (3.25) and (3.26), respectively.
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Lemma 3.2 If the assumptions (H1) and (H2) hold, then the operator Γ is continuous on
Pω(L1, L2).

Proof From Remark 3.1, let

η1 =
1

e⊖(–a1)(t, t – ω) – 1
, η2 =

1
e⊖(–a2)(t, t – ω) – 1

, (3.11)

where η1,η2 > 0 are constants. Let z1, z2 ∈ Pω(L1, L2), where z1 = (u1, v1)T , z2 = (u2, v2)T .
From the first equation of the system (3.6), we have

|(Γu1)(t) – (Γu2)(t)|

≤ η1λ2bM
11

∫︂ t

t–ω

|[u1(s)]α1+1 – [u2(s)]α1+1|Δs

+ η1λ2bM
12

∫︂ t

t–ω

⃓⃓⃓
⃓u1(s)

∫︂ 0

–∞
k1(τ )v1(s + τ )Δτ – u2(s)

∫︂ 0

–∞
k1(τ )v2(s + τ )Δτ

⃓⃓⃓
⃓Δs.

(3.12)

Using the mean value theorem, we have

|[u1(s)]α1+1 – [u2(s)]α1+1| = (α1 + 1)ξα1 |u1 – u2|
≤ (α1 + 1)Lα1

2 ||z1 – z2||,
(3.13)

where ξ is between u1 and u2. By assumption (H2), we have

⃓⃓⃓
⃓u1(s)

∫︂ 0

–∞
k1(τ )v1(s + τ )Δτ – u2(s)

∫︂ 0

–∞
k1(τ )v2(s + τ )Δτ

⃓⃓⃓
⃓

≤
⃓⃓
⃓⃓u1(s)

∫︂ 0

–∞
k1(τ )v1(s + τ )Δτ – u2(s)

∫︂ 0

–∞
k1(τ )v1(s + τ )Δτ

⃓⃓
⃓⃓

+
⃓⃓
⃓⃓u2(s)

∫︂ 0

–∞
k1(τ )v1(s + τ )Δτ – u2(s)

∫︂ 0

–∞
k1(τ )v2(s + τ )Δτ

⃓⃓
⃓⃓

≤ K1L2||u1 – u2|| + K1L2||v1 – v2||
≤ 2K1L2||z1 – z2||.

(3.14)

From (3.12)–(3.14), we arrive at

|(Γu1)(t) – (Γu2)(t)| ≤
(︃

η1λ2bM
11(α1 + 1)Lα1

2 ω + 2η1λ2bM
12K1L2ω

)︃
||z1 – z2||. (3.15)

Furthermore, from the second equation of the system (3.6), we have

|(Γv1)(t) – (Γv2)(t)|

≤ η2λ4bM
22

∫︂ t

t–ω

|[v1(s)]α2+1 – [v2(s)]α2+1|Δs

+ η2λ4bM
21

∫︂ t

t–ω

⃓⃓
⃓⃓v1(s)

∫︂ 0

–∞
k2(τ )u1(s + τ )Δτ – v2(s)

∫︂ 0

–∞
k2(τ )u2(s + τ )Δτ

⃓⃓
⃓⃓Δs.

(3.16)
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Using the mean value theorem, we have

|[v1(s)]α1+1 – [v2(s)]α2+1| = (α2 + 1)ζ α2 |v1 – v2|
≤ (α2 + 1)Lα2

2 ||z1 – z2||,
(3.17)

where ζ is between v1 and v2. By assumption (H2), we have

⃓⃓
⃓⃓v1(s)

∫︂ 0

–∞
k2(τ )u1(s + τ )Δτ – v2(s)

∫︂ 0

–∞
k2(τ )u2(s + τ )Δτ

⃓⃓
⃓⃓

≤
⃓⃓
⃓⃓v1(s)

∫︂ 0

–∞
k2(τ )u1(s + τ )Δτ – v2(s)

∫︂ 0

–∞
k2(τ )u1(s + τ )Δτ

⃓⃓
⃓⃓

+
⃓⃓
⃓⃓v2(s)

∫︂ 0

–∞
k2(τ )u1(s + τ )Δτ – v2(s)

∫︂ 0

–∞
k2(τ )u2(s + τ )Δτ

⃓⃓
⃓⃓

≤ K2L2||v1 – v2|| + K2L2||u1 – u2||
≤ 2K2L2||z1 – z2||.

(3.18)

From (3.16)–(3.18), we arrive at

|(Γv1)(t) – (Γv2)(t)| ≤
(︃

η2λ4bM
22(α2 + 1)Lα2

2 ω + 2η2λ4bM
21K2L2ω

)︃
||z1 – z2||. (3.19)

Thanks to (3.15) and (3.19),

|(Γz1)(t) – (Γz2)(t)| ≤
(︃

η1λ2bM
11(α1 + 1)Lα1

2 ω + 2η1λ2bM
12K1L2ω

+ η2λ4bM
22(α2 + 1)Lα2

2 ω + 2η2λ4bM
21K2L2ω

)︃
||z1 – z2||.

Therefore, Γ is continuous on Pω(L1, L2). □

Lemma 3.3 Suppose that the assumptions (H1)–(H3) hold, then

L1 ≤ (Γϑ1)(t) ≤ L2 and L1 ≤ (Γϑ2)(t) ≤ L2 for all ϑ ∈ Pω(L1, L2),

where ϑ = (ϑ1,ϑ2)T .

Proof Since ϑ ∈ Pω(L1, L2), then

L1 ≤ ϑ1 ≤ L2, L1 ≤ ϑ2 ≤ L2.
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For ϑ ∈ Pω(L1, L2), from (3.7)–(3.10), we have

(Γϑ1)(t) =
1

e⊖(–a1)(t, t – ω) – 1

×
∫︂ t

t–ω

[︃
b11(s)[ϑ1(s)]α1+1 + b12(s)ϑ1(s)

×
∫︂ 0

–∞
k1(τ )ϑ2(s + τ )Δτ + ϕ1(s)

]︃
e⊖(–a1)(t, s)Δs

≥ η1λ1ω

(︃
bl

11Lα1+1
1 + bl

12L2
1K1 + ϕl

1

)︃

≥ L1,

(3.20)

(Γϑ1)(t) =
1

e⊖(–a1)(t, t – ω) – 1

×
∫︂ t

t–ω

[︃
b11(s)[ϑ1(s)]α1+1 + b12(s)ϑ1(s)

×
∫︂ 0

–∞
k1(τ )ϑ2(s + τ )Δτ + ϕ1(s)

]︃
e⊖(–a1)(t, s)Δs

≤ η1λ2ω

(︃
bM

11Lα1+1
2 + bM

12L2
2K1 + ϕM

1

)︃

≤ L2,

(3.21)

(Γϑ2)(t) =
1

e⊖(–a2)(t, t – ω) – 1

×
∫︂ t

t–ω

[︃
b22(s)[ϑ2(s)]α2+1 + b21(s)ϑ2(s)

×
∫︂ 0

–∞
k2(τ )ϑ1(s + τ )Δτ + ϕ2(s)

]︃
e⊖(–a2)(t, s)Δs

≥ η2λ3ω

(︃
bl

22Lα2+1
1 + bl

21L2
1K2 + ϕl

2

)︃

≥ L1,

(3.22)

(Γϑ2)(t) =
1

e⊖(–a2)(t, t – ω) – 1

×
∫︂ t

t–ω

[︃
b22(s)[ϑ2(s)]α2+1 + b21(s)ϑ2(s)

×
∫︂ 0

–∞
k2(τ )ϑ1(s + τ )Δτ + ϕ2(s)

]︃
e⊖(–a2)(t, s)Δs

≤ η2λ4ω

(︃
bM

22Lα2+1
2 + bl

21L2
2K2 + ϕM

2

)︃

≤ L2.

(3.23)

Due to (3.20)–(3.23), the proof is completed. □
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Lemma 3.4 Assume that (H1), (H2), and (H4) hold, then

|(Γϑ1)(t2) – (Γϑ1)(t1)| ≤ M|t2 – t1|

and

|(Γϑ2)(t2) – (Γϑ2)(t1)| ≤ M|t2 – t1|

for all t1, t2 ∈ T, ϑ ∈ Pω(L1, L2).

Proof Let t1, t2 ∈ [0,ω]T with t1 < t2, ϑ ∈ Pω(L1, L2), then

|(Γϑ1)(t2) – (Γϑ1)(t1)|

≤ η1

⃓⃓
⃓⃓ ∫︂ t2

t2–ω

(︃
b11(s)[ϑ1(s)]α1+1 + ϕ1(s)

)︃
e⊖(–a1)(t2, s)Δs

–
∫︂ t1

t1–ω

(︃
b11(s)[ϑ1(s)]α1+1 + ϕ1(s)

)︃
e⊖(–a1)(t1, s)Δs

⃓⃓
⃓⃓

+ η1

⃓⃓
⃓⃓ ∫︂ t2

t2–ω

b12(s)ϑ1(s)
∫︂ 0

–∞
k1(τ )ϑ2(s + τ )Δτe⊖(–a1)(t2, s)Δs

–
∫︂ t1

t1–ω

b12(s)ϑ1(s)
∫︂ 0

–∞
k1(τ )ϑ2(s + τ )Δτe⊖(–a1)(t1, s)Δs

⃓⃓
⃓⃓.

(3.24)

From the theory of time scales, we have

|e⊖(–a1)(t2, s) – e⊖(–a1)(t1, s)|

=
⃓⃓
⃓⃓ exp

(︃∫︂ t2

s

log 1
1–a1(u)μ(u)

μ(u)
Δu

)︃
– exp

(︃∫︂ t1

s

log 1
1–a1(u)μ(u)

μ(u)
Δu

)︃⃓⃓
⃓⃓

= exp

(︃∫︂ t2

s

log 1
1–a1(u)μ(u)

μ(u)
Δu

)︃⃓⃓⃓
⃓1 – exp

(︃∫︂ t1

t2

log 1
1–a1(u)μ(u)

μ(u)
Δu

)︃⃓⃓⃓
⃓,

thus,

∫︂ t1+ω

t1

|e⊖(–a1)(t2, s) – e⊖(–a1)(t1, s)|Δs

≤ ω exp

(︃∫︂ ω

0

log 1
1–a1(u)μ(u)

μ(u)
Δu

)︃(︃ log 1
1–a1(u)μ(u)

μ(u)

)︃M

|t2 – t1|

= ζ1|t2 – t1|,

(3.25)

where ζ1 = ω exp

(︃∫︁ ω

0
log 1

1–a1(u)μ(u)

μ(u) Δu
)︃(︃

log 1
1–a1(u)μ(u)

μ(u)

)︃M

. Similar to the above proof, we also

have

∫︂ t1+ω

t1

|e⊖(–a2)(t2, s) – e⊖(–a2)(t1, s)|Δs ≤ ζ2|t2 – t1|, (3.26)
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where ζ2 = ω exp

(︃∫︁ ω

0
log 1

1–a2(u)μ(u)

μ(u) Δu
)︃(︃

log 1
1–a2(u)μ(u)

μ(u)

)︃M

. In view of (3.25) and (3.26), we

have

⃓⃓
⃓⃓ ∫︂ t2

t2–ω

(︃
b11(s)[ϑ1(s)]α1+1 + ϕ1(s)

)︃
e⊖(–a1)(t2, s)Δs

–
∫︂ t1

t1–ω

(︃
b11(s)[ϑ1(s)]α1+1 + ϕ1(s)

)︃
e⊖(–a1)(t1, s)Δs

⃓⃓
⃓⃓

≤
∫︂ t2

t1

(︃
b11(s)[ϑ1(s)]α1+1 + ϕ1(s)

)︃
e⊖(–a1)(t2, s)Δs

+
∫︂ t2+ω

t1+ω

(︃
b11(s)[ϑ1(s)]α1+1 + ϕ1(s)

)︃
e⊖(–a1)(t2, s)Δs

+
∫︂ t1+ω

t1

(︃
b11(s)[ϑ1(s)]α1+1 + ϕ1(s)

)︃
|e⊖(–a1)(t2, s) – e⊖(–a1)(t1, s)|Δs

≤ 2
(︁
bM

11Lα1+1
2 + ϕM

1
)︁
λ2|t2 – t1| + bM

11Lα1+1
2 ζ1|t2 – t1|

=
(︃

2bM
11Lα1+1

2 λ2 + 2λ2ϕ
M
1 + bM

11Lα1+1
2 ζ1

)︃
|t2 – t1|.

(3.27)

We also have

⃓⃓
⃓⃓ ∫︂ t2

t2–ω

b12(s)ϑ1(s)
∫︂ 0

–∞
k1(τ )ϑ2(s + τ )Δτe⊖(–a1)(t2, s)Δs

–
∫︂ t1

t1–ω

b12(s)ϑ1(s)
∫︂ 0

–∞
k1(τ )ϑ2(s + τ )Δτe⊖(–a1)(t1, s)Δs

⃓⃓
⃓⃓

≤
∫︂ t2

t1

b12(s)ϑ1(s)
∫︂ 0

–∞
k1(τ )ϑ2(s + τ )Δτe⊖(–a1)(t2, s)Δs

+
∫︂ t2+ω

t1+ω

b12(s)ϑ1(s)
∫︂ 0

–∞
k1(τ )ϑ2(s + τ )Δτe⊖(–a1)(t2, s)Δs

+
∫︂ t1+ω

t1

b12(s)ϑ1(s)
∫︂ 0

–∞
k1(τ )ϑ2(s + τ )Δτ |e⊖(–a1)(t2, s) – e⊖(–a1)(t1, s)|Δs

≤ 2bM
12L2

2K1λ2|t2 – t1| + bM
11Lα1+1

2 ζ1|t2 – t1|

=
(︃

2bM
12L2

2K1λ2 + bM
12L2

2ζ1

)︃
|t2 – t1|.

(3.28)

From (3.24), (3.27), (3.28), and assumption (H4), we have

|(Γϑ1)(t2) – (Γϑ1)(t1)|

≤ η1

(︃
2bM

11Lα1+1
2 λ2 + 2λ2ϕ

M
1 + bM

11Lα1+1
2 ζ1 + 2bM

12L2
2K1λ2 + bM

12L2
2ζ1

)︃
|t2 – t1|

≤ M|t2 – t1|.

(3.29)
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Similar the above proof, we also have

|(Γϑ2)(t2) – (Γϑ2)(t1)|

≤ η2

(︃
2bM

22Lα2+1
2 λ4 + 2λ4ϕ

M
2 + bM

22Lα2+1
2 ζ2 + 2bM

21L2
2K2λ4 + bM

21L2
2ζ2

)︃
|t2 – t1|

≤ M|t2 – t1|.

(3.30)

Due to (3.29) and (3.30), the proof is completed. □

Theorem 3.1 Suppose that the assumptions (H1)–(H4) hold. Then the system (1.5) has at
least one positive ω-periodic solution on Pω(L1, L2).

Proof From Lemma 3.1, it is easy to see that the system (1.5) has a solution z on Pω(L1, L2)

if only if the operator Γ defined by (3.6) has a fixed point. In view of Lemmas 3.2–3.4, all
the conditions of Schauder’s fixed point theorem are satisfied. Therefore, Γ has at least one
fixed point on Pω(L1, L2) and this fixed point is a positive periodic solution of the system
(1.5). □

4 Asymptotic behavior of positive periodic solutions
Definition 4.1 For a periodic solution z of the system (1.5), we define the following
asymptotic behavior: if, for a given constant δ, there exists a positive constant ε = ε(δ)

such that

||z(t) – z̃(t)|| ≤ δ for all t ∈ [0,∞)T,

whenever ||z(0) – z̃(0)|| ≤ ε, where z̃ is a solution of the system (1.5), δ > Λ1,Λ1 is defined
by (4.6).

Theorem 4.1 If all the conditions of Theorem 3.1 hold, then the solution of the system (1.5)
has the asymptotic behavior which is defined by Definition 4.1.

Proof Since all the conditions of Theorem 3.1 hold, the system (1.5) has a positive periodic
solution u(t) = (u1(t), v1(t))T . Let ũ(t) = (ũ1(t), ṽ1(t))T be another solution of the system
(1.5). Similarly as in the proof of Lemma 3.2, we have

|u1(t) – ũ1(t)| ≤ η1λ2bM
11

∫︂ t

t–ω

|[u1(s)]α1+1 – [ũ1(s)]α1+1|Δs

+ η1λ2bM
12

∫︂ t

t–ω

⃓⃓
⃓⃓u1(s)

∫︂ 0

–∞
k1(τ )v1(s + τ )Δτ

– ũ1(s)
∫︂ 0

–∞
k1(τ )ṽ1(s + τ )Δτ

⃓⃓
⃓⃓Δs.

(4.1)

Obviously, we have

|[u1(s)]α1+1 – [ũ1(s)]α1+1| = |[u1(s)]α1+1 – [ũ1(s)]α1+1

+ u1(0) – ũ1(0) – u1(0) + ũ1(0)|
≤ 2Lα1+1

2 + 2L2 + |u1(0) – ũ1(0)|.
(4.2)
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We also have
⃓⃓
⃓⃓u1(s)

∫︂ 0

–∞
k1(τ )v1(s + τ )Δτ – ũ1(s)

∫︂ 0

–∞
k1(τ )ṽ1(s + τ )Δτ

⃓⃓
⃓⃓ ≤ 2K1L2

2. (4.3)

From (4.1)–(4.3), we obtain

|u1(t) – ũ1(t)| ≤ 2ωη1λ2bM
11Lα1+1

2 + 2ωη1λ2bM
11L2 + ωη1λ2bM

11|u1(0) – ũ1(0)|
+ 2ωη1λ2bM

12K1L2
2.

(4.4)

Similar to the above proof, we have

|v1(t) – ṽ1(t)| ≤ 2ωη2λ4bM
22Lα2+1

2 + 2ωη2λ2bM
22L2 + ωη2λ4bM

22|v1(0) – ṽ1(0)|
+ 2ωη2λ4bM

21K2L2
2.

(4.5)

Due to (4.4) and (4.5), then

||u(t) – ũ(t)|| ≤ Λ1 + Λ2||u(0) – ũ(0)||, (4.6)

where

Λ1 = 2ωη1λ2bM
11Lα1+1

2 + 2ωη1λ2bM
11L2 + 2ωη1λ2bM

12K1L2
2

+ 2ωη2λ4bM
22Lα2+1

2 + 2ωη2λ2bM
22L2 + 2ωη2λ4bM

21K2L2
2,

Λ2 = ωη1λ2bM
11 + ωη2λ4bM

22.

Now, by choosing ε ≤ δ–Λ1
Λ2

, in view of (4.6), we get

||u(t) – ũ(t)|| ≤ δ for all t ∈ [0,∞)T.

Hence, the solution of the system (1.5) has the asymptotic behavior which is defined by
Definition 4.1. □

5 An example
When T = R, then the system (1.5) is changed into the following form:

u′(t) = u(t)
[︃

a1(t) – b11(t)[u(t)]α1 – b12(t)
∫︂ 0

–∞
k1(s)v(t + s)ds

]︃
– ϕ1(t),

v′(t) = v(t)
[︃

a2(t) – b22(t)[v(t)]α2 – b21(t)
∫︂ 0

–∞
k2(s)u(t + s)ds

]︃
– ϕ2(t),

(5.1)

where t ∈R. Let

a1(t) = 9.5 + 2 cos
20π

9
t, a2(t) = 10 + sin

20π

9
t,

b11(t) = 0.06 + 0.03 cos
20π

9
t, b12(t) = 0.04 + 0.02 sin

20π

9
t,

b22(t) = 0.05 + 0.01 cos
20π

9
t, b21(t) = 0.02 + 0.01 sin

20π

9
t,
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k1(t) =
2
π

1
1 + t2 , k2(t) = e2t ,

ϕ1(t) =
2 + cos 20π

9 t
100

, ϕ2(t) =
3 + cos 20π

9 t
100

,

α1 = 0.2, α2 = 0.5.

By simple calculation, we have

ω = 0.9, η1 ≈ 1.23 × 10–26, η2 ≈ 6.57 × 10–24, λ1 ≈ 1.2 × 10–26, λ2 ≈ 8.12 × 1025,

λ3 ≈ 5.3 × 10–28, λ4 ≈ 1.7 × 1027, bl
11 = 0.03, bM

11 = 0.09, bl
12 = 0.02, bM

12 = 0.06,

bl
21 = 0.01, bM

21 = 0.03, bl
22 = 0.04, bM

22 = 0.06,

ϕl
1 = 0.01, ϕM

1 = 0.03, ϕl
2 = 0.02, ϕM

2 = 0.04, K1 = 1, K2 = 0.5.

Choosing L1 = 1.5 × 10–55, L2 = 1, we get

η1λ1ω

(︃
bl

11Lα1+1
1 + bl

12L2
1K1 + ϕl

1

)︃
≈ 1.415 × 10–52 ≥ L1,

η1λ2ω

(︃
bM

11Lα1+1
2 + bM

12L2
2K1 + ϕM

1

)︃
≈ 0.162 ≤ L2,

η2λ3ω

(︃
bl

22Lα2+1
1 + bl

21L2
1K2 + ϕl

2

)︃
≈ 1.306 × 10–52 ≥ L1,

η2λ4ω

(︃
bM

22Lα2+1
2 + bM

21L2
2K2 + ϕM

2

)︃
≈ 0.157 ≤ L2.

So all the conditions of Theorems 3.1 and 4.1 are satisfied, thus the solution of the system
(5.1) has the asymptotic behavior which is defined by Definition 4.1. A simulation of the
dynamic behavior of the system (5.1) is given in Fig. 1.

When T = Z, then the system (1.5) is changed into the following form:

Δu(k) = a1(k)u(k + 1) – b11(k)[u(k)]α1+1 – b12(k)u(k)
0∑︂

s=–∞
k1(s)v(k + s) – ϕ1(k),

Δv(k) = a2(k)v(k + 1) – b22(t)[v(k)]α2+1 – b21(k)v(k)
0∑︂

s=–∞
k2(s)u(k + s) – ϕ2(k),

(5.2)

where k ∈ Z, Δu(k) = u(k + 1) – u(k), Δv(k) = v(k + 1) – v(k). Let

a1(k) = 10 + 1.5 cos
5π

2
k, a2(k) = 9 + 1.2 sin

5π

2
k,

b11(k) = 0.05 + 0.01 cos
5π

2
k, b12(k) = 0.05 + 0.02 sin

5π

2
k,

b22(k) = 0.07 + 0.02 cos
5π

2
k, b21(k) = 0.04 + 0.01 sin

5π

2
k, k1(s) = k2(s) =

1
100

es,

ϕ1(k) =
3 + 2 cos 5π

2 k
100

, ϕ2(t) =
4 + 3 cos 5π

2 k
100

, α1 = 0.4, α2 = 0.6.
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Figure 1 Existence and asymptotic behavior of a positive periodic solution to the system (5.1)

By simple calculation, we have

ω = 0.8, η1 ≈ 5.62 × 10–8, η2 ≈ 4.17 × 10–6, λ1 ≈ 5.621 × 10–8, λ2 ≈ 1.62 × 107,

λ3 ≈ 4.171 × 10–6, λ4 ≈ 1.82 × 105, bl
11 = 0.04, bM

11 = 0.06, bl
12 = 0.03, bM

12 = 0.07,

bl
21 = 0.03, bM

21 = 0.05, bl
22 = 0.05, bM

22 = 0.09,

ϕl
1 = 0.01, ϕM

1 = 0.05, ϕl
2 = 0.01, ϕM

2 = 0.07, K1 = K2 ≈ 0.038.

Choosing L1 = 1.25 × 10–20, L2 = 1, we get

η1λ1ω

(︃
bl

11Lα1+1
1 + bl

12L2
1K1 + ϕl

1

)︃
≈ 2.53 × 10–17 ≥ L1,

η1λ2ω

(︃
bM

11Lα1+1
2 + bM

12L2
2K1 + ϕM

1

)︃
≈ 0.073 ≤ L2,

η2λ3ω

(︃
bl

22Lα2+1
1 + bl

21L2
1K2 + ϕl

2

)︃
≈ 1.39 × 10–15 ≥ L1,

η2λ4ω

(︃
bM

22Lα2+1
2 + bM

21L2
2K2 + ϕM

2

)︃
≈ 0.021 ≤ L2.

So all the conditions of Theorems 3.1 and 4.1 are satisfied, thus the solution of the system
(5.2) has the asymptotic behavior which is defined by Definition 4.1. A simulation of the
dynamic behavior of the system (5.2) is given in Fig. 2.

6 Conclusions
The GA model has been one of the hot research topics in the past few decades. This ecosys-
tem contains a large number of dynamic properties and ecological significance. This paper
deals with a classic GA model with periodic coefficients and distributed delays on time
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Figure 2 Existence and asymptotic behavior of a positive periodic solution to the system (5.2)

scales. Using Schauder’s fixed theorem, we obtain sufficient criteria for the existence of
a positive periodic solution to the system (1.5). Furthermore, we obtian the asymptotic
behavior of solution by using inequality techniques.

There are still many issues to be studied for the system (1.5). For example, in the system
(1.5), there could be pulse or random terms.
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