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Abstract
In this paper, we investigate a delayed diffusive predator–prey model with weak Allee
effect for predator. First, we discuss the existence and uniqueness of positive steady
state and the local Hopf bifurcation. Next, we obtain the permanence and uniform
boundedness of positive periodic solutions of the delayed reaction–diffusion system.
The existence range of positive periodic solutions is further compressed by using
iterative approach. For the system without delay, we prove the global attractiveness
of unique positive steady state by using Lyapunov function, which ensures that the
periods of positive periodic solutions are uniformly bounded. Then we obtain the
global Hopf bifurcation and extended existence of positive periodic solutions by
using the global Hopf bifurcation theorem of partial functional differential equation.
Finally, the validity of the conclusion is verified through numerical simulation.
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1 Introduction
Periodic fluctuation is a prevalent phenomenon in the real world, and numerous biolog-
ical species have been observed to exhibit periodic oscillations. Nicholson’s blowfly ex-
periments in 1954 demonstrated that the number of blowflies in petri dishes fluctuates in
roughly 30-day cycles [1, 2]. Finerty’s data reveal that Canadian snow rabbits and lynx pop-
ulations fluctuate in roughly 10-year cycles, whereas lemmings and Arctic foxes fluctuate
in roughly 4-year cycles [3]. Spruce budworms have been erupting periodically for about
40 years since the availability of statistics in North America [4–7]. Additionally, several
major pine caterpillars in China, such as Larch caterpillars, Dendrolimus tabulaeformis,
and Dendrolimus punctatus, also display periodic fluctuations [8].

How to explain the periodic fluctuations of these species? Scholars usually use periodic
solutions of differential equations to describe these periodic fluctuations. Hopf bifurca-
tion is widely recognized as an important mechanism for generating periodic solutions
within aperiodic systems. Hence it has garnered significant attention from researchers
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over recent decades [9–18]. Local Hopf bifurcation can establish the existence of periodic
solutions when the bifurcation parameter falls within a sufficiently small neighborhood.
However, during the process of establishing the mathematical model, appropriate simpli-
fication and hypothesis are essential. Due to the influence of neglected factors, the bifur-
cation parameter value of the model should vary within a certain range, and this range of
changes is likely to be relatively large. In these cases the local Hopf bifurcation does not
explain the periodic fluctuations well, and we need to use the global Hopf bifurcation.

Due to their importance in the field of population ecology, predator–prey systems have
been extensively investigated [19–26]. In small-scale populations, some challenges, such
as small yield, dysfunctional social settlements, difficulty finding mates, or difficulty in
resisting natural enemies, often affect the population sizes. The positive relationship be-
tween any component of individual fitness and the number or density of the same species
is referred to as the Allee effect [27]. The Allee effect is a fundamental principle in species
ecology, and research has shown that it significantly influences the integrity and dynamics
of populations. Thus there have been extensive investigations of predator–prey models in-
corporating the Allee effect (see [28–31]). The Allee effect can be categorized into strong
and weak Allee effects. In cases with a strong Allee effect, there exists a threshold below
which fertility is lower than mortality, resulting in further population decline and even-
tual extinction. On the other hand, weak Allee effects do not have this threshold; instead,
population growth remains positive even when close to zero, although at a slower rate.
Intuitively, higher animals are more susceptible to experiencing Allee effects compared to
lower animals due to their smaller population sizes.

A Leslie–Gower model with Holling III functional response and extra foods for predator
is as follows:

⎧
⎪⎪⎨

⎪⎪⎩

ut = ru
(
1 –

u
k
)

–
bu2v

a + u2 ,

vt = δv
(
1 –

hv
m + u

)
,

where, u = u(t) and v = v(t) are the population densities of prey and predator at time t,
respectively, r > 0 and δ > 0 are the intrinsic growth rates of the prey and predator, respec-
tively, k > 0 is the carrying capacity of the prey population in the absence of predation,
b > 0 is the maximum value of the per capita reduction rate of the prey due to existence
of predator, a > 0 is the half-saturation constant of prey, h > 0 is the proportionality co-
efficient of prey density to the carrying capacity for the predator, and m > 0 is another
constant food resource of predator.

In view of the movement of species from high-density areas to low-density areas and
digestion time for predator, we obtain the following delayed reaction–diffusion model:

⎧
⎪⎪⎨

⎪⎪⎩

ut = d1�u + ru
(

1 –
u
k

)
–

bu2v
a + u2 ,

vt = d2�v + δv
(

1 –
hv

m + uτ

)
,

where u = u(x, t) and v = v(x, t) are the population densities of prey and predator at lo-
cation x and time t, respectively, uτ = u(x, t – τ ), τ > 0 is the digestion time for predator,
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and the positive constants d1 and d2 are the diffusion coefficients of prey and predator,
respectively.

Moreover, considering that the predator is affected by a weak Allee effect, we replace the
intrinsic growth rate δ by δv

b1+v , where b1 > 0 describes the strength of the corresponding
Allee effect. In this paper, we consider the following delayed reaction–diffusion model
under Neumann boundary condition:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ut = d1�u + ru
(

1 –
u
k

)
–

bu2v
a + u2 ,

vt = d2�v + δv
( v

b1 + v
–

hv
m + uτ

)
,

x ∈ �, t > 0,

uν = vν = 0, x ∈ ∂�, t > 0,

u(x, 0) ≥ 0, v(x, 0) ≥ 0, x ∈ �̄,

(1)

where � = (0, lπ), and ν is the outward unit normal vector on ∂�.
The main purpose of this paper is to investigate the global Hopf bifurcation and ex-

tended existence of positive periodic solutions for Eq. (1) using the global Hopf bifurca-
tion theorem presented by Wu [32]. We would like to mention that due to the existence
of spatial factors, the existence of global Hopf bifurcation in a partial functional differ-
ential equation is very difficult to obtain. The results achieved are also relatively few (see
[33–37]). Wu utilized degree theory to establish the global Hopf bifurcation theorem of
abstract partial functional differential equations, which avoids the spatial decomposition
theory of solution operators and complex linear functional differential equations. How-
ever, the prerequisite for the application of this theorem is to establish the complete struc-
ture of constant and nonconstant steady states and nearby local Hopf bifurcation. More-
over, some properties of periodic solutions, such as uniform boundedness, for the system
with delay and diffusion need to be proved. It is very difficult to prove these properties in
delayed reaction–diffusion models with real background.

The organizational structure of this paper is as follows. In Sect. 2, we give our main
results about the global Hopf bifurcation of Eq. (1). In Sect. 3, we provide a detailed proof
of the conclusions of Sect. 2. In Sect. 4, we present some numerical simulations.

2 Main results
The positive constant steady states (u0, v0) of Eq. (1) satisfy

r
(

1 –
u0

k

)
–

bu0v0

a + u2
0

= 0,
1

b1 + v0
–

h
m + u0

= 0, (2)

that is,

	(u0) = r
(

1 –
u0

k

)
–

bu0

a + u2
0

(m + u0

h
– b1

)
= 0,

u0 > b1h – m, v0 =
m + u0

h
– b1.

(3)

Theorem 2.1 If one of (a)–(e) holds, then 	(u0) = 0 has a unique positive root u0. In this
case, further assuming that u0 > b1h – m, Eq. (1) has a unique positive constant steady state
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(u0, v0).

(a) Ł ≤ 0;

(b) Ł > 0, B1 ≤ 0;

(c) Ł > 0, B1 > 0, C1 ≥ 0;

(d) Ł > 0, B1 > 0, C1 < 0, 
(u1) > 0;

(e) Ł > 0, B1 > 0, C1 < 0, 
(u2) > 0,

where

A1 = –
rh
k

, B1 = rh – b,

C1 = bb1h –
rah
k

– bm, D1 = arh,

Ł = 4B2
1 – 12A1C1, 
(u) = A1u3 + B1u2 + C1u + D1,

u1 =
–B1 –

√
B2

1 – 3A1C1

3A1
, u2 =

–B1 +
√

B2
1 – 3A1C1

3A1
.

For convenience, we introduce

(ℵ1) : one of (a)–(e) holds, and u0 > b1h – m.

Under condition (ℵ1), Eq. (1) has a unique positive constant steady state. Next, we take
τ as the bifurcation parameter to discuss the stability of the positive constant steady state
(u0, v0). Define the real-valued Sobolev space

X = {(u, v) ∈ H2(0, lπ) × H2(0, lπ)|ux = vx = 0, x = 0, lπ}

and the abstract space C = C([–τ , 0], X). The linearization of Eq. (1) at (u0, v0) can be
rewritten as a differential equation in the phase space C ,

U̇t = D�U(x, t) + AU(x, t) + BU(x, t – τ ), (4)

where U(x, t) = (u(x, t), v(x, t))T , D = diag(d1, d2), and

A =

(
–ϑ(u0) –γ (u0)

0 –δκ(u0)

)

,

B =

(
0 0

δ
hκ(u0) 0

)

.

The characteristic equation of the linearized system is

λ2 + Enλ + Fn + He–λτ = 0, n ∈ N0, (5)
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where N0 = N ∪ {0}, N is the set of positive integers, and

En = (d1 + d2)
(n

l

)2
+ ϑ(u0) + δκ(u0),

Fn = d1d2

(n
l

)4
+

(
d1δκ(u0) + d2ϑ(u0)

)(n
l

)2
+ δϑ(u0)κ(u0),

H =
δ

h
κ(u0)γ (u0),

(6)

with

ϑ(u0) = –r
[

1 –
2
(
u3

0 + ak
)

k(a + u2
0)

]

,

κ(u0) =
(

1 –
hb1

m + u0

)2
,

γ (u0) =
bu2

0
a + u2

0
.

(7)

Then we intoduce

(ℵ2) : ϑ(u0) > max

{

– δκ(u0), –
d1

d2
δκ(u0), –

γ (u0)

h

}

.

If (ℵ1)–(ℵ2) hold, then based on Eq. (6), we have E0 = ϑ(u0) + δκ(u0), F0 = δϑ(u0)κ(u0).
Obviously, for any n ∈ N0, En and Fn are increasing functions. Suppose (ℵ2) holds. Then
E0 > 0 and F0 + H > 0. It follows that En > 0 and Fn + H > 0. From this we can conclude that
the roots of Eq. (5) all have negative real parts. Then we can get the following lemmas.

Lemma 2.2 If (ℵ1) and (ℵ2) are satisfied, then all the roots of Eq. (5) have negative real
parts when τ = 0.

Lemma 2.3 If (ℵ1) and (ℵ2) hold, then λ = 0 is not a root of Eq. (5) for all τ ≥ 0.

Lemma 2.2 shows that the positive constant steady state of Eq. (1) is asymptotically stable
at τ = 0. Lemma 2.3 shows that as the bifurcation parameter τ increases from zero, to
change the stability, the characteristic roots must cross the imaginary axis in the right
half-plane, that is, there must exist a pair of purely imaginary roots of Eq. (5) when τ takes
some value. Below we determine the value of τ .

For convenience, we make the following assumption

(ℵ3) : hϑ(u0) < γ (u0).

Lemma 2.4 If (ℵ1)–(ℵ3) hold, then there exists a positive integer N∗ such that Eq. (5)
has a pair of purely imaginary roots λ± = ±iωn (ωn > 0) for n ∈ I1 and τ = τ

j
n, where

I1 = {0, 1, 2, . . . , N∗ – 1}, and

ω2
n =

2Fn – E2
n +

√
(E2

n – 2Fn)2 – 4(F2
n – H2)

2
,

τ j
n =

1
ωn

(arccos
ω2 – Fn

H
+ 2jπ), n ∈ I1, j ∈ N0.
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Lemma 2.5 Suppose that (ℵ1)–(ℵ3) hold. For n ∈ I1, let λ(τ ) = �(τ ) + iς(τ ) be the root of
Eq. (5) satisfying �(τ j

n) = 0 and ς(τ j
n) = ωn. Then Sign �′(τ j

n) = 1.

From the above lemmas we derive the following:

Theorem 2.6 Assume that (ℵ1)–(ℵ2) hold.
(i) If hϑ(u0) ≥ γ (u0), then the positive steady state (u0, v0) of Eq. (1) is locally

asymptotically stable for any τ ≥ 0.
(ii) Assume hϑ(u0) < γ (u0) holds,

(a) When τ ∈ (0, τ0), the positive steady state (u0, v0) of Eq. (1) is locally
asymptotically stable; when τ > τ0 = min

n∈I1
{τ 0

n }, the positive steady state (u0, v0) of

Eq. (1) is unstable;
(b) When τ = τ

j
n, Eq. (1) produces a Hopf bifurcation at the positive steady state

(u0, v0).

Now we use the comparison principle to prove the uniform boundedness of positive
periodic solutions and determine the range of positive periodic solutions.

Lemma 2.7 Assume that (ℵ1) holds. Then Eq. (1) with u(x, 0) ≢ 0, v(x, 0) ≢ 0 has the per-
manence properties, that is,

lim
t→∞ sup max

x∈�̄

u(x, t) ≤ k := ũ0,

lim
t→∞ sup max

x∈�̄

v(x, t) ≤ m + k
h

– b1 := ṽ0,

lim
t→∞ inf min

x∈�̄

u(x, t) ≥ arhk
arh + bk(m + k)

:= û0,

lim
t→∞ inf min

x∈�̄

v(x, t) ≥ m + û0

h
– b1 := v̂0,

(8)

with

û0 > b1h – m.

To avoid contradictions, we further compress the range in which the positive periodic
solution exists. Then we get the following:

Lemma 2.8 Assume that (ℵ1) holds. Then Eq. (1) with u(x, 0) ≢ 0, v(x, 0) ≢ 0 has the per-
manence properties, that is,

lim
t→∞ sup max

x∈�̄

u(x, t) ≤ ũ , lim
t→∞ sup max

x∈�̄

v(x, t) ≤ ṽ,

lim
t→∞ inf min

x∈�̄

u(x, t) ≥ û , lim
t→∞ inf min

x∈�̄

v(x, t) ≥ v̂,
(9)

where

ũ = lim
n→∞ ũn =

kr(a + ũ2)

r(a + ũ2) + kb̂v
, ṽ = lim

n→∞ ṽn =
m + ũ

h
– b1,

û = lim
n→∞ ûn =

kr(a + û2)

r(a + û2) + kb̃v
, v̂ = lim

n→∞ v̂n =
m + û

h
– b1,
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and

ũn =
kr(a + ũ2

n–1)

r(a + ũ2
n–1) + kb̂vn–1

, ṽn =
m + ũn–1

h
– b1,

ûn =
kr(a + û2

n–1)

r(a + û2
n–1) + kb̃vn

, v̂n =
m + ûn

h
– b1,

(10)

with ũ0, û0, ṽ0, and v̂0 defined in Lemma 2.7.

Now we use the Lyapunov function to prove that the positive constant steady state of a
system without time delay is globally attracted:

Lemma 2.9 Assume that (ℵ1)–(ℵ3) hold. Then the positive constant steady state (u0, v0) is
globally asymptotically stable if the following condition is satisfied:

(ℵ4) for all (u, v) ∈ G, we have

v(uu0 – a) <
[

r
kb

–
∣
∣
∣
u0(a – km)

2kma

∣
∣
∣

]

a(a + u2
0),

h >
[

1
(b1 + v0)

+
∣
∣
∣
bu0(a – km)

2kma

∣
∣
∣

]

(m + k).
(11)

Finally, we use Wu’s theory [32] to prove that Eq. (1) undergoes global Hopf bifurca-
tion. We normalize the delay by time scale t̄ → t

τ
and omit the bar symbol. Then Eq. (1)

becomes

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ut = τd1�u + τ

[

ru
(

1 –
u
k

)
–

bu2v
a + u2

]

,

vt = τd2�v + τδv
( v

b1 + v
–

hv
m + u(x, t – 1)

)
,

x ∈ �, t > 0,

uν = vν = 0, x ∈ ∂�, t > 0,

u(x, 0) ≥ 0, v(x, 0) ≥ 0, x ∈ �̄.

(12)

In the phase space C = C([–1, 0], X), the linearized form of Eq. (12) at (u0, v0) is

U̇t = τD�U(x, t) + τAU(x, t) + τBU(x, t – 1). (13)

The characteristic equation of the linearized system is

λ2 + τEnλ + τ 2Fn + τ 2He–λτ = 0, n ∈ N0. (14)

Apparently, if (ℵ1)–(ℵ3) hold, then Eq. (13) has a pair of purely imaginary roots ±iωnτ
j
n,

and Eq. (12) undergoes the Hopf bifurcation at (u0, v0) when τ = τ
j
n. By Theorem 2.9, when

τ = 0, the positive constant steady state (u0, v0) is globally asymptotically stable. So Eq. (1)
has no positive nonconstant periodic solution with period 1. In a similar way, Eq. (12) has
no positive nonconstant periodic solution with period 1.

To state Wu’s [32] global Hopf bifurcation theorem, we define:
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(i) E = C(S1, X) is a real isometric Banach representation of the group
G = S1 := {z ∈C : |z| = 1};

(ii) Let EG := {x ∈ E : gx = x for all g ∈ G}. Then EG = X , and E has an isotypical direct

sum decomposition E = EG
∞⊕

k=1
Ek , where Ek = {eiktx : x ∈ X} for k ≥ 1.

Then, according to [32], Eq. (1) can be transformed into a continuously differentiable,
completely continuous, and G-invariant integral equation.

According to Theorem 2.1, we get that Eq. (1) has a unique positive constant steady state
U0 = (u0, v0). Lemma 2.3 tells us that λ = 0 is not a root of Eq. (5) satisfying hypothesis
H(1) in [24, Sect. 6.5]. Lemma 2.4 tells us that Eq. (5) has a pair of purely imaginary roots
λ± = ±iωn (ωn > 0) when τ = τ

j
n, and hence assumption H(2) in [24, Sect. 6.5] is satisfied.

For sufficiently small ε0,ς0 > 0, we define the local steady-state manifold

M = {(U0, τ ,ω) : |τ – τ j
n| < ε0, |ω – ωn| < ς0} ⊂ EG ×R×R+.

Then for

(τ ,ω) ∈ [τ j
n – ε0, τ j

n + ε0] × [ωn – ς0,ωn + ς0],

±iωn is an eigenvalue of Eq. (5) if and only if τ = τ
j
n and ω = ωn. From [36, Lemma 6.5.3]

we conclude that (U0, τ j
n,ωn) is an isolated singular point in M.

Let μk(U0, τ j
n,ωn) (k = 1, 2, . . . ) be the number of generalized crossing defined in [36,

Sect. 6.5]. Then according to Lemma 2.5, if λ(τ ) = �(τ )+ iς(τ ) are the eigenvalues of Eq. (5)
satisfying λ(τ j

n) = ±iωn, then μ1(U0, τ j
n,ωn) = 1. Thus we get the local topological Hopf

bifurcation Eq. (1) at τ = τ
j
n.

Next, we study the global nature of the Hopf bifurcation. Let

S = Cl{(z, τ ,ω) ∈ E ×R×R+ : z = (z1(·,ωt), z2(·,ωt)) = (u(·, t), v(·, t))

is a nontrivial
2π

ω
-periodic solution of Eq. (1)}.

Then according to the local bifurcation theorem, (U0, τ j
n,ωn) ∈ S. We define the complete

steady-state manifold

M∗ = {(U0, τ ) : τ ∈ R} ⊂ EG ×R

and

C
j
n = C

j
n(U0, τ j

n,ωn),

the connected component of S for which (U0, τ j
n,ωn) belongs to. Now we can state Wu’s

global Hopf bifurcation result.

Lemma 2.10 [24, Theorem 6.5.5] For each connected component Cj
n, at least one of the

following holds:
(i) C

j
n is unbounded, i.e.,

sup{max
t∈R

|z(t)| + |τ | + ω + ω–1 : (z, τ ,ω) ∈ C
j
n = ∞;
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(ii) C
j
n ∩ M∗ ×R+ is finite, and for all k ≥ 1,

∑

(U0,τ j
n ,ωn)∈Cj

n∩M∗×R+

μk(U0, τ j
n,ωn) = 0.

At present, we are well prepared to present the following global Hopf bifurcation results.

Theorem 2.11 Assume that (ℵ1)–(ℵ4) hold. Then Eq. (1) has at least one positive periodic
orbit when τ > τ1 = min

n∈I1
{τ 1

n }.

3 Proofs of main results
3.1 Proof of Theorem 2.1
Multiply the first equation of Eq. (3) by (a + u2)h and denote


 = A1u3 + B1u2 + C1u + D1 (15)

with

A1 = –
rh
k

, C1 = bb1h –
rah
k

– bm,

B1 = rh – b, D1 = arh.
(16)

Apparently, if Eq. (15) exists positive roots greater than b1h – m, then Eq. (1) has positive
constant steady states. Here we explore the roots of Eq. (15) by differentiation:


 ′ = 3A1u2 + 2B1u + C1. (17)

After analyzing the distribution of zeros of Eq. (17), we can conclude as follows. For con-
venience, we denote

Ł = 4B2
1 – 12A1C1.

The axis of symmetry of 
 ′ is � = – B1
3A1

, and the zeros of Eq. (17) are

u1 =
–B1 –

√
B2

1 – 3A1C1

3A1
, u2 =

–B1 +
√

B2
1 – 3A1C1

3A1
.

(a) Since A1 ≤ 0, 
 ′ is a quadratic function of the opening downward. If Ł ≤ 0, then

 ′ ≤ 0, and 
 is a decreasing function. Since 
(0) = D1 > 0, 
 has an intersection
point with the u-axis as u increases, that is, Eq. (1) has a unique positive constant
steady state.

(b) If Ł > 0 and B1 ≤ 0, then � ≤ 0.
1. Assume that u1 < 0 and u2 ≤ 0. Then 
 ′ ≤ 0 when u > 0. The situation is the

same as in (a), without going into details.
2. Assume that u1 < 0 and u2 > 0. Then 
 ′ > 0 when u ∈ (u1, u2), and 
 ′ ≤ 0 when

u ≥ u2. So 
 is an increasing function for u ∈ [0, u2] and a decreasing function
for u > u2, that is, Eq. (1) has a unique positive constant steady state.



Zhang et al. Advances in Continuous and Discrete Models         (2025) 2025:19 Page 10 of 22

(c) Let Ł > 0 and B1 > 0.
1. Assume that C1 > 0. Then u1 < 0 and u2 > 0. The situation is the same as in (b).2,

without going into details.
2. Assume that C1 = 0, and thus u1 > 0 and u2 = 0. Then 
 ′ > 0 when u ∈ (0, u1),

and 
 ′ ≤ 0 when u ≥ u1. So 
 is an increasing function for u ∈ [0, u1] and a
monotonically decreasing function for u > u1. That is, Eq. (1) has the unique
positive constant steady state.

(d) If Ł > 0, B1 > 0 and C1 < 0, we have u1 > 0 and u2 > 0. Then we have 
 ′ > 0 when
u ∈ (u1, u2) and 
 ′ ≤ 0 when u ≥ u2 and u ≤ u1. So 
 is an increasing function for
u ∈ [0, u2] and a decreasing function for u ≥ u2 and u ≤ u1. If 
(u1) > 0, then

(u2) > 0. We can see from the above that Eq. (1) has a unique positive constant
steady state.

(e) Similarly, if 
(u2) < 0, then 
(u1) < 0. We can see from the above that Eq. (1) has a
unique positive constant steady state.

This completes the proof of Theorem 2.1.

3.2 Proof of Lemma 2.4
Now assume that (ℵ1) and (ℵ2) hold and let λ = iω(ω > 0) be a purely imaginary root of
Eq. (5). Substituting it into Eq. (5) and separating the real and imaginary parts, we have

– ω2 + Fn = –H cosωτ ,

Enω = H sinωτ .
(18)

Squaring and adding both equations of Eq. (18), we have

ϒ(w2) = ω4 + (E2
n – 2Fn)ω2 + (F2

n – H2) = 0, (19)

where

E2
n – 2Fn = (d2

1 + d2
2)

(n
l

)4
+ 2

(
d1ϑ(u0) + d2δκ(u0)

)(n
l

)2
+ ϑ2(u0) + δ2κ2(u0) > 0.

If (ℵ3) holds, then

F0 – H = δϑ(u0)κ(u0) –
δ

h
κ(u0)γ (u0) < 0.

There exists N∗ ∈ N such that Fn – H < 0 for n < N∗, and thereby we get F2
n – H2 < 0.

Obviously, Eq. (19) has a positive root, that is, Eq. (5) has a unique pair of purely imaginary
roots ±iω. On the contrary, if n ≥ N∗, then F2

n –H2 ≥ 0, and Eq. (5) has no purely imaginary
root.

Moreover, when n < N∗, let ω2
n = zn, where

zn =
2Fn – E2

n +
√

(E2
n – 2Fn)2 – 4(F2

n – H2)

2
. (20)

Then according to Eq. (18), we have

sin(ωτ ) =
Enω

H
> 0, cos(ωτ ) =

ω2 – Fn

H
.
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It follows that

ω2
n =

2Fn – E2
n +

√
(E2

n – 2Fn)2 – 4(F2
n – H2)

2
,

τ j
n =

1
ωn

(arccos
ω2 – Fn

H
+ 2jπ), n ∈ I1, j ∈ N0.

(21)

3.3 Proof of Lemma 2.5
Differentiating λ on both sides of Eq. (5) gives

(dλ

dτ

)–1
=

1
λ

(
–

2λ + En

λ2 + Enλ + Fn
– τ

)
. (22)

Substituting λ = iω into Eq. (22), we have

(dλ

dτ

)–1∣∣
∣
τ=τ

j
n

=
1
iω

(
–

2iω + En

iω2 + Eniω + Fn
– τ

)
.

Then

Re
(dλ

dτ

)–1∣∣
∣
τ=τ

j
n

=
√

(E2
n – 2Fn)2 – 4(F2

n – H2)

4E2
nω

2
n + (Fn – ω2

n)2 > 0.

Therefore

Sign �′(τ j
n) = Sign

(
Re

dλ

dτ

)–1∣∣
∣
τ=τ

j
n

= 1.

3.4 Proof of Lemma 2.6
Lemma 2.2 shows that the eigenequation has no root in the right half complex plane when
τ = 0. If hϑ(u0) ≥ γ (u0), then

F0 – H = δϑ(u0)κ(u0) –
δ

h
κ(u0)γ (u0) > 0.

Then we have Fn – H > 0 for all n ∈ N0. Therefore Eq. (19) has no positive root, and Eq. (5)
has no purely imaginary root for all τ ≥ 0. This means that the positive constant steady
state of Eq. (1) is asymptotically stable for all τ ≥ 0.

If hϑ(u0) < γ (u0), then from Lemma 2.4 we know that Eq. (5) has a pair of purely imagi-
nary roots ±iωn when τ = τ

j
n. Lemma 2.5 shows that Eq. (5) has no positive root for τ < τ0

and has at least two positive roots for τ > τ0. Moreover, Eq. (1) produces a subcritical Hopf
bifurcation at the positive steady state (u0, v0) when τ = τ

j
n.

3.5 Proof of Lemma 2.7
From the first equation of Eq. (1) we see that for t > 0,

ut ≤ d1△u + ru
(

1 –
u
k

)



Zhang et al. Advances in Continuous and Discrete Models         (2025) 2025:19 Page 12 of 22

and u(x, t) ≤ P̃(x, t) in �̄ × [0,∞), where P̃(x, t) is the solution of the equation

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

P̃t = d1�ũ + rP̃
(

1 –
P̃
k

)
, x ∈ �, t > 0,

P̃ν = 0, x ∈ ∂�, t > 0,

P̃(x, 0) = u(x, 0), x ∈ �̄.

As t → ∞, we have lim
t→∞ P̃(x, t) = k. Then

lim sup
t→∞

max
x∈�̄

u(x, t) ≤ k = ũ0

for arbitrarily small ε1 > 0, and there exists T1 > 0 such that u(x, t) ≤ ũ0 + ε1 for t > T1.
From the second equation of Eq. (1) we obtain that for t > T1,

vt ≤ d2△v + δv
( 1

b1 + v
–

hv
m + ũ0 + ε1

)
,

and v(x, t) < Q̃(x, t) in �̄ × [T1,∞), where Q̃(x, t) is the solution of the equation

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Q̃t = d2�Q̃ + δQ̃
( 1

b1 + v
–

hQ̃
m + ũ0 + ε1

)
, x ∈ �, t > T1,

Q̃ν = 0, x ∈ ∂�, t > T1,

Q̃(x, T1) = v(x, T1), x ∈ �̄.

As t → ∞, we have lim
t→∞ Q̃(x, t) = m+̃u0+ε1

h – b1. Then

lim sup
t→∞

max
x∈�̄

v(x, t) ≤ m + ũ0 + ε1

h
– b1.

Since ε1 is arbitrarily small,

lim sup
t→∞

max
x∈�̄

v(x, t) ≤ m + ũ0

h
– b1 = ṽ0

for arbitrarily small ε2 > 0, and there exists T2 > T1 such that v(x, t) ≤ ṽ0 + ε2 for t > T2.
From the first equation of Eq. (1) we obtain that for t > T2,

ut ≥ d1△u + ru
[

1 –
(1

k
+

b(̃v0 + ε2)

ar

)
u
]

,

and u(x, t) ≥ P̂(x, t) in �̄ × [T2,∞), where P̂(x, t) is the solution of the equation

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

P̂t = d1△P̂ + rP̂
[

1 –
(1

k
+

b(̃v0 + ε2)

ar

)
P̂
]

, x ∈ �, t > T2,

P̂ν = 0, x ∈ ∂�, t > T2,

P̂(x, T2) = u(x, T2), x ∈ �̄.
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As t → ∞, we have

lim
t→∞ P̂(x, t) =

(1
k

+
b(̃v0 + ε2)

ar

)–1
.

Then

lim inf
t→∞ min

x∈�̄

u(x, t) ≥
(1

k
+

b(̃v0 + ε2)

ar

)–1
.

Since ε2 is arbitrarily small,

lim inf
t→∞ min

x∈�̄

u(x, t) ≥
(1

k
+

b̃v0

ar

)–1
= û0

for arbitrarily small ε3 > 0, and there exists T3 > T2 such that u(x, t) ≥ û0 – ε3 for t > T3.
From the second equation of Eq. (1) we obtain that for t > T3,

vt ≥ d2△v + δv2
( 1

b1 + v
–

h
m + û0 – ε3

)

and v(x, t) ≥ Q̂(x, t) in �̄ × [T3,∞), where Q̂(x, t) is the solution of the equation

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Q̂t = d2△Q̂ + δQ̂2
( 1

b1 + Q̂
–

h
m + û0 – ε3

)
, x ∈ �, t > T3,

Q̂ν = 0, x ∈ ∂�, t > T3,

Q̂(x, T3) = v(x, T3), x ∈ �̄.

(23)

We define

f (v) = δv2
( 1

b1 + v
–

h
m + û0 – ε3

)
(24)

and

(H4) : û0 > b1h – m.

Assuming that (H4) holds, let M and ε be positive constants satisfying

M ≥ max{ρ1, ζ1}, ε ≤ min{ρ1, ζ2},

where

ρ1 =
m + û0 – ε3

h
– b1 , ζ1 = max

x∈�̄

u(x, 0) , ζ2 = min
x∈�̄

v(x, 0).

Then we have

δM2
( 1

b1 + M
–

h
m + û0 – ε3

)
≤ 0, δε2

( 1
b1 + ε

–
h

m + û0 – ε3

)
≥ 0,
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and ε ≤ v ≤ M. In that way, M and ε are a couple of upper and lower solutions of Eq. (23).
From the boundedness of the partial derivative of f (v) with respect to v we obtain that f (v)

satisfies the Lipschitz condition on [ε, M]. Denote the Lipschitz constant by K and define
two sequences {Ṽ (j)

1 } and {V̂ (j)
1 } as follows:

Ṽ (j)
1 = Ṽ (j–1)

1 +
1
K

[

δṼ 2
1

( 1
b1 + Ṽ1

–
h

m + û0 – ε3

)]

,

V̂ (j)
1 = V̂ (j–1)

1 +
1
K

[

δV̂ 2
1

( 1
b1 + V̂1

–
h

m + û0 – ε3

)]

,
j ∈ N ,

where Ṽ (0)
1 = M, V̂ (0)

1 = ε, and K is the Lipschitz constant. It is well known that
lim

j→∞(Ṽ (j)
1 , V̂ (j)

1 ) = (Ṽ1, V̂1) with ε ≤ V̂1 ≤ Ṽ1 ≤ M. Obviously, Ṽ1 and V̂1 satisfy

δṼ 2
1

( 1
b1 + Ṽ1

–
h

m + û0 – ε3

)
= 0 , δV̂ 2

1

( 1
b1 + V̂1

–
h

m + û0 – ε3

)
= 0.

Then we have Ṽ1 = V̂1 = v0. As t → ∞, we have

lim
t→∞ v̂(x, t) =

m + û0 – ε3

h
– b1,

and thus

lim inf
t→∞ min

x∈�̄

v(x, t) ≥ m + û0 – ε3

h
– b1.

Since ε3 is arbitrarily small, we have

lim
t→∞ inf min

x∈�̄

v(x, t) ≥ m + û0

h
– b1 = v̂0.

In summary, we have

lim sup
t→∞

max
x∈�̄

u(x, t) ≤ k = ũ0,

lim sup
t→∞

max
x∈�̄

v(x, t) ≤ m + ũ0

h
– b1 = ṽ0,

lim inf
t→∞ min

x∈�̄

v(x, t) ≥
(

1
k

+
b̃v0

ar

)–1

= û0,

lim inf
t→∞ min

x∈�̄

v(x, t) ≥ m + û0

h
– b1 = v̂0,

where

û0 > b1h – m,

and the limit set of (u, v) belongs to G0 = [̂u0, ũ0] × [̂v0, ṽ0].
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3.6 Proof of Lemma 2.8
Let

(
u(x, t), v(x, t)

)
be the solution of system Eq. (1), with u(x, 0) ≢ 0, v(x, 0) ≢ 0 for x ∈ �̄

and t > 0.
For arbitrarily small ε4 > 0, there exists T4 > T3 such that v(x, t) ≥ v̂0 – ε4 for t > T4.

According to the first equality of Eq. (8), we obtain that for t > T4,

ut ≤ d1�u + ru
(

1 –
u
k

)
–

bu2 (̂v0 – ε4)

a + ũ2
0

= d1�u + ru
[

1 –
(

1
k

+
b(̂v0 – ε4)

r(a + ũ2
0)

)

u
]

,

and P̃(x, t) ≤ Ũ(x, t) in �̄ × [T4,∞), where Ũ(x, t) is the solution of the equation

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂Ũ
∂t

= d1�Ũ + rŨ
[

1 –
(

1
k

+
b(̂v0 – ε4)

r(a + ũ2
0)

)

Ũ
]

, x ∈ �, t > T4,

Ũν = 0, x ∈ ∂�, t > T4,

Ũ(x, T4) = u(x, T4), x ∈ �̄.

From the above we have P̂(x, t) ≤ u(x, t) ≤ P̃(x, t) ≤ Ũ(x, t). As t → ∞, we have

lim sup
t→∞

sup max
x∈�̄

u(x, t) ≤ kr(a + ũ2
0)

r(a + ũ2
0) + kb(̂v0 – ε4)

.

Since ε4 is arbitrarily small, we have

lim sup
t→∞

max
x∈�̄

u(x, t) ≤ kr(a + ũ2
0)

r(a + ũ2
0) + kb̂v0

= ũ1

for arbitrarily small ε5 > 0, and there exists T5 > T4 such that u(x, t) ≤ ũ1 + ε5 for t > T5.
According to the second equality of Eq. (8), we obtain that for t > T5,

vt ≤ d2�v + δv
( 1

b1 + v
–

hv
m + ũ1 + ε5

)
,

and Q̃(x, t) ≤ Ṽ (x, t) in �̄ × [T5,∞), where Ṽ (x, t) is the solution of the equation

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂Ṽ
∂t

= d2�Ṽ + δṼ
( 1

b1 + v
–

hṼ
m + ũ1 + ε5

)
, x ∈ �, t > T5,

Ṽν = 0, x ∈ ∂�, t > T5

Ṽ (x, T5) = u(x, T5), x ∈ �̄.

From the above we have Q̂(x, t) ≤ v(x, t) ≤ Q̃(x, t) ≤ Ṽ (x, t). Thus, as t → ∞ and ε5 → 0,
we have

lim sup
t→∞

max
x∈�̄

v(x, t) ≤ m + ũ1

h
– b1 = ṽ1

for arbitrarily small ε6 > 0, and there exists T6 > T5 such that v(x, t) ≤ ṽ1 + ε6 for t > T6.
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According to the third equality of Eq. (8), we obtain that for t > T6,

ut ≥ d1�u + ru
(

1 –
u
k

)
–

bu2 (̃v1 + ε6)

a + û2
0

= d1�u + ru
[

1 –
(

1
k

+
b(̃v1 + ε6)

r(a + û2
0)

)

u
]

,

and Û(x, t) ≤ P̂(x, t) ≤ u(x, t) in �̄ × [T6,∞), where Û(x, t) is the solution of the equation

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂Û
∂t

= d1�Û + rÛ
[

1 –
(

1
k

+
b(̃v1 + ε6)

r(a + ũ2
0)

)

Û
]

, x ∈ �, t > T6,

Ûν = 0, x ∈ ∂�, t > T6,

Û(x, T6) = u(x, T6), x ∈ �̄.

From the above we have Û(x, t) ≤ P̂(x, t) ≤ u(x, t) ≤ P̃(x, t). As t → ∞ and ε6 → 0, we have

lim
t→∞ inf min

x∈�̄

u(x, t) ≥ kr(a + û2
0)

r(a + û2
0) + kb(̃v1 + ε6)

= û1

for arbitrarily small ε7 > 0, and there exists T7 > T6 such that u(x, t) ≤ ũ1 – ε7 for t > T7.
According to the last equality of Eq. (8), we obtain that for t > T7,

vt ≥ d2�v + δv2
( 1

b1 + v
–

h
m + û1 – ε7

)
,

and V̂ (x, t) ≤ Q̂(x, t) ≤ v(x, t) in �̄ × [T7,∞), where V̂ (x, t) is the solution of the equation
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂V̂
∂t

= d2�V̂ + δV̂ 2
( 1

b1 + V̂
–

h
m + û1 – ε7

)
, x ∈ �, t > T7,

V̂ν = 0, x ∈ ∂�, t > T7,

V̂ (x, T7) = u(x, T7), x ∈ �̄.

From the above we have V̂ (x, t) ≤ Q̂(x, t) ≤ v(x, t) ≤ Q̃(x, t). As t → ∞ and ε7 → 0, we have

lim
t→∞ inf min

x∈�̄

v(x, t) ≥ m + û1

h
– b1 = v̂1

for arbitrarily small ε8 > 0, and there exists T8 > T7 such that v(x, t) ≤ ṽ1 – ε8 for t > T8.
Then we have v(x, t) ≤ ṽ1.

In summary, we get

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

lim
t→∞ sup max

x∈�̄

u(x, t) ≤ kr(a + ũ2
0)

r(a + ũ2
0) + kb̂v0

= ũ1,

lim
t→∞ sup max

x∈�̄

v(x, t) ≤ m + ũ1

h
– b1 = ṽ1,

lim
t→∞ inf min

x∈�̄

u(x, t) ≥ kr(a + û2
0)

r(a + û2
0) + kb̃v1

= û1,

lim
t→∞ inf min

x∈�̄

v(x, t) ≥ m + û1

h
– b1 = v̂1,

and the limit set of (u, v) belongs to G1 = [̂u1, ũ1] × [̂v1, ṽ1].
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Moreover, we have

ũ1 =
kr(a + ũ2

0)

r(a + ũ2
0) + kb̂v0

≤ k = ũ0,

so we have

ṽ1 =
m + ũ1

h
– b1 ≤ m + ũ0

h
– b1 = ṽ0,

then

û1 =
kr(a + û2

0)

r(a + û2
0) + kb̃v1

≥ kr(a + û2
0)

r(a + û2
0) + kb̃v0

≥ kra + (k – 1)r̂u2
0

ra + kb̃v0
≥ kar

ar + kb̃v0
= û0,

and therefore

v̂0 =
m + û0

h
– b1 ≥ m + û1

h
– b1 = v̂1.

In summary, we have û0 ≤ û1 ≤ u ≤ ũ1 ≤ ũ0 and v̂0 ≤ v̂1 ≤ v ≤ ṽ1 ≤ ṽ0.
Continuing with this compression process, we have

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

lim sup
t→∞

max
x∈�̄

u(x, t) ≤ kr(a + ũ2
n–1)

r(a + ũ2
n–1) + kb̂vn–1

= ũn,

lim sup
t→∞

max
x∈�̄

v(x, t) ≤ m + ũn–1

h
– b1 = ṽn,

lim inf
t→∞ min

x∈�̄

u(x, t) ≥ kr(a + û2
n–1)

r(a + û2
n–1) + kb̃vn

= ûn,

lim inf
t→∞ min

x∈�̄

v(x, t) ≥ m + ûn

h
– b1 = v̂n,

(25)

with û0 ≤ û1 ≤ û2 ≤ · · · ≤ ûn+1 ≤ u ≤ ũn+1 ≤ ũn ≤ ũn–1 ≤ · · · ≤ ũ0 and v̂0 ≤ v̂1 ≤ v̂2 ≤ · · · ≤
v̂n+1 ≤ v ≤ ṽn+1 ≤ ṽn ≤ ṽn–1 ≤ · · · ≤ ṽ0.

Taking the limits in Eq. (25), we have

ũ = lim
n→∞ ũn =

kr(a + ũ2)

r(a + ũ2) + kb̂v
, ṽ = lim

n→∞ ṽn =
m + ũ

h
– b1,

û = lim
n→∞ ûn =

kr(a + û2)

r(a + û2) + kb̃v
, v̂ = lim

n→∞ v̂n =
m + û

h
– b1,

(26)

and then we get

lim sup
t→∞

max
x∈�̄

u(x, t) ≤ ũ, lim sup
t→∞

max
x∈�̄

v(x, t) ≤ ṽ,

lim inf
t→∞ min

x∈�̄

u(x, t) ≥ û, lim inf
t→∞ min

x∈�̄

v(x, t) ≥ v̂,

and the limit set of (u, v) belongs to G = [̂u, ũ] × [̂v, ṽ].
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3.7 Proof of Lemma 2.9
Next, we prove the global asymptotic stability of the unique positive constant steady state
of Eq. (1) at τ = 0, i.e., Theorem 2.9.

First, we introduce a suitable Lyapunov function from [32],

W (u, v) = (u – u0) – u0 ln
( u

u0

)
+ ρ

[
(v – v0) – v0 ln

( v
v0

)]
,

where ρ is the coefficient to be determined.
The function W is continuous in G = [̂u, ũ] × [̂v, ṽ], equal to zero at equilibrium (u0, v0),

and always greater than zero at other u, v. Then (u0, v0) is the global minimum of W , and
the time derivative along W of the solution of Eq. (1) is

dW
dt

=(u – u0)

[

r
(

1 –
u
k

)
–

buv
a + u2

]

+ δα(v – v0)
( v

b1 + v
–

hv
m + u

)

=(u – u0)

[

r
(

1 –
1
k

)
(u – u0) –

u0

k
–

buv
a + u2 (u – u0) –

buv
a + u2

]

+ δα
(
(v – v0) + v0

)( 1
b1 + v

–
h

m + u

)

=
(

–
r
k

–
bv

a + u2

)
(u – u0)2 +

( bu0v0

a + u2
0

–
bu0v0

a + u2

)
(u – u0)

+ αδ
( 1

b1 + v
–

h
m + u

)
(v – v0)2 + αδ

[( 1
b1 + v

–
1

b1 + v0

)

+
( h

m + u0
–

h
m + u

)]

v0(v – v0) –
bu0

a + u2 (u – u0)(v – v0)

=
[

–
r
k

–
bv

a + u2 +
bu0v(u + u0)

(a + u2
0)(a + u2)

]

(u – u0)2 +
[

αδv0h
(m + u)(m + u0)

–
bu0

a + u2

]

(u – u0)(v – v0) + αδ

[
1

b1 + v
–

h
m + u

–
v0

(b1 + v)(b1 + v0)

]

(v – v0)2

=
[

bv(uu0 – a)

(a + u2)(a + u2
0)

–
r
k

]

(u – u0)2 +
[

αδv0h
(m + u)(m + u0)

–
bu0

a + u2

]

(u – u0)(v – v0)

+ αδ

[
b1

(b1 + v)(b1 + v0)
–

h
m + u

]

(v – v0)2.

Now denote

H(α, u) =
αδv0h

(m + u)(m + u0)
–

bu0

a + u2 .

According to Eq. (8), we get u(x, t) ≤ k, and thus

H(α, u) ≤ αδv0h
(m + u)(m + u0)

–
bu0

a + ku
.

Recall that

α =
bmu0 + bu2

0
δv0hk

.
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In that way, we have

H(u) ≤ (bmu0 + bu2
0)

k(m + u)(m + u0)
–

bu0

a + ku

=
(bmu0 + bu2

0)(a + ku) – bu0k(m + u)(m + u0)

k(m + u)(m + u0)(a + ku)

=
bu0(a – km)

(m + u)(a + ku)k

≤ bu0|a – km|
kma

.

Thus

dW
dt

≤
[

bv(uu0 – a)

(a + u2)(a + u2
0)

–
r
k

]

(u – u0)2 +
bu0|a – km|

kma
|u – u0||v – v0|

+ αδ

[
b1

(b1 + v)(b1 + v0)
–

h
m + u

]

(v – v0)2

≤
[

bv(uu0 – a)

(a + u2)(a + u2
0)

–
r
k

]

(u – u0)2 +
∣
∣
∣
∣
bu0(a – km)

kma

∣
∣
∣
∣
(u – u0)2 + (v – v0)2

2

+ αδ

[
b1

(b1 + v)(b1 + v0)
–

h
m + u

]

(v – v0)2

≤
[

bv(uu0 – a)

a(a + u2
0)

–
r
k

]

(u – u0)2 +
∣
∣
∣
∣
bu0(a – km)

kma

∣
∣
∣
∣
(u – u0)2 + (v – v0)2

2

+ αδ

[
b1

b1(b1 + v0)
–

h
m + k

]

(v – v0)2

=
[

bv(uu0 – a)

a(a + u2
0)

–
r
k

+
∣
∣
∣
bu0(a – km)

2kma

∣
∣
∣

]

(u – u0)2

+ αδ

[
1

b1 + v0
–

h
m + k

+
∣
∣
∣
bu0(a – km)

2kma

∣
∣
∣

]

(v – v0)2

= D(u, v)(u – u0)2 + R(v – v0)2.

If (ℵ4) is established, then D(u, v) < 0 and R < 0. It is clear that dW
dt < 0, that is, the positive

constant steady state (u0, v0) is globally asymptotically stable.

3.8 Proof of Theorem 2.11
From Lemma 2.7 we know that the projection of Cj

n onto the z-space is bounded. Notice
that

2jπ < ωnτ
j
n < 2(j + 1)π , j ∈N.

It follows that

1
j + 1

<
2π

ωnτ
j
n

<
1
j

, j ∈N.

Assume that (z, τ ,ω) ∈ C
j
n for j ∈N. Then 1

j+1 < 2π
ω

< 1
j by Lemma 2.8. This fact shows that

the projection of Cj
n onto the T-space is bounded if τ is bounded.
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Then from Lemma 2.10, since μ1(U0, τ j
n,ωn) > 0 for all τ

j
n (n ∈ I1, j ∈ N0), we get that

each connected component C
j
n is unbounded. In particular, according to the proof of

Lemma 2.2, system (1) has no positive periodic solutions when τ = 0. Thus the projec-
tions of Cj

n for j ∈ N onto the τ -space include C
j
n.

4 Numerical simulation
In this section, we use numerical simulations to verify the theoretical results of Eq. (1). We
choose the following parameters:

d1 = 0.3, r = 0.11, a = 4.74, δ = 2, b = 0.04, h = 0.3801,

d2 = 0.3, m = 0.01, b1 = 0.901, k = 6.8, l = 6.

Then Ł = –0.0012 < 0, and by Theorem 2.1(a) we obtain that Eq. (3) has a unique pos-
itive root. Moreover, u0 = 3.0054 > b1h – m = 0.3325, which ensures that Eq. (1) has
a unique positive steady state (3.0054, 7.0323). By calculation we have ϑ(u0) = 0.0295,
� = max

{
– δκ(u0), – d1

d2
δκ(u0), – γ (u0)

h
}

= –0.0690, so that (ℵ2) is satisfied. Then we have
hϑ(u0) = 0.0112, γ (u0) = 0.0262, so that (ℵ3) is satisfied. In addition, we define An =
F2

n – H2. Then we know that An < 0 for n ≤ N∗ = 2 and An > 0 for n > N∗ = 2:

A0 = –0.0096, A1 = –0.0082, A2 = –0.0016,

A3 = 0.0178, A4 = 0.0653, A5 = 0.1674, . . . .

Hence for n ≤ N∗ = 2, Eq. (5) has a unique pair of purely imaginary roots ±iω. By Eq. (21)
we obtain that

τ+
0,0 = 31.6469, τ+

0,1 = 132.4325, τ+
0,2 = 233.2181, . . . ,

τ+
1,0 = 37.0069, τ+

1,1 = 146.7688, τ+
1,2 = 256.5307, . . . ,

τ+
2,0 = 110.3625, τ+

2,1 = 362.6447, τ+
2,2 = 614.9269, . . . .

(27)

From Theorem 2.6 we have τ0 = 31.6469 and τ1 = 132.4325. Hence the positive steady state
(3.0054, 7.0323) of Eq. (1) is locally asymptotically stable for τ ∈ (0, τ0) (see Fig. 1(a, d)) and
is unstable for τ > τ0 (see Fig. 1(b, e)). It then follows from Theorem 2.11 thate system (1)
has at least one positive periodic orbit when τ > τ1.

To verify the extended existence of bifurcating periodic solutions, we choose τ = 220
faraway from Hopf bifurcation points in Eq. (27). The corresponding numerical simulation
results are shown in Fig. 1(c, f ).

5 Conclusions and discussion
In this paper, we establish the dynamic behaviors of a delayed diffusive predator–prey
model with weak Allee effect for predator under the Neumann boundary condition. The
stability of the positive steady state and the existence of Hopf bifurcation are obtained by
taking the time delay τ as the bifurcation parameter. Particularly, we give the existence
condition of the global Hopf bifurcation by using Wu’s theory. This shows that the model
has at least one periodic solution when the bifurcation parameter varies in a very large
range. This can better explain the phenomenon of periodic fluctuations of biological pop-
ulations.
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Figure 1 The unique positive steady state (3.0054, 7.0323) of Eq. (1) is asymptotically stable when
τ = 29 < τ0 = 31.6469, and system (1) has one positive periodic solution for τ = 32 > τ0 and
τ = 133 > τ1 = 132.4325. (a) and (d) show the behaviors for u and v for τ = 29; (b) and (e) show the behaviors
for u and v for τ = 32, respectively; (c) and (f ) show the behaviors for u and v for τ = 220, respectively

In our method, the key step is compressing the range in which positive periodic solutions
exist. Otherwise, we cannot find a set of parameter values that satisfy all the conditions
of global Hopf bifurcation. This method is valid for the Leslie–Gower models or Gause
models with Holling III functional response but may be not applicable to the models with
other functional response. These problems need further study.
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