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Abstract
A nonautonomous periodic discrete model is proposed to characterize the dynamics
ofWolbachia spread in mosquito populations under period-2 environments, where
theWolbachia strain in the first environment is less competitive than the one in the
second environment. By introducing the associated Poincaré map, the existence,
exact number, and stability of periodic solutions and the long-term behavior of the
discrete model are analyzed. Sufficient conditions are obtained to guarantee the
bistable dynamics of the model: the model has exactly two periodic solutions, among
which one is unstable, and the other is locally asymptotically stable. The origin,
corresponding to theWolbachia vanishment, of the model is locally asymptotically
stable. Counting the exact number of periodic solutions of nonautonomous periodic
discrete models is always challenging. In this paper, we provide three exclusive
methods to prove the uniqueness of the periodic solutions, together with their
stability analyses. Biologically, the unstable periodic solution serves as a threshold for
Wolbachia invasion, and the stable periodic solution identifies whereWolbachia will
be stabilized. Numerical simulations are provided to locate these two periodic
solutions and analyze the parameter space to identify regions where periodic
solutions emerge or disappear through bifurcations.
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1 Introduction
The World Mosquito Program (WMP) is working with local communities in Asia, Latin
America, and Oceania to reduce the transmission of mosquito-borne diseases like dengue,
Zika, Chikungunya, and yellow fever. Using a tiny bacteria called Wolbachia discovered
in 1924, WMP has released Wolbachia mosquitoes in more than 14 countries and has
protected almost 11 million people [1] under the difficult situation (neither effective drugs
nor safe vaccine) of dengue control. This satisfactory result owes to three mechanisms
induced from Wolbachia.
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The first mechanism is cytoplasmic incompatibility (CI for short), which causes eggs
produced by the mating of infected males and uninfected females to fail to hatch, par-
tially or completely [2]. To the end, the parameter h with h ∈ (0, 1] is usually introduced
to estimate the intensity of CI, that is, among the eggs produced from the incompatible
mating, h of them will not hatch, leaving 1 – h of them survived from CI [3, 4]. The sec-
ond mechanism is that Wolbachia is passed from generation to generation, usually with
high fidelity, i.e., the proportion of infected offspring is higher than that of uninfected off-
spring from infected mothers. Let μ ∈ [0, 1) be the maternal transmission leakage rate.
Among all offspring produced from Wolbachia-infected females, 1 – μ of them are in-
fected, and μ of them are uninfected. Thirdly, Wolbachia endows the host with the ability
of pathogen blocking by inhibiting the replication of dengue viruses in mosquito tissues,
such as fat bodies, ommatidia, midgut, salivary glands and brain [5–7]. Hence, dengue
viruses will not be transmitted to humans during subsequent blood-feeding. However,
Wolbachia-infected females usually undergo a fitness cost at a disadvantage compared
to uninfected females on female mosquitoes’ oviposition, longevity, and environmental
adaptability [8–10]. Let f ∈ [0, 1] be the fitness cost of Wolbachia-infected females. That
is, if the fitness of uninfected females is 1, then the fitness of Wolbachia-infected females
is 1 – f .

Currently, releasing Wolbachia mosquitoes to suppress or replace wild vector mosqui-
toes has become a promising method to control mosquito and mosquito-borne diseases.
As a hot research topic, the dynamics of Wolbachia spread in mosquito populations has
attracted much attention, and various mathematical models have been established, see
[11–21] to cite a few. This paper uses a time-switching discrete model to study the dy-
namics of Wolbachia spread in mosquito populations under period-2 perturbation. The
first discrete model

xn+1 =
(1 – f )xn

hx2
n – (f + h)xn + 1

, n ∈ Z (1.1)

was established by Caspari and Watson in 1959 [11], where xn is the Wolbachia infection
frequency at the n-th generation, f and h with f < h are respectively the fitness cost and
the CI intensity as introduced above, and Z = {1, 2, 3, . . .} be the set of all positive integers.
Let xn = xn(1, x1) be the solution of model (1.1) initiated from x1. Model (1.1) generates the
bistable dynamics: if x1 ∈ [0, f /h), then xn → 0 as n → +∞, and if x1 ∈ (f /h, 1], then xn → 1
as n → +∞. Later, in 1978, based on the first discrete model and motivated by the phe-
nomenon of imperfect maternal transmission of Wolbachia [12], Fine in [13] developed a
similar but more general model

xn+1 =
(1 – μ)(1 – f )xn

hx2
n – (f + h)xn + 1

, n ∈ Z. (1.2)

In 2019, the authors in [16] offered a complete mathematical analysis of model (1.2) and
obtained the following theorem.

Theorem 1.1 ([16]) Model (1.2) always admits the trivial equilibrium point x∗
0 = 0, which

is locally asymptotically stable. By introducing

μ∗ =
(h – f )2

4h(1 – f )
, (1.3)
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model (1.2) has
(1) two nonzero equilibria

x∗ =
h + f –

√
(h – f )2 – 4μh(1 – f )

2h
, x∗∗ =

h + f +
√

(h – f )2 – 4μh(1 – f )

2h
(1.4)

with 0 < x∗ < x∗∗ < 1 when μ ∈ [0,μ∗), among which x∗ is unstable, and x∗∗ is locally
asymptotically stable. That is, if x1 ∈ [0, x∗), then xn → 0 as n → ∞, whereas for
x1 ∈ (x∗, 1], xn → x∗∗ as n → ∞.

(2) a nonzero equilibrium point

x̂∗ =
h + f
2h

,

when μ = μ∗, and xn → 0 as n → ∞ if x1 < x̂∗, whereas for x1 > x̂∗, xn → x̂∗ as
n → ∞.

(3) the unique equilibrium solution x∗
0 = 0 when μ > μ∗, which satisfies xn → 0 as

n → ∞ for any x1 ∈ [0, 1].

The bistable dynamics shown in Theorem 1.1(1) captures the infection frequency
threshold x∗, which plays the most important role in field trials for the fate of Wolbachia
invasion. Besides, the bifurcation value μ∗ defined in (1.3) confirms that if the maternal
leakage rate is larger than μ∗, then Wolbachia invasion is impossible as Theorem 1.1(3)
shown. Hence, Theorem 1.1 has offered all possible cases when Wolbachia-related param-
eters are independent of the external environmental conditions. However, the dynamical
behavior of Wolbachia in mosquitoes changes in response to natural fluctuations in living
conditions such as temperature and precipitation [22] and Wolbachia-related parameters
are also highly related to the external environmental conditions [23–27]. For example, the
authors in [25] found that wMel-infected males and uninfected females produced com-
plete CI without eggs hatching when reared at 26◦C and almost complete CI when reared
in 99% shaded barrels (23.2–29.6◦C). Raising them in a 50% shaded barrel (23.7–35.3◦C)
caused a much weaker CI. Therefore, it is more realistic to extend model (1.2) to

xn+1 =
(1 – μn)(1 – fn)xn

hnx2
n – (fn + hn)xn + 1

, n ∈ Z, (1.5)

that describes the parameters in the external environment of the nth generation mosquito
in terms of μn, fn, hn.

In the current study, we focus on the dynamics of Wolbachia spread in mosquito popu-
lations under the period-2 environments by assuming that

μn+2 = μn, hn+2 = hn, and fn+2 = fn, n ∈ Z, (1.6)

and leaving the general case as our future study. Let μ1, h1, and f1 be respectively the
maternal transmission leakage rate, the CI intensity, and the fitness cost of infected females
in the first environment, followed by the second environment with μ2, h2, and f2. In such
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a situation, model (1.5) becomes a switching model

xn+1 =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(1 – μ1)(1 – f1)xn

h1x2
n – (f1 + h1)xn + 1

, n = 2k + 1,

(1 – μ2)(1 – f2)xn

h2x2
n – (f2 + h2)xn + 1

, n = 2k + 2,
(1.7)

where k ∈ Z(0) = {0, 1, 2, . . .} are all nonnegative integers.
When the environment condition undergoes a period-2 perturbation, the dynamics of

Wolbachia spread in mosquito populations is dictated by model (1.7) instead of model
(1.2). It is obvious that model (1.7) has the origin 0 as the unique equilibrium point. The
dynamics shown in Theorem 1.1 for model (1.2) do not hold anymore for model (1.7).

To study the dynamics of model (1.7), without loss of generality, we assume that the
Wolbachia strain in the first environment is less competitive than the one in the second
environment, that is,

μ2 < μ1, f2 < f1 < h1 < h2, (1.8)

which implies that the Wolbachia strain in the first environment has a larger maternal
transmission leakage rate, higher fitness cost, and lower CI intensity. We define

μ∗
1 =

(h1 – f1)2

4h1(1 – f1)
, and μ∗

2 =
(h2 – f2)2

4h2(1 – f2)

as Theorem 1.1 suggested. Since only those Wolbachia strains with μ1 < μ∗
1 and μ2 < μ∗

2
would be considered a release candidate, we only treat this case in the current study and
leave the other cases as our future work. Noticing that

∂μ∗

∂h
=

(h – f )(h + f )

4h2(1 – f )
> 0, and

∂μ∗

∂f
=

– (h – f )(2 – h – f )

4h(1 – f )2 < 0,

we have the fact that μ∗ is strictly monotonically increasing in h, and strictly monotonically
decreasing in f . Therefore, with (1.8), we have

μ∗
1 =

(h1 – f1)2

4h1(1 – f1)

f2<f1<
(h1 – f2)2

4h1(1 – f2)

h1<h2<
(h2 – f2)2

4h2(1 – f2)
= μ∗

2.

These observations imply that if we let

μ1 < μ∗
1, (1.9)

then we must have μ2 < μ∗
2 with (1.8) satisfied. The main result of this paper is as follows.

Theorem 1.2 Assume that (1.8) and (1.9) hold. Then the switching model (1.7) has exactly
two 2-periodic solutions, among which the smaller one is unstable, and the bigger one is lo-
cally asymptotically stable. Furthermore, the origin of model (1.7) is locally asymptotically
stable.

The rest of the paper is organized as follows: Sect. 2 proves that model (1.7) has at least
two 2-periodic solutions by exploring the qualitative property of the associated Poincaré



Luo et al. Advances in Continuous and Discrete Models         (2025) 2025:15 Page 5 of 23

map. We prove that model (1.7) has at most two 2-periodic solutions by way of contra-
diction in Sect. 3, with three exclusive methods dealing with different cases. Section 4 is
devoted to the stability analysis stated in Theorem 1.2. The whole paper ends with a short
discussion, especially focusing on the nonlinear dependence of the periodic solutions on
model parameters.

2 Existence of at least two 2-periodic solutions
We begin with the local monotonicity of x∗ and x∗∗ defined in (1.4) with respect to μ, f and
h. When μ ∈ [0,μ∗), it is obvious that x∗ is strictly monotonically increasing in μ, and x∗∗ is
strictly monotonically decreasing in μ. The larger the maternal transmission leakage, the
larger the infection frequency threshold, and the smaller the level of Wolbachia fixation.

Regarding the monotonicity of x∗ and x∗∗ in f , we calculate

∂x∗

∂f
=

1 –
– 2(h – f ) + 4μh

2
√

(h – f )2 – 4μh(1 – f )

2h
=

√
(h – f )2 – 4μh(1 – f ) – [2μh – (h – f )]

2h
√

(h – f )2 – 4μh(1 – f )
.

Since μ < μ∗, one has

2μh – (h – f ) < 2h
(h – f )2

4h(1 – f )
– (h – f ) =

h – f
2(1 – f )

(h + f – 2) < 0, (2.1)

which leads to
∂x∗

∂f
> 0. Similarly, we have

∂x∗∗

∂f
=

1 +
– 2(h – f ) + 4μh

2
√

(h – f )2 – 4μh(1 – f )

2h
=

√
(h – f )2 – 4μh(1 – f ) – [(h – f ) – 2μh]

2h
√

(h – f )2 – 4μh(1 – f )
.

By (2.1), it is easy to get
√

(h – f )2 – 4μh(1 – f ) < (h – f ) – 2μh

iff (h – f )2 – 4μh(1 – f ) < (h – f )2 – 4μh(h – f ) + 4μ2h2

iff 4μh(h – 1) < 4μ2h2

iff h – 1 < μh,

with the last inequality always holding, which implies that
∂x∗∗

∂f
< 0. These observations

claim that x∗ is strictly monotonically increasing in f , and x∗∗ is strictly monotonically
decreasing in f .

On the monotonicity of x∗ and x∗∗ with respect to h, we get

∂x∗

∂h
=

2h

[

1 –
2(h – f ) – 4μ(1 – f )

2
√

(h – f )2 – 4μh(1 – f )

]

– 2
[

h + f –
√

(h – f )2 – 4μh(1 – f )
]

4h2

=
– f (h – f ) – 2μh(1 – f ) – f

√
(h – f )2 – 4μh(1 – f )

2h2
√

(h – f )2 – 4μh(1 – f )
< 0,
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and

∂x∗∗

∂h
=

2h

[

1 +
2(h – f ) – 4μ(1 – f )

2
√

(h – f )2 – 4μh(1 – f )

]

– 2
[

h + f +
√

(h – f )2 – 4μh(1 – f )
]

4h2

=
f
[
(h – f ) –

√
(h – f )2 – 4μh(1 – f )

]
+ 2μh(1 – f )

2h2
√

(h – f )2 – 4μh(1 – f )
> 0.

To sum up, we have the following results on the monotonicity of μ∗, x∗, and x∗∗ with
respect to h and f .

Lemma 2.1 The threshold value μ∗ is strictly monotonically increasing in h and strictly
monotonically decreasing in f . When μ ∈ [0,μ∗), the unstable equilibrium point x∗ is
strictly monotonically increasing in both μ and f , and strictly monotonically decreasing
in h. The stable equilibrium point x∗∗ is strictly monotonically decreasing in both μ and f
and strictly monotonically increasing in h.

Based on the assumption μ1 < μ∗
1, the first equation in (1.7) becomes

�xn = –
h1xn(xn – x∗

1)(xn – x∗∗
1 )

h1x2
n – (h1 + f1)xn + 1

, n = 2k + 1, k ∈ Z(0), (2.2)

where

x∗
1 =

h1 + f1 –
√

(h1 – f1)2 – 4μ1h1(1 – f1)

2h1
, x∗∗

1 =
h1 + f1 +

√
(h1 – f1)2 – 4μ1h1(1 – f1)

2h1
.

We also have μ2 < μ∗
2. In this case, the second equation in (1.7) becomes

�xn = –
h2xn(xn – x∗

2)(xn – x∗∗
2 )

h2x2
n – (h2 + f2)xn + 1

, n = 2k + 2, k ∈ Z(0), (2.3)

where

x∗
2 =

h2 + f2 –
√

(h2 – f2)2 – 4μ2h2(1 – f2)

2h2
, x∗∗

2 =
h2 + f2 +

√
(h2 – f2)2 – 4μ2h2(1 – f2)

2h2
.

Using the monotonicity of x∗ and x∗∗ stated in Lemma 2.1, we get

x∗
2 = x∗(μ2, f2, h2)

μ2<μ1< x∗(μ1, f2, h2)
f2<f1< x∗(μ1, f1, h2)

h2>h1< x∗(μ1, f1, h1) = x∗
1,

and

x∗∗
1 = x∗∗(μ1, f1, h1)

μ1>μ2< x∗∗(μ2, f1, h1)
f1>f2< x∗∗(μ2, f2, h1)

h1<h2< x∗∗(μ2, f2, h2) = x∗∗
2 .

Therefore, we can draw the conclusion that

x∗
2 < x∗

1 < x∗∗
1 < x∗∗

2 . (2.4)
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By exploring the qualitative property of the associated Poincaré map (h(u) defined be-
low), in the following lemma, we prove that model (1.7) has at least two 2-periodic solu-
tions with (1.8) and (1.9) satisfied.

Lemma 2.2 Assume that (1.8) and (1.9) hold. Then model (1.7) has at least two 2-periodic
solutions among which one initiates from (x∗

2, x∗
1) and the other initiates from (x∗∗

1 , x∗∗
2 ).

Proof To unload the notation burden, we let

P1(u) = (1 – μ1)(1 – f1)u, Q1(u) = h1u2 – (f1 + h1)u + 1, (2.5)

and

P2(u) = (1 – μ2)(1 – f2)u, Q2(u) = h2u2 – (f2 + h2)u + 1. (2.6)

Then, for any x1 = u ∈ [0, 1], it follows from (2.2) that

x2 =
P1(u)

Q1(u)
:= h̄(u), h̄(x∗

1) = x∗
1, h̄(x∗∗

1 ) = x∗∗
1 ,

and

h̄(u) < u for u ∈ (0, x∗
1) ∪ (x∗∗

1 , 1], h̄(u) > u for u ∈ (x∗
1, x∗∗

1 ). (2.7)

To bridge, initiated from x2 = h̄(u), it follows from (2.3) that

x3 =
P2(h̄(u))

Q2(h̄(u))
:= h(u), h(x∗

2) = x∗
2, h(x∗∗

2 ) = x∗∗
2 ,

and

h(u) < h̄(u) for h̄(u) ∈ (0, x∗
2) ∪ (x∗∗

2 , 1], h(u) > h̄(u) for h̄(u) ∈ (x∗
2, x∗∗

2 ). (2.8)

Combining (2.4), (2.7), and (2.8), we get

h(u) < u for u ∈ (0, x∗
2] ∪ [x∗∗

2 , 1], h(u) > u for u ∈ [x∗
1, x∗∗

1 ]. (2.9)

Hence, the continuity of h(u) and (2.9) guarantee that h(u) has at least two fixed points
initiated from (x∗

2, x∗
1) and (x∗∗

1 , x∗∗
2 ), respectively. This proves that model (1.7) has at least

two 2-periodic solutions when both (1.8) and (1.9) hold. □

3 At most two 2-periodic solutions
It follows from Lemma 2.2 that there exist u1 ∈ (x∗

2, x∗
1) and u2 ∈ (x∗∗

1 , x∗∗
2 ), such that

h(u1) = u1 and h(u2) = u2. That is, model (1.7) has two 2-periodic solutions. In this sec-
tion, we prove that model (1.7) has no other 2-periodic solutions except the two 2-periodic
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Figure 1 Panel (a) and (b) show the situation that model (1.7) has two 2-periodic solutions initiated from
(x∗2 , x∗1 ), corresponding to Case 1 and Case 2, respectively. Panel (c) corresponds to Case 3, under which
model (1.7) has three 2-periodic solutions initiated from (x∗2 , x∗1 )

solutions initiated from u1 and u2, which can be guaranteed by the following qualitative
property of h(u) – u:

h′(u1) ≥ 1, h′(u2) ≤ 1, h(u) < u for u ∈ (0, u1) ∪ (u2, 1], and h(u) > u for u ∈ (u1, u2).

We will separately prove that the 2-periodic solutions initiated from (x∗
2, x∗

1) or (x∗∗
1 , x∗∗

2 )

are unique by contradiction. For the uniqueness of the 2-periodic solutions initiated
from (x∗

2, x∗
1), we assume by contradiction that there exists another 2-periodic solution

v1 ∈ (x∗
2, x∗

1) with v1 > u1 such that

h(v1) = v1, h′(v1) ≥ 1, h(u) > u for u ∈ (v1, x∗
1).

Therefore, there must exist at least one w1 ∈ [u1, v1] such that

h(w1) = w1, h′(w1) ≤ 1,

and one of the following three cases holds:

Case 1: w1 = u1, h′(u1) = h′(w1) = 1, h′(v1) ≥ 1;

Case 2: v1 = w1, h′(u1) ≥ 1, h′(v1) = h′(w1) = 1;

Case 3: w1 ∈ (u1, v1), h′(u1) ≥ 1, h′(w1) ≤ 1, h′(v1) ≥ 1

if model (1.7) has at most three 2-periodic solutions initiated from (x∗
2, x∗

1). See Fig. 1 for
an illustration.

Similarly, regarding the uniqueness of the 2-periodic solutions of model (1.7) initiated
from (x∗∗

1 , x∗∗
2 ), we assume by contradiction that there exists v2 ∈ (x∗∗

1 , x∗∗
2 ) with v2 < u2

satisfying

h(v2) = v2, h′(v2) ≤ 1, h(u) > u for u ∈ (x∗∗
1 , v2),
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Figure 2 Panel (a) and (b) show that model (1.7) has two 2-periodic solutions initiated from (x∗∗
1 , x∗∗

2 ),
corresponding to Case 4 and Case 5. Panel (c) shows Case 6 for which model (1.7) has three 2-periodic
solutions initiated from (x∗∗

1 , x∗∗
2 )

then there must exist at least one w2 ∈ [v2, u2] such that

h(w2) = w2, h′(w2) ≥ 1.

Three cases should be considered.

Case 4: w2 = v2, h′(v2) = h′(w2) = 1, h′(u2) ≤ 1.

Case 5: w2 = u2, h′(v2) ≤ 1, h′(u2) = h′(w2) = 1.

Case 6: w2 ∈ (v2, u2), h′(v2) ≤ 1, h′(w2) ≥ 1, h′(u2) ≤ 1.

See Fig. 2 for an illustration. We prove in the next two subsections that the above six cases
are impossible, which guarantees that model (1.7) has at most two 2-periodic solutions.

3.1 Uniqueness of 2-periodic solutions initiated from (x∗
2 , x∗

1 )
We begin by excluding the possibility of Case 1 in the following lemma.

Lemma 3.1 If the assumptions in Theorem 1.2 hold, then Case 1 is impossible.

Proof Since h̄(u) = P1(u)/Q1(u), where P1 and Q1 are defined in (2.5), we have

dh̄(u)

du
=

[P′
1(u) – Q′

1(u)h̄(u)]h̄(u)

P1(u)

=
[(1 – μ1)(1 – f1) – (2h1u – f1 – h1)h̄(u)]h̄(u)

(1 – μ1)(1 – f1)u
. (3.1)

Similarly, h(u) = P2(h̄(u))/Q2(h̄(u)) with P2 and Q2 defined in (2.6), we get

dh(u)

dh̄(u)
=

[P′
2(h̄(u)) – Q′

2(h̄(u))h(u)]h(u)

P2(h̄(u))

=
[(1 – μ2)(1 – f2) – (2h2h̄(u) – f2 – h2)h(u)]h(u)

(1 – μ2)(1 – f2)h̄(u)
. (3.2)
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Combining (3.1) and (3.2), we achieve

h′(u) =
h(u)

u
· (1 – μ2)(1 – f2) – (2h2h̄(u) – f2 – h2)h(u)

(1 – μ2)(1 – f2)

· (1 – μ1)(1 – f1) – (2h1u – f1 – h1)h̄(u)

(1 – μ1)(1 – f1)
, (3.3)

and at any point ξ ∈ {u1, v1, w1} with h(ξ ) = ξ , one has

h′(ξ ) =
M(ξ )

(1 – μ2)(1 – f2)
· N(ξ )

(1 – μ1)(1 – f1)
, (3.4)

where

M(ξ ) = (1 – μ2)(1 – f2) – (2h2h̄(ξ ) – f2 – h2)h(ξ ),

and

N(ξ ) = (1 – μ1)(1 – f1) – (2h1ξ – f1 – h1)h̄(ξ ).

We further calculate M(ξ ) as

M(ξ ) = (1 – μ2)(1 – f2) – (2h2h̄(ξ ) – f2 – h2)ξ

=
(1 – μ2)(1 – f2)Q1(ξ ) – 2h2ξP1(ξ ) + (f2 + h2)ξQ1(ξ )

Q1(ξ )

=
m0 + m1ξ + m2ξ

2 + m3ξ
3

Q1(ξ )
,

where

m0 = (1 – μ2)(1 – f2), m1 = –(1 – μ2)(1 – f2)(f1 + h1) + (f2 + h2),

m2 = h1(1 – μ2)(1 – f2) – 2h2(1 – μ1)(1 – f1) – (f1 + h1)(f2 + h2), m3 = h1(f2 + h2).

Similarly, N(ξ ) can be specified as

N(ξ ) =
(1 – μ1)(1 – f1)Q1(ξ ) – 2h1ξP1(ξ ) + (f1 + h1)P1(ξ )

Q1(ξ )
=

(1 – μ1)(1 – f1)(1 – h1ξ
2)

Q1(ξ )
.

Revisiting (3.4) at u = ξ , we have h′(ξ ) ≥ 1 if and only if (iff) M(ξ )N(ξ ) – (1 – μ2)(1 –
f2)(1 – μ1)(1 – f1) ≥ 0, or equivalently,

G(ξ ) = g0 + g1ξ + g2ξ
2 + g3ξ

3 + g4ξ
4 ≥ 0. (3.5)

And h′(ξ ) < 1 iff G(ξ ) < 0. In (3.5),

g0 = m1 + 2(f1 + h1)(1 – μ2)(1 – f2) = (f1 + h1)(1 – μ2)(1 – f2) + (f2 + h2) > 0.
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The coefficient g1 satisfies

g1 = (m2 – m0h1) – (1 – μ2)(1 – f2)(2h1 + (f1 + h1)2)

= –2h2(1 – μ1)(1 – f1) – (f1 + h1)(f2 + h2) – (1 – μ2)(1 – f2)(2h1 + (f1 + h1)2) < 0.

The coefficient g2 = 3h1(1 – μ2)(1 – f2)(f1 + h1) > 0 and g3 satisfy

g3 = –m2h1 – (1 – μ2)(1 – f2)h2
1

= h1[–2h1(1 – μ2)(1 – f2) + 2h2(1 – μ1)(1 – f1) + (f1 + h1)(f2 + h2)].

The coefficient g4 = –h2
1(f2 + h2) < 0.

Without confusion, we still write G(u) = g0 + g1u + g2u2 + g3u3 + g4u4. With the help of
G(u), we next prove h′(v1) < 1 to get the contradiction to Case 1 with h′(v1) ≥ 1. We begin
with G′′(u) = 2g2 + 6g3u + 12g4u2. Direct computations lead to G′′(0) = 2g2 > 0 and

G′′(x̄) = 2g2 + 6g3x̄ + 12g4x̄2 = 6h2(1 – μ1)(1 – f1)(f1 + h1) > 0, (3.6)

where x̄ is introduced as

x̄ =
h1 + f1

2h1
∈ (x∗

1, x∗∗
1 ) (3.7)

to get around the difficulty in complex calculations.
It follows from (3.6) and g4 < 0 that G′′(u) > 0 for all u ∈ [0, x̄]. This implies that

G′(u) = g1 + 2g2u + 3g3u2 + 4g4u3

with G′(0) = g1 < 0 is strictly monotonically increasing in u for any u ∈ (0, x̄). We move on
to the monotonicity of G(u) at (0, x̄). There are two situations to consider.

(i) If G′(x̄) ≤ 0, the above analysis implies that G′(u) ≤ 0 for u ∈ [0, x̄]. This means that
G(u) is strictly monotonically decreasing in u for any u ∈ (0, x̄). For Case 1, we have
h′(u1) = 1, which implies that G(u1) = 0. Then, we must have G(v1) < 0 since v1 > u1.
That is, h′(v1) < 1, which contradicts Case 1.

(ii) If G′(x̄) > 0, then there exists a unique û ∈ (0, x̄) such that

G′(u) < 0 for u ∈ (0, û), G′(û) = 0, and G′(u) > 0 for u ∈ (û, x̄).

That is, G(u) is strictly monotonically decreasing in u for any u ∈ (0, û), and strictly
monotonically increasing in u for u ∈ (û, x̄). Next, we prove that G(x̄) < 0. To
proceed, we calculate

16h2
1G(x̄) = 16h2

1(g0 + g1x̄ + g2x̄2 + g3x̄3 + g4x̄4)

= 4h2 (1 – μ1)
(
1 – f1

) (
f1 + h1

) [(
f1 + h1

)2 – 4h1

]

+
(
f2 + h2

) [(
f1 + h1

)2 – 4h1

]2
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=
[(

f1 + h1
)2 – 4h1

]{
4h2(1 – μ1)(1 – f1)(f1 + h1)

+ (f2 + h2)[
(
f1 + h1

)2 – 4h1]
}

.

By the definition of μ∗
1 , we get

[
(
f1 + h1

)2 – 4h1] = –4h1(1 – f1)(1 – μ∗
1) < 0 (3.8)

and reach

4h2(1 – μ1)(1 – f1)(f1 + h1) + (f2 + h2)[
(
f1 + h1

)2 – 4h1]

= 4(1 – f1)[h2(1 – μ1)(f1 + h1) – h1(1 – μ∗
1)(f2 + h2)]

> 4(1 – f1)(1 – μ∗
1)(h2f1 – h1f2) > 0 (3.9)

since f2 < f1 < h1 < h2. It follows from (3.8) and (3.9) that G(x̄) < 0. With
G(0) = g0 > 0, by graphing the curve of G(u) satisfying Case 1, we see that u1 is the
unique zero point of G(u). Hence, G(v1) < 0 since v1 > u1. Again, a contradiction to
h′(v1) ≥ 1 in Case 1.

This excludes the possibility of Case 1 and completes the proof. □

However, this method is invalid in excluding the possibility of Case 2. The reason is
that according to the property of G(u), if h′(v1) = 1, then at any 2-periodic solution ini-
tiated from u1 ∈ (0, v1), we always get h′(u1) > 1, failing to achieve a contradiction to
Case 2. To overcome this, we use the perturbation technique by investigating the qual-
itative property of h′

k(u) at any u where hk(u) = h(u) – ku with k – 1 > 0 being small
enough. The perturbation from h(u) – u to h(u) – ku generates three zero points of
h(u) – ku shown in Fig. 1(b)(the red dashed curve), denoted by δi, i = 1, 2, 3 satisfying
u1 < δ1 < δ2 < v1 < δ3 < x∗∗

1 , and

h(δi) = kδi, i = 1, 2, 3, and h′(δ1) ≥ k, h′(δ2) ≤ k, h′(δ3) ≥ k. (3.10)

Lemma 3.2 Assume that the assumptions in Theorem 1.2 hold. Then, (3.10) is impossible,
and hence Case 2 is impossible.

Proof We calculate h′(ξ ) with any 2-periodic solution initiated from ξ ∈ {δ1, δ2, δ3} by (3.3),
which yields

h′(ξ ) = k · Mk(ξ )

(1 – μ2)(1 – f2)
· Nk(ξ )

(1 – μ1)(1 – f1)
,

where

Mk(ξ ) =
(1 – μ2)(1 – f2)Q1(ξ ) – 2kh2ξP1(ξ ) + kξ (f2 + h2)Q1(ξ )

Q1(ξ )

=
m̃0 + m̃1ξ + m̃2ξ

2 + m̃3ξ
3

Q1(ξ )
,
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with

m̃0 = (1 – μ2)(1 – f2) = m0, m̃1 = –(1 – μ2)(1 – f2)(f1 + h1) + k(f2 + h2),

m̃2 = h1(1 – μ2)(1 – f2) – 2kh2(1 – μ1)(1 – f1) – k(f1 + h1)(f2 + h2),

m̃3 = kh1(f2 + h2) = km3,

and

Nk(ξ ) =
(1 – μ1)(1 – f1)(1 – h1ξ

2)

Q1(ξ )
.

Similarly, we have h′(ξ ) ≥ k iff Mk(ξ )Nk(ξ ) – (1 – μ1)(1 – f1)(1 – μ2)(1 – f2) ≥ 0, or equiva-
lently,

Gk(ξ ) = g0(k) + g1(k)ξ + g2(k)ξ 2 + g3(k)ξ 3 + g4(k)ξ 4 ≥ 0.

And h′(ξ ) < k iff Gk(ξ ) < 0.
Again, we make use of the property of

Gk(u) = g0(k) + g1(k)u + g2(k)u2 + g3(k)u3 + g4(k)u4

for u ∈ (0, x̄) to exclude the possibility of (3.10), i.e.,

Gk(δ1) ≥ 0, Gk(δ2) ≤ 0, Gk(δ3) ≥ 0. (3.11)

To begin with, we determine the signs of coefficients gi(k) for Gk(u). It is easy to get

g0(k) = m̃1 + 2(f1 + h1)(1 – μ2)(1 – f2) = (f1 + h1)(1 – μ2)(1 – f2) + k(f2 + h2) > 0.

For the coefficient of u, one has

g1(k) = m̃2 – m̃0h1 – (1 – μ2)(1 – f2)(2h1 + (f1 + h1)2)

= –k[2h2(1 – μ1)(1 – f1) + (f1 + h1)(f2 + h2)]

– (1 – μ2)(1 – f2)(2h1 + (f1 + h1)2) < 0.

The parameter g2(k) ≡ g2 > 0, and

g3(k) = –m̃2h1 – (1 – μ2)(1 – f2)h2
1

= h1k[2h2(1 – μ1)(1 – f1) + (f1 + h1)(f2 + h2)] – 2h2
1(1 – μ2)(1 – f2).

The calculation of g4(k) yields that g4(k) = –h2
1k(f2 + h2) < 0.

Taking the second derivative of G reaches

G′′
k (u) = 2g2(k) + 6g3(k)u + 12g4(k)u2.
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We claim that

G′′
k (0) > 0, G′′

k (x̄) > 0, (3.12)

where x̄ is defined in (3.7). It is obvious that G′′
k (0) = 2g2(k) > 0. For G′′

k (x̄), we have

G′′
k (x̄) = 2g2(k) + 6g3(k)x̄ + 12g4(k)x̄2 = 6kh2(1 – μ1)(1 – f1)(f1 + h1) = kG′′(x̄) > 0.

It follows from (3.12) and the fact that g4(k) < 0 that G′′
k (u) > 0 for any u ∈ [0, x̄]. In other

words, the function G′
k(u) is strictly monotonically increasing for u lying in (0, x̄). For more

explorations on Gk(u), we consider

G′
k(u) = g1(k) + 2g2(k)u + 3g3(k)u2 + 4g4(k)u3

with G′
k(0) = g1(k) < 0 in two cases.

(i) If G′
k(x̄) ≤ 0, then G′

k(u) ≤ 0 for any u ∈ (0, x̄]. This contradicts the fact shown
in (3.11) that Gk(u) changes the monotonicity at least once.

(ii) If G′
k(x̄) > 0, then there exists a unique u∗

k ∈ (0, x̄) such that

G′
k(u) < 0, for u ∈ (0, u∗

k), and G′
k(u) > 0, for v ∈ (u∗

k , x̄).

Therefore, Gk(u) is strictly monotonically decreasing in u for any u ∈ (0, u∗
k) and

strictly monotonically increasing in u for any u ∈ (u∗
k , x̄). Due to Gk(0) = g0(k) > 0

and

16h2
1Gk(x̄) = 16h2

1(g0(k) + g1(k)x̄ + g2(k)x̄2 + g3(k)x̄3 + g4(k)x̄4)

= 4h2k(1 – μ1)(1 – f1)(f1 + h1)[(f1 + h1)2 – 4h1]

+ k(f2 + h2)[(f1 + h1)2 – 4h1]2

= kG(x̄) < 0,

there exists a unique ûk ∈ (0, x̄) such that

Gk(u) > 0, for u ∈ (0, ûk), and Gk(u) < 0, for u ∈ (ûk , x̄).

Therefore, if Gk(δ1) ≥ 0 and Gk(δ2) ≤ 0, then we must have Gk(δ3) < 0, a
contradiction to (3.11).

Combining the above two cases, we have proved that (3.10), and hence Case 2 is impossi-
ble. The proof is complete. □

We end this subsection by excluding Case 3 from the following lemma.

Lemma 3.3 Assume that conditions in Theorem 1.2 hold. Then Case 3 is not possible.

Proof It follows from the proof of Lemma (4.3) that either G(u) is strictly monotonically
decreasing in u or G(u) only changes its monotonicity once with G(0) > 0 and G(x̄) < 0.
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For the situation of Case 3, we have

G(u1) ≥ 0, G(w1) ≤ 0, and G(v2) ≥ 0,

which can not be held simultaneously, proving the lemma. □

With the qualitative property of G(u), it is obvious that it is impossible that model (1.7)
has more than three 2-periodic solutions initiated from (x∗

2, x∗
1). To sum up, Lemma 3.1,

Lemma 3.2, and Lemma 3.3 have completed the proof of the uniqueness of the 2-periodic
solutions of model (1.7) initiated from (x∗

2, x∗
1).

3.2 Uniqueness of 2-periodic solutions initiated from (x∗∗
1 , x∗∗

2 )
The uniqueness of 2-periodic solutions for model (1.7) initiated from (x∗∗

1 , x∗∗
2 ) can be

proved in a much cleaner way as follows.

Lemma 3.4 Assume that conditions in Theorem 1.2 hold. Then Case 4, Case 5, and Case 6
are impossible.

Proof We exclude the possibilities of Case 4, Case 5, and Case 6 by proving that h′(ξ ) < 1
for any ξ ∈ (x∗∗

1 , x∗∗
2 ) with h(ξ ) = ξ . To the end, we define

F1(x) =
(1 – μ1)(1 – f1)x

h1x2 – (f1 + h1)x + 1
, and F2(x) =

(1 – μ2)(1 – f2)x
h2x2 – (f2 + h2)x + 1

.

We first calculate

dFn(x)

dx
=

(1 – μn)(1 – fn)

hnx2 – (fn + hn)x + 1
–

(1 – μn)(1 – fn)[2hnx – (fn + hn)]x
[hnx2 – (fn + hn)x + 1]2

=
Fn(x)

x
–

[2hnx – (fn + hn)]x
hnx2 – (fn + hn)x + 1

· Fn(x)

x

=
1 – hnx2

hnx2 – (fn + hn)x + 1
· Fn(x)

x
, n = 1, 2. (3.13)

Then, for any u ∈ (0, 1), we get h(u) = F2(F1(u)) and

dh(u)

du
=

dF2(F1(u))

dF1(u)
· dF1(u)

du

=
1 – h2F2

1 (u)

h2F2
1 (u) – (f2 + h2)F1(u) + 1

· 1 – h1u2

h1u2 – (f1 + h1)u + 1
· F2(F1(u))

u
. (3.14)

At the initial values ξ ∈ {u2, v2, w2} of 2-periodic solutions introduced in Cases 4, 5, and 6,
we have

dh(ξ )

dξ
=

1 – h2F2
1 (ξ )

h2F2
1 (ξ ) – (f2 + h2)F1(ξ ) + 1

· 1 – h1ξ
2

h1ξ 2 – (f1 + h1)ξ + 1
. (3.15)
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Direct computations yield that

1 – h1ξ
2

h1ξ 2 – (f1 + h1)ξ + 1
< 1 iff ξ >

h1 + f1

2h1
, (3.16)

and

1 – h2F2
1 (ξ )

h2F2
1 (ξ ) – (f2 + h2)F1(ξ ) + 1

< 1 iff F1(ξ ) >
h2 + f2

2h2
. (3.17)

The relation ξ >
h1 + f1

2h1
in (3.16) holds since

ξ > x∗∗
1 =

h1 + f1 +
√

(h1 – f1)2 – 4μ1h1(1 – f1)

2h1
>

h1 + f1

2h1
, ξ ∈ {u2, v2, w2}. (3.18)

Similarly, it follows from (3.13) that Fn(x) is strictly monotonically increasing in x, and
hence (3.18) implies that for ξ ∈ {u2, v2, w2},

F1(ξ ) > F1(x∗∗
1 ) = x∗∗

1 >
h1 + f1

2h1
>

h2 + f2

2h2
, (3.19)

where the last inequality holds because 0 < f2 < f1 < h1 < h2 < 1. Combining (3.15)–(3.19),
we have

h′(ξ ) < 1, for ξ ∈ {u2, v2, w2}.

A contradiction to h′(v2) = h′(w2) = 1 in Case 4, a contradiction to h′(u2) = h′(w2) = 1 in
Case 5, and a contradiction to h′(w2) ≥ 1 in Case 6. This completes the proof. □

Remark 3.5 We should mention here that, if possible, we may prove the uniqueness of the
2-periodic solutions initiated from (x∗

2, x∗
1) by proving that

h′(ξ ) > 1 for ξ ∈ (x∗
2, x∗

1) satisfying h(ξ ) = ξ . (3.20)

Since if (3.20) holds, then we get a contradiction to h′(u1) = h′(w1) = 1 in Case 1, a con-
tradiction to h′(v1) = h′(w1) = 1 in Case 2, and a contradiction to h′(w1) ≤ 1 in Case 3.
However, by carefully checking the proof of Lemma 3.4, we get

h′(ξ ) =
1 – h2F2

1 (ξ )

h2F2
1 (ξ ) – (f2 + h2)F1(ξ ) + 1

· 1 – h1ξ
2

h1ξ 2 – (f1 + h1)ξ + 1
, ξ ∈ {u1, v1, w1}.

Since ξ ∈ (x∗
2, x∗

1), we have

ξ < x∗
1 =

h1 + f1 –
√

(h1 – f1)2 – 4μ1h1(1 – f1)

2h1
<

h1 + f1

2h1
,
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and hence

1 – h1ξ
2

h1ξ 2 – (f1 + h1)ξ + 1
> 1.

We can also estimate F1(ξ ) as

F1(ξ ) < F1(x∗
1) = x∗

1 <
h1 + f1

2h1
.

However, the inequality

h1 + f1

2h1
<

h2 + f2

2h2

does not hold, which halts us to reach

1 – h2F2
1 (ξ )

h2F2
1 (ξ ) – (f2 + h2)F1(ξ ) + 1

> 1,

and then fails to prove (3.20).

4 Stability analysis stated in Theorem 1.2
This section is devoted to the stability analysis of the equilibrium point x∗

0 = 0, and the two
2-periodic solutions of model (1.7) when conditions stated in Theorem 1.2 are satisfied.
We begin by calculating h′(0) to determine the stability of the origin. It follows from (3.13)
that

F ′
n(0) = (1 – μn)(1 – fn), n = 1, 2.

Together with Fn(0) ≡ 0 for n = 1, 2, we get

h′(0) = F ′
2(F1(0))F ′

1(0) = F ′
2(0)F ′

1(0) = (1 – μ1)(1 – f1)(1 – μ2)(1 – f2) < 1,

which guarantees the local asymptotical stability of x∗
0 = 0.

Next, we move on to the stability analysis of the two 2-periodic solutions of model (1.7).
As we have proved in Sects. 2 and 3, there exist u1 and u2 satisfying 0 < u1 < u2 such that
h(u1) = u1, h(u2) = u2,

h(u) < u, u ∈ (0, u1) ∪ (u2, +∞),

and

h(u) > u, u ∈ (u1, u2). (4.1)

We claim that the 2-periodic solution {u2, F1(u2), u2, F1(u2), . . .} of model (1.7) attracts
all solutions initiated from u with u ∈ (u1, u2) ∪ (u2, +∞). In fact, it follows from (3.14)
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that h(u) is strictly monotonically increasing in u for any u ∈ (0, 1), which leads to

u1 = h(u1) < h(u) < h(u2) = u2, u ∈ (u1, u2).

Combining with (4.1), one has

h2(u) > h(u), u ∈ (u1, u2),

and inductively, we have

u1 < hn(u) < u2, and hn+1(u) > hn(u), u ∈ (u1, u2), n = 2, 3, . . . .

That is, the sequence {hn(u)}∞n=0 with u ∈ (u1, u2) is strictly monotonically increasing and
bounded, which implies that

lim
n→∞hn(u) = u∗ (4.2)

exists with u∗ ∈ (u1, u2]. We must have u∗ = u2 because if (4.2) holds, then

h(u∗) = h( lim
n→∞hn(u)) = lim

n→∞hn+1(u) = u∗

holds, and h has the unique fixed point u2 lying in (u1,∞). Until now, we have proved that

lim
n→∞hn(u) = u2, u ∈ (u1, u2). (4.3)

With the continuity of F1, we have

lim
n→∞F1(hn(u)) = F1( lim

n→∞hn(u)) = F1(u2), u ∈ (u1, u2). (4.4)

Combining with (4.3) and (4.4), we have proved that the 2-periodic solution

{u2, F1(u2), u2, F1(u2), . . .}

of model (1.7) attracts all solutions initiated from u with u ∈ (u1, u2). Similarly, we can
prove that all solutions initiated from (u2, +∞) are also attracted by this 2-periodic so-
lution by observing that for any u ∈ (u2, +∞), h(u) < u guarantees that the sequence
{hn(u)}+∞

n=0 is strictly monotonically decreasing and bounded.
Regarding the local stability of the 2-periodic solution {u2, F1(u2), u2, F1(u2), . . .}, we first

notice that (3.13) implies that Fn(u) is strictly monotonically increasing in u for any u ∈
(0, 1) and n = 1, 2. Together with h(u) > u for u ∈ (u1, u2) stated in (4.1), we get F1(h(u)) >
F1(u), and inductively we get

F1(hn(u)) > F1(hn–1(u)), n ∈ Z, u ∈ (u1, u2).

That is, {F1(hn(u))}∞n=0 is strictly monotonically increasing in n, bounded below by F1(u)

and bounded above by F1(u2) when u ∈ (u1, u2). Together with the fact that {hn(u)}∞n=0 with
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u ∈ (u1, u2) is strictly monotonically increasing in n and bounded, for any ε ∈ (0, u2 – u1),
if we take δ such that δ < ε and F1(u2) – F1(u2 – δ) < ε, then for any u ∈ (u2 – δ, u2), one has

xn(1, u2) – xn(1, u) < ε, n ∈ Z.

Similarly, for any ε > 0, if we take δ such that δ < ε and F1(u2 + δ) – F1(u2) < ε, then for
any u ∈ (u2, u2 + δ), we have

xn(1, u) – xn(1, u2) < ε, n ∈ Z

because both {F1(hn(u))}∞n=0 and {hn(u)}∞n=0 are strictly monotonically decreasing and
bounded for u ∈ (u2, u2 + δ). This completes the proof of the stability of the 2-periodic
solution initiated from u2.

The instability of the 2-periodic solution initiated from u1 is obvious since all solutions
initiated from (0, u1)∪ (u1, +∞) will be repelled away. This completes the stability analysis
stated in Theorem 1.2.

5 Discussion
Based on the autonomous difference equation model (1.2) and a complete mathematical
analysis of model (1.2) in [16] (see Theorem 1.1), we introduce the nonautonomous differ-
ence equation model (1.5) to study the Wolbachia spread dynamics in mosquito popula-
tions under changing environment. Model (1.7) generates a bistable dynamics in a period-
2 environment under condition (1.8) and (1.9) (see Theorem 1.2). That is, model (1.7) has
exactly two 2-periodic solutions, among which the smaller one is unstable, and the bigger
one is locally asymptotically stable. This result partially confirms the conjecture proposed
in [20]. In Theorem 1.2, the unstable 2-periodic solution can be regarded as the introduc-
tion threshold of Wolbachia infection frequency for Wolbachia invasion, and the locally
asymptotically stable 2-periodic solution is the one that the infection frequency will ulti-
mately reach. Furthermore, the unique equilibrium point x∗

0 = 0 of model (1.7) is locally
asymptotically stable. We offer the following example to verify the results stated in Theo-
rem 1.2.

Example 1 Take

f1 = 0.2, h1 = 0.85, f2 = 0.15, h2 = 0.9. (5.1)

Then μ∗
1 = 0.1553 and μ∗

2 = 0.1838. If we take

μ1 = 0.1, μ2 = 0.05, (5.2)

then all conditions in Theorem 1.2 are satisfied, and hence model

xn+1 =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0.9 · 0.8xn

0.85x2
n – 1.05xn + 1

, n = 2k + 1,

0.95 · 0.85xn

0.9x2
n – 1.05xn + 1

, n = 2k + 2,
k ∈ Z(0) (5.3)
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Figure 3 Numerical verification of the bistable dynamics of model (5.3) shown in Theorem 1.2: the origin
x∗0 = 0 of model (5.3) is locally asymptotically stable, together with an unstable 2-periodic solution and a
locally asymptotically stable 2-periodic solution

has exactly two 2-periodic solutions. Our numerical calculations yield that the unstable
2-periodic solution initiates at approximately u1 ≈ 0.3096705064533504, and the stable
2-periodic solution initiates at approximately u2 ≈ 0.91879. Besides the two 2-periodic
solutions, in Fig. 3, we plot five solutions initiated from (0, u1), which stay very close to
the origin when n exceeds 25. Five solutions initiated from (u1, u2) and five solutions ini-
tiated from (u2, 1) are also plotted in Fig. 3, which are attracted by the 2-periodic solution
initiated from u2.

Biologically, the unstable 2-periodic solution in Theorem 1.2 serves as a threshold, as
the unstable equilibrium point x∗ defined in (1.4) of model (1.2), for Wolbachia invasion:
above which Wolbachia infection frequency will be eventually stabilized at the stable 2-
periodic solution, and below which Wolbachia will be washed out. Hence, it is crucial to
explore the dependence of the location of the unstable 2-periodic solution on the values
of model parameters in (1.2) to estimate the threshold for Wolbachia invasion. Also, to
identify where Wolbachia will be stabilized, we need to locate the position of the stable
2-periodic solution.

As stated in Example 1, we let u1 and u2 be the initial values of the unstable and stable
periodic solution, respectively. When we take

h1 = 0.85, f2 = 0.15, h2 = 0.9, μ1 = 0.1, μ2 = 0.05, (5.4)

model (5.3) is specified as

xn+1 =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0.9 · (1 – f1)xn

0.85x2
n – (f1 + 0.85)xn + 1

, n = 2k + 1,

0.95 · (1 – 0.15)xn

0.9x2
n – (0.15 + 0.9)xn + 1

, n = 2k + 2,
k ∈ Z(0). (5.5)

To see the dependence of u1 and u2 on f1, we solve model (5.5) to seek u1 and u2 with
Matlab for different values of f1. See Table 1 for details.
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Table 1 Seeking the starting points u1 and u2 of periodic solutions of model (5.5) with different
values of f1

f1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.735013

u1 0.184034 0.244143 0.309670 0.381213 0.459647 0.546406 0.644443 0.764793 0.845014
u2 0.9207 0.92 0.9188 0.9173 0.9153 0.9115 0.9054 0.8865 0.845014

Figure 4 Model (5.5) undergoes a bifurcation at f1 ≈ 0.735013. (a) When f1 = 0.735013, model (5.5) has a
unique 2-periodic solution, which is semi-stable. (b) When f1 = 0.74 > 0.735013, the semi-stable 2-periodic
solution disappears, and the origin is globally asymptotically stable

Furthermore, with μ1 = 0.1 and h1 = 0.85 being fixed, we find that μ1 < μ∗
1 if f1 ∈

[0, 0.3973) ∪ (0.9627, 1) and μ1 > μ∗
1 if f1 ∈ (0.3973, 0.9627). Hence, according to Table 1,

the condition μ1 < μ∗
1 in Theorem 1.2 is only sufficient, not necessary, to guarantee the

existence of exactly two 2-periodic solutions of model (1.7).
When f1 = 0.735013, our numerical simulations show that the two periodic solutions co-

alesce with u1 = u2 ≈ 0.845014. Figure 4(a) plots five solutions initiated from (0, 0.845014),
all of which are close to the origin when n exceeds 20, showing the locally asymptotical
stability of the origin. The 2-periodic solution initiated from 0.845014 attracts all solutions
starting from (0.845014, 1), showing the stability of the 2-periodic solution from the right-
hand side. If we increase f1 to f1 = 0.74, the 2-periodic solution disappears, and Fig. 4(b)
manifests that the origin attracts all solutions initiated from [0, 1].

To clearly show the bifurcation of model (5.5) with respect to f1, we plot the location of
u1 and u2 against f1 in Fig. 5(a). The white region denotes the situation of two periodic
solutions, and the yellow region denotes the case of no periodic solutions. The two areas
overlap at the bifurcation point. Following the same procedure, we can numerically seek
the bifurcation point of h1 ≈ 0.087158 when

f1 = 0.2, μ1 = 0.1, f2 = 0.15, h2 = 0.9, μ2 = 0.05.

When h1 ∈ [0, 0.087158), model

xn+1 =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0.72xn

h1x2
n – (0.2 + h1)xn + 1

, n = 2k + 1,

0.95 · 0.85xn

0.9x2
n – 1.05xn + 1

, n = 2k + 2,
k ∈ Z(0), (5.6)
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Figure 5 The dependence of u1 and u2 on model parameters. (a) Model (5.5) undergoes a bifurcation at
f1 ≈ 0.735013. (b) Model (5.6) undergoes a bifurcation at h1 ≈ 0.087158. (c) The bifurcation of μ1 ≈ 0.260601
when taking f1 = 0.2, h1 = 0.85, f2 = 0.15, h2 = 0.9, μ2 = 0.05. (d) Take f1 = 0.2, h1 = 0.85, μ1 = 0.1, h2 = 0.9,
μ2 = 0.05, the bifurcation of f2 ≈ 0.662721. (e) The bifurcation of h2 ≈ 0.243016 if we take f1 = 0.2, h1 = 0.85,
μ1 = 0.1, f2 = 0.15, μ2 = 0.05. (f ) Take f1 = 0.2, h1 = 0.85, μ1 = 0.1, f2 = 0.15, h2 = 0.9, the bifurcation of
μ2 ≈ 0.218415. The yellow areas in (a)-(f ) represent cases where model (5.6) has no periodic solutions

has no 2-periodic solutions, and the origin is globally asymptotically stable. At h1 ≈
0.087158, a unique 2-periodic solution starting from u1 = u2 ≈ 0.759034. As the in-
crease in h1, u1 decreases, and u2 increases. See Fig. 5(b) for the location of u1 and u2

when h1 = 0.087158, 0.1, 0.2, 0.3, . . . , 1. For completeness, we plot the other four cases in
Fig. 5(c)–(f ). The above observations imply that the nonautonomous 2-period model (1.7)
has at most two 2-periodic solutions. Aside from the cases where (1.8) does not hold, we
defer the general cases with T > 2 in (1.6) to future research.
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