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Abstract
In this study, a predator–prey model incorporating prey’s fear effect and
anti-predation behavior has been developed. The functional response takes the
square root of the prey population and adds the predator’s loss term. We prove the
existence of the system’s equilibrium point and derive the conditions for its local
stability, as well as discuss how diffusion affects the system’s stability. Bifurcation
analysis of the parameters reveals that the fear effect leads to a decrease in the
predator population in the coexistence equilibrium. In addition, we apply the finite
difference method and the finite element method to simulate the diffusion model in
rectangles and irregular customized regions, respectively. The results demonstrate
that the system can eventually reach a uniform stable state after experiencing
oscillations and fluctuations at certain parameters and initial values.

Keywords: Predator–prey model; Anti-predation behavior; Fear effect;
Spatiotemporal pattern

1 Introduction
Since Lotka and Volterra [1, 2] pioneered the study of the predator–prey ecosystem, a
large variety of models have been proposed to describe the interaction among species
in the natural world. In fact there are various factors that affect the predator–prey sys-
tem’s dynamic behavior, such as environmental carrying capacity, the predator’s foraging
efficiency, the prey’s reproductive rate, and so on. In order to describe the relationship
among the species, the scholars have successively established various research models
incorporating various forms of functional responses, such as Holling I–IV types [3–5],
Beddington–DeAngelis functional response [6, 7], ratio-dependent functional response
[8], Crowley–Martin functional response [9, 10], etc.

Observations of social animals in grasslands revealed that predators tend to target
weaker prey first during hunts. Therefore, stronger prey individuals will encircle and pro-
tect the weaker members in the center to avoid predation. For instance, elephants will form
a defensive circle to protect the baby elephants from lion attacks. In [11], the authors first
proposed the square root functional response to simulate this defensive strategy based on
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the situation of the herbivores populating the savannas and their large predators, the prey
adopt a circular defensive strategy, with predator–prey interactions occurring on the outer
periphery of the prey group. Braza [12] studied a more general model with square root
functional response, which effectively represents systems where the prey demonstrates
strong herd structure. They used

√
uv

1+α
√

u as the functional response in order to describe
the predator–prey reaction between some animals that take circular defensive strategy.
Tang [13] introduced spatial diffusion on the basis of Ajraldi’s [11] model and studied the
dynamics of the diffusive predator–prey model with herd behavior. Panja [14] supposed
that the prey populations have herd behavior and prey refuges, considered the square root
functional response and prey refuge behavior in their proposed model to study the joint
effects of these two parameters in the population dynamics.

Due to their habit of living in groups, the weaker members of the prey in the center are
shielded by the adult prey on the periphery of the protective ring, which also indicates
that adult prey have a certain level of aggression. Especially in grassland animals, prey al-
ways try to avoid predation by fighting or running away, some aggressive prey species can
sometimes attack or even kill predators when they resisting predation, such as buffalo,
porcupine, and giraffe. In certain scenarios, adult prey may engage in attacks against juve-
nile predators as a means of mitigating future predation pressure [15]. To account for this
anti-predation behavior, we use a predator loss term in our model. Animals will always
respond to perceived predation risks and show a variety of biological behaviors, such as
migratory behavior, foraging reduction, psychological changes [16, 17]. For instance, when
a species is frightened by predators, it is less likely to go out for food, which reduces birth
and survival rates [18]. In order to escape predation, prey may migrate to low-risk areas,
which increases the cost of survival and leads to a decline in the population [16]. In the
wild, it is easy to observe that the death of prey is due to the attack of predators [19],
but several studies have shown that in some prey species, the fear effect indirectly affects
prey birth even more than direct predation [20]. Recently, Wang et al. [21] investigated
a general predator–prey model with fear effect and considered anti-predation defensive
behavior as a cost that affected prey birth. As the predator’s attack intensity increases, the
animals will mount stronger anti-predation defences. Taking 1

1+kv as the fear effect term
and introducing the mature delay makes the predator–prey system more complex [22].
Samaddar [23] studied how the presence of fear effect re-calibrated the effects of prey
refuge and additional food in terms of quality and quantity on the system dynamics.

In the real world, predatory behavior in nature is often accompanied by population
diffusion due to factors such as water, food availability, and climate. Predator and prey
tend to move from high-density areas to low-density areas in response to resource dis-
tribution, invasion of natural enemies, and natural disasters [24]. Turing [25] pioneered
the idea that the population diffusion would affect the stability of the system under cer-
tain conditions. In 1972, Segel and Jackson [26] extended the reaction–diffusion equation
to the biomathematical model. The solutions of reaction–diffusion equations display a
wide range of behaviors, including traveling waves, stripes, spiral patterns, and chaos [27].
Through mathematical analysis and numerical simulations, Guin [28] displays a paramet-
ric Turing space where various spatiotemporal patterns, namely stripes, spots, spot–stripe
mixture patterns, emerge. Souna [29] proved the existence of diffusion driven instability
at the positive equilibrium point in a diffusive predator–prey model with social behavior.
The biological reaction diffusion systems have become one of the most dominant themes



Yang et al. Advances in Continuous and Discrete Models         (2025) 2025:26 Page 3 of 22

in mathematical biology, and there have been abundant research works on them so far;
the readers could refer to [13, 30–35].

In the remainder of this paper, we investigate a predator–prey model incorporating dif-
fusion, grounded in the aforementioned biological behavior of group anti-predation and
analyze the dynamics of the model such as existence, stability, and bifurcation. Then we
perform numerical simulations using finite difference and finite element methods, respec-
tively, which support and extend the theoretical results.

2 Mathematical model and the existence of equilibrium point
Based on the above biological characteristics, we propose a coupled reaction–diffusion
model with anti-predation behavior and fear effect as follows:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂u(x,t)
∂t = u

1+bv – u2

r – m
√

uv√
u+c + d1Δu, x ∈ Ω, t > 0,

∂v(x,t)
∂t = –βv + αm

√
uv√

u+c – ηuv + d2Δv, x ∈ Ω, t > 0,
∂u
∂n = ∂v

∂n = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x) ≥ 0, v(x, 0) = v0(x) ≥ 0, x ∈ Ω.

(1)

Here, u and v denote, respectively, the prey and predator populations at time t and
Δ =

∑︁n
i=1

∂2

∂x2
i

(n = 1, 2) is the Laplacian operator in space Ω, where Ω represents a suit-
able spatial domain in one or two dimensions. n is the outward unit normal vector of the
boundary ∂Ω, d1, d2 are diffusion coefficients of the prey and predator populations, re-
spectively. We assume that system (1) is subjected to the homogeneous Neumann bound-
ary condition, which means that the species cannot leave the domain Ω and there is also
no outside species entering Ω. The parameter r stands for the carrying capacity of the en-
vironment for prey species, b designates the fear effect, m is the capturing rate of predator,
and c denotes the interference coefficient of the predator. The parameter α is the conver-
sion rate of prey to predator and β is the death rate of the predator. η denotes the prey’s
resistance to predation, typically a very small value. The above parameters in the model
are assumed to be positive.

This model describes the predation of two species in a closed space, 1
1+bv is used to

represent the role of the fear effect, the presence of a greater number of v results in a
reduced birth rate for the u. Because of the anti-predation behavior of prey, the response
function is represented by

√
uv√

u+c . The aggression and resistance of the prey result in the
loss of the predator, denoted by ηuv. d1, d2 reflect the diffusion rate of the two species
respectively, d1 = d2 = 0 indicates that both prey and predator are sedentary, i.e., there is
no diffusion, we have the following ODE system:

⎧
⎨

⎩

du(t)
dt = u

1+bv – u2

r – m
√

uv√
u+c ,

dv(t)
dt = –βv + αm

√
uv√

u+c – ηuv.
(2)

It is noted that the equilibrium points of system (2) need to satisfy the following equation:

f (u, v) =
u

1 + bv
–

u2

r
–

m
√

uv√
u + c

= 0,

g(u, v) = –βv +
αm

√
uv√

u + c
– ηuv = 0.

(3)
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Clearly, system (2) has two boundary equilibria: the trivial equilibrium P0 = (0, 0) and the
predator-free equilibrium P1(r, 0). Now we consider the internal equilibrium point P∗ =
(u∗, v∗) with biological significance.

When b = η = 0, as the model considered in [12], there is an internal equilibrium point
E∗ if αm > β and βc

αm–β
≤ r, where

E∗ =
(︃

β2c2

(αm – β)2 ,
αmc2(rβ2 – c2β2 – 2αβmr + α2m2r)β

rm(αm – β)4

)︃

. (4)

Now we consider the aggression of prey and fear effects into the model, i.e., b > 0, η > 0.
We have the following results on the existence of coexistence equilibrium.

Theorem 2.1 System (2) has a positive equilibrium point if and only if the condition Λ:
αm > β , g(H2, 1) ≥ 0, u∗

1 < r holds, where H =
√︁

c2η2+3η(αm–β)–ηc
3η

> 0, u∗
1 is the smaller positive

root of equation g(u, 1) = –β + αm
√

u√
u+c – ηu = 0.

Proof We start with g(u, v) = 0, let e =
√

u for convenience. Then, solving equation g(u, v) =
0 is equivalent to finding a solution e, it should satisfy:

G(e) = –ηe3 – ηce2 + (αm – β)e – βc = 0. (5)

The function G(e) is differentiable with respect to e, take the derivative of e:

G′(e) = –3ηe2 – 2ηce + αm – β . (6)

Since G(0) < 0 and the smaller solution of G′(e) = 0 is less than 0, in order to ensure that the
maximum point of G(e) is positive, αm > β is necessary, then H =

√︁
c2η2+3η(αm–β)–ηc

3η
> 0 is

the maximum point of G(e) when e > 0. Let g(H2, 1) ≥ 0 such that G(H) ≥ 0, thus g(u, v) = 0
has positive solutions. Next we consider f (u, v). Define

F(e, v) = A1v2 + A2v + A3, (7)

where A1 = mb, A2 = be4+cbe3

r + m, A3 = e4

r + ce3

r – e2 – ce. Then

f (u, v) = 0 ⇐⇒ F(e, v) = A1v2 + A2v + A3 = 0.

It is obvious that A1 > 0 and A2 < 0 because all the parameters in model (1) are positive.
There is a positive solution v of Fe=e∗ (v) if and only if A3 < 0. Note that A3 ⬝ r

e = (e –
√

r) [ e2 +
(c +

√
r) e +

√
rc], therefore it is necessary for u∗ < r to ensure that A3 < 0. Moreover, v∗ =

√︂

A2
2–4A1A3–A2

2A1
> 0. □

As shown in Fig. 1, there may be two internal equilibrium points in the system when
the loss term of the predator is considered in the model. When the equilibrium exists, the
equilibrium value of the prey becomes higher than E∗. With the increase in the environ-
mental capacity of prey, the population fluctuation of predator and prey increases, and it
becomes more difficult to achieve a coexistence equilibrium. In addition, predators will
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Figure 1 Values of prey u at coexistence equilibrium.
The parameters are fixed as α = 0.78, β = 0.08, b = 1,
c = 1,m = 0.3, r = 2.39

suffer losses due to the anti-predation behavior of prey during the hunting process, there-
fore when the environmental carrying capacity of the prey is improved to a certain extent,
i.e., the living environment is ideal enough, then the predators will struggle to survive and
go extinct.

Remark 2.2 In a general predator–prey relationship, predator populations have always
shown a positive increase when their food is plentiful, that is, relationship αm > β should
always be true. When prey is less injurious and the prey’s living environment is good
enough for survival, the existence of a nontrivial equilibrium point for system (2) is en-
sured.

Remark 2.3 Assume that the condition ∧ in Theorem 2.1 holds. There are two solutions
to g(u, 1) = 0 when g(H2, 1) > 0; without loss of generality, let us set 0 < u∗

1 < u∗
2. Since the

analytical approach is similar, we will use u∗
1 for numerical simulation later. To ensure the

existence of an internal equilibrium point, we assume that the condition ∧ holds through-
out the remainder of this paper.

3 Stability and bifurcation analysis
In this section, we shall discuss the stability of the equilibrium points with and without
diffusion by linearization and study the existence of Turing and Hopf bifurcation.

3.1 Stability of equilibrium state for ODE system (2)
The Jacobian of system (2) evaluated at an arbitrary equilibrium point P(u, v) is given by

J =

[︄
a11 a12

a21 a22

]︄

,

where

a11 =
df
du

(u, v) =
1

1 + bv
–

2u
r

–
cmv

2
√

u(
√

u + c)2 ,

a12 =
df
dv

(u, v) = –
ub

(1 + bv)2 –
m

√
u√

u + c
,

(8)

a21 =
dg
du

(u, v) =
αcmv

2
√

u(
√

u + c)2 – ηv,
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a22 =
dg
dv

(u, v) = –β +
αm

√
u√

u + c
– ηu.

Then the linear stability analysis at the equilibrium point of system (2) transforms into an
eigenvalue problem for the Jacobian matrix J . The characteristic equation is

|J – λI| = 0. (9)

It is well known that the stability of the equilibrium point is equivalent to the condition
where all the real parts of the eigenvalues are negative,

λi =
T1 ± √︁

T2
1 – 4D1

2
< 0, i = 1, 2,

where D1 = a11a22 – a12a21 and T1 = a11 + a22. We now present the following theorem
concerning the stability of various equilibrium points when there is no diffusion.

Theorem 3.1 For system (2), (i) the trivial equilibrium P0(0, 0) is always an unstable sad-
dle point; (ii) the predator-free equilibrium P1(r, 0) is locally stable if u∗

2 < r and unstable if
u∗

2 ≥ r; (iii) let e =
√︁

u∗
1, the positive equilibrium P∗(u∗, v∗) is locally stable if the condition

ηv∗
αc < mv∗

2e(e+c)2 < e2

r(2e+c) is satisfied.

Proof The Jacobian matrix at P0(0, 0) is given by J(0,0) =

[︄
1 0
0 –β

]︄

, implying the saddle

nature of the equilibrium P0. The Jacobian matrix corresponding to P1(r, 0) is J(r,0) =[︄
a1 a2

a3 a4

]︄

, where

a1 = –1, a2 = –br –
m

√
r√

r + c
, a3 = 0, a4 = –β +

αm
√

r√
r + c

– ηr.

Therefore, we need to ensure that a4 < 0 so that det(J(r,0)) > 0, tr(J(r,0)) < 0. Under the given
condition ∧, it is evident from the proof of Theorem 2.1 that g(u, 1) = –β + αm

√
u√

u+c – ηu ≥ 0
only if u∗

1 < u < u∗
2 when u > 0. In other words, a4 = g(r, 1) < 0 when u∗

2 < r.
By calculating the corresponding Jacobi matrix of P∗(u∗v∗), we obtain

T1 =
1

1 + bv∗ –
2u∗

r
–

cmv∗

2
√

u∗(
√

u∗ + c)2
,

D1 =

(︄
u∗b

(1 + bv∗)2 +
m

√
u∗

√
u∗ + c

)︄(︃
αcmv∗

2
√

u∗(
√

u∗ + c)2
– ηv∗

)︃

.

Note that u∗b
(1+bv∗)2 + m

√
u∗√

u∗+c
> 0, therefore D1 > 0 ⇐⇒ αcmv∗

2
√

u∗(
√

u∗+c)2 – ηv∗. Combined with
Eq. (3), we calculate and rearrange to obtain T1 < 0 and D1 > 0. It is straightforward to
derive the condition ηv∗

αc < mv∗
2e(e+c)2 < e2

r(2e+c) , which ensures the stability of the positive equi-
librium point. □

As shown in Fig. 2, the positive equilibrium shows different stability under the effect of
parameter set. In order to explore the fear effect, we will continuously vary the value of b
to observe the Hopf bifurcation phenomenon at (u∗, v∗).
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Figure 2 The trajectory portraits of solution of system (2) at (u∗ , v∗). It shows (u∗ , v∗) is locally asymptotically
stable when r = 2.4(a)(c); and there is the stable periodic orbit when r = 2.59(b)(d). Other parameters are
α = 0.78, β = 0.08, η = 0.02,m = 0.28, b = c = 1

It is well known that D1 > 0 and T1 = 0 are necessary conditions for the occurrence of a
Hopf bifurcation. According to formula (8), we rewrite T1 = 0 at P∗(u∗, v∗) as follows:

b∗ = –
cmrv + 4(u∗)

5
2 + 4(u∗)

3
2 c2 – 2(u∗)

3
2 r – 2

√
u∗ c2r – 4u∗cr + 8(u∗)2c

v∗
(︂

cmv∗r + 4(u∗)
3
2 c2 + 8(u∗)2c + 4(u∗)

5
2
)︂ , (10)

it can be found that the sign of D1 at P∗(u∗, v∗) depends on ( αcm
2
√

u∗(
√

u∗+c)2 – η)v∗. Thus,
we select appropriate parameters to ensure that αcm

2
√

u∗(
√

u∗+c)2 is greater than η, and then
continuously adjust the value of b to satisfy Eq. (10). As depicted in Fig. 3, T1 = 0 and
d T1
d b < 0 when b = b∗. This leads to d Re(λ(b))

d b = 1
2

d T1
d b ≠ 0, i.e., there are two pure imaginary

eigenvalues, ±√
D1, of the matrix J(u∗ ,v∗). Based on the aforementioned analysis, the system

described by Eq. (2) undergoes a supercritical Hopf bifurcation at b = b∗ (Fig. 4). This
implies that the system transitions from a stable internal equilibrium to a stable limit cycle
as b is continuously decreased. We observe that the size of the limit cycle expands as b
decreases when b < b∗. Conversely, when b > b∗, the system described by Eq. (2) is in a
stable state, and the steady-state value of the predator diminishes with the escalation of b.

3.2 Stability of equilibrium state for system (1)
To investigate the stability of the equilibrium point of the system under diffusion, a small
perturbation ũ is introduced near the equilibrium point. Specifically, we have u = uP + ũ,
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Figure 3 The change of trace T of the Jacobian
matrix J(u∗ ,v∗ ) when parameter b changes
continuously. Other parameters are the same as in
Fig. 2(a)

Figure 4 The supercritical Hopf bifurcation about parameters b. The blue line represents the stable limit
cycle, and the green line represents a stable equilibrium state. The parameters are the same as in Fig. 2(a)

v = vp + ṽ, where (uP, vP) represents any equilibrium point. Then the linearization of (1) at
(uP, vP) is

[︄
∂ũ
∂t
∂ ṽ
∂t

]︄

= (DΔ + J(uP ,vP))

[︄
u
v

]︄

, (11)

where D =

[︄
d1 0
0 d2

]︄

. Define the real-valued Sobolev space

X =
{︃

(u, v) ∈ W 2,2(Ω)|∂u
∂n

=
∂v
∂n

= 0 on ∂Ω

}︃

,

and for U1 = (u1, v1)T , U2(u1, v1)T ∈ X, define the inner product

< U1, U2 >=
∫︂

Ω

(u1v1 + u2v2)dx.

It is well known that the eigenvalue problem

–ϕ′′ = μϕ, x ∈ Ω; ϕ′(∂Ω) = 0,
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has eigenvalues μk = k2 > 0 with corresponding eigenfunction ϕk(x) in the Sobolev space

X, where

⎧
⎨

⎩

ϕk(x) = cos(k1x),

k = k1.
in one-dimensional space and

⎧
⎨

⎩

ϕk(x) = cos(k1x)cos(k2x),

k = (k1, k2).
in two-dimensional space. Then we consider the solution of Eq. (11) in the following form:

[︄
ũ
ṽ

]︄

=
∞∑︂

k=0

[︄
ak

bk

]︄

ϕk(x)eλt , (12)

where ak , bk > 0 are the corresponding small amplitudes, λ represents growth rate of
perturbations and x is the spatial coordinates. Equation (12) is a travel wave solution of
Eq. (11) if and only if

det(J – k2D – λI) = 0 (13)

holds for some k, where J =

[︄
a11 a12

a21 a22

]︄

, D =

[︄
d1 0
0 d2

]︄

, and I is an identity matrix.

Through the analysis of linearization theory, we get the following conclusions.

Theorem 3.2 For system (1), (i) the trivial equilibrium P0(0, 0) is stable if 1
d1

< k2; (ii)
P1(r, 0) is stable if k2 > gv(P1)

d2
; (iii) the positive equilibrium P∗(u∗, v∗) is locally stable if it

is stable in absence of diffusion.

Proof Calculate Eq. (13), the corresponding quadratic equations is

λ2 – T2λ + D2 = 0. (14)

The trace T2 and determinant of the characteristic equation D2 are respectively:

T2 = T1 – k2(d1 + d2),

D2 = D1 + k4d1d2 – k2(a22d1 + a11d2).

By calculating the Jacobian matrix of P0(0, 0), we get T2 = 1 – β – k2(d1 + d2), D2 = –β +
k4d1d2 – k2(–βd1 + d2), from T2 < 0,

k2 >
1 – β

d1 + d2
, (15)

and D2 = –β +k4d1d2–k2(–βd1 +d2) = (k2d1 –1)(β +k2d2), therefore D2 > 0 is determined
by

k2 >
1
d1

. (16)

Considering Eq. (15) and Eq. (16), it is concluded that P0(0, 0) is stable if 1
d1

< k2. Similarly,
at equilibrium point P1(r, 0), we set

T2 = –1 + a22 – k2(d1 + d2) < 0,

D2 = –a22 + k4d1d2 – k2(a22d1 – d2) > 0.
(17)
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The condition k2 > a22
d2

can be easily obtained by simplifying Eq. (17). Moreover, a22 is less
than 0 when r ∈ (0, u∗

1) ∪ (u∗
2,∞), which means Eq. (17) is always true.

Next, we consider the stability of P∗(u∗, v∗). Assuming it is stable in the absence of
diffusion, that is, T1 = a11 + a22 = a11 < 0 and D1 = a11a22 – a12a21 = –a12a21 > 0, thus
T2 = T1 – k2(d1 + d2) < 0. It is apparent that the positive equilibrium will be unstable when
D2 < 0, but because of a11 < 0 and a22 = 0,

D2 = D1 + k4d1d2 – k2(a22d1 + a11d2) > 0,

which means the positive equilibrium P∗(u∗, v∗) is locally stable during diffusion. □

Remark 3.3 We have found that system (2) will not undergo instability caused by diffusion
around P∗(u∗, v∗). That is to say, the Turing pattern cannot be observed in this model.

In the following, we shall discuss the existence of Hopf bifurcations and steady state
bifurcations in the diffusion system (1). At the coexistence equilibrium P∗(u∗, v∗), T2 and
D2 are expressed as

T2 =
1

1 + bv∗ –
2u∗

r
–

cmv∗

2
√

u∗(
√

u∗ + c)2
– k2(d1 + d2), (18)

D2 =

(︄
u∗b

(1 + bv∗)2 +
m

√
u∗

√
u∗ + c

)︄(︃
αcmv∗

2
√

u∗(
√

u∗ + c)2
– ηv∗

)︃

+ k4d1d2 – k2d2

(︃
1

1 + bv∗ –
2u∗

r
–

cmv∗

2
√

u∗(
√

u∗ + c)2

)︃

,

(19)

respectively. It is obvious that T2 < 0, D2 > 0 if b > b∗, which means that system (1) is always
stable, where b∗ is defined by Eq. (10). We take parameters b and d2 as variables, rewriting
T2 = 0 as

Lk : d2 = d2L(b, k) (20)

and D2 = 0 as

Zk : d2 = d2Z(b, k). (21)

Setting αcm
2
√

u∗(
√

u∗+c)2 > η and combining (20) with (21), then the two curves Lk , Zk intersect
at (b∗

k , d∗
2k), where

b∗
k =

2r
√

u∗(
√

u∗ + c)2(1 – k2d1 – k2d2) – 4u
√

u∗(
√

u∗ + c)2 – cmvr
v
[︁
2r

√
u∗(

√
u∗ + c)2(k2d1 + k2d2) + 4u

√
u∗(

√
u∗ + c)2 + cmvr

]︁ , d∗
2k =

√a21a12

k2 .

(22)

If b > b∗
k , dT1(b)

db ≠ 0, then system (1) undergoes steady state bifurcations on line Lk and Hopf
bifurcations on line Hk around the equilibrium P∗(u∗, v∗) for k2 = 0, 1, . . . , k∗ =

[︂
a11

d1+d2

]︂
,

where [·] stands for the integer part function.



Yang et al. Advances in Continuous and Discrete Models         (2025) 2025:26 Page 11 of 22

Figure 5 Bifurcation diagram of model (1) in the d2 – b plane. The solid line represents Hk , and the dotted line
represents Lk . Here d1 = 0.1, the other parameters are the same as in Fig. 2(a)

4 Numerical simulation
In this paper, we performed numerical simulations of ODE model (2) and partial differen-
tial model (1). We first show two states of system (2) when environmental capacity r takes
different values in Fig. 2. Around the positive equilibrium point, we see stable solution
trajectory when r = 2.4 < r∗ = 2.49 and a stable periodic orbit when r = 2.59 > r∗ = 2.49.
Then we continuously change the value of parameter b in order to explore the bifurcation
condition. Under the premise of selecting the appropriate parameters, we found that sys-
tem (2) undergoes a supercritical Hopf bifurcation at b∗ = 0.89 (see Fig. 4). When b < b∗, a
stable limit cycle is generated and the radius of the limit cycle increases with the decrease
of b. When b gradually increases from b∗, the equilibrium value of prey species remains
constant but the equilibrium value of predator species decreases. Through the analysis of
the relation of d2 and b, there are Hopf bifurcations and steady state bifurcations on Hk ,
Lk , respectively. As shown in Fig. 5, S1, S2 represent the stable space and S3, S4, S5 are the
unstable space. H0 will not intersect with Lk for any k > 0, which verifies that there is no
diffusion-driven instability.

In nature, due to factors such as resources and competition, organisms have a tendency
to spread to areas with low population density. Next we used the finite difference method
and the finite element approximation to simulate system (1), respectively.

4.1 Finite-difference method
First, we establish a grid on the interval Ω = [0, X] with evenly spaced points xi (i =
0, 1, 2, . . . , N) in one-dimensional space, the space step h = X

N , and xi = ih. For two-
dimensional space, take a square grid on Ω = [0, X] × [0, Y ] with grid points (xi, yj) =
(ih, jh), i, j = 0, 1, 2, . . . , N . Similarly, we divide time interval [0, T] evenly into M parts, so
that time step △t = T

M and tm = m △ t, m = 0, 1, 2, . . . , M.
The forward difference is used in time dimension, and the central difference is used in

one-dimensional space and in two-dimensional space to approximate the Laplacian re-
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spectively.

∂Um

∂t
=

Um – Um–1

△t
,

ΔUi =
(Ui+1 + Ui–1 – 2Ui)

h2 ,

ΔUi,j =
(Ui+1,j + Ui–1,j + Ui,j–1 + Ui,j+1 – 4Ui,j)

h2 .

The difference format for the predator population V is the same as that of U above. Then
the general form of difference equation in one-dimensional space is as follows:

∂Um
i

∂t
= f (Um–1

i ) + ΔUm
i ,

∂V m
i

∂t
= f (V m–1

i ) + ΔV m
i ,

(23)

where Um
i , V m

i are the approximation of u(x, t), v(x, t) at position ih at time tm, i =
0, 1, 2, . . . , N , and m = 1, 2, 3, . . . , M. And the nonnegative initial condition

U0
i = u(ih, 0), V 0

i = v(ih, 0).

The following is the general form of difference equation in two-dimensional space

∂Um
i,j

∂t
= f (Um–1

i,j ) + ΔUm
i,j ,

∂V m
i,j

∂t
= f (V m–1

i,j ) + ΔV m
i,j ,

(24)

where i = 0, 1, 2, . . . , N and m = 1, 2, 3, . . . , M. The nonnegative initial condition

U0
i,j = u([ih, jh], 0), V 0

i,j = v([ih, jh], 0).

Both of the above difference equations are used the homogeneous Neumann boundary
conditions, which means zero-flux boundary, therefore the outflow and inflow at the edge
of the grid are set to 0 in the difference program.

We have simulated its diffusion in one-dimensional space and two-dimensional space
successively. Firstly, it is assumed that the density distribution at the initial time in one-
dimensional space is uniform in Fig. 6, we take five different values of r. Figure 6(a)(b)

show the system quickly and smoothly close to internal equilibrium when r = 1, it remains
stable when r increases to 2. But prey and predator begin to fluctuate with time when
r = 2.3, it can be found that the fluctuation amplitude gradually decreases with time and
finally tends to be balanced. At r = 2.6, the population densities begin to fluctuate greatly
and periodically. If r increases to 6, the prey population reaches its maximum, and the
predator goes to extinction gradually, that means the system goes to the predator-free
equilibrium P1(r, 0). From Fig. 6, with the increase of r, system (1) becomes unstable at
internal equilibrium P∗, finally ends up at boundary balance.

Figure 7 shows the spatial distribution of system (1) under nonuniform initial value.
Assuming that the area is closed, the species will not go out of this area, nor will they
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Figure 6 The spatial distribution of predators and prey in one-dimensional simulated diffusion, the left
column ((a)to(i)) on behalf of the prey and the right column ((b)to(j)) on behalf of the predator. Here the initial
spatial distribution is assumed to be uniform. Both prey and predator populations are stable for r = 1 (a)(b);
remain stable for r = 2 (c)(d); a gradually decreasing oscillation occurs for r = 2.3 (e)(f ); steady large amplitude
oscillation for r = 2.6; when r increases to 6 (i)(j), the predator-free equilibrium P1(r, 0) is stable
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Figure 6 Continued

come in from outside the area. And the homogeneous Neumann boundary condition is
used at the boundary. Here, we take the initial condition

u(x, 0) = u∗ + 0.2sin(
π

6
x),

v(x, 0) = v∗ – 0.1sin(
π

6
x).

We choose four different values of diffusion velocity to simulate the diffusion of predator
and prey. It is easy to find that the system is always stable when the species diffuses at
different speeds. It can be seen from Fig. 7(a)(b) to Fig. 7(g)(h) that different regions have
different amplitudes of stationary shocks and the amplitude decreases with time. When
d1 and d2 gradually increase, the amplitude difference in different regions decreases at a
faster rate.

Figure 8 simulates the reaction–diffusion of system (1) in the two-dimensional rectangu-
lar region, meanwhile the parameters we selected can make the ODE system have stable
positive equilibrium. The results show that the spatial distribution tends to be uniform
with the increase of time tm and continue to increase T . It can be found that the pattern
almost no longer changes when T = 100.

4.2 Finite element method
Before giving the complete approximation scheme, we introduce some preparation steps.
Let ϖ h =

{︁
τ | Compact approximately equilateral nonoverlapping closed triangles

}︁
be a

partition of the domain Ω, hτ denotes the length of the longest side of triangle τ , and
h = max hτ . We assume that h is small enough, that is, the partition of ϖ h to domain Ω is
sufficiently detailed; therefore, we ignore the error and study the problem in the approxi-
mate region Ωh. Define piecewise linear continuous function space

Fh :=
{︁

f ∈ C(Ωh) | f is linear on each τ
}︁

.

Let φ1,φ2, . . . , φn be the basis functions of Fh and x1, x2, . . . , xn represent n nodes in Ωh,
that is, the vertices of all triangles. 0 ≤ φi(x) ≤ 1 denotes the weight distribution of the
node xi, and necessarily φi(xk) = δi k is the Kronecker delta function. Thus, for any function
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Figure 7 The spatial distribution of predator and prey in one-dimensional diffusion under heterogeneous
initial values. The left column ((a)to(g)) on behalf of the prey and the right column ((b)to(h)) on behalf of the
predator. We take different values of diffusion parameter d to observe the influence of diffusion efficiency on
the system. d1 = d2 = 1 represent tiny diffusion in (a)(b), d1 = d2 = 10 in (c)(d), d1 = d2 = 102 in (e)(f ), and
d1 = d2 = 103 in (g)(h). We take r = 2.34 and other parameters are the same as in Fig. 2, which means system
(2) has a positive equilibrium
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Figure 8 The spatial distribution of predators and prey in two-dimensional diffusion. The left column
((a)to(g)) on behalf of the prey and the right column ((b)to(h)) on behalf of the predator.
(a)(b) T = 1; (c)(d) T = 20; (e)(f ) T = 50; (g)(h) T = 100, Here d1 = d2 = 30, other parameters are the same as in
Fig. 2(a)
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f ∈ Fh, it can be expressed by the combination of node value and weight function

f (x) =
n∑︂

i=1

φi(x)f (xi). (25)

And we define the following matrix:

Mii :=
∫︂

Ω

φi dx,

Kij :=
∫︂

Ω

▽φi · ▽φj dx,

Lij := M–1
ii Kij.

(26)

Then we introduce the discrete finite element method and equations derivation. Divide
the time interval [0, T] evenly into M parts, so that time step △t = T

M and tm = m △ t ,
m = 0, 1, 2, . . . , M; we define the discrete reaction from approximation of Eq. (2)

h1(Um, Um–1, V m, V m–1) = Um(
1

1 + bV m–1 –
Um–1

r
) –

m
√

Um–1
√

Um–1 + c
V m,

h2(Um–1, V m) = –β V m +
αm

√
Um–1

√
Um–1 + c

V m – η Um–1V m,

(27)

where Um, V m are the approximations of population u, v at time tm.
Let Um

i = Um(xi) and V m
i = V m(xi), i = 1, 2, . . . , n, under the homogeneous Neumann

boundary condition, we have the discrete form of the reaction–diffusion equation:

Um
i – Um–1

i
△t

+ d1

n∑︂

j=1

Kij Um
j = Mii h1,

V m
i – V m–1

i
△t

+ d2

n∑︂

j=1

Kij V m
j = Mii h2.

(28)

Multiplying both equations by △t (M)–1, we obtain

(Um
i – Um–1

i ) M–1 + d1 △ t M–1
n∑︂

j=1

Kij Um
j = △t h1,

(V m
i – V m–1

i ) M–1 + d2 △ t M–1
n∑︂

j=1

Kij V m
j = △t h1.

(29)

Combining Eqs. (26), (27) and merging the terms, Eq. (29) can be rewritten as

Am–1 Um + Bm–1 V m = Um–1,

Cm–1 V m = V m–1,
(30)
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where

Um
i = Um (xi), V m

i = V m (xi),

U0 (xi) = u0(xi), V 0 (xi) = v0(xi),

Am–1 = I + (d1L – Θ3 +
1
r
Θ1) △ t,

Bm–1 = mΘ2 △ t,

Cm–1 = I + (d2L + β – αmΘ2 + ηΘ1) △ t,

Θ1 = diag
{︁

Um–1(x1), Um–1(x2), . . . , Um–1(xn)
}︁

,

Θ2 = diag

{︄ √︁
Um–1(x1)

√︁
Um–1(x1) + c

,
√︁

Um–1(x2)
√︁

Um–1(x2) + c
, . . . ,

√︁
Um–1(xn)

√︁
Um–1(xn) + c

}︄

,

Θ3 = diag
{︃

1
1 + b V m–1(x1)

,
1

1 + b V m–1(x2)
, . . . ,

1
1 + b V m–1(xn)

}︃

.

Next, we define a two-dimensional simulation region and iterate Eq. (30) under two
different initial values, then obtain Fig. 9 and Fig. 10. The parameter values of the two
figures are α = 0.78, β = 0.1, η = 0.05, m = 0.25, b = 1, c = 5, r = 4, d1 = d2 = 1. In Fig. 9,
we choose the initial value of the binary trigonometric function for the density distribu-
tion of both predator and prey (see Fig. 9(a)(b)). With the increase of time, the pattern
gradually becomes irregular under the effect of diffusion. In general, the distribution of
species density fluctuates around the equilibrium point, particularly, the prey forms ring
structures (Fig. 9(e) (g)). In fact, this also reflects the change of species density in different
areas due to the change of environmental resources and predation. Then, let the initial
value of prey remain unchanged and the initial value of predator use an approximate nor-
mal distribution centered on the lakes (Fig. 10(a) (b)). As a result of chasing and predation,
the distribution of predator and prey shows a certain correlation. Through the snapshots
in Fig. 10, it can be found that the area where predator density is concentrated gradually
decreases over time; at the same time, prey is concentrated in areas with relatively low
predator density. And after a while, the number of predators increases again in areas with
higher prey populations. Through the above figures, it can be verified that although dif-
fusion affects the spatial distribution of the population, it will not change the stability at
P∗.

5 Conclusion and discussion
In this paper, a diffusive predator–prey interaction mathematical model has been devel-
oped. Observations of grassland social animals have revealed that stronger prey individ-
uals will encircle and protect the weaker members in the center to avoid predation, in-
dicating that they have a certain level of aggression. To account for this anti-predation
behavior, the model takes the square root of the prey population in response function and
adds the predator’s loss term. Within a certain range of η, the equilibrium value of the
prey becomes higher. Besides, considering the presence of predators can lead to a decline
in prey birth rates, we include the fear effect in the model. The stability of the equilibrium
point in the case of diffusion and non-diffusion is analyzed by the linearization method re-
spectively. We give the conditions for the stability of the internal equilibrium point of the
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Figure 9 The variation profiles of the species population at different times. The left column ((a)to(g)) on
behalf of the prey and the right column ((b)to(h)) on behalf of the predator. Here, △t = 1,
(a)(b) T = 30; (c)(d) T = 80; (e)(f ) T = 130; (g)(h) T = 200
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Figure 10 The variation profiles of the species population at different times. The left column ((a)to(g)) on
behalf of the prey and the right column ((b)to(h)) on behalf of the predator. Here, △t = 1,
(a)(b) T = 30; (c)(d) T = 80; (e)(f ) T = 130; (g)(h) T = 200
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non-diffusion system, the results show that the Turing pattern through diffusion-driven
instability cannot be generated in this model, that is, the number of the two species will
still remain a uniform steady state during the process of spatial diffusion and interaction.
Then we have made a bifurcation analysis of the parameter b, after some other parame-
ters are given, the supercritical Hopf bifurcation occurs at b∗ and the results show that the
fear effect makes it more difficult for predators to hunt by affecting the birth of prey; in
other words, the higher the cost of prey to evade predation, the lower the population level
of predators in the coexistence equilibrium. Finally, we perform numerical simulation by
MATLAB. We use the finite difference method in a rectangular region and the finite ele-
ment approximation in irregular regions to simulate the diffusion system (1), respectively.
The reaction–diffusion system has more abundant phenomena than the ODE system, and
spatial dynamic behaviors such as smooth oscillations, fluctuations, and fringes can be ob-
served under different given parameters and initial values. It can be found that the changes
of spatial patterns in customized irregular regions are complex and diverse, and the patch
pattern is significantly affected by the difference of interval division; therefore, the error
can be reasonably reduced by using sufficiently fine triangular elements to approximate.
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