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Abstract
The stability of predator–prey interactions in ecosystems is influenced by both
inherent species interactions and external factors. For instance, the presence of
additional food, as an external factor, may affect the system. To further explore this, a
stage-structured predator–prey model is constructed, incorporating the influences of
fear and delay on prey-population growth, which provides additional food for
immature predators and facilitates cooperative behavior between mature and
immature predators. The analysis evaluates the positivity, boundedness, equilibrium
points, local stability around each equilibrium point, and certain bifurcations of the
system. Additionally, numerical simulations are provided to correspond with the
results of the theoretical analysis. It is observed that an appropriate level of fear
contributes positively to system stability. While cooperation among predators can
benefit immature predators, it also has the potential to harm the overall system. The
introduction of additional food complicates the system dynamics, although it
benefits predators, it places prey at a disadvantage. Furthermore, we observe a
correlation between the level of fear and the effects of additional food, as well as the
capacity of additional food to mitigate the influence of delay.
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1 Introduction
In the natural world, interactions among populations of different biological species form
a complex ecological network that influences the structure and function of ecosystems.
These interactions can include competition, predation, mutualism, and parasitism, etc.
Among these relationships, the predator–prey relationship is a crucial interaction in the
ecosystem. The interaction between the predator and the prey is also known as a func-
tional response. By studying functional responses, we can gain deeper insights into the
interaction patterns between predators and prey, as well as the impacts of these interac-
tions on ecosystem structure and stability.
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Initially, the classical Lotka–Volterra model posited that the growth rate of predators
is directly proportional to the abundance of prey, representing a linear functional re-
sponse [1, 2]. However, in real ecological systems, the predation rate does not increase
indefinitely; instead, it saturates as prey abundance rises. To more accurately depict this
phenomenon, researchers have introduced various saturating functional response forms.
Among these, Holling proposed the classic prey-dependent functional response types:
Type II and Type III [3]. Subsequently, researchers also considered predator-dependent
functional responses, such as the Beddington–DeAngelis type [4]. Over the past few
decades, ecologists have gradually moved beyond the classical Lotka–Volterra model in
their exploration of predator–prey relationships. They have incorporated different types
of functional responses into their models, taking into account a range of new influencing
factors. These factors include the prey’s fear effect, additional food supply in the external
environment, cooperation and competition among populations, and time delays between
predators and prey. Such complex factors enable researchers to simulate and understand
the interactions between predators and prey in ecosystems more accurately, providing
valuable insights and methods for further advancements in the field of ecology.

Fear plays a crucial role in ecology and evolutionary biology. Unlike the direct killing of
prey, which leads to a reduction in population numbers, fear effects may exert broader and
more prolonged impacts on prey populations by altering their behavior, life-history traits,
and spatial utilization within the ecosystem, as demonstrated by numerous studies. For
instance, Mao et al. [5] investigated the effects of both direct predation and fear-induced
behaviors on prey populations in the ecosystems of Yellowstone National Park. They found
that fear effects, such as altered grazing patterns and habitat use by herbivores in response
to predation risk, had significant impacts on vegetation dynamics and ecosystem struc-
ture. Ripple et al. [6] examined the ecological cascades resulting from the reintroduction
of wolves to Yellowstone National Park. By reducing elk populations through predation
and fear effects, wolves indirectly facilitated the recovery of aspen and willow popula-
tions, which had been overgrazed by elk in the absence of top predators. Additionally,
Zanette et al. [7] conducted a study that revealed that merely perceiving predation risk,
achieved by broadcasting predator calls, could reduce the annual offspring production of
songbird populations by 40%. The significant impact of fear was further acknowledged
by Wang et al., who first introduced fear-mediated effects into mathematical models [8].
Their study demonstrated that fear can stabilize the prey–predator system and prevent
oscillatory behavior.

Food is essential for the survival of biological populations, and consequently, the impact
of supplemental food has attracted significant attention and research. Numerous studies
indicate that providing additional food to biological populations can influence their be-
havior. For example, in Passer domesticus, the provision of extra food results in changes
in female behavior, allowing mates to spend more time together in the nest, which in turn
reduces the incidence of extra-pair paternity [9]. During winter, populations of Poecile atr-
icapillus defend foraging territories; however, this system often collapses when additional
food is made available [10]. Furthermore, the effects of supplemental food have been ex-
tensively examined through mathematical models [11–14]. Ghosh et al. [11] investigated
the effects of supplemental food on predator–prey dynamics in scenarios where the risk
of predation is low due to prey refuge. Their findings suggest that in high-prey-refuge eco-
logical systems, providing additional food to the predator population can mitigate the risk
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of predator-species extinction. Ananth et al. [14] formulated and analyzed optimal control
problems aimed at achieving desired outcomes in the shortest possible time. They consid-
ered two distinct models of supplemental food and discussed the ecological implications
of their theoretical findings for these models.

In ecosystems, the behavior and abilities of a species at different stages of growth and
development vary. The hunting ability at different ages is related to its position and im-
pact, and the life cycles of prey are also affected by these predators. Many studies classify
the age structure of biological populations into immature and mature prey or predators
[15–19]. It is common for mature individuals to provide partial care and protection to im-
mature ones within populations. For instance, in wolf packs, caretakers frequently do not
leave the pups alone but rather cooperate with other members to ensure the safety and
survival of the immature [20]. Additionally, wolf packs often collaborate to hunt prey that
is much larger than themselves [21]. This form of intracooperation was investigated by the
author in [22], who introduced predator cooperation into the Holling Type-II functional
response within the model, analyzing stability and various bifurcation types. The study
concluded that the absence of cooperation among predators renders the system highly
sensitive. Vishwakarma and Sen [23] explored how predator cooperation and Allee effects
influence the system, observing that the introduction of cooperation adds complexity to
the dynamics. Research on population cooperation is also discussed in [24–29] and other
literature.

On the other hand, various relationships and interactions within an ecological system
often exhibit time delays. For instance, when an organism experiences a fear stimulus,
its response to subsequent stimuli not only persists beyond the cessation of the initial
stimulus but may also endure for a period following a delay. Considering the presence of
these delays brings us closer to reality, and extensive investigations have been conducted
into how delayed fear responses impact population dynamics systems [30–33]. Ramasamy
et al. [30] explored the incorporation of fear delay in an intermediate predator and the
provision of additional food for the top predator within a three-species food chain. Their
study found that the chaotic dynamics of the model could be controlled by appropriately
selecting parameters related to the fear effect and the provision of additional food. Sui
and Du [33] conducted an analysis within a diffusive predator–prey model, examining
three distinct scenarios regarding the impact of fear-response delay on prey reproduction.
Additionally, there may be other delays, such as gestation [34], digestion [35], and disease
transmission [36] delays.

Inspired by the analysis presented above, this article aims to develop an age-structured
predator–prey system that incorporates factors such as fear, additional food resources, and
intrapopulation cooperation. We will explore how these elements influence the stability
of the system.

The organization of this paper is structured as follows: Sect. 2 presents the model
construction. Section 3 evaluates and analyzes the positivity, boundedness, equilibrium
points, as well as the local stability and bifurcations of the system. In Sect. 4, we conduct
numerical simulations of the system. Finally, Sect. 5 provides a summary and offers per-
spectives for future work.

2 Model formulation
In this section, we formulate a three-species model that includes one prey species (x) and
two predator species at different stage structures. One is referred to as adult predator (y1),
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and the other is referred to as immature predator (y2). To construct our model, we will
proceed with the following steps and provide relevant assumptions for explanation.

(1). Let us consider the hypothetical scenario where the prey population grows logically
in the absence of any predator or predation-related concerns. The logistic growth
function is dependent on two environmental parameters, namely the intrinsic
growth rate and carrying capacity of the prey population. Based on this assumption,
we derive the following ordinary differential equation:

dx
dt

= rx
(︂

1 –
x
V

)︂
.

(2). Furthermore, the presence of predators induced predation fear in the prey. We
assume that the fear of predation diminishes the inherent growth rate of the prey.
To incorporate this effect into the aforementioned model equation, we modify it by
multiplying the intrinsic growth rate of the prey by a monotonically decreasing
function denoted as g(y1, y2, k) = e–k(y1+y2) (refer to [37]). By incorporating the fear
factor into the prey-growth birth rate, a decrease in the fear function value,
specifically observed when the predator biomass is higher, leads to a corresponding
reduction in the birth rate of the prey. Apart from the indirect influence of
predators on prey through fear, the indirect interaction between adult predators
and prey is assumed to follow the Beddington–DeAngelis-type functional response
and between immature predators and prey obey the Holling Type-II functional
response. Additionally, we hypothesize a behavior within the predator population
where adults may protect and care for immatures, ensuring the survival and
reproduction of the group. This behavior contributes to increased overall survival
success of the group and helps shield immatures from harm. As a result, the model
is obtained as follows:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

dx
dt

= rxe–k(y1+y2)
(︂

1 –
x
V

)︂
– d1x –

s1xy1

1 + x + y1
–

s2xy2

1 + x
,

dy1

dt
=

ϖ1s1xy1

1 + x + y1
– d2y1 – cy2

1 + σy2,

dy2

dt
=

ϖ2s2xy2

1 + x
+ δy1y2 – σy2.

(2.1)

The effect of protection by the mature predator to the immature predator is
indicted by the term δy1y2 (more details can be found in [29]).

(3). To alleviate food scarcity, predator is supplemented with an additional food of
quantity B, which is uniformly distributed throughout the habitat. We assume that
the encounters with additional food per predator is directly proportional to the
density of the supplemental food, meaning that each predator’s exposure to extra
food is proportional to the availability of such food in the area. This additional food
biomass causes changes in the functional response of predators. Then, (2.1) has
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Table 1 Biological implications of parameters in the system (2.3)

Coefficient Biological explanation Dimension

x Prey biomass
y1 Adult predator biomass
y2 Immature predator biomass
r Prey intrinsic growth rate time–1

V The carrying capacity of the environment for prey biomass
s1 The predation rate of adult predator time–1

s2 The predation rate of immature predator time–1

k Level of fear effect biomass–1

ρ Conversion rate of additional food –
α Effectual food rate –
B Quantity of additional food biomass
c Intraspecific competition coefficient of adult predator biomass–1time–1

σ Adult rate of immature predator time–1

ϖ1 Conversion rate of prey to adult predator biomass
ϖ2 Conversion rate of prey to immature predator biomass
δ Cooperation between mature and immature prey time–1

d1 Natural mortality rate of prey time–1

d2 Natural mortality rate of adult predator time–1

been modified as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

dx
dt

= rxe–k(y1+y2)
(︂

1 –
x
V

)︂
– d1x –

s1xy1

1 + x + y1
–

s2xy2

1 + ραB + x
,

dy1

dt
=

ϖ1s1xy1

1 + x + y1
– d2y1 – cy2

1 + σy2,

dy2

dt
=

ϖ2s2(x + αB)y2

1 + ραB + x
+ δy1y2 – σy2.

(2.2)

The term ϖ1s1(x+αB)y
1+x+ραB represents the functional response after providing additional

food, a relevant biological explanation is mentioned in reference [38].
(4). In real biological systems, the growth or decline of population numbers may be

subject to certain delayed effects, which may be caused by intrinsic biological
factors or environmental influences. This delay effect can have an impact on
population dynamics. Based on these considerations, we introduce time delays in
the system (2.2) as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

dx
dt

= rxe[–k(y1+y2)(t–τ )]
(︂

1 –
x
V

)︂
– d1x –

s1xy1

1 + x + y1
–

s2xy2

1 + ραB + x
,

dy1

dt
=

ϖ1s1xy1

1 + x + y1
– d2y1 – cy2

1 + σy2,

dy2

dt
=

ϖ2s2(x + αB)y2

1 + ραB + x
+ δy1y2 – σy2,

(2.3)

where τ is regarded as prey’s fear that results in a time delay in the intrinsic growth
of prey. The biological meanings associated with the parameters of the system (2.3)
and the interactions between organisms are presented in Table 1 and Fig. 1.

The initial conditions are:

x (ς) = ψ1 (ς) , y1 (ς) = ψ2 (ς) , y2 (ς) = ψ3 (ς) , –τ ≤ ς ≤ 0, (2.4)
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Figure 1 Schematic diagram illustrating the interactions among prey (x), adult predator (y1), and immature
predator (y2)

where ψi (ς) ≥ 0 (i = 1, 2, 3) denotes any continuous function mapping from [–τ , 0] into
R+ = [0,∞] with ||ψ || = sup

[–τ ,0]
{|ψ1 (ς)| , |ψ2 (ς)| , |ψ3 (ς)|}.

3 System evaluation and analysis
Let us start by summarizing some fundamental dynamical properties of the system, in-
cluding its positivity, boundedness, and persistence.

3.1 Positiveness and boundedness of the solutions
Theorem 1 All solutions of the system (2.3) with initial conditions (2.4) are positive for all
t > 0.

Proof For the purposes of analytical tractability, we let:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

F1
(︁
x, y1, y2

)︁
= re[–k(y1+y2)(t–τ )]

(︁
1 – x

V
)︁

–d1 – s1y1
1+x+y1

– s2y2
1+ραB+x ,

F2
(︁
x, y1, y2

)︁
= ϖ1s1x

1+x+y1
– d2 – cy1 + σ

y2
y1

,

F3
(︁
x, y1, y2

)︁
= ϖ2s2(x+αB)

1+ραB+x + δy1 – σ .

Then, we rewrite the system (2.3) as:

dx
dt

= xF1
(︁
x, y1, y2

)︁
,

dy1

dt
= y1F2

(︁
x, y1, y2

)︁
,

dy2

dt
= y2F3

(︁
x, y1, y2

)︁
.

By using Lemma 4 given in [39] and the initial conditions (2.4), we have:

x(t) ≥ x(0) exp

{︃∫︂ t

0

[︁
F1(x(v), y1(v), y2(v)) – dv)

]︁
dv
}︃

> 0,

y1(t) ≥ y1(0) exp

{︃∫︂ t

0
[F2(x(v), y1(v), y2(v)) – dv]dv

}︃
> 0,

y2(t) ≥ y2(0) exp

{︃∫︂ t

0
[F3(x(v), y1(v), y2(v)) – dv]dv

}︃
> 0.

We obtain that every solution of the system (2.3) is positive and invariant for all t > 0. □
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Theorem 2 All solutions of the system remain uniformly bounded under the initial condi-
tions (2.4) for all t > 0.

Proof Since, dx
dt ≤ rxe–k(y1+y2)

(︁
1 – x

V
)︁≤ rx

(︁
1 – x

V
)︁
, applying the comparison principle, we

obtain:

lim
t→0

sup x ≤ r
r/V

= V ⇒ xmax = V .

Let w(t) = x + 1
ϖ1

y1(t) + 1
ϖ1

y2(t), then calculate the derivative of w (t) along the solution of
the system (2.2), we have:

dw
dt

=
dx
dt

+
1

ϖ1

dy1

dt
+

1
ϖ2

dy2

dt

= rxe–k(y1+y2)
(︂

1 –
x
V

)︂
– d1x +

s2αB
1 + ραB + x

y2 –
d2

ϖ1
y1 –

c
ϖ1

y2
1

+
σ

ϖ1
y2 +

δ

ϖ2
y1y2 –

σ

ϖ2
y2

≤ rxe–k(y1+y2)
(︂

1 –
x
V

)︂
–

c
ϖ1

y2
1 +

s2αB
1 + ραB + x

y2 +
σ

ϖ1
y2 +

δ

ϖ2
y1y2 –

σ

ϖ2
y2

≤ rV –
c

ϖ1
y2

1 –
d2

ϖ1
y1 + s2αBy2 +

σ

ϖ1
y2 +

δ

ϖ2
y1y2

= rV –
c

ϖ1

(︃
y1 –

ϖ1δ

2ϖ2c
y2

)︃2

–
d2

ϖ1
y1 +

ϖ1δ
2

4cϖ 2
2

y2
2 –

ϖ1s2αB + σ

ϖ1
y2

≤ rV –
d2

ϖ1
y1 +

ϖ1δ
2

4cϖ 2
2

y2
2 –

ϖ1s2αB + σ

ϖ1
y2.

For any positive ξ , we have:

dw
dt

+ ξw ≤ rV + ξx +
ξ – d2

ϖ1
y1 –

ϖ1δ
2

4cϖ 2
2

(︃
4cϖ 2

2 (ϖ1ϖ2s2αB + ϖ2σ + ϖ1ξ )

ϖ2ϖ
2
1 δ2 y2 – y2

2

)︃

≤ (r + ξ )V +
ξ – d2

ϖ1
y1 –

ϖ1δ
2

4cϖ 2
2

(︃
4cϖ 2

2 (ϖ1ϖ2s2αB + ϖ2σ + ϖ1ξ )

2ϖ2ϖ
2
1 δ2

)︃2

≤ (r + ξ )V +
ξ – d2

ϖ1
y1.

Choosing ξ sufficiently small satisfying ξ < d2, we obtain:

dw
dt

+ ξw ≤ (r + ξ )V = Q.

Considering Q > 0, then we can rewrite the above differential inequality as:

d
dt

(︃
w –

Q
ξ

)︃
≤ –ξ

(︃
w –

Q
ξ

)︃
.

By using the theory of differential inequality for w (t), we obtain:

0 ≤ w
(︁
x, y1, y2

)︁≤ Q
ξ

+ w(0)e –ξ t ,
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where w(0) =
(︁
x(0), y1(0), y2(0)

)︁
, when t → ∞ , 0 < w ≤ Q

ξ
. Hence, the system is uniformly

bounded. □

3.2 Assessment of equilibrium
In this subsection, we will explore the existence of several distinct equilibrium points for
the system (2.2). The system (2.2) always possesses a trivial equilibrium point. Under cer-
tain conditions, the system displays both predator-free and interior equilibrium points as
described below.

(1) The population-free equilibrium P0 = (0, 0, 0), which always exists.
(2) The immature and adult predator-free equilibrium P1 = (x̂, 0, 0), where

x̂ = V (r–d1)
r , r > d1.

(3) The adult predator-free equilibrium P2 = (x̄, 0, ȳ2), where
x̄ = σ+σραB–ϖ2s2αB

ϖ2s2–σ
= ℘(x̄) < V and ȳ2 represents the positive root of the equation

shown below:

Ʊ1e–kȳ2 – Ʊ2ȳ2 – d1 = 0,

here Ʊ1 = r
(︂

1 – ℘(x̄)
V

)︂
and Ʊ2 = s2

1+ραB+℘(x̄) . Let ħ(ȳ2) = Ʊ1e–kȳ2 – Ʊ2ȳ2 – d1, then the
derivative of ħ(ȳ2) with respect to ȳ2 yields ħ(ȳ2)′ = –kƱ1e–ky2 – Ʊ2 < 0. When
ȳ2 → ∞, limȳ2→∞ ħ(ȳ2) < 0 and ȳ2 → 0, limȳ2→∞ ħ(ȳ2) > 0 if provided Ʊ1 > d1.
Therefore, the system possesses a unique adult predator-free equilibrium point if
Ʊ1 > d1.

(4) The immature predator-free equilibrium P3 = (x•, y•
1, 0), where x• and y•

1 are derived
from the positive root of the following equation:

⎧⎪⎨
⎪⎩
S1(x•, y•

1) = re–ky•
1
(︁
1 – x•

V
)︁

– d1 – s1y•
1

1+x•+y•
1

= 0,

S2(x•, y•
1) = ϖ1s1x•

1+x•+y•
1

– d2 – cy•
1 = 0.

(3.1)

If the nullclines S1(x•, y•
1) = 0 and S2(x•, y•

1) = 0 intersect in the positive quadrant,
then the immature predator-free equilibrium point can be obtained.

(5) The coexistence equilibrium P4 = (x∗, y∗
1, y∗

2) within the positive quadrant, where
x∗, y∗

1 , and y∗
2 are the positive solution of the subsequent system of the nonlinear

equations:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

re–k(y∗
1+y∗

2)
(︂

1 – x∗
V

)︂
– d1 – s1y∗

1
1+x∗+y∗

1
– s2y∗

2
1+ραB+x∗ = 0,

ϖ1s1x∗y∗
1

1+x∗+y∗
1

– d2y∗
1 – c(y∗

1)2 + σy∗
2 = 0,

ϖ2s2(x∗+αB)
1+ραB+x∗ + δy∗

1 – σ = 0.

(3.2)

We can obtain the expression for y∗
1 from the third equation of (3.2) as follows:

y∗
1 =

σ

δ
–

ϖ2s2(x∗ + αB)

δ(1 + ραB + x∗)
= ℓ(y∗

1). (3.3)
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Ensuring y∗
1 is positive and substituting it into the second equation of (3.3), we

obtain the relationship between x and y2 as:

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Φ1(x∗, y∗
2) = re–k(ℓ(y∗

1)+y∗
2)
(︂

1 – x∗
V

)︂
– d1

– s1ℓ(y∗
1)

1+x∗+ℓ(y∗
1) – s2y∗

2
1+ραB+x∗ = 0,

Φ2(x∗, y∗
2) = ϖ1s1x∗ℓ(y∗

1)
1+x∗+ℓ(y∗

1) – d2ℓ(y∗
1) – c(ℓ(y∗

1))2 + σy∗
2 = 0.

(3.4)

If the point of intersection (x∗, y∗
2) for the nullclines Φ1(x∗, y∗

2) = 0 and Φ2(x∗, y∗
2) = 0

is found (refer to Fig. 2(a)), it allows for the determination of y∗
1 through (3.2),

thereby the existence of the interior equilibrium P4 is established (refer to Fig. 2(b)).

Remark 1 Note that the equilibrium points of the system (2.2) coincide with the equi-
librium points of the system (2.3). Finding explicit formulations for the positive roots of
(3.1) and (3.2) is a challenging task due to their nonlinear nature. We will calculate the
equilibrium points by taking specific parameter values during the numerical simulations
in Sect. 4.

3.3 Stability and bifurcation analysis near equilibria
In this section, we investigate the local stability and bifurcation of the system around its
equilibrium points. The local stability of each equilibrium point can be studied using the
theory of Jacobian matrices.

3.3.1 No delay case
(1) Dynamics near P0

The Jacobian matrix Jp0 at P0(0, 0, 0) is given by:

JP0 =

⎛
⎜⎝

r – d1 0 0
0 –d2 σ

0 0 ϖ2s2αB
1+ραB – σ

⎞
⎟⎠ .

The characteristic equation for the system (2.2) at trivial equilibrium P0 is:

(r – d1 – λ)(–d2 – λ)

(︃
ϖ2s2αB
1 + ραB

– σ – λ

)︃
= 0. (3.5)

Among the roots of Eq. (3.5), one of them is a negative real number λ1 = –d2, the other
two roots are λ2 = r – d1 and λ3 = ϖ2s2αB

1+ραB – σ . Now, if r < d1 and ϖ2s2αB < σ + σραB then
all characteristic roots are negative real numbers. Therefore, the following theorem can
be derived:

Theorem 3 The trivial equilibrium point P0(0, 0, 0) is locally asymptotically stable if r < d1

and ϖ2s2αB < σ + σραB, otherwise, it demonstrates unstable dynamics.

(2) Dynamics near P1
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The Jacobian matrix for the system (2.2) at P1(x̂, 0, 0) is given by

JP1 =

⎛
⎜⎝

A11 A12 A13

0 A22 σ

0 0 A33

⎞
⎟⎠ ,

where

A11 = r
(︃

1 –
x̂
V

)︃
– d1 –

rx̂
V

< 0, A12 = –krx
(︂

1 –
x
V

)︂
–

s1x̂
1 + x̂

,

A13 = –krx̂
(︃

1 –
x̂
V

)︃
–

s2x̂
1 + ραB + x̂

, A22 =
ϖ1s1x̂
1 + x̂

– d2, A33 =
ϖ2s2(x̂ + αB)

1 + ραB + x̂
– σ .

The characteristic equation of the system (2.2) at the equilibrium point P1(x̂, 0, 0) is

(A11 – λ)(A22 – λ)(A33 – λ) = 0. (3.6)

It is easy to determine that one of the roots of Eq. (3.6) is λ1 = A11 < 0. If the other two
characteristic roots, λ2 = A22 and λ3 = A33 are also negative, then it is possible to judge the
local stability near the equilibrium point P1 (see Theorem 4).

Theorem 4 The equilibrium P1 is locally asymptotically stable if ϖ1s1x̂ < d2 + x̂ and
ϖ1s1(x̂ + αB) < σ + σραB + σ x̂.

(3) Dynamics near P2

The Jacobian matrix for the system (2.2) at P2 = (x̄, 0, ȳ2) is given by

JP2 =

⎛
⎜⎝

Γ11 Γ12 Γ13

0 Γ22 Γ23

Γ31 Γ23 Γ33

⎞
⎟⎠ ,

where

Γ11 = re–kȳ2

(︃
1 –

2x̄
V

)︃
– d1 –

s2ȳ2(1 + ραB)

(1 + ραB + x̄)2 ,Γ12 = –krx̄e–kȳ2

(︃
1 –

x̄
V

)︃
–

s1x̄
1 + x̄

,

Γ13 = –krx̄e–kȳ2

(︃
1 –

x̄
V

)︃
–

s2x̄
1 + ραB + x̄

,Γ22 =
ϖ1s1x̄
1 + x̄

– d2,Γ23 = σ ,Γ32 = δȳ2,

Γ31 =
ϖ2s2ȳ2(1 + ραB – αB)

(1 + ραB + x̄)2 ,Γ33 =
ϖ2s2(x̄ + αB)

1 + ραB + x̄
– σ .

Calculating the characteristic equation based on the Jacobian matrix as shown in (3.7):

λ3 + ℜ1λ
2 + λℜ2 + ℜ3 = 0, (3.7)

where

ℜ1 = –Γ11 – Γ22 – Γ33,ℜ2 = Γ33Γ11 + Γ33Γ22 + Γ11Γ22 – Γ31Γ13 – Γ22Γ23

ℜ3 = Γ31Γ22Γ13 + Γ11Γ22Γ23 – Γ11Γ22Γ33 – Γ31Γ22Γ12.
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Assuming conditions ℜ1 > 0, ℜ3 > 0, and ℜ1ℜ2 > ℜ3 are satisfied, then according to the
Routh–Hurwitz criterion, it is known that all roots of (3.7) are negative. This implies that
P2 is locally asymptotically stable near the system (2.2). Now, we take the parameter k as
the bifurcation parameter and ensure that k satisfies: ℜ1(kH)ℜ2(kH) = ℜ3(k), so Eq. (3.7)
transforms into:

(λ2 + ℜ2)(λ + ℜ1) = 0. (3.8)

It is evident that the roots of Eq. (3.8) include one real root λ1 = –ℜ1 and two imaginary
roots λ2,3 = ±i

√ℜ2. Let the form of the roots of (3.8) be λ = φ(k) ± iβ(k), and substituting
into (3.8) yields:

(φ(k) + iβ(k))3 + ℜ1(φ(k) + iβ(k))2 + ℜ2(φ(k) + iβ(k)) + ℜ3 = 0. (3.9)

Differentiate (3.9) with respect to k and separate the real and imaginary parts, then

ℑ1(k)
∂φ

∂k
– ℑ2(k)

∂β

∂k
= Ω1(k), ℑ2(k)

∂φ

∂k
+ ℑ1(k)

∂β

∂k
= Ω2(k), (3.10)

where

ℑ1 = 3φ2 – 3β2 + 2ℜ1φ + ℜ2, ℑ2 = 6φβ + 2ℜ1β ,

Ω1 = β2 ∂ℜ1

∂k
– φ2 ∂ℜ1

∂k
– φ

∂ℜ2

∂k
–

∂ℜ3

∂k
, Ω2 = 2φβ

∂ℜ1

∂k
+ β

∂ℜ2

∂k
.

Observing that φ(kH) = 0 and β(kH) =
√ℜ2, we have:

ℑ1 = –2ℜ2, ℑ2 = 2ℜ1
√︁ℜ2, Ω1 = ℜ2

∂ℜ1

∂k
–

∂ℜ3

∂k
, Ω2 =

∂ℜ2

∂k
√︁ℜ2.

Checking whether the transversality condition holds, by isolating from (3.10) we have

∂

∂k
(Reλ(k))

⃓⃓
⃓⃓
k=kH

=
ℑ1Ω1 + ℑ2Ω2

ℑ2
1 + ℑ2

2
≠ 0, if ℑ1Ω1 + ℑ2Ω2 ≠ 0 and λ1 = –ℜ1 ≠ 0.

If the condition holds, a Hopf bifurcation occurs around P2 at k = kH .

Theorem 5 The system (2.2) is locally asymptotically stable around adult predator-free
equilibrium P2 = (x̄, 0, ȳ2) if conditions ℜ1 > 0,ℜ3 > 0 and ℜ1ℜ2 > ℜ3 are satisfied, then a
Hopf bifurcation occurs around P2 at k = kH such that ℜ1ℜ2 = ℜ3, provided ℑ1Ω1 + ℑ2Ω2 ≠
0.

(4) Dynamics near P3

The Jacobian matrix for the system (2.2) at P3(x•, y•
1, 0) is given by

JP3 =

⎛
⎜⎝

C11 C12 C13

C21 C22 C23

0 0 C33

⎞
⎟⎠ ,
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where

C11 = –
x•

V
re–ky•

1 +
s1y•

1
1 + x• + y•

1
–

s1y•
1(1 + y•

1)

(1 + x• + y•
1)2 ,

C12 = –krx•e–ky•
1

(︃
1 –

x•

V

)︃
–

s1x•(1 + x•)

(1 + x• + y•
1)2 ,

C13 = –krx•e–ky•
1

(︃
1 –

x•

V

)︃
–

s2x•

1 + ραB + x• ,

C21 =
ϖ1s1y•

1(1 + y•
1)

(1 + x• + y•
1)2 , C22 =

ϖ1s1x•(1 + x•)

(1 + x• + y•
1)2 – d2 – 2cy•

1,

C23 = σ , C33 =
ϖ2s2(x• + αB)

1 + ραB + x• + δy•
1 – σ .

We can obtain the following characteristic equation:

(C33 – λ)(λ2 – (C11 + C22)λ + C11C22 – C12C21) = 0. (3.11)

One of the roots of the characteristic equation (3.11) is λ1 = C33, while the other two roots
depend on equation (3.12):

λ2 – (C11 + C22)λ + C11C22 – C12C21 = 0. (3.12)

From the theory of roots and coefficients of quadratic equations, it is known that if the
conditions C11 + C22 < 0 and C11C22 – C12C21 < 0 are satisfied, then equation (3.12) has
two negative roots. Therefore, we can summarize Theorem 6 as follows:

Theorem 6 The immature predator-free equilibrium P3(x•, y•
1, 0) is locally asymptotically

stable under the conditions C33 < 0, C11C22 < C12C21, and C11 + C22 < 0 (Cij, i or j = 1, 2, 3
see above).

Assuming the conditions C33 < 0 and C11C22 < C12C21 hold, if C11 + C22 = 0, then
Eq. (3.11) has two imaginary roots λ1,2 = ±i

√
C11C22 – C12C21. We can rewrite the roots

of the Eq. (3.11) considering k as a bifurcation parameter as λ1,2(k) =φ(k) ± iβ(k). Substi-
tuting it into Eq. (3.12) and isolating the real and imaginary components yields:

φ2 – β2 – (C11+C22)φ + C11C22 – C12C21 = 0, 2φβ – (C11+C22)β = 0. (3.13)

Differentiating both sides of (3.13) with respect to k results in:

D1
∂φ

∂k
– D2

∂β

∂k
= Σ1, D2

∂φ

∂k
+ D1

∂β

∂k
= Σ2, (3.14)

where D1 = 2φ – (C11 + C22), D2 = 2β , Σ1 = φ
(︂

∂C11
∂k + ∂C22

∂k

)︂
+ C12

∂C21
∂k + C21

∂C12
∂k – C11

∂C22
∂k –

C22
∂C11
∂k , Σ2 = β

(︂
∂C11
∂k + ∂C22

∂k

)︂
. Noting that, at k = kH , φ(kH) = 0, β(kH) = β ≠ 0 and C11 +

C22 = 0. Hence, the transversality condition can be derived from (3.14):

∂

∂k
(︁
Reλ1,2(k)

)︁⃓⃓⃓⃓
k=kH

=
∂φ

∂k

⃓⃓
⃓⃓
k=kH

=
Σ1D1 + Σ2D2

D2
1 + D2

2
=

2rβ2y•
1x•

V
e–ky•

1 ≠ 0.
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According to the Hopf bifurcation theory, it is known that the system (2.2) undergoes a
Hopf bifurcation around P2, which is summarized in Theorem 7.

Theorem 7 The system (2.2) undergoes a Hopf bifurcation around the immature predator-
free equilibrium P3 at k = kH staisfying:

–
x•

V
re–ky•

1 +
s1y•

1
1 + x• + y•

1
–

s1y•
1(1 + y•

1)

(1 + x + y•
1)2 +

ϖ1s1x•(1 + x•)

(1 + x• + y•
1)2 – d2 – 2cy•

1 = 0.

Now, turning our attention to other types of bifurcations near P3. If C33 = 0 or C11C22 =
C12C21, then (3.11) has a zero eigenvalue, which may indicate the existence of bifurca-
tion. To validate our hypothesis, we analyze using Sotomayor’s theorem [40]. Take σ

as a bifurcation parameter and ensure that C33(σ ) = 0 and C11C22 – C12C21 ≠ 0 is sat-
isfied, then there is a zero eigenvalue present in (3.11), the associated eigenvectors of

JP3 and JT
P3

are determined as: Z1 =
(︂

ϱ1 ϱ2 1
)︂T

and Z2 =
(︂

0 0 1
)︂T

, where ϱ1 =
C12
C11

(︂
C11C23–C12C21
C11C22–C12C21

)︂
– C13

C11
and ϱ2 = – C11C23–C12C21

C11C22–C12C21
. Next, we proceed to examine the condi-

tions required for the bifurcation.

(i) ZT
2 Λσ

(︁
P3,σ = σ S)︁ =

(︂
0 0 1

)︂
⎛
⎜⎝

0
0
0

⎞
⎟⎠ = 0,

where,Λ =

⎛
⎜⎝

f1

f2

f3

⎞
⎟⎠ =

⎛
⎜⎜⎜⎜⎝

rxe–k(y1+y2)
(︁
1 – x

V
)︁

– d1x – s1xy1
1+x+y1

– s2xy2
1+ραB+x

ϖ1s1xy1
1+x+y1

– d2y1 – cy2
1 + σy2

ϖ2s2(x+αB)y2
1+ραB+x + δy1y2 – σy2

⎞
⎟⎟⎟⎟⎠

.

(ii) ZT
2
[︁
DΛσ

(︁
P3,σ = σ S)︁Z1

]︁
=
(︂

0 0 1
)︂
⎡
⎢⎣

⎛
⎜⎝

0 0 0
0 0 1
0 0 –1

⎞
⎟⎠

⎛
⎜⎝

ϱ1

ϱ2

1

⎞
⎟⎠

⎤
⎥⎦ = –1 ≠ 0.

(iii) ZT
2 [D2Hσ (P3,σ = σ S)(Z1, Z1)]

=
∂2f3

∂x∂y2
ϱ1 +

∂2f3

∂y1∂y2
ϱ2 +

∂2f3

∂y2∂x
+

∂2f3

∂y2∂y1
ϱ1

=
ϖ2s2(1 + ραB – αB)(1 + ϱ1)

(1 + ραB + x•)2 + δ(ϱ1 + ϱ2) = O,

where,

D2H =

⎛
⎜⎜⎜⎜⎜⎝

∂2f1
∂x∂x

∂2f1
∂x∂y1

∂2f1
∂x∂y2

∂2f1
∂y1∂x

∂2f1
∂y1∂y1

∂2f1
∂y1∂y2

∂2f1
∂y2∂x

∂2f1
∂y2∂y1

∂2f1
∂y2∂y2

∂2f2
∂x∂x

∂2f2
∂x∂y1

∂2f2
∂x∂y2

∂2f2
∂y1∂x

∂2f2
∂y1∂y1

∂2f2
∂y1∂y2

∂2f2
∂y2∂x

∂2f2
∂y2∂y1

∂2f2
∂y2∂y2

∂2f3
∂x∂x

∂2f3
∂x∂y1

∂2f3
∂x∂y2

∂2f3
∂y1∂x

∂2f3
∂y1∂y1

∂2f3
∂y1∂y2

∂2f3
∂y2∂x

∂2f3
∂y2∂y1

∂2f3
∂y2∂y2

⎞
⎟⎟⎟⎟⎟⎠

,

(Z1, Z1) =
(︂

ϱ2
1 ϱ1ϱ2 ϱ1 ϱ2

2 ϱ1ϱ2 ϱ2 1 ϱ1 ϱ2

)︂T
.

According to Sotomayor’s theorem, the system (2.2) undergoes a transcritical bifurcation
near P2(x•, y•

1, 0) at σ = σ S provided O ≠ 0.
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Theorem 8 The system (2.2) undergoes a transcritical bifurcation around the immature
predator-free equilibrium P3(x•, y•

1, 0) at σ = σ S given that O ≠ 0.

Remark 2 Apart from considering σ as the bifurcation parameter around equilibrium P3,
we can also select B such that C33(B) = 0 and C11C22 –C12C21 ≠ 0, or use k as the bifurcation
parameter and make C11(k)C22(k) – C12(k)C21(k) = 0 and C33 ≠ 0. The analytical process
is similar to σ , which we demonstrate in the numerical simulations presented in Sect. 4.

(5) Dynamics near P4

The Jacobian matrix at the internal equilibrium point P3 is listed as follows:

JP4 =

⎛
⎜⎝

D11 D12 D13

D21 D22 D23

D31 D32 0

⎞
⎟⎠ ,

where

D11 = re–k(y∗
1+y∗

2)

(︃
1 –

2x∗

V

)︃
– d1 –

s1y∗
1(1 + y∗

1)

(1 + x∗ + y∗
1)2 –

s2y∗
1(1 + ραB)

(1 + ραB + x∗)2 ,

D12 = –kd1x∗ –
ks1x∗y∗

1
1 + x∗ + y∗

1
–

ks2x∗y∗
2

1 + ραB + x∗ –
s1x∗(1 + x∗)

(1 + x + y∗
1)2 ,

D13 = –kd1x∗ –
ks1x∗y∗

1
1 + x∗ + y∗

1
–

ks2x∗y∗
2

1 + ραB + x∗ –
s2x∗

1 + ραB + x∗ ,

D21 =
ϖ1s1y∗

1(1 + y∗
1)

(1 + x∗ + y∗
1)2 , D22 =

ϖ1s1x∗(1 + x∗)

(1 + x∗ + y∗
1)2 – d2 – 2cy∗

1,

D23 = σ , D31 =
ϖ2s2y∗

2(1 + ραB – αB)

(1 + ραB + x∗)2 , D32 = δy∗
2.

The characteristic equation at the internal equilibrium point P3 is

λ3 + L1λ
2 + L2λ + L3 = 0, (3.15)

where L1 = –D11 – D22, L2 = D11D22 – D13D31 – D23D32, L3 = D23D32D11 + D13D31D22 –
D12D23D31 – D21D32D13. Clearly, if L1 > 0, L3 > 0, and L1L2 > L3, then according to the
Routh–Hurwitz criteria, it is locally asymptotically stable.

Next, we focus on the Hopf bifurcation of the system (2.2) near P4. Assuming that system
(2.2) is locally asymptotically stable, while there exists k = kH such that L1(kH)L2(kH) –
L3(kH) = 0, then Eq. (3.15) can be rewritten as:

(λ2 + L2)(λ + L1) = 0. (3.16)

Clearly, Eq. (3.16) has one real root λ1 = –L1 and two imaginary roots λ2,3 = ±i
√

L2. Now,
rewriting the roots of the characteristic equation (3.16), while taking k as a bifurcation
parameter as follows:

λ1(k) = φ(k) + iβ(k), λ2(k) = φ(k) – iβ(k), λ3(k) = L1.



Mo and Shao Advances in Continuous and Discrete Models         (2025) 2025:27 Page 15 of 28

Substituting the value of λj(k) = φ(k) + iβ(k) into the characteristic equation (3.16) yields
the following result:

(φ(k) + iβ(k))3 + L1(φ(k) + iβ(k))2 + L2(φ(k) + iβ(k)) + L3 = 0. (3.17)

Differentiating (3.17) with respect to k, gives:

N1(k)
∂φ

∂k
– N2(k)

∂β

∂k
= Θ1(k), N2(k)

∂φ

∂k
+ N1(k)

∂β

∂k
= Θ2(k), (3.18)

where

N1 = 3φ2 – 3β2 + 2L1φ + L2, N2 = 6φβ + 2L1β ,

Θ1 = β2 ∂L1

∂k
– φ2 ∂L1

∂k
– φ

∂L2

∂k
–

∂L3

∂k
, Θ2 = 2φβ

∂L1

∂k
+ β

∂L2

∂k
.

Noting that φ(kH) = 0, β(kH) =
√

L2, we have N1(kH) = –2L2, N2(kH) = 2L1
√

L2, Θ1 =
L2

∂L1
∂k – ∂L3

∂k , Θ2 =
√

L2
∂L2
∂k . Now, let us check the transversality condition shown below:

∂

∂k
(Reλ(k))

⃓⃓
⃓⃓
k=kH

=
N1Θ1 + N2Θ2

N2
1 + N2

2
≠ 0, if N1Θ1 + N2Θ2 ≠ 0.

In other words, the bifurcation condition is satisfied and the system (2.2) undergoes a Hopf
bifurcation at k = kH .

Theorem 9 The system (2.2) is locally asymptotically stable around the interior equilib-
rium P3 if L1 > 0, L3 > 0, L1L2 > L3 and unstable if L3 < 0. When the system (2.2) has local
asymptotic stability, then it undergoes a Hopf bifurcation around the coexistence equilib-
rium P4 at k = kH such that L1L2 = L3 given N1Θ1 + N2Θ2 ≠ 0.

Remark 3 Similarly, we can also consider σ , B, ρ or others as the bifurcation parameter.
In this section, we choose k as the bifurcation parameter to analyze the Hopf bifurcation
of the system (2.2) around P4. The analysis of Hopf bifurcations with respect to other
parameters will be presented in Sect. 4.

3.3.2 Delayed case
The dynamics of the boundary equilibrium points in the delayed system (2.3) are the same
as (2.2). Therefore, we only consider the coexistence fixed point P4. We linearize the sys-
tem (2.3) as follows before exploring the dynamics near P4:

d
dt

⎛
⎜⎝

X
Y1

Y2

⎞
⎟⎠ =

⎛
⎜⎝

I1 D12 D13

D21 D22 D23

D31 D32 0

⎞
⎟⎠ +

⎛
⎜⎝

I2 0 0
0 0 0
0 0 0

⎞
⎟⎠

⎛
⎜⎝

X(t – τ )

Y1(t – τ )

Y2(t – τ )

⎞
⎟⎠ ,

here the parameters Dij(i or j = 1, 2, 3) definitions are the same as before and

I1 = –d1 –
s1y∗

1(1 + y∗
1)

(1 + x∗ + y∗
1)2 –

s2y∗
1(1 + ραB)

(1 + ραB + x∗)2 , I2 = re–k(y∗
1+y∗

2)

(︃
1 –

2x∗

V

)︃
.
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The characteristic equation is obtained by performing calculations as follows:

⃓⃓
⃓⃓
⃓⃓
⃓

I1 + I2e–λτ – λ D12 D13

D21 D22 – λ D23

D31 D32 –λ

⃓⃓
⃓⃓
⃓⃓
⃓

= 0.

That is:

λ3 + ϒ1λ
2 + ϒ2λ + (ϒ3λ – ϒ4λ

2 + ϒ5)e–λτ + ϒ6 = 0, (3.19)

where ϒ1 = –I1 – D22,ϒ2 = I1D22 – D23D32 – D13D31 – D12D21,ϒ3 = I2D22,ϒ4 = I2,ϒ5 =
I2D23D32,ϒ6 = I1D23D32 + D13D31D22 – D12D23D31 – D21D32D13.

Take τ as the bifurcation parameter and let λ(τ ) = φ(τ ) ± iβ(τ ) as the root of (3.19). By
substituting λ(τ ) = φ(τ ) ± iβ(τ ) into (3.19) and separating the real and imaginary parts
from both sides gives:

φ3 – 3φβ2 + ϒ1(φ2 – β2) + ϒ2φ + ϒ6 + [(ϒ3φ – ϒ4φ
2 + ϒ4β

2

+ϒ5) cos(βτ ) + (ϒ3β – 2ϒ4φβ) sin(βτ )]e–φτ = 0, (3.20)

–β3 + 3βφ2 + 2ϒ1φβ + ϒ2β + [(ϒ3β – 2ϒ4φβ) cos(βτ )

–(ϒ3φ – ϒ4φ
2 + ϒ4β

2 + ϒ5) sin(βτ )]e–φτ = 0. (3.21)

Setting φ = 0, Eqs. (3.20) and (3.21) are written as:

–ϒ1β
2 + ϒ6 + (ϒ4β

2 + ϒ5) cos(βτ ) + ϒ3β sin(βτ ) = 0, (3.22)

–β3 + ϒ2β + ϒ3β cos(βτ ) – (ϒ4β
2 + ϒ5) sin(βτ ) = 0. (3.23)

Eliminating τ by squaring both sides of (3.20) and (3.21) and adding them together, we
have:

β6 + (ϒ1β
2 – ϒ6)2 – (ϒ4β

2 – ϒ5)2 – (ϒ3β)2 = 0. (3.24)

Let Ψ(β) = β6 + (ϒ1β
2 – ϒ6)2 – (ϒ4β

2 – ϒ5)2 – (ϒ3β)2 and lim
β→∞Ψ(β) = ∞. If β = 0 then

Ψ(β) = ϒ2
6 – ϒ2

5 . Therefore, (3.24) has at least one and at most three positive roots un-
der the condition ϒ2

6 – ϒ2
5 < 0. Any solution βi, i = 1, 2, 3 in (3.24) can be matched with a

corresponding solution τi as follows in (3.22):

τi =
1
βi

cos–1

(︄(︁
ϒ4β

2
i + ϒ5

)︁ (︁
ϒ1β

2
i – ϒ6

)︁
+ ϒ3β

4
i(︁

ϒ4β
2
i + ϒ5

)︁2 + (ϒ3βi)
2

)︄
+

2jπ
βi

, i = 1, 2, 3, j = 0, 1, 2 · · · .

Let τH = min τi, then according to Butler’s lemma [41] it is known that the system (2.3)
remains stable for 0 < τi < min τH and becomes unstable for τi > min τH . Now, we check
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the transversality criterion ∂
∂τ

(Reλ(τ ))
⃓⃓
τ=τH . Differentiating (3.20) and (3.21) with respect

to τ and substituting φ = 0, we have

N3
∂φ

∂τ
+ N4

∂β

∂τ
= Θ3, (3.25)

–N4
∂φ

∂τ
+ N3

∂β

∂τ
= Θ4, (3.26)

where

N3 = – 3β2 + ϒ2 – τ
(︁
ϒ4β

2 + ϒ5
)︁

cos(βτ ) – τϒ3β sin(βτ ) + ϒ3 cos(βτ )

– 2ϒ4β sin(βτ ),

N4 = –2ϒ1 + 2ϒ4 cos(βτ ) – τ
(︁
ϒ4β

2 + ϒ5
)︁

sin(βτ ) + ϒ3 sin(βτ ) + τϒ3β cos(βτ ),

Θ3 = β
(︁
ϒ4β

2 + ϒ5
)︁

sin(βτ ) – ϒ3β
2 cos(βτ ),Θ4 = β

(︁
ϒ4β

2 + ϒ5
)︁

sin(βτ )

+ ϒ3β
2 cos(βτ ).

Eliminating ∂β

∂τ
through (3.25) and (3.26) yields results in terms of ∂φ

∂τ
as follows:

∂φ

∂τ
(Reλ(τ )) =

N3Θ3 – N4Θ4

N2
3 + N2

4
. (3.27)

If (3.27) satisfies the condition N3Θ3 – N4Θ4 > 0, then

∂φ

∂τ
(Reλ(τ ))

⃓⃓
⃓⃓
τ=τH

=
N3
(︁
τH)︁Θ3

(︁
τH)︁ – N4

(︁
τH)︁Θ4

(︁
τH)︁

N2
3
(︁
τH
)︁

+ N2
4
(︁
τH
)︁ > 0.

Regarding the stability with respect to the parameter τ and the Hopf bifurcation condition
of the system (2.3), we summarize as follows:

Theorem 10 For the system (2.3), with the interior equilibrium point P4:
(1) There exists τ = τH such that the system (2.3) is locally asymptotically stable near P4

for 0 < τ < τH and becomes unstable when τ > τH .
(2) Furthermore, the system (2.3) will undergo a Hopf bifurcation at P4 when τ = τH ,

given that N3Θ3 – N4Θ4 > 0.

4 Numerical simulation
In this section, we provide some biological interpretations and numerical simulations to
explore and demonstrate the impact of various parameter variations on the system. Our
numerical simulations involve use the ode23 solver in MATLAB to solve the differential
equation and partly utilize Matcont [42]. To achieve this, we select the following parame-
ters for numerical simulations.

r = 1.2, k = 0.5, V = 10, d1 = 0.1, s1 = 0.6,ρ = 0.1,α = 0.15, B = 2,

ϖ1 = 0.9, d2 = 0.2, s2 = 0.4,ϖ2 = 0.8, δ = 0.05, c = 0.1,σ = 0.3.
(4.1)

Next, we will observe the behavior of the system (2.2) or (2.3) by varying certain parame-
ters in (4.1) to explore the impact of different factors on the system. We begin by exploring
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Figure 2 Stable nature of P4(1.6110, 1.3676, 0.5390) of the system (2.2) under the parameter set (4.1). Here, (a)
is existence of the intersection point of the nullclines Φ1(x∗ , y∗2 ) = 0 and Φ2(x∗ , y∗2 ) = 0 in the x – y2 plane, (b) is
the existence of interior equilibrium in the x – y1 – y2 space, (c) is the phase graph, (d) is the time curves with
x(0) = y1(0) = y2(0) = 1

some fundamental features of (4.1) within the system (2.2) without time delay, including
equilibrium point and stability states.

4.1 Nondelay system
The parameter set (4.1) yields the equilibrium point P4 = (1.6110, 1.3676, 0.5390) for the
system (2.2) by plotting nullclines as shown in Figs. 2(a) and (b). Figures 2(c) and (d) il-
lustrate that the current parameter set (4.1) enables the system (2.2) to maintain a stable
state. Equilibrium points indicate the stable or long-term behavior a system may attain
given specific conditions. Thus, sensitivity analysis of equilibrium points in dynamic sys-
tems is of great significance in research. It helps us understand how the system’s behavior
and stability change under different parameter conditions. By analyzing the system’s re-
sponse to parameter variations, we can identify the key parameters that have the most sig-
nificant impact on system performance, thereby optimizing these parameters to enhance
performance and stability. Here, we use partial rank correlation coefficients (PRCCs) to
study the sensitivity of system coexistence equilibrium points. The parameters k, σ , δ,
and B are considered as input parameters, and the output variables x∗, y∗

1, and y∗
2 are de-

termined through (3.2), then based on the parameter set (4.1) we plot Fig. 3. From Fig. 3,
it is observed that prey are most sensitive to fear and have a positive impact in internal
equilibrium, while immature predator similarly respond to additional food. The adult rate
has a positive effect on prey and adult predator but has a negative impact on immature
predator. The internal equilibrium shows a lack of significant sensitivity to cooperation
among predators.
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Figure 3 Analyzing the sensitivity of parameters relative to (4.1) for the prey, adult, and immature predator

(1) Effect of fear
We focus on exploring the impact of fear on populations. The parameter k represents

the level of fear that influences the birth rate of prey. First, we observe how changes in the
fear parameter k affect the stability of the system (2.2), then extend the parameter k in (4.1)
in two opposite directions and record the temporal state diagrams at k′ = 0.4 and k′′ = 1.5
as shown in Figs. 4(a) and (b). In Fig. 4, the transition from (a) to (b) shows a shift in the sys-
tem’s equilibrium point from an internal equilibrium point to an immature predator-free
equilibrium point. By comparing Figs. 2(c) and (d), we can infer that the system’s state has
changed from stable to unstable. According to bifurcation theory, it is known that changes
in the system may be accompanied by bifurcations, and this result has been validated in
the process of numerical simulation (see Figs. 4(c) and (d)). Figure 4(c) displays the equi-
librium points steady state and bifurcations in the y2 – k plane related to the parameter
k by Matcont. It demonstrates that when the value of k is small, the equilibrium-point
type of the system (2.2) is an internal equilibrium point. When k reaches kS = 1.4156722,
it undergoes a transcritical bifurcation (BP), resulting in the disappearance of immature
predator and the system’s equilibrium point transitions to a predator-free equilibrium
point. Before transitioning to the predator-free equilibrium point, k undergoes a subcrit-
ical Hopf bifurcations (H) around the internal equilibrium point at kH = 0.46426044 (see
Fig. 4(d)). Figure 4 demonstrate a substantial impact on the system dynamics due to the
prey of fear.

(2) Effect of adult rate
Now, we observe how the system (2.2) stability changes with variations in the adult

rate σ . Similar to before, we extend the parameter σ from the center with σ = 0.3 as
the midpoint towards both ends. It is observed that the system (2.2) steady states occur
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Figure 4 The analysis of the impact of fear (k) on relevant graphs. Here, (a) is the time-series graph of (2.2)
with k′ = 0.4 and (b) with k′′ = 1.5, (c) is the steady state of equilibrium points and bifurcation thresholds,
where the red dashed line represents instability, the blue dashed line represents stability, and P3 and P4 are
types of equilibrium points. (d) is the Hopf bifurcation and limit cycles

when σ ′ = 0.25 and σ ′′ = 0.45, as shown in Figs. 5(a) and (b). In Fig. 5(a), the system’s
steady state has changed compared to Fig. 2(d), while the types of equilibrium points re-
main unchanged. Conversely, in Fig. 5(b), both the steady states and equilibrium-point
types have changed compared to Fig. 5(d). This process may occur for a Hopf bifurca-
tion (H) or a transcritical bifurcation (BP) (see Figs. 5(c) and (d)). The system shows
a Hopf bifurcation at σ H = 0.29236512 as the maturation rate of immature predator
gradually rises, followed by a transcritical bifurcation at σ S = 0.36970317. Comparing
with Fig. 4, it is evident that the parameter σ has a similar influence to k in the sys-
tem.

(3) Effect of predator cooperation
In the absence of predator cooperation (δ′ = 0), the system state observed in Fig. 6(a)

indicates the extinction of immature predator. On the other hand, the cooperation rate
among predators exhibits periodic oscillations in the system when δ′′ = 0.1 (see Fig. 6(b)).
Similar to the previous analysis, we understand that undergoes a transcritical bifurcation
(BP) from the stable state (Fig. 2(b) to Fig. 6(a)), and subsequently experiences a Hopf
bifurcation (H) in Fig. 6(b)) (see Figs. 6(c) and (d)). In Figs. 6(c) and (d), parameter δ un-
dergoes a BP bifurcation at δS = 0.0085786992 and an H bifurcation at δH = 0.05411523,
respectively.

(4) Effect of additional food
First, consider the system state without additional food (B′ = 0) and record in Fig. 7(a),

then the system achieves a stable equilibrium. We observe that the system exhibits peri-
odic oscillations when we set B′′ = 4 (see Fig. 7(b)). In Fig. 7(c), the system’s equilibrium
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Figure 5 The analysis of the maturation rate (σ ) on relevant graphs. Here, (a) is the time-series graph of (2.2)
with σ ′ = 0.25 and (b) is σ ′′ = 0.45, (c) is the Hopf bifurcation and limit cycles, (d) is the steady state of
equilibrium points and bifurcation thresholds, where the red dashed line represents instability, the blue
dashed line represents stability, and P4 and P3 are types of equilibrium points

points and bifurcation thresholds are plotted, and it is observed that a Hopf bifurcation
occurs at B = 2.5417534, leading to the emergence of periodic oscillations, as shown in
Fig. 7(d). Figure 7(c) demonstrates that providing additional food appropriately can help
maintain the system stability and it is detrimental to the prey population but beneficial to
the predator population.

In the previous section, we explored the impact of additional food on biological pop-
ulations. Next, we will investigate whether additional food has an effect on other factors
such as fear. To understand the impact of additional food on fear, we plot the equilib-
rium states of the fear parameter k at different levels of additional food (B) in Fig. 7(e).
It demonstrates that without additional food, the growth of the immature predator pop-
ulation is more adversely affected under high levels of fear compared to when additional
food is available. Conversely, under lower levels of fear, the presence of additional food
suppresses the growth of the immature predator population. This highlights the essential
role of providing additional food to predators in mitigating the fear effect. In Fig. 7(e),
we solely observe the variation of the fear parameter k under the fixed condition of the
additional food parameter B. If both parameters B and k are altered, the dynamics of the
system may become more complex while also richer. Hence, our subsequent endeavor
involves investigating the bifurcation structure of the system (2.2) as two parameters un-
dergo variations.

4.2 Two-parameter bifurcation
• Space of two parameters B and k
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Figure 6 The analysis of the impact of cooperation rate (δ) on relevant graphs. Here, (a) is the time-series
graph of (2.2) with δ′ = 0.4 and (b) is δ′′ = 1.5, (c) is the steady state of equilibrium points and bifurcation
thresholds, where the red dashed line represents instability, the blue dashed line represents stability, P3 and
P4 are types of equilibrium points. (d) is the Hopf bifurcation and limit cycles

For a clearer grasp of how fear effect k and additional food B dynamically interact, we
plot a two-parameter bifurcation analysis within the B – k plane as Fig. 8. In Fig. 8, the
B – k space is divided into three parts denoted as Ri i = 1, 2, 3, respectively. When the value
of k is large, the system resides in the R3 region, which represents a stable coexistence
equilibrium state. As the value of k decreases, the system enters the R2 region between
the Hopf-bifurcation curve and the saddle-node bifurcation of the limit cycle (LPC) curve,
where the system transitions from locally asymptotically stable coexistence to coexistence
with periodic oscillations. Finally, when the value of k is very small and the appearance of
additional food leads to prey extinction (in the region to the right of (R1)). When both k
and B increase simultaneously to the upper-right corner of R1, the system reaches a state
of coexistence with periodic oscillations.

• Space of two parameters B and σ

Similar to before, we graph two-parameter bifurcations in the B –σ plane. In Fig. 9, with
the increase of both B and σ , a generalized Hopf point GH (8.4679187, 0.40431804) and
a Bogdanov–Takens point BT (8.8302929, 0.41328949) appear successively. During the
process of drawing the saddle-node bifurcation of the limit cycle (LPC) from the GH point,
a Period Doubling bifurcation point PD (4.1274303, 0.25342062) appears simultaneously,
leading to the emergence of coexistence oscillation region (R1) and prey-extinction region
(R4). During the process of plotting the saddle-node bifurcation (LP) from the BT point,
the first Cusp bifurcation piont CP1 occurs at position (9.4288472, 0.42509151), followed
by another CP2 at (3.0630065, 0.37653808). The LP curve delineates the coexistence local
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Figure 7 The analysis of the impact of additional food (B) on relevant graphs. Here, (a) is the time-series
graph of (2.2) with B′ = 0 and (b) is B′′ = 4, (c) is the steady state of equilibrium points and bifurcation
thresholds, where the red dashed line represents instability, the blue dashed line represents stability, (d) is the
Hopf bifurcation and limit cycles and (e) is the effect of different values of k on population growth under
varying conditions of B

asymptotically stability region (R2) from the immature predator-free stability region (R3).

4.3 Delayed system
(1) Time-delay dynamics and its interaction with additional food

In the preceding simulation subsection, we examined the interplay between fear and
additional food. In this subsection, we also analyze the impact of time delay across various
scenarios involving additional food. This approach allows us to not only comprehend the
effects of time delay but also to investigate the interaction between additional food and
time delay.
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Figure 8 The bifurcation diagram for B and k parameters

Figure 9 The bifurcation diagram for B and σ parameters

Figures 2(d) and 7(a) clearly demonstrate that the system without delay is locally asymp-
totically stable for values of B = 0 or 2. In parameter set (4.1), we examine B = 0 and 2
separately, and observe that the system states in the delayed system (2.3) with a delay of
τ = 0.4 are both locally asymptotically stable, as illustrated in Figs. 10(a) and (b). However,
when the delay is increased to τ = 3, the system becomes unstable, as shown in Fig. 10(c).
During the transition of the system’s steady states, Hopf bifurcations occur at τ = 2.5455
and 0.5152 under the conditions where B = 0 and 2, respectively (see Figs. 10(e) and (f)). To
further elucidate the relationship between additional food and delay, we present the B – τ

bifurcation plane in Fig. 11. In this figure, the bifurcation curve declines as B increases,
effectively dividing the B – τ plane into a stable region (R1) and an unstable region (R2).

5 Conclusions
In this paper, we present a stage-structured predator–prey mathematical model that in-
corporates the effects of fear, additional food, and predator cooperation. The development
of the mathematical model relies on the integration of Holling Type-II and Beddington–
DeAngelis-type functional responses for prey within predator–prey interactions. Initially,
we demonstrate that there are specific parameter constraints under which all solutions
remain positive and uniformly bounded. Following this, we analyze various types of equi-
librium points in the system and their conditions for existence. With respect to equilib-
rium points, we employ Lyapunov stability theory and the Jacobian matrix to examine the
conditions for local asymptotic stability around each equilibrium point. Additionally, we
utilize bifurcation theory to investigate bifurcations occurring near certain equilibrium
points.

Finally, we explore the system’s dynamics from a numerical perspective, examining how
factors such as fear, maturation rate, cooperation, additional food, and delay lead to Hopf
bifurcations or transcritical bifurcations that result in changes in equilibrium types. Fur-
thermore, we investigate the relationship between additional food and two other factors:
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Figure 10 The analysis of the impact of delay (τ ) on relevant graphs. Here, (a) is the phase graph of (2.2) with
B = 0,τ = 0.4, (b) is B = 2,τ = 0.4, (c) is B = 0,τ = 3, (d) is B = 2,τ = 3, (e) is the Hopf bifurcation picture for
τ ∈ [0, 4] under B = 0, and (f ) is τ ∈ [0, 1] under B = 2

Figure 11 The bifurcation diagram for B and τ parameters

fear and delay. Through this analysis, we delve into the more complex two-parameter bi-
furcations involving additional food and other factors, such as Hopf, saddle-node, period-
doubling, cusp bifurcation, and Bogdanov-Taken bifurcations, which reveal intricate and
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diverse dynamics. After conducting a series of theoretical analyses and numerical simula-
tions, we summarize the main conclusions as follows:

• A stage-structured predator–prey mathematical model is developed, incorporating
the effects of predator-induced fear on prey-population growth, as well as variations
in cooperation and age structure among predators, where immature predators are
provided with additional food.

• Low levels of fear can induce cyclic oscillations in the system, while an appropriate
level of fear can stabilize it. However, excessive levels of fear may indirectly harm
predators, potentially leading to the extinction of immature predators (refer to
Fig. 4(c)).

• The adult rate of immature predator individuals significantly influences the age
structure of the population. A lower adult rate among immature individuals may
result in a higher proportion of immatures within the population, potentially causing
an imbalance in population structure that impacts the ecological function of the
community. Conversely, a high adult rate may also disadvantage the population size of
juveniles.

• Fig. 6 illustrates that cooperative behavior among predators enhances the growth of
immature predators. From an ecological standpoint, populations of each species
generally exhibit stability when predator cooperation is minimal; however, they
experience significant fluctuations over time when predator cooperation is
pronounced.

• Providing supplementary food for immature predators can suppress the population
growth of prey. An excessive supply of additional food may lead to system oscillations.
It is essential to consider various factors, such as the level of fear, which can also
influence the effects of the additional food (refer to Fig. 7(e)).

• The system inherently possesses a certain level of resilience to fear delay, but
exceeding this capacity can result in stable changes. The introduction of additional
food can mitigate the impact of fear delay, thereby enhancing the system’s tolerance to
delay (refer to Figs. 10(e) and (f) and Fig. 11).

In the complex and diverse natural world, we propose that future research should incorpo-
rate nonlinear mortality resulting from antipredator activities and stochastic environmen-
tal factors into the model to enhance its realism. Furthermore, we anticipate that applying
the reaction–diffusion model [43, 44] and the infectious-disease model [45, 46] will yield
interesting findings. However, these aspects will be reserved for further exploration in our
future work.
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