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Abstract
In view of the importance of predator-dependent functional response and fear of
prey induced by powerful predators, we construct a delayed prey–predator model
with fear and Beddington–DeAngelis functional response. The existence, uniqueness,
and global asymptotic stability of equilibrium points are investigated and some
criteria are established. Next, Hopf bifurcation analysis is executed, and the critical
values of such bifurcation parameters as fear and delay for the determinate system
are obtained. Then we extend it to a random environment and study the
boundedness of expectation of solutions and the global asymptotic stability. Finally,
the main findings are validated by numerical examples. It is worth noting that the
specific influences of fear by predator, time delay, and white noise are explored
numerically. Simulation figures intuitively exhibit that fear, delay, and white noise
bring serious influences on the stability of the system. Fear from predator leads to a
lower equilibrium state of prey and predator, and it can change the system stability
from unstable to stable after exceeding a certain critical value. The time delay has a
significant impact on the system stability by producing Hopf bifurcations
accompanied by limit cycles, and even lead to multiple stabilities. Larger white noise
can change the system stability from stable to unstable.

Keywords: Delay; Fear; Prey; Predator model; Hopf bifurcation; Stability

1 Introduction
For a predator–prey system, functional response is an important index of assessing the
speed of feeding prey by per predator, and it often brings large influence to the system
stability and bifurcation dynamics. The original functional response is assumed that the
feeding rate of predator is proportional to the amount of prey and predator species, i.e., it
is linear [1]. Graphically, it is a straight line passing through the origin. By analysis, it is not
difficult to find that the assumption is not reasonable. For each predator, the feeding rate
is limited and there is a maximum, that is, it is impossible to be proportional to the prey
amount if the prey is superabundant. At this situation, the predation rate should be related
to the predator density, so it is modified to the Holling II functional response, which well
describes the predation rate up to a limited range [2]. Whereas for large predators in a
population system, there always exists mutual interference and competition among indi-
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viduals. It will reduce the predation rate of predators, and hence Holling-II type is changed
to the Beddington–DeAngelis functional response, which is first introduced by the au-
thors [3, 4]. The main difference between them is the competition and interference among
predator individuals, which is inferred by experimental data [5]. Usually there are three
kinds of predator-dependent functional response, i.e., Beddington–DeAngelis, Crowley–
Martin [6], and Hassell–Varley [7]. Compared with other ratio-dependent responses, the
Beddington–DeAngelis type is very popular since even in the case of low density, it will
not appear the singular phenomena. By grouping effect of predation, the Beddington–
DeAngelis functional response can be found in [8]. In the last few decades, there have been
many research works on the dynamics of system with Beddington–DeAngelis functional
response [9–11]. The traditional prey–predator system with Beddington–DeAngelis func-
tional response is listed below:

⎧
⎪⎪⎨

⎪⎪⎩

dx
dt

= x
(

r1 – a1x –
b1y

1 + μ1x + μ2y

)

,

dy
dt

= y
(

–r2 – a2y +
b2x

1 + μ1x + μ2y

)

,

where x denotes the prey biomass and y denotes the predator biomass at time t. For the
biological meanings of all parameters, the readers are referred to [3, 4].

Direct predation is a popular phenomenon that has been studied for a long time. Apart
from the direct killing by predator, the fear of prey to the powerful predator is also a
crucial factor affecting the system dynamics, and sometimes it even changes the prey’s
demography [12–14]. It is natural that when the prey perceives the predator’s signal or
predation cue, it will always present some instinctive reactions like reducing its forag-
ing activity, shifting to another safer place and presenting physiological stress resulting
in the decrease of fecundity. For example, in Reference [15], an experiment was carried
out between the garter snake (predator) and salamander (prey). The experimental results
showed that when the salamander perceived the danger through chemical cues of being
predated by garter snake, the salamander reduced its foraging activity. For a system with
no direct predation, in order to explore how the fear from predator would affect the pop-
ulation reproduction, in 2011, Zanette, White, and Allen [16] executed an experiment on
songbirds during the whole breeding period. They found that due to the anti-predation re-
sponse, the female declined foraging activity and laid few eggs resulting in the decrease of
the birth numbers of songbirds and survival numbers of descendants, which led to about
40 percent reduction of offsprings. Recently, more works about how fear affects the sys-
tem dynamics have been reported [17–19]. Incorporating the effect of fear from predator,
we get the following model:

⎧
⎪⎪⎨

⎪⎪⎩

dx
dt

= x
(

r1

1 + ky
– a1x –

b1y
1 + μ1x + μ2y

)

,

dy
dt

= y
(

–r2 – a2y +
b2x

1 + μ1x + μ2y

)

,
(1.1)

where k represents the level to which the fear affects the birth rate of prey. In addition, we
know that time delay is inevitable in most of the biological processes. There exists a time
lag in almost all proceedings of population dynamics [20]. For example, for predator, it
will take some definite time to digest the prey. There is a time lag to convert the prey into
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the growth of predator [21]. For young predator to mature, it needs some time. Almost
identically, in the process of the predator consuming prey and breeding its progeny, it will
take a long period of time. This is so-called gestation delay [22]. For delayed fear effect
on the system dynamics, it is more usual. After the prey feeling risk from predator, it will
assess the level of fear and take some measures like decreasing foraging activity or shifting
to another safer zone, and so on. These counter predation manners are not immediate and
will take some time to accomplish. That is, there is a time lag between the prey’s perceiving
risk and presenting some anti-predation measures [23–25]. The negative influence of fear
on the population dynamics cannot be seen right away; for example, it will take a long time
to see the influence of fear from predator on the prey’s birth number. On the other hand,
from mathematical perspective, time delay can change the system stability, even lead to
multiple stability [19, 24]. Therefore, it is necessary to incorporate the delay effect into
model (1.1).

As mentioned above, incorporating the effect of delayed fear on the birth rate of prey
(τ1), as well as the effect of gestation delay of predators (τ2), we get the delayed version of
(1.1) as follows:

⎧
⎪⎪⎨

⎪⎪⎩

dx
dt

= x
(

r1

1 + ky(t – τ1)
– a1x –

b1y
1 + μ1x + μ2y

)

,

dy
dt

= y
(

–r2 – a2y +
b2x(t – τ2)

1 + μ1x(t – τ2) + μ2y(t – τ2)

)

.
(1.2)

The initial data is as follows:

x(θ ) = χ1(θ ) > 0, y(θ ) = χ2(θ ) > 0, –τ ≤ θ ≤ 0,

where (χ1,χ2)T ∈ C([–τ , 0], R2
+) is positive and continuous defined on [τ , 0), τ = max[τ1,

τ2]. We assume all parameters are positive to meet the biological requirements.
For the determinate model, the stability of equilibrium state is and is going to be an im-

portant topic. Some nice results have been reported, such as the Lyapunov-based stability
for a prey–predator system [7, 19, 22, 23] and an epidemic system [26, 27], finite-time
stabilization for an impulsive system [28, 29], and stochastic stabilization for a stochastic
system [30, 31]. Based on the importance of system stability, in this paper we aim to study
the local or global stability of the system and explore when the Hopf bifurcation occurs if
the stability is lost. Our main contributions are as follows:

(1) A prey–predator model with fear and two delays is formulated, then it is extended
to stochastic scenarios.

(2) The sufficient conditions of local or global stability of the model are established.
(3) The critical values of fear and time delay resulting in the occurrence of Hopf

bifurcations are obtained.
(4) How the fear, time delay, and stochastic environment affect the system dynamics is

numerically investigated.
The rest of this work is organized as follows. The existence and boundedness of solutions

and the existence and stability of equilibrium are discussed in Sect. 2. The Hopf bifurcation
analysis is carried out in Sect. 3. The dynamics of stochastic scenario is executed in Sect. 4.
Some numerical examples are performed in Sect. 5. Finally, a brief conclusion is given to
end this work in Sect. 6.
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2 Properties of the equilibrium
By the theory of delayed differential equation, we conclude that system (1.2) has a unique
positive solution under above conditions, so we begin with the existence and stability of
the equilibrium state of (1.2).

2.1 Existence of the equilibrium
Let Ẽ(x̃, ỹ) be the equilibrium of system (1.2), then it satisfies the following equation:

⎧
⎪⎪⎨

⎪⎪⎩

r1

1 + kỹ
– a1x̃ =

b1ỹ
1 + μ1x̃ + μ2ỹ

,

b2x̃
1 + μ1x̃ + μ2ỹ

= r2 + a2ỹ.
(2.1)

By the second equation of (2.1), then

x̃ =
(r2 + a2ỹ)(1 + μ2ỹ)

b2 – μ1(r2 + a2ỹ)
,

which is positive under the condition that b2 – μ1(r2 + a2ỹ) > 0. Substituting x̃ into (2.1),
then ỹ should meet the following quartic equation:

ka1a2μ
2
2y4 + �1y3 + �2y2 + �3y + �4 = 0, (2.2)

where

�1 = a1a2μ2(μ2 + k(1 + μ1x̃)) + ka1μ2(a2 + r2μ2) – kb1μ1a2,

�2 = kb1(b2 – μ1r2) – b1μ1a2 + a1(a2μ2(1 + μ1x̃) + kr1r2μ2 + (a2 + r2μ2)

(μ2 + k(1 + μ1x))) + r1a2μ
2
2,

�3 = b1(b2 – r2μ1) + r1a2μ2(1 + μ1x̃) + a1((a2 + r2μ2)(1 + μ1x̃)

+r2(μ2 + k(1 + μ1x̃))),

�4 = (r2(a1 + r1μ1) – r1b2)(1 + μ1x̃).

We verify that if

r2(a1 + r1μ1) < r1b2 and b1μ1 < a1μ2,

then

�i > 0 (i = 1, 2, 3) and �4 < 0.

By Descartes’ rule of sign, (2.2) has a unique positive solution ỹ. Therefore, system (1.2)
has a unique positive equilibrium. In the rest of this paper, we always denote the unique
equilibrium of (1.2) by Ẽ (for simplicity).
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2.2 Stability of the equilibrium
Now we study the local asymptotic stability (LAS) and global asymptotic stability (GAS)
of Ẽ.

Theorem 2.1 System (1.1) with the initial data χi(0) > 0(i = 1, 2) is LAS around Ẽ under
the condition that

C0 :
b1μ1ỹ

(1 + μ1x̃ + μ2ỹ)2 < a1.

Proof By Talor’s formula, we linearize (1.1) and obtain the variational matrix at Ẽ as fol-
lows:

J|Ẽ =

⎛

⎜
⎜
⎝

–a1x̃ +
b1μ1x̃ỹ

(1 + μ1x̃ + μ2ỹ)2 –
kr1

(1 + kỹ)2 –
b1x̃(1 + μ1x̃)

(1 + μ1x̃ + μ2ỹ)2

b2ỹ(1 + μ2ỹ)

(1 + μ1x̃ + μ2ỹ)2 –a2ỹ –
b2μ2x̃ỹ

(1 + μ1x̃ + μ2ỹ)2

⎞

⎟
⎟
⎠ .

The characteristic equation of J|Ẽ is

λ2 +
(

a1x̃ + a2ỹ +
b2μ2x̃ỹ

(1 + μ1x̃ + μ2ỹ)2 –
b1μ1x̃ỹ

(1 + μ1x̃ + μ2ỹ)2

)

λ

+
(

a1x̃ –
b1μ1x̃ỹ

(1 + μ1x̃ + μ2ỹ)2

)(

a2ỹ +
b2μ2x̃ỹ

(1 + μ1x̃ + μ2ỹ)2

)

+
(

kr1

(1 + kỹ)2 +
b1x̃(1 + μ1x̃)

(1 + μ1x̃ + μ2ỹ)2

)
b2ỹ(1 + μ2ỹ)

(1 + μ1x̃ + μ2ỹ)2 = 0. (2.3)

Under condition C0, we know that equation (2.3) has two negative roots. By the stability
theory of functional differential equations [32, Theorem 4.4], system (1.1) is LAS around
Ẽ. □

As to the GAS of Ẽ, we have the following conclusion.

Theorem 2.2 For system (1.2) with the initial data χi(θ ) > 0(i = 1, 2), –τ ≤ θ ≤ 0, suppose
that the following conditions hold:

(C1) A := a1 –
b1μ1ỹ

1 + μ1x̃ + μ2ỹ
–

b2(1 + μ2ỹ)

1 + μ1x̃ + μ2ỹ
> 0,

(C2) B := a2 –
b1

1 + μ1x̃ + μ2ỹ
–

r1k
1 + kỹ

> 0.

Then (1.2) is GAS around the equilibrium Ẽ.

Proof For Ẽ(x̃, ỹ), we make a transformation as x(t) = x̃eX(t), y(t) = ỹeY (t), then (1.2) turns
into

⎧
⎪⎪⎨

⎪⎪⎩

dX(t)
dt

=
r1

1 + kỹeY (t–τ1)
– a1x̃eX –

b1ỹeY

1 + μ1x̃eX + μ2ỹeY ,

dY (t)
dt

= –r2 – a2ỹeY +
b2x̃eX(t–τ2)

1 + μ1x̃eX(t–τ2) + μ2ỹeY (t–τ2)
,

(2.4)

where X(t) and Y (t) are both positive on t ∈ [–τ ,∞). It is easy to know that the equilibrium
state of system (1.2) is changed to zero (X, Y ) = (0, 0) (trivial equilibrium state) of (2.4). By
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the stability criteria of delayed equations [20], it is sufficient to find a functional V (t) such
that the Dini derivative D+V (t) < 0. From (2.4) we have

dX(t)
dt

=
r1

1 + kỹeY (t–τ1)
– a1x̃eX –

b1ỹeY

1 + μ1x̃eX + μ2ỹeY

=
r1

1 + kỹeY (t–τ1)
– a1x̃eX –

b1ỹeY

1 + μ1x̃eX + μ2ỹeY

–
r1

1 + kỹ
+ a1x̃ +

b1ỹ
1 + μ1x̃ + μ2ỹ

= –a1x̃(eX – 1) –
r1kỹ

(1 + kỹeY (t–τ1))(1 + kỹ)
(eY (t–τ1) – 1)

+
b1μ1x̃ỹ(eX – 1) – b1ỹ(eY – 1)

(1 + μ1x̃ + μ2ỹ)(1 + μ1x̃eX + μ2ỹeY )
. (2.5)

Then

D+|X(t)| ≤ –a1x̃|eX – 1|) +
r1kỹ

(1 + kỹeY (t–τ1))(1 + kỹ)
|eY (t–τ1) – 1|

+
b1μ1x̃ỹ|eX – 1| + b1ỹ|eY – 1|)

(1 + μ1x̃ + μ2ỹ)(1 + μ1x̃eX + μ2ỹeY )

≤ –a1x̃|eX – 1| +
r1kỹ

1 + kỹ
|eY (t–τ1) – 1| +

b1μ1x̃ỹ
1 + μ1x̃ + μ2ỹ

|eX – 1|

+
b1ỹ

1 + μ1x̃ + μ2ỹ
|eY – 1|. (2.6)

Similarly, we have

dY (t)
dt

= –r2 – a2y +
b2x(t – τ2)

1 + μ1x(t – τ2) + μ2y(t – τ2)
–

δ2
2

2

= –r2 – a2ỹeY +
b2x̃eX(t–τ2)

1 + μ1x̃eX(t–τ2) + μ2ỹeY (t–τ2)

+r2 + a2ỹ –
b2x̃

1 + μ1x̃ + μ2ỹ

= –a2ỹ(eY – 1) +
b2x̃(1 + μ2ỹ)(eX(t–τ2) – 1) – b2μ2x̃ỹ(eY (t–τ2) – 1)

(1 + μ1x̃eX(t–τ2) + μ2ỹeY (t–τ2))(1 + μ1x̃ + μ2ỹ)
, (2.7)

and

D+|Y (t)| ≤ –a2ỹ|eY – 1| +
b2x̃(1 + μ2ỹ)|eX(t–τ2) – 1| – b2μ2x̃ỹ|eY (t–τ2) – 1|
(1 + μ1x̃eX(t–τ2) + μ2ỹeY (t–τ2))(1 + μ1x̃ + μ2ỹ)

≤ –a2ỹ|eY – 1| +
b2x̃(1 + μ2ỹ)

1 + μ1x̃ + μ2ỹ
|eX(t–τ2) – 1|. (2.8)
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Adding (2.6) and (2.8), then

D+(|X(t)| + |Y (t)|) ≤ –
(

a1x̃ –
b1μ1x̃ỹ

1 + μ1x̃ + μ2ỹ

)

|eX – 1|

–
(

a2ỹ –
b1ỹ

1 + μ1x̃ + μ2ỹ

)

|eY – 1|

+
b2x̃(1 + μ2ỹ)

1 + μ1x̃ + μ2ỹ
|eX(t–τ2) – 1| +

r1kỹ
1 + kỹ

|eY (t–τ1) – 1|.

(2.9)

To eliminate the delay term, we define

W (t) =
∫ t+τ2

t

b2x̃(1 + μ2ỹ)

1 + μ1x̃ + μ2ỹ
|eX(s–τ2) – 1|ds +

∫ t+τ1

t

r1kỹ
1 + kỹ

|eY (s–τ1) – 1|ds. (2.10)

Differentiating (2.10) on t, then

dW (t)
dt

=
b2x̃(1 + μ2ỹ)

1 + μ1x̃ + μ2ỹ
(|eX(t) – 1| – |eX(t–τ2) – 1|)

+
r1kỹ

1 + kỹ
(|eY (t) – 1| – |eY (t–τ1) – 1|). (2.11)

Let V (t) = |X(t)| + |Y (t)| + W (t). Obviously, it is positive on t ∈ [–τ ,∞). Adding (2.9) and
(2.11), we have

D+V (t) ≤ –
(

a1x̃ –
b1μ1x̃ỹ

1 + μ1x̃ + μ2ỹ
–

b2x̃(1 + μ2ỹ)

1 + μ1x̃ + μ2ỹ

)

|eX – 1|

–
(

a2ỹ –
b1ỹ

1 + μ1x̃ + μ2ỹ
–

r1kỹ
1 + kỹ

)

|eY – 1|.
(2.12)

Applying Taylor’s formula, then

(

a1x̃ –
b1μ1x̃ỹ

1 + μ1x̃ + μ2ỹ
–

b2x̃(1 + μ2ỹ)

1 + μ1x̃ + μ2ỹ

)

|eX – 1|

+
(

a2ỹ –
b1ỹ

1 + μ1x̃ + μ2ỹ
–

r1kỹ
1 + kỹ

)

|eY – 1|

≥
(

a1x̃ –
b1μ1x̃ỹ

1 + μ1x̃ + μ2ỹ
–

b2x̃(1 + μ2ỹ)

1 + μ1x̃ + μ2ỹ

)

|X(t)| +

(

a2ỹ –
b1ỹ

1 + μ1x̃ + μ2ỹ
–

r1kỹ
1 + kỹ

)

|Y (t)|

= A|X| + B|Y |.

By A > 0, B > 0, then

D+V (t) ≤ –A|X| – B|Y | < 0.

Applying the stability theory of delayed functional equation [see Page 138 in 20], the equi-
librium Ẽ of system (1.2) is GAS. □



Zhao and Shao Advances in Continuous and Discrete Models         (2025) 2025:13 Page 8 of 29

Remark 2.1 According to Theorem 2.1, if the condition C0 does not hold, system (1.1) may
change its stability and produce a fluctuation. Compared with reference [19], the com-
petition and the gestation delay of predators are incorporated in system (1.2). The Hopf
bifurcation caused by the change of stability of (1.2) is analyzed in the next section, which
is not studied in [19], but it is the main work of this paper. It is meaningful to investigate
the dynamic properties of species by analyzing their periodic fluctuations.

Remark 2.2 In the process of the proof of GAS, with the help of a transformation, the
equilibrium point of (1.2) is transferred to zero (the trivial equilibrium point), which makes
the subsequent computation easier. In addition, by constructing a suitable functional to
eliminate the effect of time delays, the sufficient conditions in Theorem 2.2 have no delays,
which means that, under certain constraints, the time delay of biological process has no
effect on the GAS of system (1.2).

3 Hopf bifurcation analysis
We begin with linearizing system (1.2) by Taylor’s formula. Make a transformation as
U(t) = x – x̃, V (t) = y – ỹ, where x̃ and ỹ are the equilibrium points of (1.2), then we have

d
dt

(
U(t)
V (t)

)

= J0

(
U(t)
V (t)

)

+ J1

(
U(t – τ1)

V (t – τ1)

)

+ J2

(
U(t – τ2)

V (t – τ2)

)

,

where

J0 =

⎛

⎝
–a1x̃ +

b1μ1x̃ỹ
(1 + μ1x̃ + μ2ỹ)2 –

b1x̃(1 + μ1x̃)

(1 + μ1x̃ + μ2ỹ)2

0 –a2ỹ

⎞

⎠ ,

J1 =

⎛

⎝
0 –

r1kx̃
(1 + kỹ)2

0 0

⎞

⎠ ,

J2 =

⎛

⎝
0 0

b2ỹ(1 + μ2ỹ)

(1 + μ1x̃ + μ2ỹ)2 –
b2μ2x̃ỹ

(1 + μ1x̃ + μ2ỹ)2

⎞

⎠ .

The Jacobian matrix at the equilibrium status reads

J = J0 + J1e–λτ1 + J2e–λτ2 .

Define

ρ1 = –a1x̃ +
b1μ1x̃ỹ

(1 + μ1x̃ + μ2ỹ)2 , ρ2 = –
b1x̃(1 + μ1x̃)

(1 + μ1x̃ + μ2ỹ)2 , ρ3 = –a2ỹ,

ρ4 = –
r1kx̃

(1 + kỹ)2 , ρ5 =
b2ỹ(1 + μ2ỹ)

(1 + μ1x̃ + μ2ỹ)2 , ρ6 = –
b2μ2x̃ỹ

(1 + μ1x̃ + μ2ỹ)2 .

We have ρi < 0 under condition C0, i = 1, 2, . . . , 6. Then the characteristic equation of J is
|J – λI| = 0, that is,

λ2 – (ρ1 + ρ3 + ρ6e–λτ2 )λ + ρ1(ρ3 + ρ6e–λτ2 ) – (ρ2 + ρ4e–λτ1 )ρ5e–λτ2 = 0. (3.1)



Zhao and Shao Advances in Continuous and Discrete Models         (2025) 2025:13 Page 9 of 29

By reorganizing, then

λ2 – (ρ1 + ρ3)λ + ρ1ρ3 + (ρ1ρ6 – ρ2ρ5 – ρ6λ)e–λτ2 – ρ4ρ5e–λ(τ1+τ2) = 0.

For convenience, we rewrite it as

λ2 + σ1λ + σ2 + (σ3 + σ4λ)e–λτ2 + σ5e–λ(τ1+τ2) = 0, (3.2)

where

σ1 = –(ρ1 + ρ3), σ2 = ρ1ρ3, σ3 = ρ1ρ6 – ρ2ρ5, σ4 = –ρ6, σ5 = –ρ4ρ5. (3.3)

The negativity of ρi(i = 1, 2, . . . , 6) implies the positivity of σj, i.e., σj > 0 for all j = 1, 2, . . . , 5.

3.1 Hopf bifurcation of (1.1)
System (1.1) is equivalent to the scenario of (1.2) with τ1 = τ2 = 0, then (4.2) turns into

λ2 + (σ1 + σ4)λ + (σ2 + σ3 + σ5) = 0. (3.4)

Now we analyze the existence of Hopf bifurcation around Ẽ on parameter k. Denote

u(k) = (σ1 + σ4)(k), v(k) = (σ2 + σ3 + σ5)(k),

then (3.4) becomes

λ2 + u(k)λ + v(k) = 0. (3.5)

For the discussion of Hopf bifurcation, we give the following Hopf bifurcation theorem.

Lemma 3.1 [33] Suppose that system (1.1) is LAS around Ẽ, and λ = ϕ(k) ± iω(k) is a
pair of complex eigenvalues of (3.5). If there exists a constant k̃ such that ϕ(k̃) = 0,ω(k̃) > 0
and dϕ

dk

∣
∣
∣
k=k̃

≠ 0, then Ẽ changes its stability from stable to unstable, and there is a Hopf

bifurcation around Ẽ accompanied by a limit cycle at k = k̃.

Take fear k as the Hopf bifurcation parameter, then we have the following results.

Theorem 3.1 System (1.1) undergoes a Hopf bifurcation around Ẽ when the bifurcation
parameter k crosses the threshold value k̃ satisfying u(k̃) = 0, v(k̃) > 0.

Proof Due to the condition u(k̃) = 0, v(k̃) > 0, there exist two purely imaginary roots

λj = ±i
√

v(k̃) for equation (3.5), and hence the roots of (3.5) have the form λj = ϕ(k)± iω(k)

in an open neighborhood of k̃, where ϕ(k),ω(k) are real valued respectively. By Lemma
3.1, system (1.1) changes its stability through Hopf bifurcation provided the following
transversality condition holds:

d
dk

(Reλj(k))

∣
∣
∣
∣
k=k̃

=
dϕ(k)

dk

∣
∣
∣
∣
k=k̃

≠ 0.



Zhao and Shao Advances in Continuous and Discrete Models         (2025) 2025:13 Page 10 of 29

Putting λ(k) = ϕ(k) + iω(k) in (3.5) and differentiating k, and separating the real and the
imaginary parts, we have

{
(2ϕ + u)ϕ′(k) – 2ωω′(k) = u′(k)ϕ + v′(k),
2ωϕ′(k) + (2ϕ + u)ω′(k) = –u′(k)ω.

That is,

{
ϕ′(k)P1 – ω′(k)P2 = P3,
ϕ′(k)P2 + ω′(k)P1 = P4,

where P1 = 2ϕ + u, P2 = 2ω, P3 = u′(k)ϕ + v′(k), P4 = –u′(k)ω. Then

ϕ′(k) =
P1P3 + P2P4

P2
1 + P2

2
. (3.6)

By the condition that ϕ(k̃) = 0,ω(k̃) = ±√
v. When ϕ(k̃) = 0,ω(k̃) =

√
v, we have P1 =

0, P2 = 2
√

v, P3 = v′(k), P4 = u′(k)
√

v. Then

dϕ(k)

dk

∣
∣
∣
∣
k=k̃

=
u′(k)

2

∣
∣
∣
∣
k=k̃

≠ 0.

Similarly, the conclusion holds provided ϕ(k̃) = 0,ω(k̃) = –
√

v. □

Remark 3.1 For system (1.1), by the condition u(k) = 0, we have

a1x̃ + a2ỹ +
b2μ2x̃ỹ

(1 + μ1x̃ + μ2ỹ)2 –
b1μ1x̃ỹ

(1 + μ1x̃ + μ2ỹ)2 = 0. (3.7)

Solving equation (3.7) together with the definition of Ẽ, we have

k̃ =
r1 – ϒ

ϒ ỹ
,

where

ϒ =
(

r2 –
b2x(1 + μ1x + 2μ2y)

(1 + μ1x + μ2y)2 +
b1y(1 + 2μ1x + μ2y)

(1 + μ1x + μ2y)2

)

.

An easy computation yields

dϕ(k)

dk

∣
∣
∣
∣
k=k̃

= –k̃ϒ ≠ 0.

Therefore system (1.1) has Hopf bifurcation at k̃ = r1–ϒ

ϒ ỹ , which is indicated in Sect. 5 by a
numerical example.

Take b1 as the bifurcation parameter, then we have the following result.
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Theorem 3.2 System (1.1) undergoes a Hopf bifurcation around the equilibrium point Ẽ
when the bifurcation parameter b1 crosses the threshold value b̃1 where

b̃1 =
(a1x̃ + a2ỹ)(1 + μ1x̃ + μ2ỹ)2 + b2μ2x̃ỹ

μ1x̃ỹ
.

3.2 Hopf bifurcation of (1.2)
For the discussion of Hopf bifurcation of delayed differential equations, we give a useful
lemma given by Yuan and Wei [34].

Lemma 3.2 For the following exponential polynomial:

P(λ, e–λτ1 , e–λτ2 , . . . , e–λτr ) = λm + p0
1λ

r–1 + · · · + p0
m–1λ + p0

m

+(p1
1λ

m–1 + · · · + p1
m–1λ + p1

m)e–λτ1 + · · ·
+(pr

1λ
m–1 + · · · + pr

m–1λ + pr
m)e–λτr

where τk ≥ 0(k = 1, 2, . . . , r) and pi
j(i = 0, 1, . . . , r, j = 1, 2, . . . , m) are constants. Denote the

zero of P(λ, e–λτ1 , e–λτ2 , . . . , e–λτr ) in the open half plane by λ0, ζ is the sum of the orders of
λ0. Then ζ will vary as (τ1, τ2, . . . , τr) varies only if a zero appears on or across the imaginary
axis.

3.2.1 Model with one delay
In the subsection, we begin with one delay case. In system 1.2, let τ1 = 0, τ2 > 0, then (1.2)
leads to

⎧
⎪⎪⎨

⎪⎪⎩

dx = x
(

r1

1 + ky(t)
– a1x –

b1y
1 + μ1x + μ2y

)

,

dy = y
(

–r2 – a2y +
b2x(t – τ2)

1 + μ1x(t – τ2) + μ2y(t – τ2)

)

dt.
(3.8)

Now we discuss the dynamics of system (3.8).

Theorem 3.3 For system (1.1), suppose that there is a unique positive equilibrium state Ẽ
which is LAS, then we have the following conclusions:

(i) Suppose that H1 holds, then system (3.8) is LAS around Ẽ for all τ2 > 0;
(ii) Suppose that H2 and H3 hold, then there is τ̃2 such that τ2 < τ̃2, system (3.8) is LAS

around Ẽ, while τ2 > τ̃2, a Hopf bifurcation occurs at τ2 = τ̃2;
(iii) Suppose that H4 and H5 hold, then there exists an integer r such that system (3.8)

changes from stable to unstable to stable and multiple Hopf bifurcations occur at τ2 = τ
(1)
2j

and τ2 = τ
(2)
2j

, j = 1, 2, . . . , r, respectively, where conditions H1 – H5 are defined in the proof.

Proof It is easy to get the characteristic equation of (3.8) as follows:

λ2 + σ1λ + σ2 + (σ3 + σ5 + σ4λ)e–λτ2 = 0. (3.9)

Denote the root of (3.9) by λ(τ2) = ϕ(τ2) + iω(τ2). Since Ẽ is LAS for non-delayed case,
then ϕ(0) < 0. By the continuity of λ(τ2) on variable τ2, we conclude that ϕ(τ2) < 0 for
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sufficiently small τ2 > 0, and whence ϕ(τ2) < 0, which means that Ẽ keeps the stability
unchanged. Now we are interested in finding a critical value of τ2 such that λ(τ2) is a
purely imaginary number. We denote it by τ̃2, i.e., ϕ(τ̃2) = 0 and ω(τ̃2) ≠ 0. In such case,
the coexistence steady state loses its stability. Otherwise, if there is no such τ̃2, then the
steady state will always be stable regardless of any τ2. Substituting λ(τ2) = ϕ(τ2) + iω(τ2) in
(3.9) gives

{
e–φτ2 ((σ3 + σ4ϕ + σ5) cosωτ2 + σ4ω sinωτ2) = –(ϕ2 – ω2 + σ1ϕ + σ2),
e–φτ2 (σ4ω cosωτ2 – (σ3 + σ4ϕ + σ5) sinωτ2) = –(2ωϕ + σ1ω).

Now let ϕ(τ2) = 0, then

{
(σ3 + σ5) cosωτ2 + σ4ω sinωτ2 = ω2 – σ2,
σ4ω cosωτ2 – (σ3 + σ5) sinωτ2 = –σ1ω.

(3.10)

Squaring and adding the two sides of (3.10), we get a biquadratic equation of ω as follows:

ω4 + (σ 2
1 – σ 2

4 – 2σ2)ω2 + σ 2
2 – (σ3 + σ5)2 = 0. (3.11)

Denote y = ω2, c1 = σ 2
1 – σ 2

4 – 2σ2, c2 = σ 2
2 – (σ3 + σ5)2, then (3.11) is equivalent to the

following quadratic equation:

y2 + c1y + c2 = 0. (3.12)

Next we prove the conclusions given above one by one.

Hypothesis H1 : c1 > 0 and c2 > 0.

If H1 holds, then there is no positive real root, and therefore there exists no real ω for
equation (3.12). Hence, for any τ2 > 0, the coexistence equilibrium point Ẽ is still locally
asymptotically stable. Otherwise, if H1 fails, then Ẽ is unstable, yet H2 keeps instability of
Ẽ unchanged. Therefore (i) of Theorem 3.3 is proved. Next we prove (ii) of Theorem 3.3.

Hypothesis H2 : c2 < 0.

Under H2, system (3.12) has exactly one real root, denoted by ỹ. Then ω̃ = ±√ỹ are
two real roots of (3.11). Then we can find a threshold value of τ2, denoted by τ̃2, such
that ϕ(τ̃2) = 0,ω(τ̃2) = ω̃, that is, the roots of the characteristic equation (3.9) are purely
imaginary ±iω̃. From (3.10), we obtain that the critical value of τ2 is

τ2j =
1
ω̃

cos–1 (σ3 + σ5 – σ1σ4)ω2 – σ2(σ3 + σ5)

σ 2
4 ω2 + (σ3 + σ5)2 +

2π j
ω̃

, j = 0, 1, 2, . . . . (3.13)

Let

τ̃2 = min
j

τ2j , j = 0, 1, 2, . . . .
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Then, by Lemma 3.2 and Butler’s lemma, we obtain that Ẽ is LAS if 0 < τ2 < τ̃2 and unstable
if τ2 > τ̃2. Whether the Hopf bifurcation occurs, we only need to verify whether the below
transversality condition holds or not.

d
dτ2

Re(λ)

∣
∣
∣
∣
τ2=τ̃2

=
dϕ

dτ2

∣
∣
∣
∣
τ2=τ̃2

> 0.

Differentiating (3.9) w.r.t τ2 leads to

[
dλ

dτ2

]–1

= –
2λ + σ1

λ(λ2 + σ1λ + σ2)
–

τ2

λ
+

σ4

λ(σ3 + σ5 + σ4λ)
.

Hypothesis H3 : σ 2
1 + 2ω̃2 – σ 2

4 – 2σ2 > 0.

At τ2 = τ̃2, combining (3.10), under condition H3, we get

[
d

dτ2
Re(λ)

]–1

τ2=τ̃2

=
[

dϕ

dτ2

]–1

τ2=τ̃2

=
σ 2

1 + 2ω̃2 – 2σ2

σ 2
1 ω̃2 + (σ2 – ω̃2)2 –

σ 2
4

σ 2
4 ω̃2 + (σ3 + σ5)2

=
σ 2

1 + 2ω̃2 – σ 2
4 – 2σ2

σ 2
4 ω̃2 + (σ3 + σ5)2 > 0. (3.14)

That is, under H2 and H3, the Hopf transversality condition holds at τ2 = τ̃2. Then Ẽ
keeps stable when τ2 < τ̃2, while if τ2 > τ̃2, then Ẽ changes from stable to unstable, and
Hopf bifurcation appears. The case (ii) of Theorem 3.3 is verified.

Hypothesis H4 : c1 < 0, c2 > 0, c2
1 > 4c2.

If H4 holds, then equation (3.12) has two positive roots, denoted by ỹ1 and ỹ2 respec-
tively. Consequently, ω̃1 = ±√ỹ1 are two real roots and ω̃2 = ±√ỹ2 are another two real
roots of (3.12), respectively. From (3.10), we obtain that

τ
(m)
2j

=
1

ω̃m
cos–1 (σ3 + σ5 – σ1σ4)ω̃2

m – σ2(σ3 + σ5)

σ4ω̃2
m + (σ3 + σ5)2 +

2π j
ω̃m

, j = 1, 2, . . . , m = 1, 2. (3.15)

At τ2 = τ
(m)
2j

, m = 1, 2, combining (3.11), similarly we get

dϕ

dτ2

∣
∣
∣
∣

–1

τ2=τ
(1)
2j

=
2σ2 – σ 2

1 – σ 2
4 – 2ω̃1

2

σ 2
4 ω̃2

1 + (σ3 + σ5)2 ,
dϕ

dτ2

∣
∣
∣
∣

–1

τ2=τ
(2)
2j

=
2σ2 – σ 2

1 – σ 2
4 – 2ω̃2

2

σ 2
4 ω̃2

2 + (σ3 + σ5)2 . (3.16)

Hypothesis H5 : 2σ2 – σ 2
1 – σ 2

4 – 2ω̃2
1 > 0, 2σ2 – σ 2

1 – σ 2
4 – 2ω̃2

2 < 0.

Under condition H5, we have

[
d

dτ2
Re(λ)

]–1

τ2=τ
(1)
2j

> 0,
[

d
dτ2

Re(λ)

]–1

τ2=τ
(2)
2j

< 0, j = 0, 1, 2, . . . .
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Then there is a positive integer r such that the equilibrium point Ẽ switches r times from
stability to instability to stability. That is, Ẽ is locally asymptotically stable when τ2 ∈
[0, τ2

(1)
0 )∪ (τ2

(2)
0 , τ2

(1)
1 )∪· · ·∪ (τ2

(2)
r–1, τ (1)

2r ) and unstable for all τ2 ∈ [τ2
(1)
0 , τ2

(2)
0 )∪ (τ2

(1)
1 , τ2

(2)
1 )∪

· · ·∪ (τ2
(1)
r–1, τ2

(2)
r–1)∪ (τ2

(1)
r ,∞). That is, system (3.8) experiences Hopf bifurcation at τ2 = τ

(1)
2j

and τ2 = τ
(2)
2j

, j = 1, 2, . . . , r, respectively. Therefore, (iii) of Theorem 3.3 is verified. □

In system 1.2, let τ1 > 0, τ2 = 0, then (1.2) leads to

⎧
⎪⎪⎨

⎪⎪⎩

dx
dt

= x
(

r1

1 + ky(t – τ1)
– a1x –

b1y
1 + μ1x + μ2y

)

,

dy
dt

= y
(

–r2 – a2y +
b2x(t)

1 + μ1x(t) + μ2y(t)

)

dt.
(3.17)

Hypothesis H6 : (σ1 + σ4)2 + 2(σ2 + σ3 – ω̃2) > 0.
For system (3.17), we have the following result.

Theorem 3.4 Suppose that system (1.1) is LAS around the unique equilibrium state Ẽ,
then under H6 system (3.17) undergoes Hopf bifurcation at τ1 = τ̃1 with

τ̃1 = min
j

τ1j , τ1j =
1
ω̃

cos–1 ω̃2 – (σ2 + σ3)

σ5
+

2π j
ω̃

, j = 0, 1, 2, . . . ,

where ω̃ is the root of the corresponding characteristic equation.

3.2.2 Model with two delays
In this part, we study the Hopf bifurcation of model (1.2) with τ1 > 0, τ2 > 0. First, we let
τ2 ∈ (0, τ̃2) and τ1 be a parameter.

Theorem 3.5 Suppose that system (1.1) has a unique Ẽ that is LAS. Let τ1 > 0, τ2 ∈ (0, τ̃2)

and τ1 is considered as a parameter. If H7 holds, then system (1.2) is LAS around the equi-
librium point Ẽ for τ1 ∈ (0, τ̆1), and experiences Hopf bifurcation at τ1 = τ̆1, where H7 is
defined in the proof.

Proof We recall that the characteristic equation of (1.2) is as follows:

λ2 + σ1λ + σ2 + (σ3 + σ4λ)e–λτ2 + σ5e–λ(τ1+τ2) = 0. (3.18)

First we fix τ2 = τ̂2 ∈ (0, τ̃2). Take τ1 as a variable, then by the same reasoning, the root of
(3.18) is denoted by λ(τ1) = ϕ1(τ1) + iw1(τ1). Substitute λ(τ1) in (3.18) and separate the real
and imaginary parts, then

ϕ2
1 – ω2

1 + σ1ϕ1 + σ2 + (σ3 + σ4ϕ1)e–τ̂2ϕ1 cosω1τ̂2 + σ4ω1e–τ̂2ϕ1 sinω1τ̂2

= –σ5e–(τ1+τ̂2)ϕ1 cos(τ1 + τ̂2)ω1,

2ω1ϕ1 + σ1ω1 – (σ3 + σ4ϕ1)e–τ̂2ϕ1 sinω1τ̂2 + σ4ω1e–τ̂2ϕ1 cosω1τ̂2

= σ5e–(τ1+τ̂2)ϕ1 sin(τ1 + τ̂2)ω1.

(3.19)
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Let ϕ1(τ1) = 0. Now we eliminate τ1. By squaring both sides of (3.19) and adding them
leads to

g(w1) =
(
–ω2

1 + σ2 + σ3 cosω1τ̂2 + σ4ω1 sinω1τ̂2
)2

+
(
σ1ω1 + σ4ω1 cosω1τ̂2 – σ3 sinω1τ̂2

)2 – σ 2
5 = 0.

Since this is a transcendental equation, one cannot predict the nature of its roots. We
assume that it has finite positive roots w(1)

1 , w(2)
1 , . . . , w(n)

1 . For some fixed w(i)
1 , there exists a

sequence τ
(i)
1j

satisfying (3.19). Then (3.19) can be rewritten as

–G1 cos(w(i)
1 τ

(i)
1j

) + G2 sin(w(i)
1 τ

(i)
1j

) = G3 (3.20)

G1 sin(w(i)
1 τ

(i)
1j

) + G2 cos(w(i)
1 τ

(i)
1j

) = G4, (3.21)

where G1 = σ5 cos w(i)
1 τ̂2, G2 = σ5 sin w(i)

1 τ̂2, G3 = –(w(i)
1 )2 +σ2 +σ3 cos w(i)

1 τ̂2 +σ4w(i)
1 sin w(i)

1 τ̂2,
G4 = σ1w(i)

1 + σ4w(i)
1 cos w(i)

1 τ̂2 – σ3 sin w(i)
1 τ̂2. Then the critical value of τ

(i)
1j

for each w(i)
1 is

τ
(i)
1j

=
1

w(i)
1

sin–1
[

G2G3 + G2G4

G2
1 + G2

2

]

+
2πm
w(i)

1
, j = 0, 1, 2, . . . .

Assume that τ̆1 = min{τ (i)
1j

, j = 0, 1, 2, . . . , } and ω̆1 is the corresponding root of (3.19) with
τ̂2 ∈ [0, τ̃2). For verifying the transversality condition, we differentiate both sides of (3.19)
with respect to τ1, and letting τ1 = τ̆1,ω1(τ̆1) = ω̆1,ϕ1(τ̆1) = 0, then

H1

[
dϕ1

dτ1

]

τ1=τ̆1,ω=ω̆1

– H2

[
dw1

dτ1

]

τ1=τ̆1,ω=ω̆1

= H3,

H2

[
dϕ1

dτ1

]

τ1=τ̆1,ω=ω̆1

+ H1

[
dw1

dτ1

]

τ1=τ̆1,ω=ω̆1

= H4.

By eliminating dw1
dτ1

, we have

[
dϕ1

dτ1

]

τ1=τ̆1,ω=ω̆1

=
H1H3 + H2H4

H2
1 + H2

2
,

where

H1 = σ1 + (σ4 – τ̂2σ3) cos ω̆1τ̂2 – σ4ω̆1τ̂2 sin ω̆1τ̂2 – σ5(τ̆1 + τ̂2) cos(τ̆1 + τ̂2)ω̆1,

H2 = –2ω̆1 – σ3τ̂2 sin ω̆1τ̂2 + σ4 sin ω̆1τ̂2 + σ4ω̆1τ̂2 cos ω̆1τ̂2 – σ5 sin(τ̆1 + τ̂2)ω̆1(τ̆1 + τ̂2),

H3 = σ5ω̆1 sin(τ̆1 + τ̂2)ω̆1,

H4 = σ5ω̆1 cos(τ̆1 + τ̂2)ω̆1.

Hypothesis H7 : H1H3 + H2H4 > 0.

Under H7, then
[

dϕ1
dτ1

]

τ1=τ̆1,ω=ω̆1
> 0, which means the transversality condition is satisfied.

By the theory of Hopf bifurcation, we conclude that system (1.2) is locally asymptotically
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stable around the equilibrium point Ẽ for τ1 ∈ [0, τ̆1). Further, system (1.2) undergoes a
Hopf bifurcation at τ1 = τ̆1. □

Similarly, if τ1 lies in the stable interval (0, τ̃1) and τ2 is considered as a parameter, we
can derive the following theorem.

Theorem 3.6 Suppose that system (1.1) is LAS around the equilibrium state Ẽ. If τ2 > 0,
τ1 ∈ (0, τ̃1) and τ2 is taken as a parameter, then system (1.2) undergoes Hopf bifurcation
at τ2 = τ̆2 provided that M1M3 + M2M4 > 0 holds, where M1 = σ2 + (σ4 – σ3τ̆2) cos ω̆2τ̆2 –
σ4ω̆2τ̆2 sin ω̆2τ̆2 – σ5(τ̂1 + τ̆2) cos(τ̂1 + τ̆2)ω̆2, M2 = –2ω̆2 – σ3τ̆2 sin ω̆2τ̆2 + σ4ω̆2τ̆2 cos ω̆2τ̆2 +
σ5(τ̂1 + τ̆2) sin(τ̂1 + τ̆2)ω̆2, M3 = σ3ω̆2 sin ω̆2τ̆2 – σ4 sin ω̆2τ̆2 – σ4ω̆

2
2 cos ω̆2τ̆2 – σ5ω̆2 sin(τ̂1 +

τ̆2)ω̆2, M4 = σ3ω̆2 cos ω̆2τ̆2 – σ4 cos ω̆2τ̆2 – σ4ω̆
2
2 sin ω̆2τ̆2 – σ5ω̆2 cos(τ̂1 + τ̆2)ω̆2, and τ̂1 is a

fixed constant within (0, τ̃1), ω̆2 = ω(τ̆2) is the root of the corresponding characteristic equa-
tion.

Remark 3.2 Theorems 3.5 and 3.6 reveal the impact of two delays on system stability, while
only one fear delay is studied in reference [24]. Compared to [24], the impact of two delays
is much more complex than that of one delay. Therefore, for food chain system, if three
or more biological process delays are considered, how will the system stability be? It is a
challenging subject that needs further research.

4 Stochastic model
Almost every population system is exposed in the open natural environment, and hence
it is unavoidable to be affected by random environment disturbances [30, 35–37]. Com-
monly, a colored noise is used to represent the random environmental fluctuation, but if
it is weakly correlated, then the Gaussian white noise is usually used to approximate the
colored noise. This approach is reasonable [38]. Generally speaking, the white noise is
introduced into population model by more than one way, whereas the authors [39] pro-
posed that the growth rate of population was influenced significantly by the white noise
and usually in the study of system dynamics, it was sufficient to study the impacts of en-
vironmental noise on the growth rate. Incorporating the stochastic environmental effect
on the growth rate of species, we have

ri → ri + δidωi(t),

where ri is the growth rate, ωi(t) is a Gaussian white noise defined on a usual probability
space, which is supposed to be standard and mutually independent as general discussion.
δ2

i is the density of white noise, i = 1, 2. Then we get the stochastic model

⎧
⎪⎪⎨

⎪⎪⎩

dx = x
(

r1

1 + ky(t – τ1)
– a1x –

b1y
1 + μ1x + μ2y

)

dt + δ1xdw1(t),

dy = y
(

–r2 – a2y +
b2x(t – τ2)

1 + μ1x(t – τ2) + μ2y(t – τ2)

)

dt – δ2ydw2(t).
(4.1)

For stochastic system, there is no equilibrium state, so the stability [30, 36] is a crucial topic
to understand the long behaviors of species. Qi and Meng [36] obtained the threshold of
extinction and persistence in the mean of predator by use of stochastic analysis techniques.
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Due to delay effect, the stochastic solutions of (4.1) do not possess Markov property, so
we focus on the existence, boundedness, and GAS of solutions.

Let U(t) be an N-dimensional stochastic process such that

dU(t) = F(t, U(t))dt + G(t, U(t))dW (t),

and V (U(t)) be a Lyapunov functional with respect to U(t). The operator L of V (U(t)) is
defined as follows (see, Refs [35, 38]):

LV (U(t)) = VU (U(t))F(t, U(t)) +
1
2

trace[GT (t, U(t))VUU(U(t))G(t, U(t))].

First, we investigate the property of solutions of stochastic system (4.1).

Theorem 4.1 For system (4.1) with initial data χi(θ ) > 0, θ ∈ [–τ , 0], i = 1, 2, there exists a
positive stochastic process that is unique and global almost surely (a.s. for short).

The proof is standard. Readers may refer to Theorem 3.1 in Refs [19] or [35], and hence
we omit it.

Theorem 4.2 For system (4.1) with initial value χi(θ ) > 0(i = 1, 2), θ ∈ [–τ , 0], there are
constants M(p) and N (p) large enough such that

E(xp) ≤M(p), E(yp) ≤N (p), p ≥ 1,

where E is the mathematical expectation.

Proof Applying Itô’s formula to V (x, t) = etxp, then

dV (t) =
(

etxp + etpxp–1x
(

r1

1 + ky(t – τ1)
– a1x –

b1y
1 + μ1x + μ2y

)

+
p(p – 1)

2
etxp–2δ2

1x2
)

dt + etpxp–1δ1xdw1(t)

= etxp
(

1 +
δ2

1p(p – 1)

2
+ p
(

r1

1 + ky(t – τ1)
– a1x –

b1y
1 + μ1x + μ2y

))

dt

+etxppδ1dw1(t)

≤ etxp
(

1 +
δ2

1p(p – 1)

2
+ p(r1 – a1x)

)

dt + etxppδ1dw1(t). (4.2)

Integrating and then taking mathematical expectation of (4.2), we have

E(V (t)) ≤ xp
0 +
∫ t

0
esxp

(

1 +
δ2

1p(p – 1)

2
+ p(r1 – a1x)

)

ds. (4.3)

Let

g(x) = xp
(

1 +
δ2

1p(p – 1)

2
+ p(r1 – a1x)

)

.



Zhao and Shao Advances in Continuous and Discrete Models         (2025) 2025:13 Page 18 of 29

Compute the derivative of g(x) with respect to variable x and let g ′(x) = 0, then

g ′(x) = pxp–1
(

1 +
δ2

1p(p – 1)

2
+ p(r1 – a1x)

)

– a1pxp = 0.

By the monotonicity, thus

x =
1 + δ2

1 p(p–1)
2 + pr1

a1(1 + p)

is the maximum point of g(x), and consequently, the maximum value is

gmax = a1

⎡

⎣
1 + δ2

1 p(p–1)
2 + pr1

a1(1 + p)

⎤

⎦

p+1

.

Substituting it in (4.3) gives

E(V (t)) ≤ xp
0 +
∫ t

0
esgmaxds ≤ xp

0 + gmax(et – 1).

Thus

E(xp) ≤ (xp
0 – gmax)e–t + gmax.

So when t = 0, E(xp) ≤ xp
0, and when t → ∞, we have

E(xp) ≤ gmax.

Let

M(p) = max

⎧
⎨

⎩
xp

0, a1

⎡

⎣
1 + δ2

1 p(p–1)
2 + pr1

a1(1 + p)

⎤

⎦

p+1⎫
⎬

⎭
,

then

E(xp) ≤M(p).

By the same manner, we obtain

E(yp) ≤N (p),

where

N (p) = max

⎧
⎨

⎩
yp

0, a2

⎡

⎣
1 + δ2

2 p(p–1)
2 + pb2/μ1

a2(1 + p)

⎤

⎦

p+1⎫
⎬

⎭
.

Therefore the solution of system (4.1) is bounded in expectation. □
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Theorem 4.3 Suppose that the following conditions hold:

(C∗
1 ) A∗ := a1 –

b1μ1ỹ
1 + μ1x̃ + μ2ỹ

–
b2(1 + μ2ỹ)

2(1 + μ1x̃ + μ2ỹ)
–

r1k
2(1 + kỹ)

> 0,

(C∗
2 ) B∗ := a2 –

b2(1 + μ2ỹ)

2(1 + μ1x̃ + μ2ỹ)
–

r1k
2(1 + kỹ)

> 0,

(C∗
3 ) δ :=

δ2
1 x̃ + δ2

2 ỹ
2

< min{A∗, B∗}.

Then (4.1) is globally asymptotically stable around the equilibrium state Ẽ(x̃, ỹ) almost
surely, i.e., for any initial data χi(θ ) > 0(i = 1, 2), –τ ≤ θ ≤ 0, the solution of (4.1) satisfies
lim

t→+∞ x(t) = x̃, lim
t→+∞ y(t) = ỹ.

Proof We recall that Ẽ(x̃, ỹ) meets the following equalities:

r1

1 + kỹ
– a1x̃ –

b1ỹ
1 + μ1x̃ + μ2ỹ

= 0, –r2 – a2ỹ +
b2x̃

1 + μ1x̃ + μ2ỹ
= 0.

Define

W1(x) = x – x̃ – x̃ ln
x
x̃

, W2(y) = y – ỹ – ỹ ln
y
ỹ

,

then Wi(·) ∈ C(R+) is positive and continuous defined on t ≥ 0, i = 1, 2. By Itô’s formula,
we have

LW1(x) = (x – x̃)

(
r1

1 + ky(t – τ1)
– a1x –

b1y
1 + μ1x + μ2y

)

+
δ2

1 x̃
2

= (x – x̃)

(
r1

1 + ky(t – τ1)
– a1x –

b1y
1 + μ1x + μ2y

–
r1

1 + kỹ
+ a1x̃ +

b1ỹ
1 + μ1x̃ + μ2ỹ

)

+
δ2

1 x̃
2

= –a1(x – x̃)2 –
r1k

(1 + kỹ)(1 + ky(t – τ1))
(y(t – τ1) – ỹ)(x – x̃)

+
b1μ1ỹ(x – x̃) – b1(1 + μ1x̃)(y – ỹ)

(1 + μ1x̃ + μ2ỹ)(1 + μ1x + μ2y)
(x – x̃) +

δ2
1 x̃
2

≤ –
(

a1 –
b1μ1ỹ

1 + μ1x̃ + μ2ỹ
–

r1k
2(1 + kỹ)

)

(x – x̃)2

+
r1k

2(1 + kỹ)
(y(t – τ1) – ỹ)2 +

δ2
1 x̃
2

. (4.4)

Define

W2(t) =
∫ t+τ2

t

r1k
2(1 + kỹ)

(y(s – τ1) – ỹ)2ds.

Differentiating W2(t) about variable t yields

dW2(t)
dt

=
r1k

2(1 + kỹ)
(y(t) – ỹ)2 –

r1k
2(1 + kỹ)

(y(t – τ1) – ỹ)2. (4.5)
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Adding (4.4) and (4.5) leads to

L(W1(x) + W2(t)) ≤ –
(

a1 –
b1μ1ỹ

1 + μ1x̃ + μ2ỹ
–

r1k
2(1 + kỹ)

)

(x – x̃)2

+
r1k

2(1 + kỹ)
(y(t) – ỹ)2 +

δ2
1 x̃
2

. (4.6)

Similar computation yields

LW3(y) = (y – ỹ)

(

–r2 – a2y +
b2x(t – τ2)

1 + μ1x(t – τ2) + μ2y(t – τ2)

)

+
δ2

2 ỹ
2

≤ (y – ỹ)

(

–r2 – a2y +
b2x(t – τ2)

1 + μ1x(t – τ2) + μ2y(t – τ2)
+ r2

+a2ỹ –
b2x̃

1 + μ1x̃ + μ2ỹ

)

+
δ2

2 ỹ
2

= –a2(y – ỹ)2 + (y – ỹ)
b2(1 + μ2ỹ)(x(t – τ2) – x̃) – b2μ2x̃(y(t – τ2) – ỹ)

(1 + μ1x(t – τ2) + μ2y(t – τ2))(1 + μ1x̃ + μ2ỹ)
+

δ2
2 ỹ
2

≤ –a2(y – ỹ)2 +
b2(1 + μ2ỹ)

1 + μ1x̃ + μ2ỹ
(x(t – τ2) – x̃)(y – ỹ) +

δ2
2 ỹ
2

≤ –a2(y – ỹ)2 +
b2(1 + μ2ỹ)

2(1 + μ1x̃ + μ2ỹ)

(
(x(t – τ2) – x̃)2

+
b2(1 + μ2ỹ)

2(1 + μ1x̃ + μ2ỹ)
(y – ỹ)2

)

+
δ2

2 ỹ
2

. (4.7)

Define

W4(t) =
∫ t+τ2

t

b2(1 + μ2ỹ)

2(1 + μ1x̃ + μ2ỹ)
((x(s – τ2) – x̃)2ds.

Then

dW4(t)
dt

=
b2(1 + μ2ỹ)

2(1 + μ1x̃ + μ2ỹ)
((x(t) – x̃)2 –

b2(1 + μ2ỹ)

2(1 + μ1x̃ + μ2ỹ)
((x(t – τ2) – x̃)2. (4.8)

Let W (t) = W1(x) + W2(t) + W3(y) + W4(t), and add both sides of (4.6), (4.7), and (4.8), then

LW (t)) ≤ –
(

a1 –
b1μ1ỹ

1 + μ1x̃ + μ2ỹ
–

b2(1 + μ2ỹ)

2(1 + μ1x̃ + μ2ỹ)
–

r1k
2(1 + kỹ)

)

(x – x̃)2

–
(

a2 –
b2(1 + μ2ỹ)

2(1 + μ1x̃ + μ2ỹ)
–

r1k
2(1 + kỹ)

)

(y – ỹ)2 +
δ2

1 x̃ + δ2
2 ỹ

2

= –A∗(x – x̃)2 – B∗(y – ỹ)2 + δ.

By A∗ > 0, B∗ > 0, together with condition C∗
3 , then the following ellipse

A∗(x – x̃)2 + B∗(y – ỹ)2 = δ

is situated entirely in R2
+. We denote the domain of ellipsoid by U and take a neighborhood

of U as O, that is, U ⊆ O, then O ⊂ R2
+. Therefore, for any (x, y) ∈ R2

+/O, we haveLW (t) ≤ 0.
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Table 1 The values of Ẽ for different fears for (5.1)

Fear Value of the equilibrium state Ẽ(x̃, ỹ)

0 x̃ = 1.3499, ỹ = 0.5139
1 x̃ = 1.1272, ỹ = 0.3181
2 x̃ = 1.0528, ỹ = 0.2481
5 x̃ = 0.9647, ỹ = 0.1617
10 x̃ = 0.9125, ỹ = 0.1085
50 x̃ = 0.8416, ỹ = 0.0336

Then, by the stochastic differential equation theory (pp. 156–160 in [35]), we conclude that
system (4.1) is globally asymptotically stable. □

Remark 4.1 Having compared Theorems 4.3 and 2.2, we find that, by constructing dif-
ferent Lyapunov functionals, different sufficient conditions guaranteeing the stability of Ẽ
are obtained even if the white noise is absent. On the other hand, Theorem 4.3 implies
that time delays also have no effect on the stability of Ẽ if some required conditions hold.

Remark 4.2 Compared with [19], the impact of stochastic environment on birth rate of
prey is considered in (4.1), which is independent of the equilibrium point. However, in
[19], the impact of stochastic environment on birth rate of prey depends on the distance
between the species and the equilibrium point, which is closely related to the equilibrium
point. They are completely different. In addition, if the regime switching and Lévy jump are
included in the stochastic factors [40], then the system dynamics deserve further research
in the future.

5 Numerical analysis
Some examples are carried out by Matlab2014 to verify our theoretical results and explore
the impacts of such factors as fear, delay, and random environmental perturbations on the
system dynamics.

(1) Numerical verification of our findings
Fix a set of parameter values as follows:

r1 = 0.5, k = 2, a1 = 0.2, b1 = 0.6,μ1 = 0.1,μ2 = 0.4, r2 = 0.3, a2 = 0.2, b2 = 0.4, (5.1)

which are sufficient to guarantee the existence of unique positive equilibrium state, and
here the equilibrium is Ẽ(1.0528, 0.2481). Now we study the impact of fear k on the equilib-
rium state. Take k = 0, 1, 2, 5, 10 and compute the corresponding values of Ẽ respectively,
which are given in Table 1.

From Table 1 we find that the values of equilibrium points of prey and predator change
along with the values of fear from predator. Specifically, from a biological prospect, if the
fear is larger, then the prey will produce some anti-predation acts and reduce its foraging
activity, which leads to the reduction of the prey’s offsprings, and vise versa. Due to the
reduction of prey, the predator can produce few offsprings resulting in the reduction of
predator species.

Second, we verify the stability of Ẽ. For system (1.1) with parameter values given in (5.1),
numerical simulation implies that Ẽ is GAS, which is accordant with Theorem 2.2 (see
Figs. 1 (a) and (b)). For system (1.2) with above coefficients, let the delays τ1 = τ2 = 2.
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Figure 1 Numerical simulations of system (1.1) and (1.2), the parameter values are taken from (5.1). (a) is the
curve of solutions and (b) is the phase graph of (1.1), (c) is the curve of solutions and (d) is the phase graph of
(1.2) with τi = 2(i = 1, 2) respectively, which show (1.1) and (1.2) are both GAS around the Ẽ

Figure 2 The long time behaviors of stochastic system
(4.1) with δi = 0.2(i = 1, 2), other parameter values are as
(5.1). (a) is the time curves and (b) is the phase graph of
solutions

Using Theorem 2.2 again, system (1.2) is GAS, which is visualized by Figs. 1 (c) and (d). For
system (4.1), all parameters keep fixed as in (1.2) and δ1 = 0.2, δ2 = 0.2. By use of methods in
[41], we simulate the long behaviors of prey and predator species; see Fig. 2, which means
that (4.1) is GAS around Ẽ.

(2) Impacts of fear, delay, and stochastic parameter
Next we begin to explore the specific influence of fear, delay, and white noise on the

equilibrium states. Take the parameter values as follows:

r1 = 0.6, a1 = 0.8, b1 = 10,μ1 = 5,μ2 = 4, r2 = 0.06, a2 = 10–3, b2 = 0.73, k = 5. (5.2)

An easy computation implies that the Ẽ(0.1769, 0.0664) is unique.
Case 1 Take fear k as the variable with neither delay nor white noise. If k = 5, then the

equilibrium Ẽ is GAS, which is showed by Figs. 3 (a) and (b), while if k = 0.5, then the
equilibrium is changed to Ẽ(0.1951, 0.0985) and it is instable from Figs. 3 (c) and (d).

Case 2 Take τ1 as the variable with τ2 = 0 and no noise. Other parameter values are taken
as above. We take τ1 = 0.01 and τ1 = 10 respectively, and simulations imply that the
former is GAS but the latter is unstable (Figs. 4(a) and (b)). Analogously, we change
the values of τ2 and keep other parameters unchanged; for example, take τ2 = 0.001
and τ2 = 5 respectively, then the system also changes from GAS to unstable emerging
periodic changes and stable periodic limit circle appears, see Figs. 4(c) and Figs. 4(d).
All these mean that different values of delays can make Ẽ alter from stable to unstable
and produce Hopf bifurcation, which is to be studied later.
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Figure 3 Numerical simulation for system (1.1) with parameter values as in (5.2). (a) is the curves of solutions
and (b) is the phase graph with k = 5, (c) is the curves of solutions and (d) is the phase graph with k = 0.5
respectively. The red point (equilibrium point) in (d) is Ẽ(0.1951, 0.0985), which shows (a) is GAS and (c) is
unstable

Figure 4 Numerical simulation for system (1.2) with parameter values as in (5.2). (a) is the stable case with
τ1 = 0.01 and (b) is the unstable case with τ1 = 10, where τ2 = 0; (c) is the stable case with τ2 = 0.001 and (d) is
the unstable case with τ2 = 5, where τ1 = 0 respectively. The red point is Ẽ(0.1769, 0.0664)

Case 3 For the study of random environmental perturbations, we take δi = 0.01, and δi =
0.8 and τi = 0, i = 1, 2, respectively, then system (4.1) turns from stable (Fig. 5 (a))
to unstable (Fig. 5 (b)) around Ẽ resulting in the extinction of some species. This
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Figure 5 Numerical simulation of system (4.1) with parameter values as in (5.2). (a) Time curves and phase
graph for the stable case with δi = 0.01 and (b) the unstable case with δi = 0.8. The red point is
Ẽ(0.1769, 0.0664)

Figure 6 Numerical simulation of system (4.1) with parameter values as in (5.2). (a) and (b) are time curves
and phase graph with δi = 1,τi = 2(i = 1, 2), respectively. The red point is Ẽ(0.1769, 0.0664)

phenomenon indicates that white noise can make (4.1) turn from stable to unstable
and affect the stability of Ẽ significantly.

Case 4 Finally, we consider the effects of delay and noise simultaneously. Take τi = 5, δi =
0.5, (i = 1, 2), then numerical examples show that system (4.1) varies from stable sta-
tus (Figs. 3 (a) and (b)) to unstable status, see Figs. 6 (a) and (b).

All above analysis demonstrates that fear, delay, and random noise are all very important
for the system stability. Different values of fear and delay can make system change from
GAS to unstable. The curves in the simulation show periodic changes, so Hopf bifurcation
may occur. Consequently, we should choose suitable parameter values to keep the system
stable for continuous development in the future.

(3) Hopf bifurcation analysis
The solution curves of above figures present periodic changes, then it is reasonable to
guess that Hopf bifurcation may occur. Therefore, we analyze the Hopf bifurcation of the
parameters k, b1, τ1, and τ2 of systems (1.1) and (1.2), respectively. For a determinate sys-
tem, Hopf bifurcation is an important character for people to understand the long behav-
ior of population dynamics, which can reflect the stability and instability of species. The
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Figure 7 Hopf bifurcation diagrams of parameter k. System (1.1) becomes stable from unstable after crossing
the threshold k̃ = 1.0326

Figure 8 Hopf bifurcation diagrams of parameter b1. System (1.1) changes the stability and becomes
unstable from stable after crossing the threshold b̃1 = 8.9815

Hopf threshold of parameters is a significant index for researchers to make some scientific
decisions and keep the long balance of system dynamics.

In this part, we choose the parameter values given in (5.2). Select fear k as a bifurca-
tion parameter. By Matlab2014a, we depict the drawings of species of predator varying in
pace with the changes of fear k and find that the Hopf bifurcation appears at k = 1.0326,
see Fig. 7. It exhibits that when k < 1.326, the prey species is unstable, whereas when
k > 1.0326, the Hopf curves vary from unstable to stable, that is, the system gets stable
and the threshold of k is k̃ = 1.0326. Similarly, we take b1 as a bifurcation parameter and
k = 0, then we get the bifurcation diagram of prey (see Fig. 8). Figure 8 implies the thresh-
old is b̃1 = 8.9815.

Second, we choose τ1 as the bifurcation parameter with τ2 = 0 and get the diagrams of
prey species, see Fig. 9. From Fig. 9 (a) we find that the threshold is τ̃1 = 5.8762. Figure 9 (b)
displays that prey species show multi-stabilities varying from stable to unstable, to stable
and to unstable again, that is, multiple Hopf bifurcations appear. By same reasoning, when
τ1 = 0, the threshold of τ2 is τ̃2 = 1.5921. See Fig. 10.

Finally, take τ1 as the bifurcation parameter and let τ2 ∈ (0, 1.6921) and τ̂2 = 1, then the
threshold is τ̆1 = 2.1645, see Fig. 11 (a). Figure 11 (b) implies that multiple bifurcations
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Figure 9 Hopf bifurcation diagrams of parameter τ1 with τ2 = 0. System (1.2) becomes unstable from stable
after the threshold τ̃1 = 5.8762. (a) is with τ ∈ (0, 10) and (b) is with τ ∈ (0, 100), where multiple stabilities
occur

Figure 10 Hopf bifurcation diagrams of parameter τ2 with τ1 = 0. System (1.2) changes the stability after the
threshold τ̃2 = 1.5921

Figure 11 Hopf bifurcation diagrams of parameter τ1 with τ2 = 1 ∈ (0, τ̃2). System (1.2) changes its stability
after crossing the threshold τ̆1 = 2.1645. (a) is with τ ∈ (1, 3) and (b) is with τ ∈ (0, 100), where multiple
stabilities occur

exist when τ2 ∈ (0, 1.6921). Take τ2 as the bifurcation parameter and let τ1 ∈ (0, 5.8762)

and τ̂1 = 5, then simulations show the threshold is τ̆2 = 0.2342, see Fig. 12.
We summarize the thresholds of above parameters and simulation results in Table 2. In a

word, Hopf bifurcations further verify that all these parameters affect the system dynamics
significantly.
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Figure 12 Hopf bifurcation diagrams of parameter τ2 with τ1 = 5 ∈ (0, τ̃1). System (1.2) changes the stability
from stable to unstable after crossing the threshold τ̆2 = 0.2342

Table 2 Threshold of Hopf bifurcation for (1.1) and (1.2) with parameters given in (5.2)

Bifurcation parameters Threshold of parameter Theoretical conclusion Simulation results

Fear k k̃ = 1.0326 Theorem 3.1 Fig. 7
Parameter b1 b̃1 = 8.9815 Theorem 3.2 Fig. 8
Delay τ1 with τ2 = 0 τ̃1 = 5.8762 Theorem 3.4 Fig. 9
Delay τ2 with τ1 = 0 τ̃2 = 1.5921 Theorem 3.3 Fig. 10
Delay τ1 with τ2 = 1 τ̆1 = 2.1645 Theorem 3.5 Fig. 11
Delay τ2 with τ1 = 5 τ̆2 = 0.2342 Theorem 3.6 Fig. 12

Table 3 The main results and numerical verification.

System GAS around Ẽ Theoretical result Simulation results

System (1.1) Yes Theorem 4.2 Figs. 1 and 3, (a) and (b)
System (1.2) Yes Theorem 4.2 Figs. 1 (c) and (d)
System (4.1) Yes Theorem 3.1 Fig. 2
System (1.2) No \ Figs. 4 (b) and (d)
System (4.1) No \ Fig. 5 (b) and Fig. 6

6 Conclusions
For a prey–predator system with superabundant predators, it is necessary to introduce a
predator-dependent function response and consider the effect of fear from predator. Based
on the real world, we propose a delayed prey–predator model with fear and Beddington–
DeAngelis functional response and generalize it to a random environmental disturbance.
We study the dynamics of above systems like the existence and global asymptotic stability
of equilibrium and get their criteria, see Table 3.

Next, we analyze the Hopf bifurcation and get its thresholds of fear and delay for deter-
minate system (1.1) and (1.2). For the main results and simulation figures, see Table 2.

Finally, we numerically verify our findings and clarify the effects of fear, delay, and ran-
dom fluctuations in detail. Our study shows that the value of equilibrium is influenced by
the value of fear with the same tendency. The delay and white noise bring crucial influ-
ences to the GAS of the corresponding systems. They can make system dynamics change
from stable to unstable, or from unstable to stable. In particular, the changes of fear and
time delays will make the solution curves vary periodically and produce Hopf bifurcations.

To summarize, fear induced by predator, the delay of prey’s response to predator’s fear,
delay of gestation of predator and environmental white noise bring important influences
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on the long behavior of species. All our findings can help readers to understand well the
dynamics of this kind of system and afford theoretical basis for scientific decisions and
continuous developments.

Taking into account the complexity of biological processes, if there exist three or more
delays or regime switching and Lévy jumps [40], the system dynamics become more com-
plex and require further research. In addition, in recent years, fractional calculus has at-
tracted increasing attention due to its hereditary and memory properties [42, 43], so the
dynamics of fractional prey–predator system is also very interesting. All of these are left
for our future work.
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