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Abstract
Incorporating stochastic processes into biological models is crucial for capturing the
inherent variability and uncertainties within biological systems. This paper explores
the benefits of introducing Black–Karasinski process into chikungunya virus infection
modeling. By utilizing the Black–Karasinski process researchers can capture the
inherent variability in biological processes and account for uncertainties. This paper
highlights the advantages of Black–Karasinski processes in biological modeling. We
investigate the dynamical behavior of a stochastic model for chikungunya virus
infection incorporating a Black–Karasinski process. Firstly, we establish sufficient
conditions for the existence of a stationary distribution in the model. By solving the
corresponding Fokker–Planck equation we obtain the local probability density
function near the quasi-endemic equilibrium, which provides insights into the
statistical characteristics of the stochastic system. Additionally, we present sufficient
conditions for the extinction of infected host cells and chikungunya virus particles.
Finally, we supplement the analytical results with numerical simulations to investigate
the impact of random noise.

Keywords: Chikungunya virus infection model; Black–Karasinski process; Stationary
distribution; Probability density function; Extinction

1 Introduction
1.1 Background
Chikungunya virus (CHIKV) has emerged as a significant global health threat, causing
widespread outbreaks in various regions and posing significant challenges to public health
systems worldwide [1]. Since its first documented outbreak in Tanzania in 1953, CHIKV
has rapidly spread to different parts of the world, affecting millions of people and causing
substantial morbidity [2].

The consequences of CHIKV infection extend beyond the immediate clinical manifes-
tations experienced by affected individuals. Outbreaks of CHIKV have severe implica-
tions for public health, including the burden on health care systems, economic losses,
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and disruption of social and economic activities in affected regions [3]. Furthermore, the
long-term complications and chronic forms of the disease impose a significant burden on
individuals and communities, impairing their quality of life and productivity [4, 5].

Understanding the background and mode of infection of CHIKV is crucial for develop-
ing effective strategies to prevent and manage its spread. The use of mathematical models,
particularly stochastic models, plays a crucial role in studying and understanding the dy-
namics of CHIKV transmission. These models provide valuable insights into the complex
interactions between the virus and host cells (e.g., among epithelial and endothelial cells,
primary fibroblasts, and macrophages), allowing researchers to assess the impact of vari-
ous factors and interventions on the spread of CHIKV [6].

Biological systems exhibit intricate dynamics and inherent variability, necessitating the
incorporation of stochasticity into modeling frameworks [7, 8]. This paper explores the
potential benefits of introducing Black–Karasinski (BK) processes, originally utilized in
finance, into biological models [9]. BK processes offer a flexible framework to capture com-
plex biological systems by considering stochasticity and time-varying parameters. By in-
corporating BK processes researchers can account for the inherent variability in biological
processes, address uncertainties, and enhance predictive capabilities. Stochastic models
have been instrumental in investigating the impact of interventions on CHIKV transmis-
sion. Importantly, mathematical models provide a platform for exploring hypothetical sce-
narios and conducting virtual experiments that may not be feasible in real-world settings.
By manipulating model parameters and assumptions researchers can investigate the po-
tential consequences of specific policy decisions and explore the effects of varying factors,
such as the contact rate between uninfected host cells and CHIKV particles, on CHIKV
transmission dynamics.

In conclusion, the use of mathematical models, particularly stochastic models, is of
paramount importance in studying CHIKV transmission dynamics. These models en-
able researchers to capture the complexities of CHIKV transmission, account for inher-
ent stochasticity, and generate insights into the effectiveness of interventions and control
strategies. By integrating data and simulating different scenarios mathematical models
contribute to evidence-based decision-making and facilitate proactive measures to pre-
vent and control CHIKV outbreaks.

1.2 Mathematical model
Many mathematical models have been employed to elucidate the dynamics of chikun-
gunya virus infection [10–14]. For example, Alade et al. [14] investigated a comprehensive
nonlinear CHIKV dynamics model and demonstrated the global stability of the steady
states of the model by constructing appropriate Lyapunov functionals. Wang and Liu [15]
studied a within-host CHIKV infection model with two delays. If the delays are not taken
into account, then the model consists of four compartments: S represents the concentra-
tion of uninfected host cells, I is the concentration of infected host cells, V denotes the
concentration of CHIKV particles, and B is the concentration of B cells. The specific form
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Table 1 Variables and parameters in model (1.1)

Symbol Biological meaning

S Concentration of uninfected host cells
I Concentration of infected host cells
V Concentration of CHIKV particles
B Concentration of B cells
μ Production rate of uninfected host cells
α Death rate of uninfected host cells
b Contact rate between uninfected host cells and CHIKV particles
β Death rate of infected host cells
m Virus proliferation rate
r Death rate of CHIKV particles
p Elimination rate of CHIKV by B cells
η Constant production rate of B cells
c Production rate of B cells due to increased CHIKV
δ Death rate of B cells

Figure 1 Infection diagram of CHIKV

is as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS
dt

= μ – αS – bSV ,

dI
dt

= bSV – βI,

dV
dt

= mI – rV – pBV ,

dB
dt

= η + cBV – δB,

(1.1)

where the biological significance of the parameters is given in Table 1. The dynamical
infection of CHIKV are presented in the flowchart in Fig. 1.

According to [15], the basic reproduction number for deterministic model (1.1) is

R0 =
bμδm

αβ(rδ + pη)
.
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Moreover, the equilibria of (1.1) and their global stability are given as follows:
• If R0 < 1, then system (1.1) has only the virus-free equilibrium E0 = ( μ

α
, 0, 0, η

δ
), which

is globally asymptotically stable (GAS);
• If R0 > 1, then E0 is unstable, and system (1.1) has a unique endemic equilibrium

E1 = (S1, I1, V1, B1) =
(

μ

a+bV1
, bS1V1

β
, V1, η

δ–cV1

)
is GAS, where V1 = –

–P2–
√

P2
2–4P1P3

2P1
,

P1 = rβbc, P2 = αβc(rδ+pη)
δ

(1 – R0) – rbβη – βpηb – cαβpηδ, and
P3 = αβ(rδ + pη)(R0 – 1).

Incorporating random noise or stochasticity into virus infection models is crucial for a
more realistic representation of the complexities involved in the infection process [16–21].
By accounting for variations and chance events, these models capture the uncertainties at
the cellular level. Random noise can affect various aspects of infection, such as the prob-
ability of successful attachment, replication, and assembly of viruses within host cells, as
well as the stochastic nature of the host cell response to infection. Additionally, when con-
sidering transmission between individuals, random noise can be included in the probabil-
ity and timing of transmission events. By embracing stochasticity researchers gain insights
into the potential range of outcomes, the impact of chance events on infection spread, and
the effectiveness of control measures. Advanced mathematical techniques are employed
to analyze the behavior of these stochastic viral infection models, allowing researchers
to comprehensively understand viral dynamics and develop effective strategies for disease
control and prevention. Ma and Yu [22] investigated a stochastic viral infection model with
two modes of transmission and immune impairment and gave a random threshold value
that determines the persistence of infected cells or not. Wang et al. [23] studied a stochastic
HIV infection model with immune response and distributed delay. Gokila and Sambath
[24] examined a stochastic CHIKV model incorporating saturated incidence. They fur-
ther elucidated the threshold condition that determines whether the disease will persist
or vanish within the host.

Biological systems are subjected to inherent uncertainties, noise, and measurement er-
rors. For stochastic mathematical models in biology, the most commonly used parameter
perturbation method is linear white noise perturbation [25]. However, recent studies have
shown some advantages of the Ornstein–Uhlenbeck (OU) process over linear white noise
perturbation. Nevertheless, using the OU process to perturb the contact rate b may lead
to negative value [26], which is not biologically meaningful.

Applying the BK process for perturbing the contact rate b can indeed resolve this prob-
lem. Introducing BK processes allows for the consideration of biological variability at var-
ious levels, ranging from cellular processes to population dynamics. By incorporating BK
processes researchers can effectively model these stochastic elements and assess their im-
pact on system behavior. This enables a more robust analysis of the system response to
uncertainties, improving risk assessment and decision-making in biological research. In-
spired by the aforementioned discussion, in this paper, we assume that the contact rate b
is perturbed by the Black–Karasinski (BK) process

d ln b(t) = θ
(
ln b̄ – ln b(t)

)
dt + σdB(t), (1.2)

where b̄ denotes the long-run mean level of the contact rate, θ is the speed of reversion,
σ is the noise intensity, and B(t) is a standard Brownian motion. Assuming that b(0) = b̄,
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from [27] we one can obtain that b(t) approaches a stationary log-normal density with

mean b̄e
σ2
4θ and variance b̄2

(

e
σ2
θ – e

σ2
2θ

)

. Furthermore, we get

(1) Topology of b(t): The variable b(t) represents a strictly positive stochastic process,
as the logarithmic transformation ln b(t) ensures that b(t) > 0 for all t ≥ 0. This is
consistent with the biological interpretation of the contact rate, which must remain
positive.

(2) Dynamics of b(t): The process b(t) reverts to its long-run mean b̄ over time, with
random fluctuations driven by the noise term σdB(t). The reversion speed θ

determines how quickly b(t) returns to b̄ after deviations caused by stochastic
perturbations.

(3) Stationarity and stability: The logarithmic form of the BK process ensures that b(t)
has a stationary distribution in the long term, and its behavior is confined to a
biologically realistic positive range.

To facilitate representation, letting x(t) = ln b(t) and x̄ = ln b̄, we get the following
stochastic model:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx(t) = θ (x̄ – x(t))dt + σdB(t),

dS(t) =
[
μ – αS(t) – ex(t)S(t)V (t)

]
dt,

dI(t) =
[
ex(t)S(t)V (t) – βI(t)

]
dt,

dV (t) =
[
mI(t) – rV (t) – pB(t)V (t)

]
dt,

dB(t) = [η + cB(t)V (t) – δB(t)] dt.

(1.3)

In conclusion, providing a comprehensive characterization of the dynamical properties
of stochastic model (1.3) remains a challenging task. Our main contributions are as fol-
lows:

• For the first time, we attempt to incorporate the Black–Karasinski process as a
stochastic fluctuation in the CHIKV infection model. Compared to the existing
Ornstein–Uhlenbeck process and linear perturbation methods, this process presents
a mathematically and biologically reasonable assumption of randomness.

• By constructing appropriate Lyapunov functions and utilizing the ergodicity of the BK
process we establish sufficient conditions for the existence of a stationary distribution
and the extinction of infected cells and CHIKV, respectively.

• To obtain the precise expression of the density function, we provide a lemma for
determining the positive definiteness of a five-dimensional matrix. This lemma is
particularly effective for the five-dimensional model with the BK process.

• Although our primary motivation stems from the CHIKV model, the analytical
techniques employed in this study can be applied to other nonlinear virus infection
models perturbed by the BK process.

The remaining sections of this paper are organized as follows. Section 2 presents es-
sential mathematical symbols and lemmas, along with the invariant set of the stochastic
model (1.3). In Sect. 3, we establish sufficient conditions for the existence of a stationary
distribution in the stochastic model. In Sect. 4, by solving the Fokker–Planck equation we
obtain the precise expression of the probability density function for the stochastic model.
Section 5 establishes sufficient conditions for exponential extinction of infected cells and
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CHIKV in the stochastic model. In Sect. 6, we conduct several numerical simulations to
illustrate our theoretical findings. Lastly, in Sect. 7, we introduce biological interpretations
of several theorems and discuss the limitations of our model.

2 Preliminaries and the existence and uniqueness of a global positive solution
Throughout this paper, unless otherwise specified, (�,F , {F}t≥0,P) is a complete proba-
bility space with filtration {Ft}t≥0 satisfying the usual conditions (i.e., it is increasing and
right continuous, and F0 contains all P-null sets), and B(t) is defined on this space. If X
is a vector or matrix, then by XT we denote its transpose and by X–1 its inverse. Denote
R

d
+ = {x = (x1, x2, . . . , xd) ∈R

d : xi > 0, 1 ≤ i ≤ d}. By diag(a1, . . . , an) we denote the diagonal
matrix with diagonal elements a1, . . . , an. Let N represent a one-dimensional normal dis-
tribution, and for an integer k > 1, let Nk represent a k-dimensional normal distribution.

2.1 Lemma of the ergodic stationary distribution
Based on Theorem 2.2 on p. 191 of Du et al. [28], Theorem 4.3 on p. 529 of Meyn et al. [29],
and Theorem 2.3 on p. 98 of Dieu [30], we give the following lemma to show the existence
of the ergodic stationary distribution for the stochastic system (1.3).

Lemma 2.1 Assume that there exists a bounded closed domain D ∈ R
d with regular

boundary such that for any initial value X(0) ∈ R
d ,

lim inf
t→+∞

1
t

∫ t

0
P(τ , X(0),D)dτ > 0 a.s.,

where P(τ , X(0),D) is the transition probability of X(t). Then system (1.3) possesses a solu-
tion that satisfies the Feller property. In addition, system (1.3) admits at least one invariant
probability measure on R

d , which means that system (1.3) has at least one ergodic station-
ary distribution on R

d .

Proof 1. Tightness. From the condition

lim inf
t→+∞

1
t

∫ t

0
P(τ , X(0),D)dτ > 0

it follows that the stochastic process X(t) has a positive probability of remaining within the
bounded closed domain D. This implies that the transition probability family P(τ , X(0),D)

is tight. The tightness is a sufficient condition for the Feller property and the existence of
an invariant probability measure.

2. Feller property. The tightness of the process and the stochastic differential nature of
system (1.3) ensure that the solution X(t) is a strong Markov process satisfying the Feller
property, which means that for any continuous bounded function f ∈ Cb(Rd), the mapping
t →⃓ E[f (Xt)] is continuous and bounded.

3. Existence of invariant probability measure. By the Krylov–Bogoliubov theorem the
tightness of the process guarantees the existence of at least one invariant probability mea-
sure μ satisfying

∫

Rd
P(τ , x, dy)μ(dx) = μ(dy).
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4. Ergodic stationary distribution. The invariant probability measure μ corresponds to
at least one ergodic stationary distribution of system (1.3). Combined with the Feller prop-
erty, this confirms the existence of a stationary solution.

Hence system (1.3) possesses the Feller property and admits at least one ergodic station-
ary distribution. □

Lemma 2.2 Let b(t) be a stochastic process satisfying the stochastic equation

d(ln b(t)) = θ (ln b̄ – ln b(t)) + σB(t), (2.1)

where ln b̄ and σ are positive constants, and B(t) is a standard Brownian motion. Then
(i)

lim
t→∞

1
t

∫ t

0

∣
∣b(s) – b̄

∣
∣ds ≤ b̄

(

1 + e
σ2
θ – 2e

σ2
4θ

) 1
2

;

(ii) For n > 0,

lim
t→∞

1
t

∫ t

0
bn(s)ds = b̄ne

n2σ2
4θ .

Proof (i) Denote x(t) = ln b(t) and x̄ = ln b̄. Then (2.1) becomes

dx(t) = θ (x̄ – x(t)) + σB(t). (2.2)

According to the ergodicity of x(t) and the strong law of large numbers, we obtain

lim
t→∞

1
t

∫ t

0

∣
∣ex(s) – b̄

∣
∣ds =

∫ +∞

–∞

∣
∣ex(ν) – ex̄∣∣ρ(ν)dν

≤
(∫ +∞

–∞

(
ex(ν) – ex̄)2

ρ(ν)dν

) 1
2
(∫ +∞

–∞
12ρ(ν)

) 1
2

=
(∫ +∞

–∞

(
ex(ν) – ex̄)2

ρ(ν)dν

) 1
2

=
(

e2x̄+ σ2
θ + e2x̄ – 2e2x̄+ σ2

4θ

) 1
2

=ex̄
(

1 + e
σ2
θ – 2e

σ2
4θ

) 1
2

,

where

ρ(ν) =
√

θ√
πσ

e– θ (ν–x̄)2
σ2 .

(ii) The calculation gives

lim
t→∞

1
t

∫ t

0
bn(s)ds = lim

t→∞
1
t

∫ t

0
enx(s)ds = lim

t→∞
1
t

∫ t

0
e

√
2θ (x(s)–x̄)

σ
nσ√

2θ ex̄nds.
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Let v(t) =
√

2θ(x(t)–x̄)
σ

. It is obvious that the stationary distribution of v(t) obeys N(0, 1).
Therefore we have

lim
t→∞

1
t

∫ t

0
bn(s)ds = (b̄)n

∫ +∞

–∞
1√
2π

e– v2
2 e

nσ√
2θ

vdv

= (b̄)n
∫ +∞

–∞
1√
2π

e–

(

v– nσ√
2θ

)2

2 e
n2σ2

4θ dv = (b̄)ne
n2σ2

4θ . □

2.2 Lemma on the probability density function
Next, we give a lemma on the five-dimensional positive definite matrix from Lemma 2.4
on p. 8 of [31].

Lemma 2.3 If a symmetric matrix �0 satisfies 
2
0 + C0�0 + �0CT

0 = 0, where


0 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

, C0 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

–c1 –c2 –c3 –c4 –c5

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

with c1, . . . , c5 > 0 and

cici+1 > ci–1ci+2, i = 1, 2, 3 (c0 ≜ 1),

then

�0 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

ω11 0 –ω22 0 ω33

0 ω22 0 –ω33 0
–ω22 0 ω33 0 –ω44

0 –ω33 0 ω44 0
ω33 0 –ω44 0 ω55

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

is a positive definite matrix with

ω11 =
c2(c3c4 – c2c5) – c4(c1c4 – c5)

2[(c1c2 – c3)(c3c4 – c2c5) – (c1c4 – c5)2]
,

ω22 =
c3c4 – c2c5

2[(c1c2 – c3)(c3c4 – c2c5) – (c1c4 – c5)2]
,

ω33 =
c1c4 – c5

2[(c1c2 – c3)(c3c4 – c2c5) – (c1c4 – c5)2]
,

ω44 =
c1c2 – c3

2[(c1c2 – c3)(c3c4 – c2c5) – (c1c4 – c5)2]
,

ω55 =
c3(c1c2 – c3) – c1(c1c4 – c5)

2[(c1c2 – c3)(c3c4 – c2c5) – (c1c4 – c5)2]
.

2.3 Existence and uniqueness of a solution
Theorem 2.1 For any initial value (x(0), S(0), I(0), V (0), B(0)) ∈ R × R

4
+, there exists a

unique solution (x(t), S(t), I(t), V (t), B(t)) of system (1.3) on t ≥ 0, and the solution will re-
main in R×R

4
+ with probability one.
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Proof The beginning and ending of the proof are similar to that of Theorem 3.1 on p. 34
of [32] and therefore are omitted here for brevity. We focus on introducing the crucial
Lyapunov function. Let us define a C2 function U0 on R×R

4
+ →R as follows:

U0 = (ex – x – 1) + (S – 1 – ln S) + (I – 1 – ln I) + (V – 1 – ln V ) +
p
c

(B – 1 – ln B).

The nonnegativity of U0 follows from the inequality z – 1 – ln z ≥ 0 for all z > 0.
Applying Itô’s formula to U0, we have

LU0 =θ (ex – 1)(x̄ – x) +
σ 2ex

2
+
(

1 –
1
S

)
(
μ – αS – exSV

)

+
(

1 –
1
I

)
(
exSV – βI

)
+
(

1 –
1
V

)

(mI – rV – pBV )

+
p
c

(

1 –
1
B

)

(η + cBV – δB)

≤θ (ex – 1)(x̄ – x) +
σ 2ex

2
+ μ + α + β + r +

p(η + δ)

c
+ mI + exV + pB.

(2.3)

For model (1.3), we obtain that

(

S + I +
β

2m

(
V +

p
c

B
))′

=μ +
pηβ

2mc
– αS –

β

2
I –

β

2m

(

rV +
pδ

c
B
)

≤μ +
pηβ

2mc
– min

{

α,
β

2
, r, δ

}(

S + I +
β

2m

(
V +

p
c

B
))

.

Hence we have

S + I +
β

2m
V +

p
c

B ≤ A

≜

⎧
⎨

⎩

μmax if S(0) + I(0) + V (0) + B(0) ≤ μmax,

S(0) + I(0) + V (0) + B(0) if S(0) + I(0) + V (0) + B(0) > μmax,

(2.4)

where μmax =
μ + pηβ

2mc

min
{
α, β

2 , r, δ
} . Then substituting (2.4) into (2.3), we have

LU0 ≤θ (ex – 1)(x̄ – x) +
σ 2ex

2
+ μ + α + β + r +

p(η + δ)

c
+ exA + (m + p)A

≤ sup
x∈R

{

θ (ex – 1)(̂x – x) +
(

A +
σ 2

2

)

ex
}

+ μ + α + β + r +
p(η + δ)

c
+ (m + p)A

≤Q0,

where Q0 is a positive constant independent of x, S, I , V , and B. The remainder of the
proof is similar to [32]. This completes the proof. □

Remark 2.1 From the first three equations of the stochastic model (1.3) we have

(

S + I +
β

2m

(
V +

p
c

B
))′

< μ +
pηβ

2mc
– min

{

α,
β

2
, r, δ

}(

S + I +
β

2m

(
V +

p
c

B
))

,
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which implies that

S(t) + I(t) +
β

2m

(
V (t) +

p
c

B(t)
)

< μmax + e– min
{
α, β2 ,r,δ

}
t
(

S(0) + I(0) +
β

2m

(
V (0) +

p
c

B(0)
)

– μmax

)

.

Similarly, S′ < μ – αS, and η – δB < B′. This implies that S(t) < μ

α
+ e–αt (S(0) – μ

α

)
and

η

δ
+ e–δt (B(0) – η

δ

)
< B(t). Thus we obtain that

� =
{

(x, S, I, V , B) ∈R×R
4
+ :

η

δ
< B, S <

μ

α
, S + I +

β

2m

(
V +

p
c

B
)

< μmax

}

is an invariant set of the stochastic model (1.3). From now on we always assume that the
initial value (x(0), S(0), I(0), V (0), B(0)) ∈ �.

3 Stationary distribution
In this section, our primary objective revolves around investigating the existence of a sta-
tionary distribution for the stochastic model (1.3). This examination sheds light on the
stochastic persistence of CHIKV in the mean.

Theorem 3.1 Assume that Rs
0 = b̄μδme

σ2
12θ

αβ(rδ+pη) > 1. Then the stochastic system (1.3) admits at
least one ergodic stationary distribution on �.

Proof We divide the proof of Theorem 3.1 into three steps: (i) Construct stochastic Lya-
punov functions; (ii) Construct a compact set; (iii) Prove the existence of the solution of
system (1.3).

Step 1. (Stochastic Lyapunov functions). Applying Itô’s formula to – ln S, – ln I , – ln B, and
p
δ

B, we have, respectively,

L(– ln S) = –
μ

S
+ α + exV ,

L(– ln I) = –
exSV

I
+ β ,

L(– ln V ) = –
mI
V

+ r + pB,

L
(p

δ
B
)

=
pη

δ
+

pc
δ

BV – pB.

(3.1)

Then define

U1 = – ln I – a1 ln S + a2

(
– ln V +

p
δ

B
)

,

where a1 and a2 are positive constants to be determined in (3.3). Then applying Itô’s for-
mula to U1 and combining with (3.1), we have

LU1 = –
exSV

I
–

a1μ

S
–

a2mI
V

+ β + a1(α + exV ) + a2

(
r +

pη

δ
+

pc
δ

BV
)

≤ – 3 3
√

a1a2mμex + β + a1(α + exV ) + a2

(
r +

pη

δ
+

pc
δ

BV
)

= – 3
3
√

a1a2mμb̄e
σ2
12θ + β + a1(α + exV ) + a2

(
rδ + pη

δ
+

pc
δ

BV
)

+ f (x),

(3.2)
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where

f (x) = 3 3√a1a2mμ

(

b̄
1
3 e

σ2
36θ – e

x
3

)

.

Choose

a1 =
mμδb̄e

σ2
12θ

α2(rδ + pη)
, a2 =

mμδb̄e
σ2
12θ

α(rδ + pη)2 . (3.3)

Substituting (3.3) into (3.2), we have

LU1 ≤ –
mμδb̄e

σ2
12θ

α(rδ + pη)
+ β + a1exV +

a2pc
δ

BV + f (x)

= – β(Rs
0 – 1) + a1exV +

a2pc
δ

BV + f (x),

(3.4)

where

Rs
0 =

b̄μδme
σ2
12θ

αβ(rδ + pη)
.

Consider ex ≤ a3e2x + 1
4a3

with a positive constant a3 to be determined in (3.6). Then we
have

LU1 ≤ – β(Rs
0 – 1) + a1

(

a3e2x +
1

4a3

)

V +
2a2mc2μmax

βδ
V + f (x)

≤ – β(Rs
0 – 1) + a1a3

2mμmax

β
e2x +

a1

4a3
V +

2a2mc2μmax

βδ
V + f (x)

= – β(Rs
0 – 1) + a1a3

2mμmax

β
b̄2e

σ2
θ

+
(

a1

4a3
+

2a2mc2μmax

βδ

)

V + f (x) + g(x),

(3.5)

where

g(x) = a1a3
2mμmax

β
b̄2
(

e2x – e
σ2
θ

)

.

Then we choose a3 such that

a1a3
2mμmax

β
b̄2e

σ2
θ =

β

2
(Rs

0 – 1). (3.6)

Hence we obtain

LU1 ≤ –
β

2
(Rs

0 – 1) +
(

a1

4a3
+

2a2mc2μmax

βδ

)

V + f (x) + g(x). (3.7)
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Next, we define

U2 =– ln S – ln I – ln
(

B –
η

δ

)

– ln
(μ

α
– S
)

– ln

(

μmax –
(

S + I +
β

2m

(
V +

p
c

B
)))

+ ex – x – 1.

Applying Itô’s formula to U2, we have

LU2 ≤ –
μ

S
–

exSV
I

+
δB – η – cBV

B – η

δ

+
μ – αS – exSV

μ

α
– S

+
μ + pηβ

2mc – αS – β

2 I – β

2m

(
rV + pδ

c B
)

μmax –
(

S + I + β

2m
(
V + p

c B
))

+ θ (x̄ – x)(ex – 1) +
σ 2ex

2
+ α + exV + β + r + pB

≤ –
μ

S
–

exSV
I

–
η

B
–

cBV
B – η

δ

–
exSV
μ

α
– S

–

(
r – min

{
α, β

2 , δ
})

V

μmax –
(

S + I + β

2m
(
V + p

c B
))

+ θ (x̄ – x)(ex – 1) +
(

2mμmax

β
+

σ 2

2

)

ex + 2α + β + r

+
2mcμmax

β
+ δ + min

{

α,
β

2
, r, δ

}

.

(3.8)

Then we define

U3 = M0U1 + U2,

where M0 is a sufficiently large constant satisfying

–
M0β

2
(Rs

0 – 1) + sup
x∈R

{

θ (x̄ – x)(ex – 1) +
(

2mμmax

β
+

σ 2

2

)

ex
}

+ 2α + β + r +
2mcμmax

β
+ δ + min

{

α,
β

2
, r, δ

}

≤ –2.
(3.9)

Thus from (3.7) and (3.8) we have

LU3 ≤ h(x, S, I, V , B) + M0f (x) + M0g(x),

where

h(x, S, I, V , B) = –
M0β

2
(Rs

0 – 1) + M0

(
a1

4a3
+

2a2mc2μmax

βδ

)

V

–
μ

S
–

exSV
I

–
cBV
B – η

δ

–
exSV
μ

α
– S

–

(
r – min

{
α, β

2 , δ
})

V

μmax –
(

S + I + β

2m
(
V + p

c B
)) + θ (x̄ – x)(ex – 1) (3.10)
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+
(

2mμmax

β
+

σ 2

2

)

ex

+ α + β + r +
2mcμmax

β
+ δ + min

{

α,
β

2
, r, δ

}

.

Step 2. (A compact set). Now we construct a compact set

D =
{

(x, S, I, V , B) ∈ � : ε ≤ ex ≤ 1
ε

, ε ≤ S, ε4 ≤ I, ε ≤ V ,
η

δ
+ ε2 ≤ B,

S <
μ

α
– ε3, S + I +

β

2m

(
V +

p
c

B
)

≤ μmax – ε2
}

such that h(x, S, I, V , B) ≤ –1 for all (x, S, I, V , B) ∈ �\D := D
c. Then letDc =

⋃8
i=1 D

c
i , where

D
c
1 = {(x, S, I, V , B) ∈ � : ex < ε}, D

c
2 =

{

(x, S, I, V , B) ∈ � : ex >
1
ε

}

,

D
c
3 = {(x, S, I, V , B) ∈ � : 0 < V < ε}, D

c
4 = {(x, S, I, V , B) ∈ � : 0 < S < ε} ,

D
c
5 = {(x, S, I, V , B) ∈ � : ε ≤ ex, ε ≤ S, ε ≤ V , 0 < I < ε4},

D
c
6 =

{
(x, S, I, V , B) ∈ � : B <

η

δ
+ ε2

}
,

D
c
7 =

{
(x, S, I, V , B) ∈ � : ε ≤ ex, ε ≤ V , S >

μ

α
– ε3

}
,

D
c
8 =

{

(x, S, I, V , B) ∈ � : ε ≤ V , S + I +
β

2m

(
V +

p
c

B
)

> μmax – ε2
}

,

with a small enough constant ε ∈ (0, 1) satisfying the inequalities

θ

2
(1 – ε)(ln ε – x̄) + sup

x∈R
{κ1(x)} ≤ –1, (3.11)

where

κ1(x) =
θ

2
(x̄ – x)(ex – 1) +

(
2mμmax

β
+

σ 2

2

)

ex + M0

(
a1

4a3
+

2a2mc2μmax

βδ

)
2mμmax

β

+ 2α + β + r +
2mcμmax

β
+ δ + min

{

α,
β

2
, r, δ

}

,

θ

2

(
1
ε

– 1
)

(ln ε + x̄) + sup
x∈R

{κ1(x)} ≤ –1, (3.12)

M0

(
a1

4a3
+

2a2mc2μmax

βδ

)

ε ≤ 1, (3.13)

–
μ

ε
+ M0

(
a1

4a3
+

2a2mc2μmax

βδ

)
2mμmax

β
≤ 1, (3.14)

–
1
ε

+ M0

(
a1

4a3
+

2a2mc2μmax

βδ

)
2mμmax

β
≤ 1, (3.15)

–
cη
δε

+ M0

(
a1

4a3
+

2a2mc2μmax

βδ

)
2mμmax

β
≤ 1, (3.16)
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–
μ

αε
+ M0

(
a1

4a3
+

2a2mc2μmax

βδ

)
2mμmax

β
≤ 1, (3.17)

–
r – min

{
α, β

2 , δ
}

ε
+ M0

(
a1

4a3
+

2a2mc2μmax

βδ

)
2mμmax

β
≤ 1. (3.18)

Case 1. If (x, S, I, V , B) ∈D
c
1, then from (3.10) and (3.11) we have

h(x, S, I, V , B) ≤θ (x̄ – x)(ex – 1) +
(

2mμmax

β
+

σ 2

2

)

ex

+ M0

(
a1

4a3
+

2a2mc2μmax

βδ

)
2mμmax

β

+ 2α + β + r +
2mcμmax

β
+ δ + min

{

α,
β

2
, r, δ

}

≤θ

2
(1 – ε)(ln ε – x̄) + sup

x∈R
{κ1(x)}

≤ – 1.

Case 2. If (x, S, I, V , B) ∈D
c
2, then from (3.10) and (3.12) we have

h(x, S, I, V , B) ≤θ (x̄ – x)(ex – 1) +
(

2mμmax

β
+

σ 2

2

)

ex

+ M0

(
a1

4a3
+

2a2mc2μmax

βδ

)
2mμmax

β

+ 2α + β + r +
2mcμmax

β
+ δ + min

{

α,
β

2
, r, δ

}

≤θ

2

(
1
ε

– 1
)

(ln ε + x̄) + sup
x∈R

{κ1(x)}

≤ – 1.

Case 3. If (x, S, I, V , B) ∈D
c
3, then from (3.9), (3.10), and (3.13) we have

h(x, S, I, V , B) ≤ –2 + M0

(
a1

4a3
+

2a2mc2μmax

βδ

)

V

≤ –2 + M0

(
a1

4a3
+

2a2mc2μmax

βδ

)

ε ≤ –1.

Case 4. If (x, S, I, V , B) ∈D
c
4, then from (3.9), (3.10), and (3.14) we have

h(x, S, I, V , B) ≤ – 2 + M0

(
a1

4a3
+

2a2mc2μmax

βδ

)
2mμmax

β
–

μ

S

≤ –
μ

ε
– 2 + M0

(
a1

4a3
+

2a2mc2μmax

βδ

)
2mμmax

β

≤ – 1.
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Case 5. If (x, S, I, V , B) ∈D
c
5, then from (3.9), (3.10), and (3.15) we have

h(x, S, I, V , B) ≤ – 2 + M0

(
a1

4a3
+

2a2mc2μmax

βδ

)
2mμmax

β
–

exSV
I

≤ –
1
ε

– 2 + M0

(
a1

4a3
+

2a2mc2μmax

βδ

)
2mμmax

β

≤ – 1.

Case 6. If (x, S, I, V , B) ∈D
c
6, then from (3.9), (3.10), and (3.16) we have

h(x, S, I, V , B) ≤ – 2 + M0

(
a1

4a3
+

2a2mc2μmax

βδ

)
2mμmax

β
–

cη
δε

≤ –
cη
δε

– 2 + M0

(
a1

4a3
+

2a2mc2μmax

βδ

)
2mμmax

β

≤ – 1.

Case 7. If (x, S, I, V , B) ∈D
c
7, then from (3.9), (3.10), and (3.17) we have

h(x, S, I, V , B) ≤ – 2 + M0

(
a1

4a3
+

2a2mc2μmax

βδ

)
2mμmax

β
–

exSV
μ

α
– S

≤ –
μ

αε
– 2 + M0

(
a1

4a3
+

2a2mc2μmax

βδ

)
2mμmax

β

≤ – 1.

Case 8. If (x, S, I, V , B) ∈D
c
8, then from (3.9), (3.10), and (3.18) we have

h(x, S, I, V , B) ≤ – 2 + M0

(
a1

4a3
+

2a2mc2μmax

βδ

)
2mμmax

β

–

(
r – min

{
α, β

2 , δ
})

V

μmax –
(

S + I + β

2m
(
V + p

c B
))

≤ –
r – min

{
α, β

2 , δ
}

ε
– 2 + M0

(
a1

4a3
+

2a2mc2μmax

βδ

)
2mμmax

β

≤ – 1.

In summary, we have h(x, S, I, V , B) ≤ –1 for all (x, S, I, V , B) ∈D
c.

Step 3. (The existence of a stationary distribution). Since the function U3 tends to ∞ as
S, I , V , B, or S + I + β

2m
(
V + p

c B
)

approach the boundary of � or as ||(x, S, I, V , B)|| → ∞.
Thus there exists a point (̃x, S̃,̃ I, Ṽ , B̃) in the interior of � that makes U3 (̃x, S̃,̃ I, Ṽ , B̃) take
the minimum value. Hence U = U3 – U3 (̃x, S̃,̃ I, Ṽ , B̃) is a nonnegative C2-function.

Then applying Itô’s formula to V , we have

LU ≤ h(x, S, I, V , B) + M0f (x) + M0g(x).
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For any initial value (x(0), S(0), I(0), V (0), B(0)) ∈ � and a interval [0, t], using the Itô inte-
gral and mathematical expectation to U , we get

0 ≤EU(x(t), S(t), I(t), V (t), B(t))
t

=
EU(x(0), S(0), I(0), V (0), B(0))

t

+
1
t

∫ t

0
E(LU(x(τ ), S(τ ), I(τ ), V (τ ), B(τ )))dτ

≤EU(x(0), S(0), I(0), V (0), B(0))

t

+
1
t

∫ t

0
h(x(τ ), S(τ ), I(τ ), V (τ ), B(τ )))dτ

+ 3M0
3√a1a2mμ

(

b̄
1
3 e

σ2
36θ –

1
t

∫ t

0
e

x(τ )
3 dτ

)

+ M0a1a3
2mμmax

β

(
1
t

∫ t

0
e2x(τ )dτ – b̄2e

σ2
θ

)

.

(3.19)

According to Lemma 2.2, we have

lim
t→∞

1
t

∫ t

0
e

x(τ )
3 dτ = b̄

1
3 e

σ2
36θ a.s. (3.20)

and

lim
t→∞

1
t

∫ t

0
e2x(τ )dτ = b̄2e

σ2
θ a.s. (3.21)

Substituting (3.20) and (3.21) into (3.19) and letting t → +∞, we have

0 ≤ lim inf
t→+∞

1
t

∫ t

0
h(x(τ ), S(τ ), I(τ ), V (τ ), B(τ )))dτ a.s.

On the other hand, we obtain

h(x, S, I, V , B) ≤ sup
(x,S,I,V ,B)∈�

{h(x, S, I, V , B)} := M1, (x, S, I, V , B) ∈R×R
4
+.

Then we have

lim inf
t→+∞

1
t

∫ t

0
E[h(x(τ ), S(τ ), I(τ ), V (τ ), B(τ ))]dτ

= lim inf
t→+∞

1
t

∫ t

0
E[h(x(τ ), S(τ ), I(τ ), V (τ ), B(τ ))]1{(x(τ ),S(τ ),I(τ ),V (τ ),B(τ ))∈D}dτ

+ lim inf
t→+∞

1
t

∫ t

0
E[h(x(τ ), S(τ ), I(τ ), V (τ ), B(τ ))]1{(x(τ ),S(τ ),I(τ ),V (τ ),B(τ ))∈Dc}dτ

≤M1 lim inf
t→+∞

1
t

∫ t

0
1{(x(τ ),S(τ ),I(τ ),V (τ ),B(τ ))∈D}dτ – lim inf

t→+∞
1
t

∫ t

0
1{(x(τ ),S(τ ),I(τ ),V (τ ),B(τ ))∈Dc}dτ

≤(M1 + 1) lim inf
t→+∞

1
t

∫ t

0
1{(x(τ ),S(τ ),I(τ ),V (τ ),B(τ ))∈D}dτ – 1.
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Therefore

lim inf
t→+∞

1
t

∫ t

0
1{(x(τ ),S(τ ),I(τ ),V (τ ),B(τ ))∈D}dτ ≥ 1

M1 + 1
> 0 a.s. (3.22)

LetP(t, (x(t), S(t), I(t), V (t), B(t)),�) be the (transition) probability that (x(t), S(t), I(t), V (t),
B(t)) belongs to the set �. Using Fatou’s lemma [28], we have

lim inf
t→+∞

1
t

∫ t

0
P(τ , (x(τ ), S(τ ), I(τ ), V (τ ), B(τ )),D)dτ ≥ 1

M1 + 1
> 0 a.s. (3.23)

According to Lemma 2.1, system (1.3) has at least one stationary distribution on �, and it
has the Feller and ergodic properties. This completes the proof. □

4 Probability density function
The local probability density function (local PDF) is a function used in probability theory
and statistics to describe the probability distribution of a random variable at different val-
ues. Unlike the global probability density function (global PDF), the local PDF is defined
at specific points or regions.

The key characteristic of the local PDF is its ability to provide more detailed and accu-
rate probability information as it describes the distribution characteristics of the random
variable within specific points or regions. By utilizing the local PDF, researchers can obtain
information about the probability density, distribution shape, and variations in the proba-
bility distribution of the random variable at specific values. In this section, we present the
local PDF of stochastic model (1.3) near its quasi-endemic equilibrium.

Firstly, if

Rp
0 =

b̄μδm
αβ(rδ + pη)

> 1, (4.1)

then we can obtain that the stochastic model (1.3) has a unique quasi-infected equilibrium
E� = (ln b̄, S�, V �, I�, B�), where

S� =
μ

α + b̄V �
, I� =

b̄S�V �

β
, B� =

η

δ – cV �
, V � =

Q2 –
√

Q2
2 – 4Q1Q3

2Q1
,

with

Q1 = rβb̄c, Q2 =
αβc(rδ + pη)

δ
(Rp

0 –1)+rb̄βη+βpηb̄+
cαβpη

δ
, Q3 = αβ(rδ+pη)(Rp

0 –1).

Then let Y = (y1, y2, y3, y4, y5)T = (x– x̄, S –S�, V –V �, I – I�, B–B�)T . Applying Itô’s integral,
we obtain the corresponding linearized system around E� of model (1.3):

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dy1 = –θy1dt + σdB(t),

dy2 = (–c21y1 – c22y2 – c23y3)dt,

dy3 = (–c33y3 + c34y4 – c35y5)dt,

dy4 = (c21y1 + c42y2 + c23y3 – c44y4)dt,

dy5 = (c53y3 – c55y5)dt,

(4.2)
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where

c21 = b̄S�V �, c22 = α + b̄V �, c23 = b̄S�, c33 = r + pB�, c34 = m,

c35 = pV �, c42 = b̄V �, c44 = β , c53 = cB�, c55 = δ – cV �.

Model (4.2) can be equivalently written as

dY (t) = CY (t)dt + 
dB(t),

where

C =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

–θ 0 0 0 0
–c21 –c22 –c23 0 0

0 0 –c33 c34 –c35

c21 c42 c23 –c44 0
0 0 c53 0 –c55

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

, 
 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

σ 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Theorem 4.1 If β ≠ α, r + pB� > α (in general) and Rp
0 > 1, then the stationary solution

(x(t), S(t), V (t), I(t), B(t)) of system (1.3) around E� = (ln β̄ , S�, V �, I�, B�) follows the normal
distribution N5(E�,�), where

� =

[

c21c34c53σ

(

α + δ – cV � +
(α + b̄V �)(δ – cV �)

r + pB� – α

)]2

(T5T3T2T1)–1

× �[(T5T3T2T1)–1]T ,

and the matrices T1, T2, T3, T5, and � are defined in the following proof.

Proof Based on [32–34], it has been established that system (1) exhibits a singular prob-
ability density function, denoted as �(Y (t)), in the vicinity of the equilibrium E�. This
particular density function is governed by the Fokker–Planck equation

–
σ 2

2
∂2�

∂y2
1

+
∂

∂y1

(
–θy1�

)
+

∂

∂y2

[
(–c21y1 – c22y2 – c23)�

]

+
∂

∂y3

[
(–c33y3 + c34y4 – c35y5)�

]
+

∂

∂y4

[
(c21y1 + c42y2 + c23y3 – c44y4)�

]

+
∂

∂y5

[
(c53y3 – c55y5)�

]
= 0.

Based on the work by Roozen [35], we can easily deduce that the matrix 
 is constant.
Consequently, the probability density function �(Y (t)) follows a Gaussian distribution
represented as

�(Y (t)) = ψe– 1
2 Y (t)�Y (t),

where � is a real symmetric matrix satisfying the algebraic equation �
� + CT� + �C =
0, and the constant ψ is determined by the normalization condition

∫

R5 �(Y )dY = 1. As-
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suming that � is invertible, let � = �–1. Then we obtain


2 + C� + �CT = 0.

Let

T1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 1 0 1 0
0 0 0 0 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Then

C1 = T1CT–1
1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

–θ 0 0 0 0
–c21 –c22 –c23 0 0

0 –c34 –c33 c34 –c35

0 c42 + c44 – c22 0 –c44 0
0 0 c53 0 –c55

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Note that c42 + c44 – c22 = β – α ≠ 0. Now let

T2 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 c42+c44–c22

c34
1 0

0 0 0 0 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Then

C2 = T2C1T–1
2

=

⎛

⎜
⎜
⎜
⎜
⎝

–θ 0 0 0 0
–c21 –c22 –c23 0 0

0 –c34 c22 – c33 – c42 – c44 c34 –c35
0 0 – ϑ1

c34
c42 – c22 – c35

c34
(c42 + c44 – c22)

0 0 c53 0 –c55

⎞

⎟
⎟
⎟
⎟
⎠

,

where ϑ1 = (c33 + c42 – c22)(c42 + c44 – c22). Since c33 + c42 – c22 = r + pB� – α > 0, we have
ϑ1 = (r + pB� – α)(β – α) ≠ 0. Denote

T3 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 c34c53

ϑ1
1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

.
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Then

C3 = T3C2T–1
3

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

–θ 0 0 0 0
–c21 –c22 –c23 0 0

0 –c34 c22 – c33 – c42 – c44 c35 + c34c35c53
ϑ1

–c35

0 0 – ϑ1
c34

c42 – c22 + c35c53
c33+c42–c22

– c35
c34

(c42 + c44 – c22)

0 0 0 – c34c53ϑ2
ϑ1

c55

(
c22

c33+c42–c22
– 1
)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

with ϑ2 = c22 + c55 – c42 + c22c55
c33+c42–c22

= α + δ – cV � + (α+b̄V �)(δ–cV �)
r+pB�–α

> 0.
Then letting T4 = (0, 0, 0, 0, 1) and T5 = (T4C4

3 , T4C3
3 , T4C2

3 , T4C3, T4)T , we have

C4 = T5C3T–1
5 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

–c1 –c2 –c3 –c4 –c5

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

where

c1 =θ + �1, c2 = �1θ + �2, c3 = �2θ + �3, c4 = �3θ + �4, c5 = �4θ ,

�1 =c22 + c33 + c44 + c55,

�2 =c22c33 + c22c44 + c22c55 + c33c44 + c33c55 + c35c53 + c44c55 – c23c34

=c22c33 + c22c44 + c22c55 + c33c55 + c35c53 + c44c55,

�3 =c22(c33c44 – c23c34) + c23c34c42 + c22c33c55 + c22c35c53 + c22c44c55

+ c55(c33c44 – c23c34) + c35c44c53

=c23c34c42 + c22c33c55 + c22c35c53 + c22c44c55 + c35c44c53,

�4 =c22c55(c33c44 – c23c34) + c22c35c44c53 + c23c34c42c55 = c22c35c44c53 + c23c34c42c55,

due to c33c44 = β(r + pB�) = b̄S�V �

I�
mI�
V � = mb̄S� = c23c34. After calculation, we obtain

�2�3 – �1�4 >c22c55(c33 + c44)(c22c33 + c22c44 + c22c55 + c33c55 + c35c53)

+ c33c42c44(c22c33 + c22c44 + c35c53) + c35c44c53(c33c55 + c44c55 + c35c53)

+ c22c35c53(c22c33 + c22c55 + c33c55 + c35c53 + c44c55)

and

�2
3 <(c33c42c44 + c35c44c53 + c22c35c53)(c22c33c44 + c22c33c55 + c22c44c55

+ c35c53(c22 + c44)) + c22c55(c33 + c44)(c22c33c44 + c22c33c55

+ c22c44c55 + c35c53(c22 + c44)).
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Therefore it is not difficult to obtain �1(�2�3 – �1�4) > �2
3, which implies that c1, . . . , c5 > 0

and

c1c2 – c3 > �1�2 – �3 > 0,

c2c3 – c1c4 > θ2(�1�2 – �3) + θ (�2
2 – �4) + (�2�3 – �1�4) > 0,

c3c4 – c2c5 > θ2(�2�3 – �1�4) > 0.

The conditions in Lemma 2.3 are satisfied. Denote

ω11 =
c2(c3c4 – c2c5) – c4(c1c4 – c5)

2�
, ω22 =

c3c4 – c2c5

2�
, ω33 =

c1c4 – c5

2�
,

ω44 =
c1c2 – c3

2�
, ω55 =

c3(c1c2 – c3) – c1(c1c4 – c5)

2�
,

� = (c1c2 – c3)(c3c4 – c2c5) – (c1c4 – c5)2 > 0,

and

� =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

ω11 0 –ω22 0 ω33

0 ω22 0 –ω33 0
–ω22 0 ω33 0 –ω44

0 –ω33 0 ω44 0
ω33 0 –ω44 0 ω55

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Then we obtain

(T5T3T2T1)
2(T5T3T2T1)T + C4[(T5T3T2T1)�(T5T3T2T1)T ]

+ [(T5T3T2T1)�(T5T3T2T1)T ]CT
4 = 0.

From Lemma 2.3 we obtain that (T5T3T2T1)�(T5T3T2T1)T = (c21c34c53ϑ2σ )2� is a posi-
tive definite matrix. Hence

� =

[

c21c34c53σ

(

α + δ – cV � +
(α + b̄V �)(δ – cV �)

r + pB� – α

)]2

(T5T3T2T1)–1

× �[(T5T3T2T1)–1]T

is also positive definite. □

5 Exponential extinction of CHIKV
In this section, our primary focus is on discussing the exponential extinction of infected
cells and CHIKV within stochastic model (1.3). Denote

Re
0 = Rp

0 +
b̄μ(rδ + pη)

(

1 + e
σ2
θ – 2e

σ2
4θ

) 1
2

αβ min {βδ, rδ + pη} ,

where Rp
0 is defined in (4.1).
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Theorem 5.1 If Re
0 < 1, then

lim sup
t→∞

1
t

ln

⎛

⎜
⎝

√
αβδm

β

√

b̄μ(rδ + pη)
I(t) +

δ

rδ + pη
V (t)

⎞

⎟
⎠ < 0 a.s.,

which implies that the infected host cells I and CHIKV particles V in model (1.3) will go
extinct in the long term.

Proof First, we get

√

Rp
0(p, 1) = (p, 1)

(
0 b̄μ

αβ
δm

rδ+pη
0

)

, (5.1)

where p =

√
αβδm

b̄μ(rδ + pη)
.

Define the C2-function

P =
p
β

I +
δ

rδ + pη
V ,

where 1
β

and δ
rδ+pη

are positive constants to be determined later. Then applying Itô’s for-
mula to ln P, we have

L(ln P) =
1
P

[
p
β

(exSV – βI) +
δ

rδ + pη
(mI – rV – pBV )

]

≤ 1
P

[
p
β

(
b̄μ

α
V – βI

)

+
δ

rδ + pη

(
mI – rV –

pη

δ
V
)
]

+
μ

αβ
V

pI
β

+ δV
rδ+pη

(
ex – b̄

)

≤ 1
P

[(
δm

rδ + pη
– p
)

I +

(
pb̄μ

αβ
– 1

)

V

]

+
μ(rδ + pη)

αβδ
|ex – b̄|

=
1
P

(p, 1)

[(
0 b̄μ

αβ
δm

rδ+pη
0

)(
I
V

)

–

(
I
V

)]

+
μ(rδ + pη)

αβδ
|ex – b̄|.

(5.2)

Substituting (5.1) into (5.2), if Rp
0 < 1, then we have

L(ln P) ≤ 1
P

(√

Rp
0 – 1

)

(pI + V ) +
μ(rδ + pη)

αβδ
|ex – b̄|

≤ – min

{

β ,
rδ + pη

δ

}(

1 –
√

Rp
0

)

+
μ(rδ + pη)

αβδ
|ex – b̄|.

(5.3)
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Integrating (5.3) from 0 to t and dividing both sides by t, we obtain

ln P(t) – ln P(0)

t
≤ – min

{

β ,
rδ + pη

δ

}(

1 –
√

Rp
0

)

+
μ(rδ + pη)

αβδ

(
1
t

∫ t

0

∣
∣ex(τ ) – b̄

∣
∣dτ

)

.
(5.4)

From Lemma 2.2 we have

lim
t→∞

1
t

∫ t

0

∣
∣ex(τ ) – b̄

∣
∣dτ ≤ b̄

(

1 + e
σ2
θ – 2e

σ2
4θ

) 1
2

. (5.5)

Taking the superior limit of t on both sides of (5.4) and combining with (5.5), we have

lim sup
t→∞

ln P(t)
t

≤ – min

{

β ,
rδ + pη

δ

}(

1 –
√

Rp
0

)

+
b̄μ(rδ + pη)

αβδ

(

1 + e
σ2
θ – 2e

σ2
4θ

) 1
2

= – min

{

β ,
rδ + pη

δ

}

(1 – Re
0).

This completes the proof. □

6 Numerical simulations
In this section, we provide several numerical examples to validate our theoretical results.
Based on [36, 37], we adopt the parameter values for model (1.3) as shown in Table 2.
Taking into account the influence of environmental fluctuations in practice, we obtain the
discrete model over the time interval [0, T] using Milstein’s higher-order method [38] as
follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

xi+1 =xi + θ (ln b̄ – xi)�t + σηi
√

�t,

Si+1 =Si +
(
μ – αSi – exi SiVi

)
�t,

Ii+1 =Ii +
(
exi SiVi – βIi

)
�t,

Vi+1 =Vi + (mIi – rVi – pBiVi)�t,

Bi+1 =Bi + (η + cBiVi – δBi)�t,

(6.1)

where (xi, Si, Ii, Vi, Bi) denotes the corresponding value of the ith iteration of the discretiza-
tion equation, the time increment �t > 0, and ηi are Gaussian random variables with dis-
tribution N(0, 1) for i = 1, 2, . . . , n. We choose the initial value (x(0), S(0), I(0), V (0), B(0)) =
(ln 0.5269, 2, 0.2, 0.1, 2) in the invariant set �.

Example 1 (Stationary distribution) First, to investigate the existence of the stationary
distribution, we chose the parameters shown in Table 2 and obtain

Rs
0 =

b̄μδme
σ2
12θ

αβ(rδ + pη)
= 5.0746 > 1.

According to Theorem 3.1, the stochastic system (1.3) admits at least one ergodic station-
ary distribution. The phase diagrams of S(t), I(t), V (t), and B(t) are given in the left-hand
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Table 2 Value of parameters in (6.1)

Parameters Description Value Source

θ Reversion speed 0.3 [36]
b̄ Long-run mean level of contact rate between uninfected host cells and

CHIKV particles
0.5269 [37]

ξ Noise intensity 0.1 [36]
μ Production rate of uninfected host cells 1.826 [37]
α Death rate of uninfected host cells 0.7979 [37]
β Death rate of infected host cells 0.4441 [37]
m Virus proliferation rate 2.02 [37]
r Death rate of CHIKV particles 0.4418 [37]
p Elimination rate of CHIKV by B cells 0.5946 [37]
η Constant production rate of B cells 1.402 [37]
c Production rate of B cells due to increased CHIKV 1.2129 [37]
δ Death rate of B cells 1.251 [37]

Figure 2 Computer simulations for (i) the temporal evolution of the concentrations of uninfected host cells
(S), infected host cells (I), CHIKV particles (V ), and B cells (B) in system (1.3) and (ii) the frequency histograms of
S, I, V , and B in system (1.3), illustrating the stationary distribution. The parameters used for the simulations are
provided in Table 2

column of Fig. 2, and the frequency histograms are presented in the right-hand column of
Fig. 2.

To facilitate comparison with the deterministic model (1.1), we choose the contact rate
0.5269 and the other parameters as in Table 2, which results in

R0 =
bμδm

αβ(rδ + pη)
= 4.9493 > 1.

Then by [15] the disease of the deterministic system (1.1) will persist in a long term; see
the left-hand column of Fig. 2. Figure 2 illustrates the dynamics and statistical behavior of
the system variables under the stochastic framework of system (1.3). Panel (i) depicts the
temporal evolution of the concentrations of uninfected host cells (S), infected host cells
(I), CHIKV particles (V ), and B cells (B). It highlights the transient dynamics and eventual
stabilization of these variables, showing how they fluctuate and reach a steady state un-
der stochastic perturbations. Panel (ii) presents frequency histograms for S, I , V , and B,
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demonstrating the stationary distribution derived from the long-term simulations. These
histograms reflect the probabilistic nature of the system equilibrium under the influence
of noise.

Example 2 (Probability density function) Letting the parameters of model (1.3) be as
in Table 2, we obtain that there exists a quasi-endemic equilibrium for the model
(1.3), (x̄, S�, I�, V �, B�) = (ln 0.5269, 1.4899, 1.4349, 0.81175, 5.2621). In addition, we can
calculate that Rp

0 = 4.9493 > 1 and r + pB� = 3.5707 > α. By Theorem 4.1 the solu-
tion (x(t), S(t), V (t), I(t), B(t)) of system (1.3) has a normal probability density function
�(x, S, V , I, B) ∼N5((ln 0.5269, 1.4899, 0.8116, 1.4349, 5.2621)T ,�), where

� =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0.15 –0.0750 0.02402 0.1107 0.2706
–0.0750 0.04868 –0.015116 –0.07561 –0.2067
0.02402 –0.01511 0.005358 0.0215074 0.0504
0.1107 –0.07561 0.0215074 0.1240 0.3671
0.2706 –0.2067 0.0504 0.3671 1.2067

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

In addition, we can calculate the following marginal density functions:

∂�(x, S, V , I, B)

∂S
=1.8082e–10.2714(S–1.4899)2

,

∂�(x, S, V , I, B)

∂I
=1.1329e–4.0321(I–1.4349)2

,

∂�(x, S, V , I, B)

∂V
=5.4503e–93.3224(V –0.8116)2

,

∂�(x, S, V , I, B)

∂B
=0.3632e–0.4143(B–5.2621)2

.

From the right-hand columns of Figs. 2 and 3, we can see that the marginal density func-
tion of �(x, S, V , I, B) given by Theorem 4.1 is highly consistent with the corresponding

Figure 3 Computer simulations for the frequency fitting density functions and the marginal density
functions of S (uninfected host cells), I (infected host cells), V (CHIKV particles), and B (B cells) in system (1.3).
The results are based on 500,000 iteration points, highlighting the probabilistic distribution and alignment
between simulated and theoretical densities. The parameters are given in Table 2
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Figure 4 Computer simulations showing the dynamic variation trends of infected host cells (I) and CHIKV
particles (V ) in system (1.3) under the mean contact rate b̄ = 0.08. These simulations highlight the interaction
between the two compartments over time, demonstrating how changes in one variable influence the other.
The other parameters are given in Table 2

frequency histogram. Figure 3 illustrates the statistical properties of the system variables
S, I , V , and B by comparing their simulated marginal density functions (derived from
long-term simulations) with theoretical probability density functions. The fitting curves
demonstrate good agreement, validating the stochastic dynamics of system (1.3). The large
number of iterations ensures the robustness of the results, capturing the equilibrium be-
havior of the variables under noise.

Example 3 (Extinction) Choosing b̄ = 0.08 and the other parameters as in Table 2, we get

Re
0 = Rp

0 +
b̄μ(rδ + pη)

(

1 + e
σ2
θ – 2e

σ2
4θ

) 1
2

αβ min {βδ, rδ + pη} = 0.9511 < 1.

Thus by Theorem 5.1 the infected host cells I and CHIKV particles V of the stochastic
system (1.3) will be extinct exponentially in a long term, which is supported by Fig. 4.
Figure 4 presents the time-series trends of I (infected host cells) and V (CHIKV particles)
when the mean contact rate is set to b̄ = 0.08. The figure emphasizes the close coupling
between these two compartments, with fluctuations in I driving corresponding changes
in V , and vice versa. The results capture the feedback dynamics inherent in the infection
process and demonstrate the system capacity to stabilize under stochastic perturbations.

7 Conclusions
The primary objective of this study is to establish and analyze the dynamical behavior
of a stochastic model for CHIKV infection incorporating the Black–Karasinski process.
Drawing inspiration from the work of [15], we introduce a stochastic CHIKV infection
model by perturbing the contact rate b using the BK process.

Following the establishment of existence and uniqueness of solutions for the stochas-
tic system, as well as the identification of invariant sets, we obtain sufficient conditions
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for the stationary distribution and extinction of the stochastic model (1.3). Subsequently,
we derive the sufficient conditions for both endemic persistence and extinction by solv-
ing the corresponding five-dimensional Fokker–Planck equation. Moreover, we obtain ex-
plicit expressions for the local density function of the stochastic model. Remarkably, in this
study, we observe that as the noise intensity tends to zero (i.e., σ → 0), the conditions Rs

0

converge to Rp
0, and Re

0 approaches Rp
0. This finding implies that the dynamic behavior of

the stochastic model encompasses that of the corresponding deterministic model.
Lastly, we propose and discuss several remaining issues to be addressed. Notably, due

to the current limitations of our mathematical methods, a disparity exists in the condi-
tions for Rs

0 and Re
0, particularly when the noise intensity is significant. Consequently, our

future work will focus on establishing a threshold condition to determine the persistence
of CHIKV in the model, which is considered a key research direction. Additionally, an-
other intriguing avenue for investigation involves considering CHIKV models driven by
alternative types of stochastic noise, such as colored noise [39] or Lévy jumps [40]. On-
going research efforts are dedicated to exploring these areas of interest. Furthermore,
a critical extension involves incorporating the exponential expansion phase of CHIKV
into the model to better capture the dynamics of early epidemic outbreaks. This phase is
particularly relevant during the initial rapid growth of infection cases and requires a hy-
brid deterministic–stochastic framework or the integration of explicit exponential growth
terms [41, 42]. Such advancements will enhance the applicability of the model to both early
and long-term epidemic dynamics, complementing the insights gained in this study.

Appendix
Itô’s process is a general stochastic process described by

dXt = μ(Xt , t)dt + σ (Xt , t)dBt ,

where Xt is the state variable, μ(Xt , t) is the drift term, σ (Xt , t) is the diffusion term, and
Bt is a standard Brownian motion.

The Black–Karasinski process is a particular case of Itô’s process, with a logarithmic
transformation to ensure the positivity and mean-reverting dynamics, which is described
by the following stochastic differential equation:

d ln Xt = θ
(
ln X̄ – ln Xt

)
dt + σdBt ,

where Xt is the variable of interest (e.g., contact rate), X̄ is the long-run mean level, θ > 0
is the rate of mean reversion, σ > 0 is the noise intensity, and Bt is a standard Brownian
motion.
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