
Advances in Continuous
and Discrete Models

Wu et al. Advances in Continuous and Discrete Models          (2025) 2025:7 
https://doi.org/10.1186/s13662-025-03873-4

R E S E A R C H Open Access

Anti-cancer drug administration in cancer
treatment under stochastic disturbances:
modeling and numerical optimization
algorithms
Xiang Wu1,2* , Xiaolan Yuan1 and Kanjian Zhang3,4

*Correspondence:
seuwuxiang@126.com
1School of Mathematical Sciences,
Guizhou Normal University, Guiyang
550001, P.R. China
2School of Electrical Engineering,
Southeast University, Nanjing
210096, P.R. China
Full list of author information is
available at the end of the article

Abstract
Actual cancer treatment is typically a dynamic process with stochastic disturbances.
Uncertain constraints (UCs) are suitable for modeling of dynamic processes under
stochastic disturbance conditions, in which constraints are not fully met. Therefore,
uncertain constrained dynamic optimization (UCDO) models can be utilized for
addressing anti-cancer drug administration (ACDA) in cancer treatment. Due to the
dynamics, randomness, and complexity of decision functions, the UCDO problem
arising from ACDA in cancer treatment is difficult to deal with. To tackle this issue, a
relaxation technique (RT) and an improved smooth approximation strategy (ISAS) are
proposed for formulating the UCDO problem as a deterministic approximation
problem, where a vector parameterization strategy and equality/inequality constraint
dealing with method are integrated. Following that, to attain a global optimal
solution (GOS) to the deterministic approximation problem, a hybrid optimization
method (HOM) is proposed based on limited memory BFGS (L-BFGS) and a novel
stochastic search method (NSSM) and its global convergence results are established.
Simulation results show that the proposed HOM can achieve a higher quality solution
with a lower calculating cost and lower conservativeness than existing approaches for
solving the ACDA problem in cancer treatment under stochastic disturbances.

Keywords: Dynamic optimization; Anti-cancer drug administration; Stochastic
disturbances; Hybrid optimization method; Global optimal solution

1 Introduction
The latest statistical data shows that approximately 12 million people worldwide died from
cancer in 2023, accounting for nearly 12% of the total global deaths. Compared to 2010,
the cancer mortality rate has increased [1]. This indicates that the cancer problem is be-
coming increasingly serious globally and requires more attention and measures to address
it. Currently, treating solid tumors has two methods most utilized frequently: surgery and
radiation therapy [2]. But when tumor cells (TCs) metastasize from the primitive tumor
to the rest of the body, a systemic treatment, such as chemotherapy, must be applied to the
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spreading cancer cells [3]. Generally, chemotherapy has both positive and negative effects,
since both TCs and normal cells (NCs) may be killed [4]. Then, balancing the reduction
of TCs and the toxicity of anti-cancer drugs (ACDs) is a necessary consideration in can-
cer treatment [5]. Additionally, some TCs may acquire drug resistance utilizing random
mutations in cancer treatment, causing them to be insensitive to ACDs [6]. Because of
the drug resistance, these TCs cannot be fully killed, leading to the failure of cancer treat-
ment [7]. Normally, the longer the exposure time of ACDs, the greater the likelihood of
the drug resistance occurring [8]. Thus, it is best to utilize higher doses to kill TCs as early
as possible [9]. It should be mentioned that higher doses may lead to unacceptable toxicity
[10]. As a result, it is very important to develop effective anti-cancer drug administration
(ACDA) schemes in cancer treatment [11]. Recently, some ideal schemes were obtained
utilizing mathematical models and dynamic optimization theory (DOT) in cancer treat-
ment [12]. Mathematical models are successfully utilized to characterize the availability of
ACDs, the principles of action on TCs, and the limitations on ACDs because of their toxi-
city [13, 14]. Further, DOT can utilize mathematical models to design the ACDA schemes
in cancer treatment, and many ACDA schemes are proposed in cancer treatment based on
existing DOT [15, 16]. But existing mathematical models have not fully considered various
uncertainties.

Uncertain constrained dynamic optimization problems (UCDOPs) belong to a typical
class of optimization problems with a dynamical system and some uncertain/deterministic
constraints, in which the uncertain constraints (UCs) are described in the form of proba-
bility [17–19]. UCDOPs are normally NP-hard due to their nonconvexity and intractable
reformulations [20–22]. At present, there exist two main strategies of research on UC-
DOPs: analytical strategy (AS) [23] and data-driven based strategy (DDBS) [24–26]. The
AS generally assumes that the probability density functions (PDFs) for random variables
(RVs) or the functions in constraints have some special structures. Further, the calcula-
tion of multidimensional integrals (MDIs) is usually needed for AS. This results in great
difficulties for the application in AS. The DDBS typically utilizes samples of the RVs to ap-
proximate the UCs. The DDBS is mainly designed for UCDOPs with nonconvex functions
and RVs with general PDFs. Namely, the DDBS do not rely on the structure of UCDOPs
and do not need calculating MDIs. Therefore, compared to the AS, the DDBS has a wider
applicability and a lower calculating cost [27–29]. In UCDOPs, the most commonly used
DDBS is the scenario method (SM) [30]. SM utilizes samples of RVs and obtains a deter-
ministic problem, which is an approximation of UCDOPs. With the growth for sample size
of RVs, the feasibility of obtained solutions will become greater. However, no convergence
results are established for obtained solutions. Additionally, Bernstein approximation (BA)
[31] and conditional value-at-risk (CVaR) [32] are also two typical strategies for approx-
imating UCs. BA utilizes an exponential function to attain an estimation for UCs. CVaR
substitutes a conservative convex function for the indicator function. These indicate that
SM, BA, and CVaR have high conservatism that is challenging to be regulated. Therefore,
more effective strategies for UCs urgently need to be developed in UCDOPs.

Even if the functions in UCs are linear, UCDOPs may still be nonconvex [33–36]. And
besides, the functions in UCDOPs may be nonlinear and nonconvex. Then, such problems
usually have numerous local optimal solutions (LOSs) [37–40]. In practical applications,
if LOSs are away from global optimal solutions (GOSs), then they may be useless [41].
As a result, it is urgent to propose effective global optimization algorithms (GOAs) for
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UCDOPs. Typically, GOAs consist of 3 categories: auxiliary function methods (AFMs)
[42, 43], stochastic search methods (SSMs) [44–46], and hybrid optimization methods
(HOMs) [47–49]. The search strategy in AFMs is deterministic. The challenge of AFMs
is that they heavily rely on auxiliary functions (AFs) to get away from LOSs. However,
the tuning of parameters in AFs is commonly difficult, and the calculating cost is high.
In SSMs, a great variety of probability-based strategies are proposed to get away from
LOSs, e.g., Particle Swarm Optimization (PSO) [50], Bird Swarm Algorithm (BSA) [51],
and Artificial Fish-Swarm Algorithm (AFSA) [52]. But the precision for solutions is rel-
atively poor and the calculating cost is high because there is no guidance from gradient
information during the iteration process. Namely, the performance for such SSMs is rel-
atively poor with respect to convergence. In HOMs, gradient-based methods (GBMs) are
embedded in SSMs to accelerate convergence. In the design process of SSMs, exploration
and exploitation are usually considered simultaneously. That is, embedding GBMs into
SSMs strengthens exploitation at the cost of weakening exploration. Further, the perfor-
mance for HOMs severely depends on the parameter tuning for SSMs [53, 54]. Namely, if
the parameter tuning for SSMs is not desired, then the obtained solutions are still trapped
in LOSs. Therefore, designing more efficient HOMs for UCDOPs is crucial in practical
applications.

The data of practical dynamic processes (PDPs), including cancer treatment, usually has
randomness, which can be characterized utilizing PDFs in most cases [55]. In the pres-
ence of random information, uncertain constrained dynamic optimization models can be
adopted to describe such PDPs [56]. Motivated by this and the above discussions, an un-
certain constrained dynamic optimization problem (UCDOP) is proposed for ACDA in
cancer treatment under stochastic disturbances in this paper. The main contributions of
the article are provided as follows:

• An uncertain constrained dynamic optimization (UCDO) model is developed for
ACDA in cancer treatment under stochastic disturbances, in which there are both a
continuous-valued decision function (CVDF) and a discrete-valued decision function
(DVDF).

• Notice that traditional nonlinear programming solvers (TNPSs), such as steepest
descent (SD) [57] and limited memory BFGS (L-BFGS) [58], are proposed for the
continuous-value problem, which implies that these algorithms cannot be directly
utilized for the UCDOP. To tackle the issue, a relaxation technique (RT) is introduced
for this UCDOM such that the relaxation optimization problem (ROP) only has
continuous-valued decision functions (CVDFs).

• Uncertain inequality constraints (UICs) usually do not have accurate analytical
expressions and cannot be dealt with directly. And besides, in some cases, the
distribution of RVs may not be known and only their samples can be utilized. To avoid
directly handling UICs, an improved smooth approximation strategy (ISAS) is
designed for UICs. Following that, convergence results for ISAS are established under
suitable conditions for general PDFs.

• Even if the functions in UCs are linear, UCDOP may still be nonconvex. Normally,
deterministic methods, such as SD [57] and L-BFGS [58], easily trap in LOSs to
nonconvex problems. To attain GOSs to UCDOP, a hybrid optimization method
(HOM) is proposed based on L-BFGS [58] and a novel stochastic search method
(NSSM). Compared to existing HOMs, the advantages of the proposed HOM is that
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the update strategy in NSSM is simpler and the parameters in NSSM can be specified
in advance. Further, global convergence results for HOM are established.

• Numerical experiments shows that the proposed HOM can achieve a higher quality
solution with a lower calculating cost and lower conservativeness than existing
approaches for solving ACDA problem in cancer treatment under stochastic
disturbances.

The rest of this article is summarized as follows. Section 2 describes the ACDA problem
in cancer treatment under stochastic disturbances. In Sect. 3, the solution approach for
the UCDOP is proposed based on RT, ISAS, discretizing, and dealing with constraints. In
Sect. 4, an HOM designed for the UCDOP and its convergence are established. Follow-
ing that, numerical experiments are presented to demonstrate the effectiveness for the
proposed approach in Sect. 5.

2 Problem description
The section will describe the ACDA problem in cancer treatment under stochastic dis-
turbances. Following that, the challenges for this problem and the key target of this paper
will also be provided in this section.

2.1 Dynamic model
Dynamic models for pharmacodynamics, pharmacokinetics, and white blood cells (WBCs)
will be presented in this subsection.

2.1.1 Dynamic model for pharmacodynamics
In the last 40 years, numerous mathematical models (mathematical models) have been
developed for characterizing the tumor growth (TG). The Gompertz equation (GE) is one
of these mathematical models that is widely utilized. This subsection also characterizes
the TG by utilizing the GE [59] over the time horizon

[
0, tf
]
:

dTg (t)
dt

= a1Tg (t) ln

(
a2

Tg (t)

)
, (2.1a)

Tg (0) = T0
g , (2.1b)

where tf represents the terminal time; Tg (t) represents the tumor cell number (TCN);
a1 > 0 and a2 > 0 are the growth parameter of tumor cells and the tumor size (TS), re-
spectively; and T0

g is the TCN at initial time t = 0. Equation (2.1a) indicates that Tg (t)
is a sigmoid function. This is because the TS is gradually close to a stable level a2 (i.e., a
bearing capacity) as time t increases.

In cancer treatment, the TG is usually perturbed by ACDs. Then, it is necessary to add a
loss function (LF) to equation (2.1a). Assume that the function of cell loss depends on the
concentration of ACDs at the tumor location (TL). Let CACDs (t) be the concentration of
ACDs at the TL. According to the work [60], ACDs can kill tumor cells using first-order
kinetics. Namely, the proportion of TCs destroyed by ACDs with a given concentration
is independent of the TS. However, the proportion of TCs destroyed by ACDs relies on
the TG for period-specific ACDs. Similar to the work [2], this paper assumes that the
anti-cancer drug (ACD) is period-nonspecific. This indicates that variations for growth
fraction of TCs are insignificant and the LF is linear with respect to Tg (t). As everyone
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knows, if the concentration for ACDs multiplied by the exposure time for ACDs remains
a constant, then a same level of toxicity will be achieved. Further, many research results
illustrate that there is a concentration Cth of ACDs such that if CACDs (t) ≤ Cth, then the
ACDs have no curative effect [61]. Thus, a function A

(
Tg (t) , CACDs (t)

)
can be utilized to

describe the LF as follows:

A
(
Tg (t) , CACDs (t)

)
=

⎧
⎨

⎩
0, if CACDs (t) ≤ Cth,

a3 (CACDs (t) – Cth)Tg (t) if CACDs (t) > Cth,
(2.2)

where a3 > 0 is the scale of TCs destroyed by ACDs per unit time and per unit concentra-
tion for ACDs. Adding LF defined by (2.2) to equation (2.1a) yields

dTg (t)
dt

=

⎧
⎨

⎩

a1Tg (t) ln
(

a2
Tg (t)

)
, if CACDs (t) ≤ Cth,

a1Tg (t) ln
(

a2
Tg (t)

)
+ a3 (CACDs (t) – Cth)Tg (t) , if CACDs (t) > Cth.

(2.3)

By introducing a discrete-valued function (DVF) α (t) :
[
0, tf
]→ {0, 1}, equation (2.3) be-

comes

dTg (t)
dt

= a1Tg (t) ln

(
a2

Tg (t)

)
+ (1 – α (t))a3 (CACDs (t) – Cth)Tg (t) , (2.4)

with the hard inequality constraint (HIC)

α (t) (CACDs (t) – Cth) + (1 – α (t)) (–CACDs (t) + Cth) ≤ 0, t ∈ [0, tf
]

. (2.5)

Remark 2.1 Equations (2.3) and (2.4) with HIC (2.5) are equivalent. To illustrate this, as-
sume that α (t) = 1 for any t ∈ [0, tf

]
. Then, equation (2.4) with HIC (2.5) becomes equa-

tion (2.1a) with the HIC

CACDs (t) ≤ Cth, t ∈ [0, tf
]

. (2.6)

Namely, if the inequality (2.6) is met, then equation (2.1a) is activated. Further, suppose
that α (t) = 0 for any t ∈ [0, tf

]
. Then, equation (2.4) with HIC (2.5) becomes

dTg (t)
dt

= a1Tg (t) ln

(
a2

Tg (t)

)
+ a3 (CACDs (t) – Cth)Tg (t) , (2.7)

with the HIC

CACDs (t) > Cth, t ∈ [0, tf
]

. (2.8)

Namely, if the inequality (2.8) is met, then equation (2.7) is activated. Similarly, for any t ∈
[
0, tf
]
, if CACDs (t) ≤ Cth is met, then from HIC (2.5), it follows that α (t) = 1 and equation

(2.4) becomes equation (2.1a). Further, for any t ∈ [0, tf
]
, if CACDs (t) > Cth is met, then

from HIC (2.5), it follows that α (t) = 0 and equation (2.4) becomes equation (2.7).
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Figure 1 A model illustrating pharmacokinetics for CP (t) and CACDs (t)

2.1.2 Dynamic model for pharmacokinetics
Despite being necessary to make a distinction between the concentration of plasma and
active ACDs, research workers usually suppose that ACDs are directly given to the TL
in available dynamic models. To avoid this unnecessary simplification, the dynamic con-
nection is taken into account between the dynamic behavior for administered ACDs and
their concentration shape. As illustrated by Fig. 1, a model is designed for describing the
dynamic connection utilizing a compartment for ACDs. This is the so-called effect com-
partment (EC). In Fig. 1, CP (t) represents the concentration for ACDs, u (t) presents the
delivery rate (DR) of ACDs via intravenous injection; VPC and VEC are the distribution
volume for the plasma compartment (PC) and the EC, respectively; b1 is the attachment
process for the PC and the compartment of anti-cancer drug activity; b2 presents other
elimination approaches from the PC than b1; and b3 denotes the elimination process of
ACDs from the EC. From the mass balance of the PC, it can be derived that

dCP (t)
dt

= – (b1 + b2)CP (t) +
1

VPC
u (t) , (2.9)

CP (0) = 0. (2.10)

If ACDs reach the EC from the PC, then they are eliminated from the EC and the dynamic
is modeled as

dCACDs (t)
dt

= b1
VPC

VEC
CP (t) – b3CACDs (t) , (2.11)

CACDs (0) = 0. (2.12)

2.1.3 Dynamic model for WBCs
In clinical practice, the number of WBCs is a significant index, which can be utilized de-
termine the degree of damage induced by ACDs to the body. Assume that NWBCs (t) is the
number for WBCs. Following that, the dynamic for WBCs is characterized as follows [61]:

dNWBCs (t)
dt

= B (t) – b4NWBCs (t) – b5NWBCs (t)CP (t) , (2.13)

NWBCs (0) = N0, (2.14)

where B (t) denotes the natural production rate of WBCs; b4NWBCs (t) presents the nat-
ural elimination process of WBCs; b5NWBCs (t)CP (t) is the elimination process of WBCs
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induced by ACDs; b4 and b5 are two constants; and N0 is the number of WBCs at initial
time t = 0.

2.2 Constraints
Chemotherapy is a systemic therapy method. The toxicity for ACDs is usually defined
utilizing their concentration and exposure time. As a result, ACDs must be administrated
to guarantee that patients can tolerate their harmful side effects.

2.2.1 Constraint on the concentration of ACDs
The concentration CACDs (t) of ACDs at the TL must have an upper bound Cmax

ACDs:

0 ≤ CACDs (t) ≤ Cmax
ACDs, t ∈ [0, tf

]
, (2.15)

where Cmax
ACDs > 0 is a given constant. However, HIC (2.15) is usually not strictly met due to

the existence of various stochastic disturbances (SDs). To this end, HIC (2.15) is further
written as an HIC and an uncertain inequality constraint (UIC):

CACDs (t) ≥ 0, t ∈ [0, tf
]

, (2.16)

P
{

CACDs (t) – Cmax
ACDs + δ1 ≤ 0

}≥ β1, t ∈ [0, tf
]

, (2.17)

where δ1 ⊂ � ⊂ R is a random variable (RV); � is a measurable set (MS); the probabil-
ity density function (PDF) of δ1 is QPDF (δ1); P {·} is the probability; and β1 ∈ [0, 1] is an
acceptable level.

2.2.2 Constraint on the toxicity of ACDs
The total accumulative toxicity (TAT) of ACDs can be described by an integral for the
concentration of ACDs over a given period of time [61]. The TAT of ACDs usually must
have an upper bound Ctotal

ACDs:

∫ tf

0
CACDs (t)dt ≤ Ctotal

ACDs, (2.18)

where Ctotal
ACDs > 0 is a given constant. Different from the standard inequality constraint

(SIC), HIC (2.18) is an integral inequality. To handle HIC (2.18), an equation is provided
as follows:

dr (t)
dt

= CACDs (t) , (2.19)

with the initial condition

r (0) = 0, (2.20)

and the HIC

r
(
tf
)≤ Ctotal

ACDs. (2.21)

Obviously, constraint (2.18) and equation (2.19), together with (2.20)–(2.21), are equiva-
lent.
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2.2.3 Constraint on WBCs
If ACDs are injected into the human body, then both NCs and TCs may be killed. Further,
the number of WBCs will fall to a lower level. To maintain patients in a good condition, the
number for WBCs must be in an acceptable range. To this end, a lower bound constraint
(LBC) of NWBCs (t) is introduced as follows:

NWBCs (t) ≥ Nmin
WBCs, t ∈ [0, tf

]
, (2.22)

where Nmin
WBCs is a given constants. However, LBC (2.22) is often not strictly met due to the

existence of various SDs. Then, LBC (2.22) is further written as an UIC:

P
{

Nmin
WBCs – NWBCs (t) + δ2 ≤ 0

}≥ β2, t ∈ [0, tf
]

, (2.23)

where δ2 ⊂ � ⊂ R is an RV; the PDF of δ2 is QPDF (δ2); and β2 ∈ [0, 1] is an acceptable level.

2.2.4 Constraint on TS
Chemotherapy failure is considered to be significantly influenced by drug resistance [61].
The research shows that drug-resistant cells are more inclined to occur when the burden
of tumors rises [62]. An approach to obtain a low intermediate burden of tumors is to
oblige TS to reduce at a predetermined rate. Then, a constraint is introduced by

Tg (tl) ≤ a4Tg (tl–1) , l = 1, 2, . . . , M1, (2.24)

where a4 ∈ [0, 1] is a given constant and tl , l = 1, 2, . . . , M1 are prespecified times satisfying
0 = t0 < t1 < · · · < tM1–1 < tM1 = tf .

2.2.5 Constraint on the DR of ACDs
If the DR of ACDs is too fast, it may cause various adverse reactions in patients. Then, an
upper bound constraint (UBC) is needed for the DR u (t) of ACDs:

0 ≤ u (t) ≤ umax, t ∈ [0, tf
]

, (2.25)

where umax represents the maximum allowed DR of ACDs.

Remark 2.2 For convenience, the RVs δi, i = 1, 2 are defined on the same MS � ⊂ R, their
PDF QPDF (·) are also the same, and the uncertainty is not considered in HICs (2.21), (2.24),
and (2.25). However, the methods proposed in remaining sections can be directly used for
problems, in which δi, i = 1, 2 are defined on different measurable sets (MSs) with differ-
ent PDFs and HICs (2.21), (2.24), and (2.25) are written as UICs by considering various
uncertainties.

2.3 Optimal ACDA scheme
Notice that α (t) ∈ {0, 1} in equation (2.4) is utilized to determine whether the concentra-
tion of ACDs exceeds a prespecified threshold Cth. Namely, α (t) is also needs to be op-
timized. Following that, our key target is to select a DR u (t) ∈ R and a DVF α (t) ∈ {0, 1}
to minimize the final TCN Tg

(
tf
)

governed by the dynamical systems (DSs) (2.4), (2.9),
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(2.11), (2.13), (2.19) with the initial conditions (2.1b), (2.10), (2.12), (2.14), (2.20), the HICs
(2.5), (2.16), (2.21), (2.24), (2.25), and the UICs (2.17), (2.23), where tf is a prespecified
terminal time. For convenience, one can refer to this problem as Problem 2.1.

2.4 Problem formulation
Let z1 (t) = Tg (t), z2 (t) = Cp (t), z3 (t) = CACDs (t), z4 (t) = NWBCs (t), and z5 (t) = r (t).
Then, Problem 2.1 is equivalently written as an UCDOP with a CVDF u (t) ∈ [0, umax]

and a DVDF α (t) ∈ {0, 1}:

Problem 2.2 For a dynamic system

dz (t)
dt

= g (z (t) , u (t) ,α (t)) , (2.26)

z (0) = z0, (2.27)

find a CVDF u (t) ∈ [0, umax] and a DVDF α (t) ∈ {0, 1} to minimize the performance index
function (PIF)

f (u (t) ,α (t)) = z1
(
tf
)

, (2.28)

governed by HICs

α (t) (z3 (t) – Cth) + (1 – α (t)) (–z3 (t) + Cth) ≤ 0, t ∈ [0, tf
]

, (2.29)

–z3 (t) ≤ 0, t ∈ [0, tf
]

, (2.30)

z5
(
tf
)

– Ctotal
ACDs ≤ 0, (2.31)

z1 (tl) – a4z1 (tl–1) ≤ 0, l = 1, 2, . . . , M1, (2.32)

and UICs

P
{

z3 (t) – Cmax
ACDs + δ1 ≤ 0

}≥ β1, t ∈ [0, tf
]

, (2.33)

P
{

Nmin
WBCs – z4 (t) + δ2 ≤ 0

}≥ β2, t ∈ [0, tf
]

, (2.34)

where z (t) = [z1 (t) , z2 (t) , z3 (t) , z4 (t) , z5 (t)]T and z0 =
[
T0

g , 0, 0, N0, 0
]T

.

2.5 Challenges for Problem 2.2
TNPSs, such as SD [57] and L-BFGS [58], are proposed for a continuous-value problem,
which implies that these methods cannot be directly utilized to solve Problem 2.2 because
there are both the CVDF u (t) ∈ [0, umax] and the DVDF α (t) ∈ {0, 1}. Problem 2.2 is tricky
because UICs usually do not have accurate analytical expressions and cannot be dealt with
directly. Besides, in some cases, the distribution of δi, i = 1, 2 may not be known and only
their samples can be utilized. The feasible domain (FD) for Problem 2.2 may be noncon-
vex even though the functions in UICs (2.33)–(2.34) are linear, which indicates that Prob-
lem 2.2 may have numerous LOSs. This will bring a lot of difficulties to obtaining GOSs
to Problem 2.2.
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2.6 Key target of this paper
An RT is introduced for Problem 2.2 such that the ROP only has CVDFs. To avoid directly
handling UICs (2.33)–(2.34), an ISAS is designed for UICs (2.33)–(2.34). To obtain GOSs
to the approximation optimization problem (AOP), an HOM is designed in this paper.

3 Solution approach
In this section, an RT for the DVDF α (t) ∈ {0, 1} and an ISAS with the Monte Carlo
method for UICs (2.33)–(2.34) will be proposed to attain a deterministic approximation
problem (i.e., a infinite-dimensional constrained dynamic optimization problem (IDC-
DOP)). Further, a discretizing method will be designed for writing the resulting approxi-
mation problem as a finite-dimensional constrained dynamic optimization problem (FD-
CDOP) and the corresponding HICs will be imposed to the PIF by borrowing a penalty
function. Then, the resulting approximation problem becomes a finite-dimensional dy-
namic optimization problem (FDDOP) with simple bound constraints that can be ad-
dressed by any standard nonlinear programming solvers (SNPSs).

3.1 Relaxation for the DVDF α (t)
TNPSs, such as SD [57] and L-BFGS [58], are proposed for a continuous-value problem,
which implies that these methods cannot be directly utilized to solve Problem 2.2 because
there are both the CVDF u (t) ∈ [0, umax] and the DVDF α (t) ∈ {0, 1}. To tackle this diffi-
culty, the RT in [63] will be introduced for Problem 2.2 in this subsection.

To begin with, the value for α (t) is relaxed to [0, 1]. Then a penalty term λ
∫ tf

0 F(2α(t) –
1)2dt is augmented to PIF (2.28), where λ represents the penalty factor; F (·) : [0, 1] →
[0, +∞) is strictly monotonically decreasing; and F (1) = 0. Then, an ROP for Problem 2.2
is provided:

Problem 3.1 Given (2.26)–(2.27), find two continuous-valued decision functions
(CVDFs), u (t) ∈ [0, umax] and α (t) ∈ [0, 1], such that PIF

f̄ (u (t) ,α (t)) = z1
(
tf
)

+ λ

∫ tf

0
F (2α (t) – 1)2 dt (3.1)

is minimized, subject to HICs (2.29)–(2.32) and UICs (2.33)–(2.34).

Clearly, Problem 3.1 only has CVDFs. By utilizing a proof process similar to that of The-
orem 1 in [63], it can be derived that Problems 2.2 and 3.1 are equivalent when λ → +∞.

3.2 ISAS for UICs (2.33)–(2.34)
UICs usually do not have accurate analytical expressions and cannot be dealt with directly.
Besides, in some cases, the distribution of δi, i = 1, 2 may not be known and only their
samples can be utilized. To avoid directly handling UICs (2.33)–(2.34), an ISAS will be
designed for UICs (2.33)–(2.34) in this subsection.

Notice that z (t) is determined by u (t) ∈ [0, umax], α (t) ∈ [0, 1], and δj, j = 1, 2 as the
initial condition (2.27) is prespecified. Let m1 (u (t) ,α (t) , δ1) = z3 (t) – Cmax

ACDs + δ1 and
m2 (u (t) ,α (t) , δ2) = Nmin

WBCs – z4 (t) + δ2. Then, UICs (2.33)–(2.34) become

P
{

mj
(
u (t) ,α (t) , δj

)≤ 0
}≥ βj, t ∈ [0, tf

]
, j = 1, 2. (3.2)
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An assumption is required as follows:

Assumption 3.1 For any j ∈ {1, 2}, assume that the PDF P
{

mj
(
z (t) , δj

)≤ 0
}

is continu-
ous.

Let E (·) be the mathematical expectation. By utilizing Assumption 3.1, one has

P
{

mj
(
u (t) ,α (t) , δj

)≤ 0
}

= 1 – P
{

mj
(
u (t) ,α (t) , δj

)≥ 0
}

= 1 – E
(
L
(
mj
(
u (t) ,α (t) , δj

)))
, j = 1, 2,

(3.3)

where

L
(
mj
(
u (t) ,α (t) , δj

))
=

⎧
⎨

⎩
1, mj

(
u (t) ,α (t) , δj

)≥ 0,

0, mj
(
u (t) ,α (t) , δj

)
< 0,

j = 1, 2, (3.4)

E
(
L
(
mj
(
u (t) ,α (t) , δj

)))
=
∫

�

L
(
mj
(
u (t) ,α (t) , δj

))
QPDF

(
δj
)
dδj, j = 1, 2. (3.5)

By utilizing (3.3), (3.2) becomes

E
(
L
(
mj
(
u (t) ,α (t) , δj

)))≤ 1 – βj, t ∈ [0, tf
]

, j = 1, 2. (3.6)

Unfortunately, numerical methods are still hard for dealing with (3.6) since L(mj(u(t),
α(t), δj)m) is not differentiable at mj

(
u (t) ,α (t) , δj

)
= 0 and the integral in (3.5) may

not have an accurate analytical expression. Some approximation strategies have been
designed so as to not directly handle L

(
mj
(
u (t) ,α (t) , δj

))
, for example, the exponen-

tial function strategy (EFS) [64] and the maximum function strategy (MFS) [65]. How-
ever, these strategies are too conservative because the approximation error between
L
(
mj
(
u (t) ,α (t) , δj

))
and emj

(
u(t),α(t),δj

)
or max

{
mj
(
u (t) ,α (t) , δj

)
+ 1, 0

}
approaches in-

finity as mj
(
u (t) ,α (t) , δj

) → +∞. To further reduce the conservatism, an ISAS is de-
signed so as to not directly handle L

(
mj
(
u (t) ,α (t) , δj

))
as follows:

�(a5, w) =

⎧
⎨

⎩

2a5+4
a5+e–a5w – 1, w ≥ w0,

0, w < w0,
(3.7)

where w ∈ R is an independent variable; w0 = – 1
a5

ln (a5 + 4); and a5 is a parameter with
1 < a5 < +∞. The properties of (3.7) are provided below.

Theorem 3.1 The function �(a5, w) has three properties:
(1) For any b6 > 0, lim

a5→+∞ sup
w∈(–∞,–b6)∪[0,+∞)

|�(a5, w) – L (w)| = 0 holds, where

L (w) =

⎧
⎨

⎩
1, w ≥ 0,

0, w < 0.
(3.8)

(2) The function �(a5, w) is nonincreasing with respect to a5.
(3) For any w ∈ R, �(a5, w) ≥ L (w) holds.
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Proof (1) Because w0 < 0 and w0 → 0 as a5 → +∞, an ã5 > 1 can be found such
that w0 > –b6 for any a5 > ã5, where b6 > 0. Namely, for any a5 > ã5, one has w ∈
(–∞, –b6] ⊂ (–∞, w0). This, together with (3.7), indicates that �(a5, w) = 0 holds for any
w ∈ (–∞, –b6]. Then, lim

a5→+∞ sup
w∈(–∞,–b6)

|�(a5, w) – L (w)| = 0 is directly obtained.

For w ≥ w0, utilizing (3.7) gives

∂�(a5, w)

∂w
=

a5 (2a5 + 4) e–a5w

(a5 + e–a5w)2 > 0. (3.9)

Equality (3.9), together with �(a5, 0) > 1, indicates that �(a5, w) > 1 for w ≥ 0. Further,
for w ∈ [0, +∞) ⊂ (w0, +∞), it is true that

1 < �(a5, w) =
2a5 + 4

a5 + e–a5w – 1 =
2a5 + 4 – a5 – e–a5w

a5 + e–a5w =
a5 + 4 – e–a5w

a5 + e–a5w ≤ a5 + 4
a5

. (3.10)

Notice that w0 < 0. Then, applying the squeeze theorem to (3.10) yields lim
a5→+∞�(a5, w) = 1

for any w ∈ [0, +∞) ⊂ [w0, +∞). Further, lim
a5→+∞ sup

w∈[0,+∞)

|�(a5, w) – L (w)| = 0 is directly

obtained.
From the analysis above, it is demonstrated that for any b6 > 0,

lim
a5→+∞ sup

w∈(–∞,–b6)∪[0,+∞)

|�(a5, w) – L (w)| = 0

holds.
(2) For w < w0, �(a5, w) is obviously nonincreasing with respect to a5.
For w ≥ w0, utilizing (3.7) yields

∂�(a5, w)

∂a5
= 2

a5 + e–a5w – (1 – we–a5w) (a5 + 2)

(a5 + e–a5w)2 . (3.11)

By utilizing (1 + a5w) e–a5w ≤ 1 and we–a5w ≤ e–1, it holds that

a5 + e–a5w –
(
1 – we–a5w) (a5 + 2) = e–a5w – 2 + a5we–a5w + 2we–a5w

= (1 + a5w) e–a5w + 2
(
we–a5w – 1

)

≤ 1 + 2
(
e–1 – 1

)

< 0.

(3.12)

Applying (3.12) to (3.11) gives ∂�(a5,w)

∂a5
≤ 0 for w ≥ w0. Namely, for w ≥ w0, �(a5, w) is

nonincreasing with respect to a5.
From the discussion above, it follows that �(a5, w) is nonincreasing with respect to a5.
(3) Notice that w0 < 0. Then, for any w ∈ (–∞, w0) ⊂ (–∞, 0), �(a5, w) = L (w) = 0 holds.

For any w ∈ [w0, 0) ⊂ [w0, +∞), the inequality �(a5, w) = 2a5+4
a5+e–a5w – 1 > 0 = L (w) is easy

to verify. For w ∈ [0, +∞) ⊂ [w0, +∞), (3.10) shows that �(a5, w) > 1 = L (w). The analysis
above implies that �(a5, w) ≥ L (w) holds for any w ∈ R. □

Let D1 and D2 be the sets of u (t) and α (t) satisfying the dynamical system (2.26)–(2.27)
and HICs (2.29)–(2.32), respectively. Then, the feasible set (FS) for Problem 3.1 is defined
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by

ϒ =
{
(u (t) ,α (t)) ∈D|P

{
mj
(
u (t) ,α (t) , δj

)≤ 0
}≥ βj, t ∈ [0, tf

]
, j = 1, 2

}
, (3.13)

where D = D1 ×D2. Obviously, D is compact because D1 and D2 are compact.
Theorem 3.1 illustrates that the ISAS (3.7) converges to L (w) for w ∈ (–∞, –b6) ∪

[0, +∞). Then, an approximation problem of Problem 3.1 is presented:

Problem 3.2 For the dynamical system (2.26)–(2.27), find two CVDFs, u (t) ∈ [0, umax]

and α (t) ∈ [0, 1], such that PIF (3.1) is minimized, subject to HICs (2.29)–(2.32) and UIC

E
(
�
(
a5, mj

(
u (t) ,α (t) , δj

)))≤ 1 – βj, t ∈ [0, tf
]

, j = 1, 2. (3.14)

Further, an FS ϒa5 for Problem 3.2 is defined by

ϒa5 =
{
(u (t) ,α (t)) ∈D|E

(
�
(
a5, mj

(
u (t) ,α (t) , δj

)))≤ 1 – βj, t ∈ [0, tf
]

, j = 1, 2
}

.

(3.15)

Now, the relationship between ϒ and ϒa5 is presented below.

Theorem 3.2 The set ϒa5 converges to ϒ as a5 → +∞.

Proof To begin with, from Property (2) of �(a5, w) in Theorem 3.1, it follows that the
functions

E
(
�
(
a5, mj

(
u (t) ,α (t) , δj

)))
=
∫

�

�
(
a5, mj

(
u (t) ,α (t) , δj

))
QPDF

(
δj
)
dδj, j = 1, 2,

(3.16)

are also nonincreasing with respect to a5. Let a51 and a52 be two arbitrary constants with
a52 > a51 > 1. Utilizing (3.3), the nonincreasingness property of E(�(a5, mj(u(t),α(t), δj))),
and Property (3) of �(a5, w) in Theorem 3.1 yields

1 – E
(
�
(
a51, mj

(
u (t) ,α (t) , δj

)))
< 1 – E

(
�
(
a52, mj

(
u (t) ,α (t) , δj

)))

< P
{

mj
(
u (t) ,α (t) , δj

)≤ 0
}

, j = 1, 2.
(3.17)

Further, by utilizing (3.13), (3.15), and (3.17), it holds that

ϒa51 ⊂ ϒa52 ⊂ ϒ , for any a52 > a51 > 1, (3.18)

Thus, (3.18) indicates that

⋃

1<a5<+∞
ϒa5 ⊂ ϒ . (3.19)
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Conversely, let (u (t) ,α (t)) ⊂ ϒ and assume that {a5ι}+∞
ι=1 is a monotonically increasing

sequence satisfying lim
ι→+∞ a5ι = +∞. Because �(a5ι, w) is nonincreasing with respect to a5,

it can be derived that

�(a5ι, w) ≤ lim
ι→+∞

(
2a5ι + 4

a5ι + e–a5ιw
– 1
)

= lim
a5ι→+∞

(
2a5ι + 4

a5ι + e–a5ιw
– 1
)

≤ lim
a5ι→+∞

2a5ι + 4
a5ι

= 2.
(3.20)

Inequality (3.20) indicates that �(a5ι, w) is bounded by 2. Thus, for any j ∈ {1, 2}, utilizing
Lebesgue theorem gives

lim
ι→+∞ E

(
�
(
a5ι, mj

(
u (t) ,α (t) , δj

)))

= lim
ι→+∞

∫

�

�
(
a5ι, mj

(
u (t) ,α (t) , δj

))
QPDF

(
δj
)

dδj

=
∫

�

lim
ι→+∞�

(
a5ι, mj

(
u (t) ,α (t) , δj

))
QPDF

(
δj
)

dδj

=
∫

�

L
(
mj
(
u (t) ,α (t) , δj

))
QPDF

(
δj
)

dδj

= E
(
L
(
mj
(
u (t) ,α (t) , δj

)))

= 1 – P
{

mj
(
u (t) ,α (t) , δj

)≤ 0
}

.

(3.21)

Because {a5ι}+∞
ι=1 is arbitrary in (3.21), inequality (3.21) is true for E(�(a5, mj(u(t),α(t), δj)))

and ι → +∞. From the definition of ϒ , there is a constant a50 > 1 such that

1 – E
(
�
(
a5, mj

(
u (t) ,α (t) , δj

)))≥ βj, j = 1, 2,

for any a5 ≥ a50. Because (u (t) ,α (t)) is selected arbitrarily, it holds that

ϒ ⊂
⋃

1<a5<+∞
ϒa5 . (3.22)

From (3.19) and (3.22), it can be derived that ϒa5 converges to ϒ as a5 → +∞. □

Theorem 3.3 Suppose that Assumption 3.1 is true, {a5ι}+∞
ι=1 is a monotonically increasing

sequence satisfying lim
ι→+∞ a5ι = +∞, and {(uι,αι)}+∞

ι=1 is an LOS to Problem 3.2 with a5 = a5ι.
Then, any convergent subsequence (CSS) of {(uι,αι)}+∞

ι=1 can converge to an LOS to Prob-
lem 3.1.

Proof To begin with, since the dynamical system (2.26)–(2.27) and HICs (2.29)–(2.32)
exist in both Problems 3.1 and 3.2, the FS defined by the dynamical system (2.26)–(2.27)
and HICs (2.29)–(2.32) is compact, and {(uι,αι)}+∞

ι=1 is a sequence in this FS, the CSS of
{(uι,αι)}+∞

ι=1 does exist. Let
{(

uιi ,αιi

)}+∞
i=1 be a CSS of {(uι,αι)}+∞

ι=1 and
(
u′,α′) be a cluster

point of
{(

uιi ,αιi

)}+∞
i=1 . Because lim

a5ιi →+∞ϒa5ιi
= ϒ and

(
uιi ,αιi

) ∈ ϒa5ιi
, it can be derived that

(
u′,α′) ∈ ϒ .
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Following this, the optimality of
(
u′,α′) with respect to Problem 3.1 will be proved.

Let (u∗,α∗) be an LOS to Problem 3.1. There is a sequence
{(

u∗
ιi

,α∗
ιi

)}+∞
i=1

such that

lim
i→+∞

(
u∗

ιi
,α∗

ιi

)
= (u∗,α∗). Because of the optimality of

(
uιi ,αιi

)
with respect to Problem 3.2,

the following inequality:

f
(
uιi ,αιi

)≤ f
(

u∗
ιi

,α∗
ιi

)
(3.23)

is true. Further, from (3.23), we have

f
(
u′,α′) = lim

i→+∞ f
(
uιi ,αιi

)≤ lim
i→+∞ f

(
u∗

ιi
,α∗

ιi

)
= f
(
u∗,α∗) . (3.24)

Because (u∗,α∗) is an LOS to Problem 3.1, it holds that

f
(
u∗,α∗)≤ f

(
u′,α′) . (3.25)

Combining (3.24) and (3.25) yields f (u∗,α∗) = f
(
u′,α′). This implies that

(
u′,α′) is an LOS

to Problem 3.1. That is, any CSS of {(uι,αι)}+∞
ι=1 can converge to an LOS to Problem 3.1. □

The ISAS for UICs (2.33)–(2.34) proposed by Sect. 3.2 is referred to as an inner
smooth approximation. The advantage of ISAS is that we only need to analyze the op-
timality for the solutions to Problem 3.2 because they are all feasible solutions to Prob-
lem 3.1. Theorems 3.1–3.3 show that the solution to Problem 3.2 converges to an LOS
to Problem 3.1. However, the calculation of MDIs is needed to attain the value for
E
(
�
(
a5, mj

(
u (t) ,α (t) , δj

)))
. Numerical calculation of MDIs needs a large amount of

computation. To tackle this issue, the Monte Carlo method is utilized to compute (3.14).
For any j ∈ {1, 2}, let

{
δji
}Mδj

i=1 be a sample of RV δj, where Mδj denotes the sample scale.
Following this, UIC (3.14) can be substituted by

1
Mδj

Mδj∑

i=1

�
(
a5, mj

(
u (t) ,α (t) , δji

))≤ 1 – βj, t ∈ [0, tf
]

, j = 1, 2. (3.26)

Further, a deterministic approximation problem for Problem 3.2 is presented:

Problem 3.3 Given (2.26)–(2.27), find two CVDFs, u (t) ∈ [0, umax] and α (t) ∈ [0, 1], such
that PIF (3.1) is minimized, subject to HICs (2.29)–(2.32) and (3.26).

From the law of large numbers (LLNs), it is derived that 1
Mδj

Mδj∑

i=1
�
(
a5, mj

(
u (t) ,α (t) , δji

))

can converge with probability one to E
(
�
(
a5, mj

(
u (t) ,α (t) , δj

)))
as Mδj → +∞. Conse-

quently, the solution to Problem 3.2 can be attained from Problem 3.3 as Mδj → +∞.

Remark 3.1 The AS and the DDBS are two typical deterministic transformation strate-
gies (DTSs) for UICs. In general, the AS is only applicable to some uncertain problems
with special structures and needs calculating MDIs. The DDBS employs extracting ran-
dom samples of the RVs to approximate the uncertainty. Once the samples are attained,
the UICs can be substituted by deterministic inequality constraints (DICs). The DDBS
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neither relies on the structure of problems nor needs the computation of MDIs. How-
ever, existing data-driven based strategies (DDBSs) have two shortcomings: their conser-
vativeness is high and challenging to be adjusted; the smoothness and convergence for
the approximation problem cannot be ensured. In contrast with the existing DDBSs, the
strategy provided in Sect. 3.2 not only decreases the conservativeness but also ensures the
smoothness and convergence for the corresponding approximation problem. That is, the
proposed strategy is not only effective for problems with arbitrary structure, but also has
better performance.

3.3 Discretizing and dealing with constraints
Problem 3.3 is an IDCDOP. However, SNPSs are designed for finite-dimensional con-
strained dynamic optimization problems (FDCDOPs). Thus, SNPSs cannot be directly
utilized for Problem 3.3. To tackle this difficulty, a discretizing method will be designed
by writing Problem 3.3 as an FDCDOP. Further, the corresponding HICs will be imposed
to the PIF by borrowing a penalty function. Then, Problem 3.3 becomes an FDDOP with
simple bound constraints, which can be solved by utilizing any SNPSs.

To start with,
[
0, tf
]

is divided into M2 subintervals [τ�–1, τ�), � = 1, 2, . . . , M2 – 1 and
[
τM2–1, tf

]
by utilizing M2 + 1 nodes τ�, � = 0, 1, . . . , M2 (0 and tf are also two nodes), where

0 = τ0 < τ1 < · · · < τM2–1 < τM2 = tf . For simplicity, suppose that [τ�–1, τ�), � = 1, 2, . . . , M2 – 1
and

[
τM2–1, tf

]
have the same interval length. That is, the nodes τ� = �tf

M2
, � = 0, 1, . . . , M2

are known. Following that, the CVDF u (t) ∈ [0, umax] can be approximated by

u (t) ≈
M2∑

�=1

σ�χ� (t), (3.27)

where σ� is an approximation of u (t) ∈ [0, umax] on [τ�–1, τ�) and it is a parameter to be
optimized; if t ∈ [τ�–1, τ�), � = 1, 2, . . . , M2 – 1 or t ∈ [τM2–1, tf

]
, then χ� (t) = 1, otherwise

χ� (t) = 0. By utilizing (3.27), an approximation problem for Problem 3.3 is provided:

Problem 3.4 For the dynamical system

dz (t)
dt

= g (z (t) ,σ , θ) (3.28)

with (2.27), choose a pair (σ , θ) ∈ [0, umax]M2 × [0, 1]M2 such that the PIF

f̃ (σ , θ) = z1
(
tf
)

+ λ

∫ tf

0

M2∑

�=1

F (2θ� – 1)2χ� (t)dt (3.29)

is minimized, subject to HICs

M2∑

�=1

(θ� (z3 (t) – Cth) + (1 – θ�) (–z3 (t) + Cth))χ� (t) ≤ 0, t ∈ [0, tf
]

, (3.30)

1
Mδj

Mδj∑

i=1

�

(

a5, mj

( M2∑

�=1

σ�χ� (t),
M2∑

�=1

θ�χ� (t), δji

))

≤ 1 – βj, t ∈ [0, tf
]

, j = 1, 2,

(3.31)
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and (2.30)–(2.32), where σ =
[
σ1, . . . ,σM2

]T, θ =
[
θ1, . . . , θM2

]T, θ� is the value of α (t) ∈
[0, 1] on [τ�–1, τ�) and it is a parameter to be optimized; g (z (t) ,σ , θ) =

g
(

z (t) ,
M2∑

�=1
σ�χ� (t),

M2∑

�=1
θ�χ� (t)

)
. Theorems 4.1 and 4.2 in [66] show that any LOS to Prob-

lem 3.3 can be attained by solving Problem 3.4 as M2 → +∞.

Obviously, HICs (2.30)–(2.32) and (3.30)–(3.31) can be written as follows:

∫ tf

0
max {–z3 (t) , 0}dt = 0, (3.32)

max
{

z5
(
tf
)

– Ctotal
ACDs, 0

}
= 0, (3.33)

max {z1 (tl) – a4z1 (tl–1) , 0} = 0, l = 1, 2, . . . , M1, (3.34)
∫ tf

0
max

{ M2∑

�=1

(θ� (z3 (t) – Cth) + (1 – θ�) (–z3 (t) + Cth))χ� (t), 0

}

dt = 0, (3.35)

∫ tf

0
max

⎧
⎨

⎩
1

Mδj

Mδj∑

i=1

�

(

a5, mj

( M2∑

�=1

σ�χ� (t),
M2∑

�=1

θ�χ� (t), δji

))

– 1 + βj, 0

⎫
⎬

⎭
dt = 0,

j = 1, 2.

(3.36)

Further, a smooth function (SF) in [67] is utilized to approximate max {·, 0} as follows:

�(w, a6) =
√

w2 + 4 (a6)
2 + w

2
, (3.37)

where a6 > 0 is a smoothing parameter. Then, HICs (3.32)–(3.36) can be substituted by

∫ tf

0
�(–z3 (t) , a6)dt = 0, (3.38)

�
(
z5
(
tf
)

– Ctotal
ACDs, a6

)
= 0, (3.39)

�(z1 (tl) – a4z1 (tl–1) , a6) = 0, l = 1, 2, . . . , M1, (3.40)
∫ tf

0
�

( M2∑

�=1

(θ� (z3 (t) – Cth) + (1 – θ�) (–z3 (t) + Cth))χ� (t), a6

)

dt = 0, (3.41)

∫ tf

0
�

⎛

⎝ 1
Mδj

Mδj∑

i=1

�

(

a5, mj

( M2∑

�=1

σ�χ� (t),
M2∑

�=1

θ�χ� (t), δji

))

– 1 + βj, a6

⎞

⎠dt = 0,

j = 1, 2.

(3.42)

Following this, HICs (3.38)–(3.42) can be imposed to PIF (3.29) by borrowing the penalty
function in [68]. Thus, an FDDOP with simple bound constraints is provided:
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Problem 3.5 Given (3.28) with (2.27), find a pair (σ , θ) ∈ [0, umax]M2 × [0, 1]M2 such that
the PIF

f̂ (σ , θ)

= z1
(
tf
)

+ λ

(

�
(
z5
(
tf
)

– Ctotal
ACDs, a6

)
+

M1∑

l=1

�(z1 (tl) – a4z1 (tl–1) , a6)

)

+ λ

∫ tf

0

( M2∑

�=1

F (2θ� – 1)2 χ� (t) + �(–z3 (t) , a6)

+ �

( M2∑

�=1

(θ� (z3 (t) – Cth) + (1 – θ�) (–z3 (t) + Cth))χ� (t) , a6

)

+
2∑

j=1

�

⎛

⎝ 1
Mδj

Mδj∑

i=1

�

(

a5, mj

( M2∑

�=1

σ�χ� (t) ,
M2∑

�=1

θ�χ� (t) , δji

))

– 1 + βj, a6

⎞

⎠

⎞

⎠dt

(3.43)

is minimized.

Clearly, the PIF (3.43) is smooth and its gradient can be attained utilizing the derivation
process similar to that of Theorem 1 in [67]. Further, the LOS to Problem 3.5 can be ob-
tained by utilizing any GBMs. Additionally, Theorem 1 in [68] and Theorems 2–3 in [67]
imply that the LOS to Problem 3.4 can be attained by addressing Problem 3.5 as λ → +∞
and a6 → 0+.

Remark 3.2 For convenience, the CVDF u (t) ∈ [0, umax] is approximated by a piecewise
constant function (PCF) in (3.27). However, the CVDF u (t) ∈ [0, umax] can also be approx-
imated by

u (t) ≈
M2∑

�=1

� (σ�, t)χ� (t), (3.44)

where � (σ�, t) is a polynomial function (PF) with respect to t and it is an approximation of
u (t) ∈ [0, umax] on [τ�–1, τ�); σ� is a vector to be optimized. Further, the resulting approx-
imation problem can be solved by directly utilizing the method provided in subsequent
sections.

4 HOM for Problem 3.5
From Sects. 2–3, it follows that the optimal solution to Problem 2.1 can be attained utiliz-
ing Problem 3.5 as λ → +∞, a5 → +∞, Mδ1 → +∞, Mδ2 → +∞, M2 → +∞, and a6 → 0+.
Unfortunately, even if all functions in (2.5), (2.16), (2.21), (2.24), (2.25), (2.17), and (2.23)
are linear, Problem 3.5 may still not be convex. Normally, deterministic methods, such
as SD [57] and L-BFGS [58], easily trap in LOSs to nonconvex problems. To attain GOSs
to Problem 3.5, an HOM will be designed based on L-BFGS [58] and an NSSM, and its
convergence will also be analyzed in this section.



Wu et al. Advances in Continuous and Discrete Models          (2025) 2025:7 Page 19 of 33

Figure 2 (a) ρk,i versus k with M3 = 600, q = 15, and different s; (b) ρk,i versus k with M3 = 600, s = 0.5, and
different q

4.1 NSSM for Problem 3.5
For simplicity of notation, let y = (σ , θ) and � = [0, umax]M2 × [0, 1]M2 . After selecting a
starting point (SP) y(0) ∈ �, c1 points that make up a generation are generated by

ỹ(k+1)
i =

(
1 – ρk,i

)
y(k) + ρk,iμ

(k)
i , i = 1, 2, . . . , c1, (4.1)

with

ρk,i =
(

1 + e
k–sM3

q

)–1

, (4.2)

where μ
(k)
i is the search direction; μ(k)

i is stochastically produced and has a uniform distri-
bution (UD) in �; ρk,i is the step-size (SZ) and attained by (4.2); k and M3 are respectively
the present and maximum generation number; and q is a parameter. Notice that � is com-
pact. Then, ỹ(k+1)

i ∈ � because y(k) ∈ � and μ
(k)
i ∈ �, i = 1, 2, . . . , c1. To make sure that the

NSSM is decreasing, y(k+1) is further selected as

y(k+1) = arg min
{

f̂
(
y(k)
)

, f̂
(

ỹ(k+1)
i

)
, i = 1, 2, . . . , c1

}
. (4.3)

Namely, y(k+1) represents the best among y(k) and ỹ(k+1)
i , i = 1, . . . , c1. To ensure exploration

ability, ŷ(k+1)
j , j = 1, 2, . . . , c2 are stochastically produced and have a UD in �. Generally, c2

is selected such that c2 < c1. Further, the rule (4.3) is improved as follows:

y(k+1) = arg min
{

f̂
(
y(k)
)

, f̂
(

ỹ(k+1)
i

)
, i = 1, 2, . . . , c1, f̂

(
ŷ(k+1)

j

)
, j = 1, 2, . . . , c2

}
. (4.4)

In (4.2), s and q are two parameters with different roles. The parameter s is mainly uti-
lized to characterize the relationship between ρk,i and k, where ρk,i is the SZ and k is the
present generation number. From (4.2), one can see that if q is prespecified, then ρk,i will
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Algorithm 1 NSSM for Problem 3.5
Initialization:
Select y(0) ∈ �, c1 > 0, c2 > 0, K ∈ {1, 2, 3, . . . }, and the allowable error ε1 > 0. Set k := 0.
Iteration:
01. while k ≤ K do
02. Produce the SZ ρk,i, i = 1, . . . , c1 utilizing (4.2).
03. Compute ỹ(k+1)

i , i = 1, . . . , c1 utilizing (4.1).
04. Select ŷ(k+1)

i , i = 1, . . . , c2 stochastically in �.
05. Compute the best point y(k+1) utilizing (4.4).
06. if

∥∥
∥f̂
(
y(k+1)

)
– f̂
(
y(k)
)∥∥
∥≤ ε1 then

07. Return
08. end if
09. Set k := k + 1.
10. end while
11. Output y(k) and f̂

(
y(k)
)
.

change with respect to s, k, and M3. Further, Fig. 2(a) intuitively illustrates that the larger
the s, the more divergent the points obtained utilizing (4.1). The parameter q mainly af-
fects the accuracy for the attained solution. Figure 2(b) intuitively demonstrates that if q is
small, then ρk,i is large at an earlier iteration stage (IS) but is small at the later IS. In general,
q is prespecified as a constant related to ε, where ε is the allowable error of algorithms.
For example, one can prespecify q as 2 log10

1
ε

.
Any stochastic search method (SSM) possesses two features, exploration and exploita-

tion. Exploration aims to search globally, while exploitation aims to search locally. At an
earlier IS, ρk,i is large. The present points ỹ(k)

1 , . . . , ỹ(k)
c1 , together with ŷ(k)

1 , . . . , ŷ(k)
c2 , will ex-

plore the feasible domain of problems. As the generation number k grows, ρk,i will become
smaller. At this point, ỹ(k)

1 , . . . , ỹ(k)
c1 are mainly responsible for exploitation, while ŷ(k)

1 , . . . , ŷ(k)
c2

are mainly responsible for exploration. In addition, NSSM is a descent method because the
best point among ỹ(k)

1 , . . . , ỹ(k)
c1 and ŷ(k)

1 , . . . , ŷ(k)
c2 is preserved at every iteration.

Utilizing the above analysis, NSSM can be stated as follows in Algorithm 1.

Remark 4.1 The update strategies in most existing SSMs, such as PSO [50], BSA [51],
and AFSA [52], are more complex than the update strategy (4.1) in NSSM. Additionally,
the parameters in NSSM can be specified in advance. These contribute to improve the
performance of NSSM.

4.2 HOM for Problem 3.5
Many experiments show that NSSM is excellent in exploration, but not good at exploita-
tion. To modify the exploitation of NSSM, an HOM is designed for Problem 3.5 by em-
bedding L-BFGS [58] into NSSM. This method can be stated as follows in Algorithm 2.

Remark 4.2 In HOM, NSSM is utilized to attain a good LOS y(k). Following this, L-BFGS
[58] is utilized to refine the local search (LS) near y(k). To escape from the present LOS,
NSSM is utilized to attain a better SP for L-BFGS [58] to be run again. One needs to re-
peat the process until the convergence of HOM is realized. To escape from immoderate LS,
the allowable error ε1 in L-BFGS [58] is not taken too small. However, in certain practical
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Algorithm 2 HOM for Problem 3.5
Initialization:
Select y(0) ∈ �, K ∈ {1, 2, 3, . . . }, the allowable error ε2 > 0, and a constant RGC0 randomly
generated in [0, 1]. Set k := 1.
Iteration:
01. while k ≤ K do
02. Randomly attain a constant RGC ∈ [0, 1].
03. if RGC > RGC0 then
04. Implement NSSM and attain y(k).
05. else
06. Set v(k) := y(k)

07. end if
08. Let v(k) be the SP and implement L-BFGS [58], attain y(k).
09. if

∥∥∥f̂
(
y(k+1)

)
– f̂
(
y(k)
)∥∥∥≤ ε2 then

10. Return
11. end if
12. Set k := k + 1.
13. end while
14. end while
15. Output y(k) and f̂

(
y(k)
)
.

problems, a high-precision solution is needed. Therefore, to improve accuracy while keep-
ing low computational cost, NSSM is triggered utilizing a constant RGC. If RGC ≤ RGC0,
NSSM is overlooked and L-BFGS [58] is activated.

4.3 Convergence
This section will provide the convergence for HOM in Sect. 4.

4.3.1 Convergence for NSSM
Two assumptions are required as follows:

Assumption 4.1 The function f̂
(
y
)

is continuously differentiable with respect to y.

Assumption 4.2 lim
y∈�

f̂
(
y
)

> –∞.

Assume that
{

y(k)
}+∞

k=1 is a sequence attained utilizing NSSM. From (4.4), one can derive
that NSSM is a descent method. This and Assumption 4.2 indicate that lim

k→+∞
f̂
(
y(k)
)

exists.

Definition 4.1 Assume that
{

y(k)
}+∞

k=1 is a sequence attained utilizing NSSM and y∗ is a
global optimal solution (GOS) to Problem 3.5. If

lim
k→+∞

P
{

f̂
(
y(k)
)

= f̂
(
y∗)
}

= 1, (4.5)

then NSSM is globally convergent.
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Theorem 4.1 Let
{

y(k)
}+∞

k=1 be a sequence attained utilizing NSSM and y∗ is a GOS to
Problem 3.5. Then (4.5) is true iff for any ε2 > 0 and ζ > 0,

lim
k→+∞

P
{
γ
(
y(k),�ε2

)≥ ζ
}

= 0 (4.6)

holds, where γ
(
y(k),�ε2

)
= inf

y∈�ε2

∥∥y – y(k)
∥∥ and �ε2 =

{
y ∈ � :

∥
∥∥f̂
(
y
)

– f̂
(
y∗)
∥
∥∥≤ ε2

}
.

Proof Since f̂
(
y(k)
) ≥ f̂

(
y(k+1)

) ≥ f̂
(
y∗), it holds that γ

(
y(k),�ε2

) ≥ γ
(
y(k+1),�ε2

) ≥ 0.
This implies that lim

k→+∞
γ
(
y(k),�ε2

)
exists. Further, lim

k→+∞
f̂
(
y(k)
)

= f̂
(
y∗) is true iff

lim
k→+∞

γ
(
y(k),�ε2

)
= 0

holds for any ε2 > 0. Thus, (4.5) is true iff for any ε2 > 0 and ζ > 0, (4.6) holds. □

Theorem 4.2 NSSM is globally convergent.

Proof From Definition 4.1 and Theorem 4.1, one only needs to establish that

lim
k→+∞

P
{
γ
(
y(k),�ε2

)≥ ζ
}

= 0

holds for any ε2 > 0 and ζ > 0.
From Assumption 4.1, f̂

(
y
)

is continuously differentiable with respect to y in �. Then,
f̂
(
y
)

is a uniformly continuous function. Therefore, there is a ζ̃ > 0 such that if
∥
∥y – ȳ

∥
∥≤ ζ̃

for any ȳ ∈ �, then one has
∣
∣∣f̂
(
y
)

– f̂
(
ȳ
)∣∣∣ ≤ ε2

2 . Specifically, if
∥
∥y – y∗∥∥ ≤ ζ̃ , one has

∣
∣∣f̂
(
y
)

– f̂
(
y∗)
∣
∣∣ ≤ ε2

2 . Define Gζ̃

(
y∗) =

{
y ∈ � :

∥∥y – y∗∥∥≤ ζ̃
}

. If y(k) /∈ Gζ̃

(
y∗), y(k) ∈ �,

and y(k+1) ∈ Gζ̃

(
y∗), then there is a ȳ ∈

c1⋃

i=1
ỹ(k+1)

i

c2⋃

j=1
ŷ(k+1)

j such that ȳ ∈ Gζ̃

(
y∗), where

ỹ(k+1)
i , i = 1, 2, . . . , c1 and ŷ(k+1)

j , j = 1, 2, . . . , c2 are provided in NSSM. Notice that ỹ(k+1)
i ,

i = 1, 2, . . . , c1 and ŷ(k+1)
j , j = 1, 2, . . . , c2 are stochastically produced and have a UD in �.

Further, because ŷ(k+1)
1 and y(k) are mutually independent, it holds that

P
{

y(k+1) ∈ Gζ̃

(
y∗)∣∣ y(k) /∈ Gζ̃

(
y∗) , y(k) ∈ �

}

≥ P
{

ŷ(k+1)
1 ∈ Gζ̃

(
y∗)
∣
∣∣ y(k) /∈ Gζ̃

(
y∗) , y(k) ∈ �

}

= P
{

ŷ(k+1)
1 ∈ Gζ̃

(
y∗)
}

=
D
(
Gζ̃

(
y∗))

D (�)
.

(4.7)

where D
(
Gζ̃

(
y∗)) and D (�) are the volume for Gζ̃

(
y∗) and �, respectively.

Define

η(k) =

⎧
⎨

⎩
1, if f̂

(
y(k)
)

– f̂
(
y(k–1)

)≥ ε2
2 ,

0, if f̂
(
y(k)
)

– f̂
(
y(k–1)

)
< ε2

2 .
(4.8)
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Let K =
⌊

2
(

f̂
(

y(0)
)

–f̂
(
y∗))

ε2

⌋
+ 1. Here, �· denotes the floor function. Now, if

k∑

i=1
η(i) ≥ K, then

y(k) ∈ �ε2 . Namely, if y(k) /∈ �ε2 , then
k∑

i=1
η(i) < K.

If ŷ(k)
1 ∈ Gζ̃

(
y∗), then f̂

(
ŷ(k)

1

)
– f̂
(
y∗) ≤ ε2

2 . Additionally, from y(k–1) /∈ Gζ̃

(
y∗), one has

f̂
(

ŷ(k–1)
1

)
– f̂
(
y∗)≥ ε2. Let ϑ = P

{
ŷ(k)

1 ∈ Gζ̃

(
y∗)
}

. Then, it holds that

P
{
η(k) = 1

∣
∣ y(k–1) ∈ �, y(k–1) /∈ �ε2

}

= P
{

f̂
(
y(k)
)

– f̂
(
y(k–1)

)≥ ε2

2

∣
∣∣ y(k–1) ∈ �, y(k–1) /∈ �ε2

}

≥ P
{

ŷ(k)
1 ∈ Gζ̃

(
y∗)
}

= ϑ .

(4.9)

Namely,

P
{
η(k) = 0

∣
∣ y(k–1) ∈ �, y(k–1) /∈ �ε2

}≤ 1 – ϑ . (4.10)

Similar to the proof provided in [69], for any ζ > 0, it holds that

P
{
γ
(
y(k),�ε2

)≥ ζ
}

= P
{
γ
(
y(k),�ε2

)≥ ζ
∣∣ y(i) ∈ �, y(i) /∈ �ε2 , i = 1, 2, . . . , k – 1

}

≤ P
{

y(k) /∈ �ε2

∣∣ y(i) ∈ �, y(i) /∈ �ε2 , i = 1, 2, . . . , k – 1
}

≤ P

{ k∑

i=1

η(i) < K

∣
∣∣
∣∣
y(i) ∈ �, y(i) /∈ �ε2 , i = 1, 2, . . . , k – 1

}

≤
K–1∑

i=0

(
k – 1

i

)
(1 – ϑ)((k–1)–i) .

(4.11)

Let � > 0 be a constant such that

� ≥ (1 – ϑ)–i . (4.12)

Suppose that k̂ = k – 1 >
4
(

f̂
(

y(0)
)

–f̂
(
y∗))

ε2
+ 2 = 2ς . Then, it holds that

P
{
γ
(
y(k),�ε2

)≥ ζ
}≤

K–1∑

i=0

(
k̂
i

)
(1 – ϑ)k̂ � ≤ (ς + 1)

(
k̂
i

)
(1 – ϑ)k̂ �

≤ (ς + 1) k̂ς�

ς !
(1 – ϑ)k̂ .

(4.13)

Applying lim
k̂→+∞

k̂ς (1 – ϑ)k̂ = 0 to (4.13) yields lim
k→+∞

P
{
γ
(
y(k),�ε2

)≥ ζ
}

= 0 for any ε2 > 0

and ζ > 0. Thus, NSSM is globally convergent. □

4.3.2 Convergence for HOM
Theorem 4.3 HOM is globally convergent.
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Proof In HOM, NSSM is utilized to attain a good LOS y(k). Then, L-BFGS [58] is utilized
to refine the local search (LS) near y(k). To escape from the present LOS, NSSM is utilized
to attain a better SP for L-BFGS [58] to be run again. One needs to repeat the process
until the convergence of HOM is realized. Further, the result is easily obtained utilizing
the local convergence for L-BFGS [58] and the global convergence of NSSM. □

5 Numerical experiments
This section will presents some numerical experiments to illustrate the effectiveness of
the approach developed in Sects. 2–4.

5.1 Parameter and simulation results
The parameters are provided as follows:

a1 = 0.003 day–1, a2 = 1 × 1012, T0
g = 5 × 1010, a3 = 10 day–1 L g–1,

Cth = 3 μg mL–1, b1 = 0.02 day–1, b2 = 0.48 day–1, b3 = 0.2 day–1, VPC = 20 L,

VEC = 3 L, B = 800 mm–3 day–1, b4 = 0.1 day–1, b5 = 50 g–1 L day–1,

N0 = 8000 mm–3, Cmax
ACDs = 10 μg mL–1, Ctotal

ACDs = 500 μg mL–1,

Nmin
WBCs = 2000 mm–3, M1 = 3, tl =

ltf

4
, l = 0, 1, 2, 3, a4 = 0.5,

umax = 0.3 g day–1, tf = 60 days, β1 = β2 = 0.95,

δ1 ∼ N (0, 0.0001) , δ2 ∼ N (0, 0.0001) , Mδj = 1000, j = 1, 2.

The DR u(t) is approximated by

u (t) ≈
M2∑

�=1

� (σ�, t)χ� (t),

where � (σ�, t) = σ�0 + σ�1t + σ�2t2 + σ�3t3, σ� = [σ�0,σ�1,σ�2,σ�3]T, and M2 = 300. Follow-
ing this, the HOM in Sect. 4.2 is utilized for Problem 2.1. The final TCN is Tg

(
tf
)

=
5.3922 × 106. The trajectories of Tg (t), CACDs (t), CP (t), NWBCs (t), and u (t) are given
in Figs. 3–4. Now, utilizing obtained data for CACDs (t), NWBCs (t), and Tg (t) yields that
∫ tf

0 CACDs (t)dt = 426.3507 ≤ Ctotal
ACDs = 500, Tg (t1) = 1.2683 × 1010 ≤ a4Tg (t0) = 2.5 × 1010,

Tg (t2) = 5.0196 × 108 ≤ a4Tg (t1) = 6.3415 × 109, and Tg (t3) = 6.0835 × 106 ≤ a4Tg (t2) =
2.5098 × 108. These results and Figs. 3–5 show that the HICs CACDs (t) ≥ 0, 0 ≤ u (t) ≤
umax, and α (t) (CACDs (t) – Cth) + (1 – α (t)) (–CACDs (t) + Cth) ≤ 0, t ∈ [0, tf

]
are clearly

met strictly. Further, the violation for UICs (2.17) and (2.23) is defined by

� =
∫ tf

0

∣
∣max

{
β1 – P

{
CACDs (t) – Cmax

ACDs + δ1 ≤ 0
}

, 0
}∣∣dt

+
∫ tf

0

∣∣max
{
β2 – P

{
Nmin

WBCs – NWBCs (t) + δ2 ≤ 0
}

, 0
}∣∣dt.

(5.1)

Now, utilizing the obtained data for CACDs (t) and NWBCs (t) yields that � = 0. This indi-
cates that UICs (2.17) and (2.23) are also met strictly and the effectiveness of the ISAS in



Wu et al. Advances in Continuous and Discrete Models          (2025) 2025:7 Page 25 of 33

Figure 3 The trajectories of Tg (t), CACDs (t), CP (t), and NWBCs (t)

Figure 4 The trajectory of u(t)

Sect. 3.2 can be ensured. Further, the above numerical results indicate that the proposed
method for Problem 2.1 is effective.

5.2 Comparison results
To illustrate the performance of the HOM, 18 test functions with 30 dimensions from
IEEE CEC 2010 [70] are utilized for testing its effectiveness. Then, the HOM is compared
with other three methods: PSO [50], BSA [51], and AFSA [52]. Moreover, each approach is
ranked using a statistical analysis based on the Friedman’s test. The results are presented
in Tables 1 and 2. Here MD and SD denote the mean and standard deviation for the results
over 60 runs, respectively; “–”, “≈”, and “+” denote that the chosen approach has inferior,
equal, and superior performance than the HOM, respectively. Table 1 shows that the HOM
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Figure 5 The HIC: α (t) (CACDs (t) – Cth) + (1 – α (t)) (–CACDs (t) + Cth) ≤ 0, t ∈ [0, tf ]

Table 1 Results of the HOM and other approaches on eighteen test functions with 30 dimensions
from IEEE CEC 2010 [70]

Ap-
proaches

PSO [50] BSA [51] AFSA [52] HOM in Sect. 4.2
MD (SD) MD (SD) MD (SD) MD (SD)

C01 –8.03e–01 (3.18e–04) ≈ –8.03e–01 (8.77e–04) ≈ –8.02e–01 (3.13e–03) ≈ 8.02e–01 (2.32e–03)
C02 –2.16e+00 (2.78e–03) – –1.98e+00 (7.48e–02) – –2.18e+00 (3.42e–02) – –2.21e+00 (1.19e–02)
C03 6.54e+01 (4.17e+02) – 7.68e+01 (6.18e+01) – 2.01e+01 (1.28e+01) – 0.00e+00 (0.00e+00)
C04 1.94e–03 (1.57e–03) – 1.65e–03 (1.12e–03) – –3.26e-06 (6.78e–12) + 3.65e–06 (1.05e–05)
C05 –4.27e+02 (2.45e+01) – –4.72e+02 (1.69e+00) – –4.73e+02 (1.49e–01) ≈ –4.74e+02 (6.49e–02)
C06 –4.45e+02 (4.69e+01) – –5.19e+02 (4.70e–01) ≈ –5.17e+02 (1.43e+00) – –5.20e+02 (7.83e–02)
C07 1.04e+00 (1.57e+00) – 1.56e–01 (7.81e–01) – 0.00e+00 (0.00e+00) ≈ 0.00e+00 (0.00e+00)
C08 1.61e+00 (6.28e–01) – 1.12e+01 (2.73e+01) – 0.00e+00 (0.00e+00) ≈ 0.00e+00 (0.00e+00)
C09 1.53e+00 (1.92e+00) – 2.80e+00 (1.40e–01) – 8.79e+00 (2.27e–01) – 3.44e–01 (1.19e+00)
C10 1.74e+01 (1.84e+01) – 3.22e+01 (1.38e+01) – 3.06e+01 (1.68e–05) – 2.37e+00 (8.19e+00)
C11 –1.55e-04 (4.57e–05) – –3.788e–04 (1.11e–05) – –3.84e–04 (3.04e–10) ≈ –3.84e-04 (1.26e–08)
C12 4.20e–06 (4.42e–04) – –1.94e-01 (2.34e–03) – –1.95e–01 (1.20e–06) ≈ –1.95e-01 (9.35e–06)
C13 –6.48e+01 (2.22e–01) – –4.94e+01 (1.15e+00) – –6.59e+01 (1.56e+00) ≈ –6.73e+01 (1.13e+00)
C14 8.50e–07 (3.07e–01) – 4.68e–01 (1.29e+00) – 0.00e+00 (0.00e+00) ≈ 0.00e+00 (0.00e+00)
C15 3.34e+01 (3.74e+01) – 2.33e+01 (2.45e+01) – 2.13e+01 (1.12e+00) – 2.43e+00 (6.73e+00)
C16 8.04e–02 (1.09e–01) – 0.00e+00 (0.00e+00) ≈ 0.00e+00 (0.00e+00) ≈ 0.00e+00 (0.00e+00)
C17 3.53e+00 (2.48e+00) – 9.46e–01 (1.69e+00) – 4.39e–02 (1.18e–01) – 2.64e–03 (9.14e–03)
C18 3.93e+01 (1.47e+01) – 8.89e–17 (3.11e–16) ≈ 2.96e–06 (1.26e–05) – 5.01e–32 (7.08e–32)
– 17 14 8 /
≈ 1 4 9 /
+ 0 0 1 /

outperforms PSO [50], BSA [51], and AFSA [52] on 17, 14, and 8 test functions, whereas
AFSA [52] outperforms the HOM on merely one test function. In particular, PSO [50] and
BSA [51] cannot beat the HOM on any test function. Additionally, Table 2 indicates that
the HOM scores the best among the five methods. To sum up, the above results imply that,
compared with PSO [50], BSA [51], and AFSA [52], the HOM has better performance.

To further validate the performance for the proposed method, numerical results for
it and other methods are analyzed utilizing a comparative research method. Notice that
Problem 3.5 is essentially a nonlinear programming (NP) problem. Thus, it can be solved
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Table 2 The average Friedman ranking values of four approaches on 18 test functions with 30
dimensions from IEEE CEC 2010 [70]

Approaches Ranking

HOM in Sect. 4.2 1.5249
AFSA [52] 2.5316
BSA [51] 3.8250
PSO [50] 4.0547

Table 3 Numerical results for different NP solvers

NP solvers Mean of time (s) Standard error
of time (s)

Mean of � Standard error
of �

Mean of Tg(tf ) Standard
deviation of Tg(tf )

L-BFGS [58] 45.3632 0.0000 1.5778 0.0000 8.4523× 106 0.0000
PSO [50] 459.6180 4.9350× 10–6 0.0000 0.0000 7.2982× 106 2.9957× 10–3

BSA [51] 434.7051 1.6523× 10–6 0.0000 0.0000 7.1996× 106 2.3801× 10–3

AFSA [52] 419.8503 1.1078× 10–6 0.0000 0.0000 7.0273× 106 1.7285× 10–3

NSSM in Sect. 4.1 317.5426 6.4575× 10–7 0.0000 0.0000 6.1751× 106 1.0856× 10–3

HOM in Sect. 4.2 181.4529 1.3861× 10–7 0.0000 0.0000 5.3922× 106 2.8997× 10–4

Table 4 Numerical results for different methods for handling UICs

Methods � Tg(tf )

BA [31] 0.0000 8.7020× 106

CVaR [32] 0.0000 8.2950× 106

SM [30] 0.0000 7.3326× 106

ISAS in Sect. 3.2 0.0000 5.3922× 106

utilizing various NP solvers, such as L-BFGS [58], PSO [50], BSA [51], and AFSA [52]. For
numerical results of SSMs, statistical analysis is usually required. For this, all solvers are
run independently over 100 times and numerical results for different NP solvers are pro-
vided in Table 3. Compared with PSO [50], BSA [51], and AFSA [52], NSSM in Sect. 4.1
can attain better solutions because the update strategy (4.1) is simpler. Although utiliz-
ing NSSM in Sect. 4.1 independently can attain relatively high-quality solutions, the cal-
culating cost is high. The calculating cost of utilizing L-BFGS [58] independently is low,
but it easily traps in the LOS. However, HOM in Sect. 4.2 can achieve high-quality solu-
tions with lower calculating cost, which indicates that HOM in Sect. 4.2 can fully lever-
age the advantages for NSSM in Sect. 4.1 and L-BFGS [58]. Additionally, BA [31], CVaR
[32], and SM [30] can also be utilized for handling UICs (2.17) and (2.23). BA [31] is an
approximation-based method, in which the estimation for (3.4) is attained by utilizing an
exponential function. In CVaR [32], a conservative convex function is substituted for (3.4)
in the calculation of P

{
CACDs (t) – Cmax

ACDs + δ1 ≤ 0
}

and P
{

Nmin
WBCs – NWBCs (t) + δ2 ≤ 0

}
. SM

[30] utilizes some sample constraints for RVs to replace UICs (2.17) and (2.23). Thus, the
conservativeness for BA [31], CVaR [32], and SM [30] is high and challenging to be regu-
lated. From Table 4, one can see that the ISAS in Sect. 3.2 can achieve much better results
than BA [31], CVaR [32], and SM [30]. This illustrates that the ISAS in Sect. 3.2 has a lower
conservativeness compared with BA [31], CVaR [32], and SM [30].

5.3 Evaluation for ISAS
In this subsection, a simulation will be utilized to evaluate the quality of the ISAS in
Sect. 3.2 for approximating UICs (2.33)–(2.34).



Wu et al. Advances in Continuous and Discrete Models          (2025) 2025:7 Page 28 of 33

Figure 6 The cumulative average optimal value T ′
g of the M

′ =M′
δ1

=M′
δ2

= 20000 deterministic

approximation problems and the optimal value T∗
g of Problem 2.1 utilizing the ISAS in Sect. 3.2 for

approximating UICs (2.33)–(2.34)

To begin with, the simulation process is briefly presented. For any j ∈ {1, 2}, the approach
utilizes M′

δj
samples of RV δj attained from its PDF as possible implementations in ap-

plication. For simplicity, assume that M′ = M′
δ1

= M′
δ2

. Then, M′ deterministic approx-
imation problems are addressed. In every deterministic approximation problem, UICs
(2.33)–(2.34) are removed utilizing a sample. The average optimal value T ′

g of Tg
(
tf
)

for these approximation problems is preserved and compared to the optimal value T∗
g

of Tg
(
tf
)

attained by solving Problem 2.1 utilizing the ISAS in Sect. 3.2 for approximat-
ing UICs (2.33)–(2.34). The difference between T ′

g and T∗
g can be utilized for describing

the quality of the ISAS in Sect. 3.2 for approximating UICs (2.33)–(2.34). Generally, the
smaller the difference in values of T ′

g and T∗
g , the better the approximate quality of the

ISAS in Sect. 3.2 for UICs (2.33)–(2.34).
Particularly, for any j ∈ {1, 2}, M′ = M′

δ1
= M′

δ2
= 20000 implementations with the sample

scale Mδ1 = Mδ2 = 60000 of the RV δj are produced from N (0, 0.0001). For any j ∈ {1, 2},
every δji, i = 1, 2, . . . , Mδj = M′ is utilized for obtaining a deterministic approximation prob-
lem. The M′ = M′

δ1
= M′

δ2
deterministic approximation problems are addressed individu-

ally and the average optimal value T ′
g of these approximation problems is 5.3916 × 106,

which approaches T∗
g = 5.3922 × 106. Further, the cumulative average optimal value T ′

g

of the M′ = M′
δ1

= M′
δ2

deterministic approximation problems and the optimal value T∗
g

of Problem 2.1 utilizing the ISAS in Sect. 3.2 for approximating UICs (2.33)–(2.34) are
provided in Fig. 6, from which it follows that even though the true values for the RVs δj,
j = 1, 2 are utilized, the corresponding optimal value of Tg(tf ) is very close to that achieved
utilizing the method proposed in Sects. 2–4.

5.4 Stability and robustness for HOM
To verify the stability and robustness for the HOM in Sect. 4.2, numerical results of Monte
Carlo simulation with 30 samples of RVs δj, j = 1, 2 are given in Figs. 7–9. Clearly, the pro-
files for Tg (t), CACDs (t), CP (t), NWBCs (t), and u(t) in Figs. 7–8 are similar to the ones
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Figure 7 The profiles of Tg (t), CACDs (t), CP (t), and NWBCs (t) involving 30 samples

Figure 8 The profiles of u (t) involving 30 samples

for Tg (t), CACDs (t), CP (t), NWBCs (t), and u(t) in Figs. 3–4. Utilizing obtained data for
CACDs (t), NWBCs (t), and Tg (t) yields that the ranges of

∫ tf
0 CACDs (t)dt, Tg (t1), Tg (t2), and

Tg (t3) are [423.8146, 429.1270],
[
1.1523 × 1010, 1.3112 × 1010], [4.9035 × 108, 5.1062 ×

108], and
[
5.8329 × 106, 6.2703 × 106], respectively. Clearly,

∫ tf
0 CACDs (t)dt ≤ Ctotal

ACDs =
500, Tg (t1) ≤ a4Tg (t0) = 2.5 × 1010, Tg (t2) ≤ a4Tg (t1) = 6.3415 × 109, and Tg (t3) ≤
a4Tg (t2) = 2.5098×108. These results and Figs. 7–9 show that the HICs CACDs (t) ≥ 0, 0 ≤
u (t) ≤ umax, and α (t) (CACDs (t) – Cth) + (1 – α (t)) (–CACDs (t) + Cth) ≤ 0, t ∈ [0, tf

]
are

clearly met strictly. Following that, utilizing the obtained data for CACDs (t) and NWBCs (t)
yields that the violation � = 0 for UICs (2.17) and (2.23). This indicates that UICs (2.17)
and (2.23) are also met strictly and the effectiveness of the ISAS in Sect. 3.2 can be ensured.
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Figure 9 The profile of the HIC: α (t) (CACDs (t) – Cth) + (1 – α (t)) (–CACDs (t) + Cth) ≤ 0, t ∈ [0, tf ] involving
30 samples

Table 5 Calculating cost analysis for HOM in Sect. 4.2

Values of ε2 1.0000× 10–3 1.0000× 10–4 1.0000× 10–5 1.0000× 10–6 1.0000× 10–7 1.0000× 10–8

Tg (tf ) 5.6885× 106 5.5034× 106 5.3922× 106 5.3841× 106 5.3784× 106 5.3675× 106

Times (s) 172.1520 177.3943 181.4529 1582.0055 2609.2521 6461.5749

Thus, from the above numerical results, it follows that the HOM in Sect. 4.2 is stable and
robust.

5.5 Calculating cost analysis for HOM
The calculating cost analysis for HOM in Sect. 4.2 will be provided in this subsection. The
total calculating cost of Problem 2.1 utilizing the HOM in Sect. 4.2 mainly involves two
aspects: the functions needed to be evaluated and the time needed for the calculation of
NP solvers. If M2 + 1 nodes are used and � (σ�, t) is a PF with degree nPF in (3.44), then the
number of CVDFs is O ((nPF + 2))M2). The number of the functions needed to be eval-
uated is O (M2). Compared to the functions needed to be evaluated, the calculating cost
needed for the NP solvers is higher. Additionally, the calculation process is sensitive with
respect to the allowable error ε2. Then, a calculating cost analysis is conducted and the
simulation results are provided in Table 5. Clearly, the calculating cost monotonically in-
creases as ε2 decreases. Obtaining a more accurate ACDA scheme may lead to a significant
impact with respect to the calculating cost. To balance the calculating cost and precision,
this paper sets ε2 to 1.0000 × 10–5.

6 Conclusion
This paper proposes a UCDO model to describe the ACDA problem in cancer treatment
under stochastic disturbances. First, the UCDO problem is modeled as a deterministic ap-
proximation problem based on an RT and and ISAS, in which a vector parameterization
strategy and equation/inequality constraint dealing with method are integrated. Follow-
ing that, an HOM, which fully utilizes the advantages of L-BFGS and NSSM, is proposed
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to address this deterministic approximation problem globally and efficiently and its global
convergence results are established. Finally, experimental results show that the proposed
HOM can achieve a higher quality solution with a lower calculating cost and lower conser-
vativeness than existing approaches for solving ACDA problem in cancer treatment under
stochastic disturbances. In the future, we will continue to study the ACDA problem with
more complex uncertain constraints in cancer treatment.
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