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Abstract

Background: The COVID-19 pandemic has had a profound global impact. This study
aims to assess the impact of lifting COVID-19 restrictions on the transmission
dynamics of influenza across various countries, investigating how the timing of these
policy changes influences influenza outbreaks and public health responses.

Methods: We used daily COVID-19 case data and weekly influenza case data to
estimate the effective reproduction number (Rt) for both diseases before and after
reopening. Additionally, we conducted counterfactual analyzes using Seasonal ARIMA
models to predict influenza positivity rates.

Results: Lifting COVID-19 restrictions led to COVID-19 transmission increase, but
postponed the outbreak of influenza. Countries were categorized based on the
timing of easing restrictions relative to the influenza season: near the influenza peak
(China, UK), outside the season (USA, South Africa), and without clear seasonality
(Singapore, Indonesia). For the first group, reopening delayed the influenza peak; for
the second, the impact on peak duration was minimal; for the third, lifting restrictions
led to a rapid but controlled outbreak. Specifically in China, the influenza peak was
delayed by 10 weeks and the peak infection rate was 10.4% higher following the
reopening.

Conclusion: The findings underscore the complex interplay between COVID-19 and
influenza transmission and highlight the divergent impacts of reopening measures
on infectious diseases, indicating that the timing of policy measures is crucial for
mitigating influenza outbreaks. Then insights gained can enhance resource allocation
and offer a new perspective for public health.

Keywords: Influenza Transmission; Effective Reproduction Number; Counterfactual
Scenario; Lifting COVID-19 Restrictions

1 Background
Since December 2019, the coronavirus disease (COVID-19) has rapidly disseminated
worldwide, which is distinguished by its rapid transmission, extensive infectivity, and
formidable challenges in terms of prevention and control, thereby imposing substantial
burdens on the public healthcare systems of diverse nations [1–5]. Due to the lack of
effective pharmaceutical interventions specifically targeting the novel virus, various na-
tions adopted non-pharmaceutical interventions (NPIs) to mitigate the transmission of
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COVID-19 [6–9]. Influenza is a seasonal respiratory infectious disease that poses a sig-
nificant risk to public health worldwide. Albeit the vaccinations, the disease continues to
present a substantial burden, contributing to annual cases and mortality on a global scale
[10, 11].

Due to the emergence of various COVID-19 variants, characterized by reduced patho-
genicity and enhanced transmissibility, alongside significant economic repercussions and
public waning patience, governments worldwide adopted strategies of easing epidemic
control measures. This action involves aiming for coexistence with COVID-19 and pur-
suing herd immunity through a combination of vaccination campaigns and natural infec-
tion. Subsequent to the easing of epidemic control measures, there has been a notable rise
in both the incidence and fatality rates of viral infections [12–15]. However, it is notable
that the variants exhibit a lower-case fatality rate compared to earlier strains. Studying the
dynamics of epidemic propagation is an effective approach to controlling the spread of in-
fectious diseases. The COVID-19 pandemic has had unexpected impacts on respiratory
diseases [16–21], with some being suppressed while others experience resurgence during
off-seasons. Among these, the influence of the pandemic on influenza has been particu-
larly notable. Due to the control measures implemented for COVID-19, the transmission
of influenza viruses has significantly decreased, indicating that public health interven-
tions have effectively suppressed the spread of influenza [22]. Research suggests that the
SARS-CoV-2 virus and influenza viruses may interact in certain contexts, such as through
competition for host resources or by influencing immune responses [23]. These dynamic
changes have added complexity to the medical response to the pandemic.

However, there has been insufficient attention to the scale and severity of post-lockdown
outbreaks in various countries. This may be attributed to a relaxation in public attitudes
towards COVID-19 and inadequate reporting [24]. We specifically focus on the impact of
the timing of epidemic restrictions lifting on influenza transmission, a perspective that has
been less explored in previous studies on complex networks. Additionally, our research is
based on real-world data regarding influenza and COVID-19 infection rates, allowing for
concrete empirical analysis, whereas complex network models often rely on assumptions
and simulations [25–27]. The impact of ending NPIs on COVID-19 and influenza remains
uncertain, despite the economic recovery observed after lifting restrictions. Therefore,
characterizing the transmissibility of COVID-19 and influenza following the lifting of re-
strictions requires a comprehensive analysis. Given the public health imperative in light
of these circumstances, Burki et al. concluded that the variant after lifting restrictions is
roughly 60% more transmissible than the variant during the lockdown period in England
[28]. On the other hand, the magnitude of behavioral responses following sudden repeals
of lockdown measures may be smaller than anticipated by policymakers [29]. A difference-
in-differences design and linear fixed-effects regressions were developed to estimate the
effect of lifting COVID-19 restrictions. The analysis yielded a conclusion that lifting re-
strictions has the potential to engender a surge in demand for certain primary healthcare
services [30].

Given the disparities in geography, climate, and public health policies across different
countries, the transmission patterns of SARS-CoV-2 and influenza exhibit distinct char-
acteristics in various national contexts. To capture these divergent propagation dynamics
and their reciprocal interactions, a data-driven model to estimate the effective reproduc-
tion number (Rt) of COVID-19 and influenza after lifting COVID-19 restrictions has been
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introduced as a key metric. Furthermore, counterfactual analyzes have been conducted to
explore the impact of reopening measures on influenza, both in the absence of the COVID-
19 pandemic and under the continued presence of the SARS-CoV-2 virus. In this study,
countries are classified into three representative groups based on the alignment between
influenza transmission patterns and national reopening policies over time. This study is
the first to employ a country grouping approach to compare the transmission dynamics
of COVID-19 and influenza, thereby filling a gap in the existing literature. The selected
countries are China, the United States, and Singapore. As for China, on January 23, 2020,
Wuhan implemented a city-wide lockdown in response to the COVID-19 outbreak [31].
Subsequently, various provinces across China swiftly conducted NPIs to enforce strict dis-
ease control measures. As a result of these concerted efforts, the epidemic was effectively
controlled, leading to the complete lifting of restrictions on December 8, 2022. The Amer-
ican government implemented NPIs starting on March 13, 2020, and the measures were
then lifted on April 1, 2021. In April 2020, there was a sharp increase in COVID-19 cases
among foreign workers residing in dormitories in Singapore, which prompted the Singa-
porean government to conduct a comprehensive nationwide lockdown policy [32]. After
two months, the containment strategy transitioned to a “suppression strategy”, which was
subsequently implemented until April 26, 2022, when a complete lifting of restrictions
occurred.

Timely evaluation of the transmission trends of COVID-19 and influenza is crucial for
controlling pandemic disasters. Adopting an approach of grouping countries, this study
examines the transmission dynamics of COVID-19 and influenza in each representative
group. The findings highlight the varying impacts of reopening measures on the trans-
mission dynamics of COVID-19 and influenza across different national contexts. After
reopening, the transmission of infectious diseases is likely to rebound, leading to a rapid
increase in cases and new outbreaks that put strain on healthcare systems. Thus, eval-
uating the effects of reopening on influenza transmission can yield valuable insights for
resource allocation and the formulation of public health policies in the post-pandemic
landscape. Integrating lessons learned about the indirect effects of COVID-19 policies on
respiratory disease patterns can strengthen preparedness and resilience in the face of fu-
ture public health emergencies. Our findings inform public health decision-making and
the design of tailored intervention strategies to mitigate the burden of both emerging and
recurrent infectious diseases.

2 Materials and methods
2.1 Source of data
Due to the varying timelines of lifting restriction measures across countries, this study
revolves around the lifting restriction date as a reference point and focuses on the daily
new infection data for a period of six months before and after the lifting. The data utilized
in this study was sourced exclusively from official government websites of the respective
countries. Regarding China, the influenza-like illness (ILI) surveillance data was publicly
released by the National Influenza Surveillance Network in mainland China, covering the
period from December 5, 2016, to June 18, 2023 [33]. For the US, the national sentinel
surveillance data on ILI was obtained from the Centers for Disease Control and Preven-
tion (CDC) website, covering the time range from March 13, 2017, to October 10, 2021
[34]. In the case of Singapore, the ILI data was retrieved from the Ministry of Health’s offi-
cial website (MOH), specifically spanning from February 6, 2017, to October 30, 2022 [35].
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For the United Kingdom, the data about ILI was obtained from the UK Health Security
Agency (UKHSA) website, with a period from July 19, 2021, to September 4, 2022 [36].
Lastly, the influenza data for South Africa and Indonesia were sourced from the Global
Influenza Surveillance and Response System (GISRS) of the World Health Organization
(WHO), encompassing the time range from March 23, 2020, to April 11, 2021, and from
June 20, 2022, to July 9, 2023 [37]. Public health and clinical laboratories in each country
report the total number of respiratory specimens tested for influenza and the number of
individuals testing positive for the influenza virus to the government on a weekly basis.
In the case of Singapore, the data provided includes the average daily number of patients
seeking treatment in polyclinics for Acute Respiratory Infection (ARI) and the proportion
of patients with ILI among polyclinic attendances for ARI. To obtain the weekly number
of individuals testing positive for influenza virus, these two measures were multiplied to-
gether. We can estimate the number of daily influenza cases by multiplying the daily ILI
counts by the proportion of ARI patients testing positive for influenza [38].

We also considered the daily new COVID-19 cases from the publicly available data set on
the website Our World in Data [39]. It is widely acknowledged that the SARS-CoV-2 virus
responsible for COVID-19 undergoes genetic changes over time, resulting in the emer-
gence of new variants. Due to variations in the timing of lifting restrictions across different
countries, the study periods differ, thereby contributing to variations in the prevalence of
specific variants within the respective study periods. Specifically, within the correspond-
ing study periods, the Delta variant (B.1.617.2) was prevalent in the US, while the Omicron
variant (B.1.1.529) was identified in China, Singapore, the UK and Indonesia, and the Beta
variant (B.1.351) was observed in South Africa.

2.2 Estimation of the reproduction number (Rt)
The reproduction number, denoted as Rt , is a fundamental epidemiological metric used
to quantify the average number of secondary cases generated by a typical case of an infec-
tious disease in a completely susceptible population [40]. It characterizes the transmission
dynamics of a disease within a population.

We built a Bayesian frame described in the previous studies [41, 42] to calculate the
effective reproduction number. It is assumed that individuals exhibit an infectivity pro-
file after infection characterized by a probability distribution ws. Rt can be defined as the
quotient of the number of new infections generated at time step t, It , and the total infec-
tiousness of individuals who are infected at time t, �t , the cumulative infection incidence

up to time step t – 1, weighted by the infectivity function ws, with �t =
t∑

s=1

It–sws. Gener-

ation time (GT), which refers to the time interval between the infection of an individual
(the primary case) and the subsequent infection of another individual (the secondary case)
by the primary case is typically approximated by serial interval (SI) [43]. The function ws

corresponds to the distribution function of SI, where SI can be defined as the time inter-
val between the onset of symptoms in the primary case and the subsequent appearance of
symptoms in the secondary case. In the context of fitting the SI distribution, the gamma
distribution is commonly selected as the preferred distribution type.
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We assume that the occurrence of new cases follows a Poisson distribution, with mean
Rt�t . Therefore, the likelihood of It is

P(It|I0, . . . , It–1, w, Rt) =
(Rt�t)It e–Rt�t

It !
, (1)

where It denotes the daily count of newly reported cases. However, the estimation of Rt us-
ing this approach is characterized by high volatility and substantial uncertainty. To address
this issue, a time window is defined, where the transmissibility is assumed to be constant
within the interval [t –τ + 1, t]. Within this specified time frame, the reproduction number
is denoted as Rt,τ . The likelihood of the incidence during this time period It–τ+1, . . . , It is

P(It–τ+1, . . . , It|I0, . . . , It–τ , w, Rt,τ ) =
t∏

s=t–τ+1

(Rt,τ�s)Is e–Rt,τ �s

Is!
. (2)

The prior distribution of Rt,τ is specified as a gamma distribution with parameters (a, b).
Within the Bayesian framework, the posterior joint distribution of Rt,τ is derived as

P(It–τ+1, . . . , It , Rt,τ |I0, . . . , It–τ , w)

= P(It–τ+1, . . . , It|I0, . . . , It–τ , w, Rt,τ )P(Rt,τ )

= (
t∏

s=t–τ+1

(Rt,τ�s)Is e–Rt,τ �s

Is!
)(

Ra–1
t,τ e– Rt,τ

b

�(a)ba )

∝ R

a+

t∑

s=t–τ+1

Is – 1

t,τ e
–Rt,τ (

t∑

s=t–τ+1

�s +
1
b

) t∏

s=t–τ+1

�s
Is

Is!

. (3)

Therefore, the posterior distribution of Rt,τ is a gamma distribution with parameters⎛

⎜⎜⎜⎜⎝
a +

t∑

s=t–τ+1

Is,
1

1
b +

t∑

s=t–τ+1

�s

⎞

⎟⎟⎟⎟⎠
. In our computational analysis, we implemented the serial

interval distributions for various variants, including Beta, Alpha, Omicron, and the in-
fluenza virus. The serial interval of each virus is assumed to follow a gamma distribution,
with a mean of 4 days and a standard deviation of 3 days for the Beta variant [44], a mean of
4.7 days and a standard deviation of 2.9 days for the Delta variant [45], a mean of 3.5 days
and a standard deviation of 2.4 days for the Omicron variant [46], and a mean of 3.6 days
and a standard deviation of 1.4 days for influenza [47]. For influenza surveillance data, due
to the fluctuations in the number of samples collected weekly, with potentially only single-
digit samples in a given week, we perform a 4-week moving average smoothing to address
this challenge. (shown in Fig. 1) As shown in Fig. 2, we perform 7-day moving average for
COVID-19 data. All statistical computations were performed using the ‘EpiEstim’ package
of R-software version 4.2.1.

2.3 Time series models
In the context of short-term epidemic forecasting, ARIMA models have been extensively
applied [48–50]. An ARIMA model consists of three main components: the autoregressive
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Figure 1 The original data and moving average of influenza across countries. a. China. b. the United
Kingdom. c. the United States. d. South Africa. e. Singapore. f. Indonesia

Figure 2 The original data and moving average of COVID-19 across countries. a. China. b. the United
Kingdom. c. the United States. d. South Africa. e. Singapore. f. Indonesia

(AR) part, the integrated (I) part, and the moving average (MA) part. Given the seasonal
nature of influenza, we employ a seasonal ARIMA (SARIMA[p,d,q][P,D,Q]s) model for the
forecasting task. In a SARIMA(p,d,q)(P,D,Q)s model, the parameters p, d, and q represent
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the order of the AR, the degree of differencing, and the order of the MA, respectively. The
parameters P, D, Q, and s denote the order of the seasonal AR, the order of seasonal dif-
ferencing, the order of the seasonal MA, and the length of the seasonal cycle, respectively.
The steps involved in applying a SARIMA(p,d,q)(P,D,Q)s approach are as follows:

a) Identification: an approach to identify which type of ARIMA model is appropriate for
the data is addressed. We need to consider whether the time series is stationary by using
the augmented Dickey–Fuller test. If the time series is non-stationary, 1-time difference
and 1-time seasonal difference should be applied. When stationarity has been achieved, we
can examine the patterns in the autocorrelation function (ACF) and partial ACF (PACF)
plots to specify the appropriate ARIMA model structure, including the order of the AR
and MA components, as well as any necessary seasonal terms.

b) Parameter selection: d and D are based on differencing, while initial guesses for p,
q, P, and Q can be determined based on patterns in the ACF and PACF plots. Subse-
quently, other values can be tested and monitored with Akaike’s Information Criterion
(AIC). Models with the smallest AIC are usually the best. Additionally, the Ljung-Box test
is used to conclude whether the series is white noise. With a P-value of <0.05, the hypothe-
ses of independence are all rejected.

c) Forecasting: we use seasonal ARIMA models and the three-year pre-pandemic data
from each country to estimate the weekly influenza positivity rates in a counterfactual
scenario without the COVID-19 outbreak and associated containment measures, covering
the period from the onset of the pandemic until six months after reopening. Additionally,
we use seasonal ARIMA models and the data from each country during the COVID-19
period to estimate the weekly influenza positivity rates in a counterfactual scenario with
the continued presence of the COVID-19 pandemic, also covering the six months after
reopening. Descriptive statistics, time-series analyzes and figure plotting were conducted
using R-software version 4.2.1.

3 Results
3.1 Transmissibility of COVID-19 before and after lifting of restrictions
The effective reproduction number (Rt) of COVID-19 in China, the United States, and
Singapore was reported by using maximum likelihood estimation and Bayesian poste-
rior inference based on daily incidence data, covering a period of 6 months before and
6 months after the lifting of restrictions in each country. In China, the nationwide lifting
occurred on December 8, 2022, as shown in Fig. 3a, while the United States relaxed lock-
down measures on April 2, 2020, with the corresponding Rt values depicted in Fig. 3b. In
Singapore, restrictions were lifted on April 26, 2022, with Rt values shown in Fig. 3c for
the same six-month periods.

Following the discovery of the first case of COVID-19 in China on December 31, 2019,
the Chinese government implemented rigorous control measures. These measures were
adjusted based on the severity of the epidemic in different provinces. For instance, in the
case of the severe outbreak in Wuhan at the beginning of 2020, the first-level (highest)
emergency response, i.e., a city-wide lockdown policy, was implemented. As a result of
these stringent measures, the transmission of COVID-19 in China remained effectively
controlled until the complete lifting of restrictions. Rt remained in the vicinity of 1, fluc-
tuating within a narrow range.

The government announced the lifting of restrictions on December 8, 2022 (t = 193).
In contrast to other countries, China maintained stringent control measures throughout
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Figure 3 The effective reproduction number data of COVID-19 in a period of 6 months before and 6 months
after the lifting of restrictions. a. China. b. the United States. c. Singapore. The horizontal blue dashed line
represents the threshold value Rt = 1. The vertical green dashed line indicates the designated time frame for
lifting restrictions. The red-shaded area represents the 95% confidence interval

the two-year period of the COVID-19 pandemic, resulting in a significant reduction in
inter-provincial population mobility. Despite a high national vaccination rate of 91.6%,
the densely populated nature of the country, coupled with the majority of individuals be-
ing susceptible due to first-time infections and the weakened immune response against
the virus, led to a rapid increase in COVID-19 transmission following the lifting of re-
strictions. The value of Rt reached its peak at 2.74 on December 14, 2022 (t = 199), and
subsequently declined rapidly to below 1 after January 5, 2023 (t = 221).

Several factors contributed to this situation. Firstly, the virus had undergone several mu-
tations, resulting in reduced virulence and a significant decrease in fatality rates compared
to earlier stages of the pandemic. Therefore, many infected individuals chose to self-isolate
at home rather than seek medical treatment in hospitals. Secondly, daily mandatory nu-
cleic acid amplification testing (NAAT) was discontinued at this stage, making it more
challenging to quantify the number of asymptomatic infections. These factors collectively
contributed to the potential underestimation of the true extent of COVID-19 transmis-
sion.

In the case of the US, it is evident that Rt exhibits a gradual reduction on the left side
of the gray dashed line. This decline persisted until February 23, 2021 (t = 156), when
it reached its minimum value of 0.82. Subsequently, Rt fluctuated around 0.9, indicating
successful control of the number of cases and deaths. Following the complete relaxation
of restrictions, within the initial 100 days, Rt fluctuated around 1. However, on July 13,
2021 (t = 298), it rose to 1.52. This increase can be attributed to the policy proposed by
the United States government on July 9, 2021, advocating for the resumption of in-person
instruction [51]. Besides, the emergence of the Delta variant in the United States dur-
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ing July 2021 was a significant development in the pandemic. This novel viral strain pos-
sessed heightened transmissibility characteristics as well as an increased ability to evade
immune responses. As a result, the appearance of the Delta variant triggered a fresh wave
of elevated infection rates, leading to a renewed infection peak across the country. Subse-
quently, on July 28, 2021, the CDC issued recommendations on masking in public indoor
settings to mitigate the spread of the Delta variant [52]. Consequently, Rt gradually de-
clined below 1, indicative of the situation being brought under control.

For Singapore, it can be observed that the values of Rt initially remained below 1, disre-
garding the periods when Rt exceeded 1 due to the inaccuracy of the starting and ending
segments. However, towards the end of 2021, with the incursion of the Omicron variant
[53], despite the implementation of stringent containment measures by the Singaporean
government, transmission continued to escalate. It reached its peak on January 27, 2022
(t = 109) with an Rt value of 1.54. Subsequently, relying on NPIs and robust healthcare
support from the government, Rt gradually declined to levels below 1. On April 26, 2022,
the Singaporean government made the decision to lift restrictions comprehensively. Fol-
lowing the lifting of restrictions, Rt exhibited a gradual increase, reaching 1.11 on May 19,
2022 (t = 221), before being brought under control and decreasing below 1. On June 21,
2022 (t = 254), there was a rise in BA.4 and BA.5 subvariant cases [54], resulting in a rapid
rise in Rt . It reached a localized peak of 1.20 on June 30, 2022 (t = 263), after which Rt

fluctuated around 1. On October 14, 2022 (t = 369), Rt reached its peak value of 1.26 since
the lifting of restrictions. The Singapore Ministry of Health announced the tightening of
safe management measures for in-person visits to hospitals and residential care homes
from October 14, 2022, to November 10, 2022, aligning with the intensified spread of the
disease during that period [55].

Overall, Rt trends reflect the complex interplay of control measures, viral mutations,
and public health responses across these countries, illustrating how reopening policies
influenced COVID-19 dynamics. Correspondingly, the impact of the lifting of restrictions
on influenza is detailed in the Supporting Information Appendix A.

3.2 Comparative analysis of COVID-19 and influenza transmission dynamics in
the context of lifting pandemic restrictions

The countries were categorized into three groups based on whether the timing of lifting
COVID-19 restrictions coincided with the seasonal influenza period. Countries where the
lifting of restrictions occurred around the influenza season, represented by China and
the United Kingdom; countries where the lifting took place outside the typical influenza
season, represented by the United States and South Africa; and countries situated in the
tropics without a well-defined influenza season, represented by Singapore and Indonesia.
This section first conducts a comparative assessment of the effective reproduction number
(Rt) of COVID-19 across the three country groups during the 6-month periods before and
the 6-month periods after lifting pandemic restrictions. It then performs a comparative
evaluation of influenza Rt dynamics within the same time frame and country groupings.
Finally, the characteristics of COVID-19 and influenza transmission trends within each
group after lifting restrictions, as well as the impact of the post-restriction COVID-19
dynamics on influenza transmission are examined in detail.
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Figure 4 The effective reproduction number of COVID-19 across countries. a. China. b. the United Kingdom.
c. the United States. d. South Africa. e. Singapore. f. Indonesia. The horizontal blue dashed line represents the
threshold value Rt = 1. The vertical green dashed line indicates the designated time frame for lifting
restrictions in different countries. The red-shaded area represents the 95% confidence interval

3.2.1 Comparison of the transmissibility of COVID-19 across countries
Due to significant differences in climate, policy frameworks, economic development and
medical levels across countries, the transmission rates of COVID-19 before and after re-
opening have varied considerably between nations. The COVID-19 control policies of
China have become highly refined after two years of implementation, and even with the
introduction of new variants, the effective reproduction number (Rt) has remained be-
low 1.1. After lifting restrictions, the Rt quickly rose to 2.74, leading to rapid nationwide
spread, but then rapidly decreased to below 1, as shown in Fig. 4a. The United Kingdom
government’s strategy was to manage COVID-19 and achieve herd immunity through in-
fection. After experiencing three waves of the pandemic, the UK lifted the lockdown and
other preventive measures on February 24, 2022 (t = 193). As shown in Fig. 4b, the Rt

began a precipitous ascent commencing December 13, 2021 (t = 120), peaking at 1.34 on
December 16, 2021 (t = 123), before subsiding below 1 on January 7, 2022 (t = 145). This
fluctuation was attributed to the incursion of the Omicron variant from South Africa in
December 2021, which caused a record-breaking surge in cases. The post-reopening era
in the UK witnessed a substantial amplification of COVID-19 transmission, as evinced by
the Rt exceeding 1 on March 2, 2022 (t = 199) and culminating in a peak of 1.28 on March
10, 2022 (t = 207) before receding below 1 on March 27, 2022 (t = 224). However, the Rt

rose above 1 again starting June 2, 2022 (t = 291), peaking at 1.28 on June 9, 2022 (t = 298),
before declining to below 1 on July 11, 2022 (t = 330). This resurgence was attributed to
the emergence of the new Omicron subvariants BA.4 and BA.5 in June 2022, which ex-
hibited heightened transmissibility and immune evasion capabilities. Although the UK
government implemented supplementary social distancing measures to curtail dissemi-
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nation, the effects were limited until BA.4 and BA.5 became the dominant strains and the
outbreak was eventually brought under control.

As depicted in Fig. 4c, the epidemiological trajectory in the United States exhibited grad-
ual subsidence of the pandemic prior to reopening measures. The post-reopening period
witnessed a modest resurgence in transmission, which was swiftly contained. However,
the subsequent incursion of the Delta variant, coupled with the resumption of in-person
instruction, facilitated a widespread dissemination of COVID-19 across the nation. On
March 15, 2020, the President of South Africa declared a state of national calamity, initi-
ating a series of containment measures, such as suspending educational institutions and
enforcing limited restrictions on selected sea and land entry points to combat the COVID-
19 pandemic. South Africa experienced its first peak of COVID-19 cases from June to
mid-July 2020 (t = 71 – 115), as depicted in Fig. 4d, with Rt fluctuating around 1.20.
Subsequently, the situation gradually came under control, and the spreading decreased.
The South African government announced the lifting of restrictions on October 1, 2020
(t = 193). However, due to the dominant emergence of the 501Y.V2 variant, the country
entered its second wave of the pandemic, as declared by the South African Department of
Health in December 2020. Rt reached its peak at 1.27 on December 8, 2020 (t = 271), and
began to decline below 1 from January 22, 2021 (t = 306), fluctuating around 0.8, which
indicates that the second wave of the pandemic was subsequently brought under control.

As depicted in Fig. 4e, the incursion of the Omicron variant precipitated a substantial
surge in COVID-19 transmission within Singapore, even as the government implemented
stringent lockdown and restriction policies. Despite these measures, the spread continued
to escalate. However, following the lifting of restrictions, while COVID-19 transmission
did expand to a certain degree, it was quickly brought under control. Subsequent to this,
the invasion of the BA.4 and BA.5 variants triggered a renewed wave of COVID-19 inten-
sification in Singapore. Figure 4f illustrates the changes in the Rt values for Indonesia dur-
ing the six months preceding and following the reopening. Commencing in late October
2022, the infiltration of the BA.4 and BA.5 variants precipitated widespread COVID-19
transmission within Indonesia, with the Rt value peaking at 1.21 on November 8, 2022
(t = 142). This was followed by a gradual decline, dropping below 1 after November 30,
2022 (t = 164). The Indonesian government announced the reopening on December 30,
2022 (t = 194), after which the Rt values exhibited a slow but steady increase, surpassing
1 on March 5, 2023 (t = 259). It subsequently fluctuated around 1.2 until it fell back below
1 after May 16, 2023 (t = 331), signalling the effective control of the pandemic spread.

As evident in Fig. 4, all the countries displayed an increase in COVID-19 transmission
during the six months following the relaxation of public health measures, in contrast to
the preceding six-month period. This phenomenon was likely driven by the relaxation of
pandemic prevention and control measures, which increased mobility and social interac-
tions among the populace, thereby providing greater opportunities for virus transmission
and exposure. Moreover, the prolonged implementation of restrictive policies and NPIs
has led to a decline in population-level immunity. When the intensity of control measures
was diminished, the proportion of susceptible individuals increased, enabling the virus
to spread more rapidly. The trends observed in the US and South Africa exhibited cer-
tain similarities, wherein the epidemic was gradually brought under control prior to the
reopening, followed by a limited resurgence of transmission after the easing of restric-
tions, which was then quickly contained. In contrast, the epidemiological dynamics of
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Figure 5 The effective reproduction number of COVID-19 and influenza across countries. a. Rt of COVID-19 in
China. b. Rt of influenza in China. c. Rt of COVID-19 in the United Kingdom. d. Rt of influenza in the United
Kingdom. e. Rt of COVID-19 in the United States. f. Rt of influenza in the United States. g. Rt of COVID-19 in
South Africa. h. Rt of influenza in South Africa. i. Rt of COVID-19 in Singapore. j. Rt of influenza in Singapore. k.
Rt of COVID-19 in Indonesia. l. Rt of influenza in Indonesia. The horizontal blue dashed line represents the
threshold value Rt = 1. The vertical green dashed line indicates the designated time frame for lifting
restrictions. The red-shaded area represents the 95% confidence interval

Singapore and Indonesia were somewhat analogous, characterized by a surge in COVID-
19 spread driven by the incursion of new variants prior to the reopening phase, which
was subsequently brought under control. However, the post-reopening period witnessed
a more pronounced increase in virus transmission in these countries, though the regional
peak values were slightly higher in the US and Singapore. The divergence in Rt profiles be-
tween the UK, China, and the other nations is likely attributable to variations in national
pandemic control policies and climatic factors. Correspondingly, the comparison of the
transmissibility of influenza after reopening is detailed in the Supporting Information Ap-
pendix B.

3.2.2 Comparative analysis of COVID-19 and influenza transmission patterns
Figure 5 presents a comparative analysis of the Rt trends for COVID-19 and influenza
in China, the UK, the US, South Africa, Singapore, and Indonesia, covering the 6-month
periods before and after their respective lifting of restrictions.

The comparative analysis of the trends in COVID-19 and influenza across the six coun-
tries reveals several notable patterns. Broadly speaking, the trajectories of expansion and
decline for the two respiratory illnesses within the same country tend to exhibit similar
overall trends. But there are distinct temporal differences, with COVID-19 typically lead-
ing the transmission dynamics. Specifically, the results indicate that COVID-19 transmis-
sion tends to peak and begin declining before influenza comes to the forefront. In many
instances, as the Rt values of COVID-19 start decreasing, the Rt values of influenza then
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begin to increase. Rare are the occurrences where both the Rt values of COVID-19 and
influenza are simultaneously greater than 1. More commonly observed are the scenarios
where the Rt values of COVID-19 are greater than 1 while the Rt values of influenza remain
below 1, or vice versa, suggesting that at a given time, the majority of the population is af-
fected by only one of the two respiratory pathogens. This pattern suggests a general lack
of substantial concurrent widespread transmission of COVID-19 and influenza within the
same populations.

This comprehensive set of graphs allows for a direct comparison of the transmission
dynamics of COVID-19 and influenza in these six countries, both before and after their
reopening events, thereby indicating that the two respiratory illnesses cannot typically
exhibit large-scale co-circulation at identical time points.

3.3 Impact of COVID-19 lifting of restrictions on influenza incidence trends
The weekly influenza positivity rate data was utilised in this section, which was from the
three years preceding the onset of the COVID-19 pandemic, as well as the weekly in-
fluenza positivity data during the COVID-19 period, as the training dataset. A seasonal
ARIMA modeling approach was applied to independently forecast the post-reopening in-
fluenza positivity rates for each country. The detailed justification for the parameter se-
lection is shown in the Supporting Information Appendix C. By comparing the forecasted
influenza positivity rates in the counterfactual scenario without the COVID-19 pandemic
to the actual post-reopening influenza positivity rates, as well as the forecasted influenza
positivity rates assuming the continued presence of the COVID-19 pandemic to the ac-
tual post-reopening influenza positivity rates, two types of counterfactual experiments are
conducted. This allows for the observation of the impact of COVID-19 reopening policies
on influenza transmission dynamics.

As shown in Fig. 6a, the red line shows actual influenza positivity rates before and during
the pandemic in China. The blue dashed line represents forecasted rates in a hypothetical
no-COVID-19 scenario, revealing typical seasonal peaks prior to the outbreak. The na-
tional lockdown led to a rapid decline in influenza positivity to nearly 0% in early 2020. In
late 2021, as China maintained its dynamic zero-COVID strategy, the lockdown measures
were partially eased, allowing for some restoration of population mobility. Therefore, the
positivity rate gradually returned to a normal trend, peaking at 31.5%, significantly lower
than the 40%+ peaks seen in previous years. A further atypical peak occurred in mid-
2022, likely due to the lockdown’s disruption of typical transmission dynamics, resulting
in a build-up of susceptible individuals who had not been exposed to influenza viruses for
an extended period.

The orange line indicates actual influenza rates over the six months following the lifting
of restrictions. After the lifting of restrictions, the positivity rate surged to 53.2%, exceed-
ing the 42.8% peak predicted for a no-pandemic scenario, and occurred about 10 weeks
later than expected.

During the stringent lockdown policies in 2020, the influenza positivity rate remained
near 0, rendering the inclusion of that data segment in the time series forecasting of limited
research values. The green dashed line in Fig. 6a represents the influenza trend forecast
based on the empirical data from the period of policy relaxation. The model forecasted a
seasonal influenza peak in late 2022 and early 2023 at around 25% in the absence of reopen-
ing, while actual conditions resulted in a delayed but more severe peak of 53.2%, doubling
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Figure 6 Observed and predicted influenza test positivity rate from 2017 to 2023. a. China. b. the United
States. c. Singapore. The red line represents the actual historical influenza positivity rates prior to the
reopening period. The orange line depicts the actual influenza positivity rates observed during the
post-reopening period. The blue dashed line shows the time series forecasts of influenza positivity rates
during the pandemic period and the post-reopening phase, based on the preceding three years of data. The
blue-shaded region indicates the 95% confidence interval around these forecasts. The green dashed line
illustrates the time series forecasts of influenza positivity rates assuming the continued presence of the
ongoing COVID-19 pandemic, using the actual pandemic-era data as the input. The yellow-shaded region
represents the 95% confidence interval for these forecasts

the anticipated figure. Conversely, the implementation of reopening policies has led to a
delayed yet more severe influenza peak. The seasonal epidemic apex has shifted by several
weeks, and the observed peak positivity rate has doubled to around 53.2%, significantly
exceeding the 25% peak that would have been expected without the pandemic-induced
disruptions to disease dynamics.

In the US (shown in Fig. 6b), the red line shows actual influenza positivity rates during
the pandemic, which quickly declined to below 1% due to NPIs and lockdown measures.
The blue dashed line reflects predicted rates in a no-pandemic scenario. The actual rates
declined more rapidly than predicted under NPIs and reached a lower absolute value. The
orange line represents the actual influenza positivity rate data for the 6-month period
following the lifting of restrictions. The actual influenza positivity rate data is noticeably
lower than the predicted data, remaining around 0.1% after reopening, coinciding with the
end of the typical influenza season, resulting in minimal fluctuations. The green dashed
line illustrates the influenza positivity rate forecast based on the data from the period of
policy relaxation, aligning closely with observed rates.

As illustrated in Fig. 6c, the red line depicts actual influenza positivity rates before and
during the pandemic in Singapore. Following intervention measures in early 2020, in-
fluenza positivity rates dropped to 0 and remained low, with a minor peak of 5.2% in early
2022, attributable to limited sampling. The blue dashed line shows predicted influenza
positivity rates in a no-COVID scenario, highlighting a quicker decline to 0 during lock-
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downs. The orange line shows post-reopening influenza positivity rates, which gradually
normalized, peaking at 24.1%, lower than the 20%-60% range seen before the pandemic.
The predicted wave-like pattern in the absence of pandemic impacts did not materialize,
as actual rates exceeded predictions shortly after reopening, suggesting a gradual recovery
of influenza activity.

The green dashed line represents the influenza positivity rate forecast based on the data
from the period of policy relaxation. The stringent lockdowns effectively controlled in-
fluenza transmission, maintaining rates near 0. However, the influenza positivity rate rose
immediately after the lifting of restrictions, which proved that the lockdown policies uti-
lized by Singapore have a strong depressive effect on influenza.

4 Discussion
In this research, we classified countries into three categories based on whether the timing
of their lifting of restrictions coincides with the seasonal fluctuations of influenza: those
reopening near the influenza season, those reopening outside the influenza season, and
those in the tropics without a defined influenza season. The effective reproduction num-
ber (Rt) for COVID-19 and influenza was calculated in the six months before and after
reopening for each country category in this study, linking the epidemiological trends to
the policy changes. The results showed that COVID-19 transmission increased after re-
opening in all countries, potentially due to the introduction of new variants, but remained
manageable overall. This study found that the dynamics of influenza transmission un-
derwent significant changes after the lifting of restrictions, with varying effects observed
across different countries. For the first country group, reopening delayed the peak of in-
fluenza transmission. For the second group, reopening shortened the seasonal fluctuation
of influenza compared to pre-pandemic patterns. For the third group, reopening led to
an increase in influenza transmission. While the general trends were similar within each
country group, the specific transmission dynamics varied due to differences in policies
and climates, with COVID-19 typically preceding influenza activities. Furthermore, we
used time series models to project influenza positivity rates for the three country groups
under scenarios with and without the ongoing pandemic. In China, the influenza activity
season shifted from a single annual peak to two peaks during the lockdown period, with
the peak positivity rate decreasing from 43.1% to 31.5%. After the lifting of restrictions, the
influenza peak was delayed by 10 weeks compared to both the pre-pandemic scenario and
the continued pandemic scenario, and the overall influenza activity increased from 42.8%
to 55.1%. In the United States, the influenza season remained in the off-season for the first
six months after reopening, with the observed values lower than the predicted seasonal
pattern but still below 1%. In Singapore, influenza activity gradually increased from 0 to
24.1% after reopening, similar to the predicted maximum of 21.5% in the absence of the
pandemic. Compared to previous research, our study clearly elucidates the direct impact
of lifting restrictions on influenza transmission, particularly in countries that reopened
near the influenza season.

A substantial strength of our research also lies in the incorporation of the timing of the
lifting of the epidemic in each country. Prior studies have made comparisons between
COVID-19 and influenza transmission, as well as the impact of NPIs after COVID-19 on
influenza spread. However, these studies were often conducted during the outbreak or on-
going phases of the pandemic, leaving the effects of reopening on the transmissibility of
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COVID-19 and influenza unclear. Our research is able to address these gaps, providing
new perspectives to prepare for potential outbreaks after reopening. Furthermore, un-
like other studies, which selected research countries in a more general manner, this study
classified nations based on the proximity of their reopening timeline to the influenza sea-
son. This approach allows for broadly applicable conclusions drawn from the findings.
Finally, we conducted counterfactual experiments using the lifting of restrictions as the
pivot point. Such large-scale, global lockdowns are rare occurrences, and these counter-
factual analyzes can provide clear descriptions of how influenza transmission dynamics
changed under the influence of the COVID-19 pandemic and control measures. Collec-
tively, these strengths of the study design and analytical approach distinguish this research
and enhance its value in informing public health preparedness and policies in the post-
pandemic era.

Regarding the limitations of this research, first, the observed positivity rates may be af-
fected by biases in virological surveillance, such as sample collection rates and case selec-
tion. For example, in countries with small sampling volumes like Singapore, the influenza
positivity rate was essentially 0 during the COVID-19 pandemic, indicating potential un-
derestimation of the data used in this study. Improved data quality could enhance the
accuracy of the research findings. Secondly, while the ARIMA model is a well-established
forecasting method, it cannot fully account for factors such as virus strain types, the sever-
ity of control measures, and individual behavioral patterns that influence infectious dis-
ease transmission dynamics. Moreover, the ARIMA model is more suitable for short-term
predictions, with relatively poorer performance for long-term forecasts. Analyzing long-
term data could provide deeper insights into the lasting impacts of the COVID-19 pan-
demic and its mitigation measures on influenza transmission.

5 Conclusion
In conclusion, our research has improved the understanding of how the lifting of COVID-
19 interventions impacts influenza transmission. After reopening, with waning immunity
to influenza, the upcoming influenza season is likely to face a high risk of major outbreaks.
Therefore, assessing the influence of COVID-19 reopening on influenza virus transmis-
sion is crucial, and proactive planning for healthcare management and public health poli-
cies should be able to mitigate this risk. The findings from this study provide insights
into the complex interplay between COVID-19 control measures and influenza epidemi-
ology. As societies navigate the post-pandemic landscape, this analysis highlights the im-
portance of considering the potential downstream effects on other respiratory pathogens
when making decisions about COVID-19 restrictions. Careful monitoring and forward-
looking policies are essential to protect public health and manage the dual burden of these
co-circulating infectious diseases in the future.

Appendix A: Transmissibility of influenza before and after lifting of restrictions
The Rt of influenza for China is illustrated in Fig. 7, where the red line represents the 55-
week Rt , the light red shaded area represents the 95% confidence interval, the blue dashed
line denotes an Rt value of 1, and the green dashed line indicates the lifting of COVID-19
restrictions in Singapore.

Influenza in China exhibits a pronounced seasonal pattern, with winter and spring con-
stituting the peak seasons for its prevalence. Typically, the peak interval spans from the
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Figure 7 The effective reproduction number data of influenza in a period of 6 months before and 6 months
after the lifting of restrictions in China. The horizontal blue dashed line represents the threshold value Rt = 1.
The vertical green dashed line indicates the designated time frame for lifting restrictions. The red-shaded area
represents the 95% confidence interval

49th week of the previous year to the 6th week of the following year. As illustrated in Fig. 7,
the Rt values remained consistently below 1 until week 5 of 2023 (t = 40). Starting from
the 5th week, Rt rapidly escalated and reached its peak of 17.72 in the 7th week of 2023
(t = 42). Subsequently, it underwent a swift decline, falling below 1 after week 15 of 2023
(t = 50), indicating effective control of influenza transmission. Notably, according to con-
ventional patterns, the seasonal influenza peak in China should have transpired between
t = 32 and t = 41. Nevertheless, stringent government measures pertaining to outbreak
prevention and containment resulted in a two-month delay in the onset of the influenza
epidemic.

During the early stages of relaxation measures, the general public exhibited a high level
of awareness and compliance, characterized by voluntary adherence to practices such as
mask usage, maintenance of social distancing, and avoidance of densely populated public
venues. The 5th week of 2023 marked the conclusion of the Chinese New Year holiday
and the beginning of the commencement of the first week of post-holiday work resump-
tion. By this juncture, a two-month period had elapsed since the relaxation of restrictions,
and the majority of individuals had resumed their pre-pandemic lifestyles, leading to a
significant increase in influenza transmission in the absence of NPIs. Furthermore, the
gradual reopening of educational institutions, commencing from the 8th week, engen-
dered the congregation of students within classrooms and campuses, thereby augmenting
the opportunities for influenza virus transmission. Consequently, this phase witnessed a
sustained exacerbation of influenza transmission dynamics.

By observing historical data, it is evident that the United States experiences an annual
peak in influenza outbreaks during the winter and spring seasons, typically occurring be-
tween week 48 of the previous year and week 7 of the next year, corresponding to weeks 13
to 23, as depicted in Fig. 8. As shown in Fig. 8, the Rt values began to rise from week 47 of
2020 (t = 13), reaching a peak of 2.20 in week 50 of 2020 (t = 16). Subsequently, it gradually
declined and fell below 1 after the 3rd week of 2021 (t = 22). This period aligns with the
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Figure 8 The effective reproduction number data of influenza in a period of 6 months before and 6 months
after the lifting of restrictions in the United States. The horizontal blue dashed line represents the threshold
value Rt = 1. The vertical green dashed line indicates the designated time frame for lifting restrictions. The
red-shaded area represents the 95% confidence interval

Figure 9 The effective reproduction number data of influenza in a period of 6 months before and 6 months
after the lifting of restrictions in Singapore. The horizontal blue dashed line represents the threshold value
Rt = 1. The vertical green dashed line indicates the designated time frame for lifting restrictions. The
red-shaded area represents the 95% confidence interval

seasonal peak of influenza in the US. Although restrictions were not entirely lifted during
this time, influenza transmission did not cease. Following the easing of restrictions, the
Rt values remained around 1, fluctuating with a maximum value not exceeding 1.13. This
indicates a low-level transmission of influenza during non-peak seasons.

The Rt of influenza for Singapore is shown in Fig. 9, where the black line represents
the 55-week Rt , the light blue shaded area represents the 95% confidence interval, the
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red dashed line denotes an Rt value of 1, and the gray dashed line indicates the lifting of
COVID-19 restrictions in Singapore.

In contrast to countries with pronounced seasonal variations, Singapore exhibits a rel-
atively stable climate devoid of distinct seasonal patterns. As a result, influenza maintains
a year-round presence in Singapore rather than being confined to specific seasons. As de-
picted in Fig. 9, the Rt values exhibited an upward trend commencing in week 4 of 2022
(t = 20), reaching a peak of 2.43 in week 8 (t = 24) before declining. Within three weeks, it
fell below 1, indicative of effective control of influenza transmission. The 4th week of 2022
coincided with the Lunar New Year and the Spring Festival, leading to increased social
gatherings, events, and travel, which facilitated the spread of the influenza virus. Addi-
tionally, the Ministry of Education in Singapore announced that the Term I of Semester
I of the academic calendar for schools spanned from January 4, 2022, to March 11, 2022,
covering weeks 1 to 10. The resumption of student activities after the commencement of
the academic year contributed to the intensified propagation of influenza.

Following the easing of restrictions, the Rt values remained below 1 for the subsequent
6 weeks, surpassing this threshold after week 19 of 2022 (t = 35) and exhibiting a grad-
ual upward trajectory. Eventually, Rt reached its zenith of 1.51 in week 27 (t = 43) before
gradually declining and falling below 1 after the 32nd week of 2022 (t = 48). The observed
temporal dynamics can be attributed to multiple factors. Firstly, this period coincided with
Singapore’s tropical rainy season, characterized by hot and humid climatic conditions that
favor the survival and transmission of the influenza virus. Moreover, such environmental
conditions tend to compromise the host’s immune response, rendering individuals more
susceptible to infection. Secondly, the Ministry of Education issued a directive designating
the period from May 27, 2022, to June 26, 2022, as the summer vacation, during which stu-
dents ceased congregating in schools, resulting in reduced interpersonal contacts and sub-
sequently attenuated influenza transmission. However, the frequency of activities such as
summer camps, travels, and gatherings increased significantly during the vacation period,
leading to an elevated risk of influenza transmission. As a result, the Rt values remained
around 1.26 from the 22nd (t = 38) to the 25th week (t = 41). Following the resumption
of the Semester II on June 27, 2022, Rt exhibited a rapid surge, which was subsequently
brought under control in August.

Appendix B: Comparison of the transmissibility of influenza across countries
The analysis is based on six countries: China, the United States, Singapore, the United
Kingdom, South Africa, and Indonesia. These countries can be classified into three cate-
gories based on the criteria mentioned earlier.

The first category encompasses countries where the reopening near the typical influenza
seasonal peak, exemplified by China and the UK. The effective reproduction number (Rt)
of influenza profiles for these nations during the six-month periods before and after the
reopening are illustrated in Fig. 10a and Fig. 10d, respectively.

Both China and the United Kingdom exhibit pronounced seasonality in their influenza
dynamics. In the case of China, the nation typically experiences influenza peaks between
the 49th week of the first year and the 6th week of the subsequent year. However, after
the reopening of China occurred in the 49th week of 2022, the actual influenza peak was
observed to be delayed by approximately 8 weeks, manifesting between the 5th and 15th
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Figure 10 The effective reproduction number of influenza across countries. a. China. b. the United Kingdom.
c. the United States. d. South Africa. e. Singapore. f. Indonesia. The horizontal blue dashed line represents the
threshold value Rt = 1. The vertical green dashed line indicates the designated time frame for lifting
restrictions in different countries. The red-shaded area represents the 95% confidence interval

weeks of 2023. This delay can be attributed to the relatively robust implementation of NPIs
and self-isolation policies prior to the lifting of restrictions in China. These measures effec-
tively suppressed influenza transmission until the post-reopening period, when increased
population mobility and social interactions facilitated the emergence of a new wave of in-
fluenza activity.

A similar pattern was observed in the UK, where influenza peaks typically occur between
the 45th week of the first year and the 8th week of the following year. However, after the re-
opening of the UK in the 8th week of 2022, the influenza peak exhibited a bimodal nature,
with one peak occurring between the 45th week of 2021 and the 1st week of 2022, and
another between the 8th and 16th weeks of 2022. This bimodal pattern can be explained
by the fact that, although some mask-wearing and social distancing measures were im-
plemented in the UK, the intensity of these interventions was relatively lower compared
to China. Consequently, influenza activity continued to some degree during the nation’s
typical seasonal peaks, prior to the resurgence of transmission in the post-reopening pe-
riod. Following the reopening, the influenza seasons in these countries would have been
expected to have subsided according to historical patterns. However, the resumption of
societal and economic activities led to increased population mobility and interactions,
thereby facilitating the emergence of a new wave of influenza transmission.

In summary, the timing of the influenza peaks in China and the UK diverged from their
historical seasonal norms following the COVID-19 reopening measures implemented in
these countries. The reopening from COVID-19 restrictions had a delaying effect on the
timing of the influenza transmission peaks for nations where the reopening occurred in
proximity to the typical influenza seasonal dynamics.
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The second category includes countries where the timing of the COVID-19 reopening
was outside the typical influenza season, such as the United States and South Africa. The
Rt values of influenza for these countries during the six months before and after the re-
opening are shown in Fig. 10b and Fig. 10e, respectively.

The US and South Africa also exhibit strong influenza seasonality. In the US, the in-
fluenza seasonal patterns typically occur between the 48th week of the first year and the
8th week of the subsequent year. During the 2020-2021 season, the US influenza peak was
observed between the 47th week of 2020 and the 3rd week of 2021. The US government
announced the lifting of restrictions in the 13th week of 2021, which was outside the in-
fluenza season. After the reopening, the Rt values of influenza in the US fluctuated around
1, indicating a relatively low level of influenza transmission.

South Africa is in the southern hemisphere and typically experiences influenza seasonal
peaks between the 20th and 35th weeks of the year. In 2020, the influenza peak in South
Africa was observed between the 22nd and 32nd weeks. The South African government
announced the reopening in the 40th week of 2020, which was also outside the influenza
season. After the lifting of restrictions, the Rt values of influenza in South Africa fluctuated
around 1, with a maximum of 1.5, indicating relatively limited influenza transmission.

Therefore, it can be concluded that for countries where the reopening date was near the
non-influenza season, the impact of the COVID-19 reopening on influenza transmission
was relatively modest, and the seasonal fluctuations in influenza transmission were shorter
compared to the pre-pandemic period.

The third category includes tropical countries where influenza does not exhibit a pro-
nounced seasonal pattern. The representative countries examined in this case are Singa-
pore and Indonesia. The Rt values of influenza trends for these two countries during the
six months before and after their respective reopenings are shown in Fig. 10c and Fig. 10f.

Despite the fact that the reopening timing in these two countries was separated by ap-
proximately half a year, the Rt values of influenza trends are remarkably similar. Both coun-
tries experienced a large-scale influenza outbreak prior to their reopenings but were able
to quickly bring the transmission under control. Furthermore, the patterns of influenza
resurgence after the reopenings were also highly comparable between the two countries.
This similarity in the Rt values of influenza dynamics between Singapore and Indonesia
is likely attributable to the shared characteristics of tropical climate. The lack of strong
influenza seasonality in these tropical nations suggests that the timing of the COVID-19
reopening may have a less pronounced impact on the trajectory of influenza transmission,
compared to countries with well-defined influenza seasons.

Appendix C: Justification for the parameter selection in SARIMA

models <- list(

arima(ts_data, order = c(1, 1, 0), seasonal = c(0, 1, 0)),

arima(ts_data, order = c(1, 1, 0), seasonal = c(1, 1, 0)),

arima(ts_data, order = c(1, 1, 0), seasonal = c(2, 1, 0)),

arima(ts_data, order = c(1, 1, 0), seasonal = c(0, 1, 1)),

arima(ts_data, order = c(1, 1, 0), seasonal = c(1, 1, 1)),

arima(ts_data, order = c(1, 1, 0), seasonal = c(2, 1, 1)),

arima(ts_data, order = c(1, 1, 1), seasonal = c(0, 1, 0)),

arima(ts_data, order = c(1, 1, 1), seasonal = c(1, 1, 0)),
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arima(ts_data, order = c(1, 1, 1), seasonal = c(2, 1, 0)),

arima(ts_data, order = c(1, 1, 1), seasonal = c(0, 1, 1)),

arima(ts_data, order = c(1, 1, 1), seasonal = c(1, 1, 1)),

arima(ts_data, order = c(1, 1, 1), seasonal = c(2, 1, 1)),

arima(ts_data, order = c(1, 1, 2), seasonal = c(0, 1, 0)),

arima(ts_data, order = c(1, 1, 2), seasonal = c(1, 1, 0)),

arima(ts_data, order = c(1, 1, 2), seasonal = c(2, 1, 0)),

arima(ts_data, order = c(1, 1, 2), seasonal = c(0, 1, 1)),

arima(ts_data, order = c(1, 1, 2), seasonal = c(1, 1, 1)),

arima(ts_data, order = c(1, 1, 2), seasonal = c(2, 1, 1)),

arima(ts_data, order = c(1, 1, 3), seasonal = c(0, 1, 0)),

arima(ts_data, order = c(1, 1, 3), seasonal = c(1, 1, 0)),

arima(ts_data, order = c(1, 1, 3), seasonal = c(2, 1, 0)),

arima(ts_data, order = c(1, 1, 3), seasonal = c(0, 1, 1)),

arima(ts_data, order = c(1, 1, 3), seasonal = c(1, 1, 1)),

arima(ts_data, order = c(1, 1, 3), seasonal = c(2, 1, 1))

)

model_comparison <- lapply(models, AIC)

best_model_index <- which.min(model_comparison)

best_model <- models[[best_model_index]]
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