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Abstract
This study establishes a novel time-delay fractional SEIHR infectious disease model to
investigate the effects of saturated incidence rates and time delays on different
populations, including susceptibles, infected individuals, recovered individuals, and
latent infected individuals. First, the existence and boundedness of the model’s
solutions are verified, confirming its well-posedness. Subsequently, the existence of
equilibria is analyzed, and the impact of parameter variations on the system is
explored by examining the equilibria ε0 and ε∗, as well as the basic reproduction
number R0. Additionally, the global dynamics of the equilibria are further analyzed
using the Lyapunov method, while Hopf bifurcation theory is applied to explore the
conditions under which the system shifts from stability to oscillatory behavior.
Numerical simulations further validate the theoretical analysis, showing that
time-delay effects significantly influence the system’s responsiveness and the rate of
disease transmission. Moreover, when the time delay τ crosses the critical threshold
τ0, the system exhibits periodic oscillations. By predicting periodic fluctuations and
incorporating memory effects and persistent influences, we can better control
epidemics, emphasizing the importance of time-delay adjustments and enhancing
the system’s biological realism.
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1 Introduction
Despite significant advances in healthcare and preventive measures in recent years, infec-
tious diseases remain a leading cause of high mortality in affected communities [1, 2]. This
persistence is not only due to the continuous mutation of pathogens but also results from
socio-economic challenges, inadequate public health infrastructure, and limited health
education. The ongoing threat of infectious diseases places a heavy burden on healthcare
systems, drives up medical costs [3], and, in severe cases, can lead to community instabil-
ity. Therefore, effectively controlling the spread of disease is crucial.

Mathematical modeling plays a key role in both epidemiological and pest–predator
ecosystem studies [4, 5], helping researchers identify the driving factors of systems and
assess intervention strategies. By simulating disease transmission or ecological dynamics
under various conditions, models assist in understanding the interactions between species
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and provide a basis for determining control measures [6]. In epidemiology, disease trans-
mission models illustrate the interactions between pathogens and hosts, revealing how
interventions (such as vaccination or isolation) can effectively reduce transmission. Sim-
ilarly, pest–predator models reflect how predators control pest populations [7], demon-
strating balance mechanisms within ecosystems. While medical advances in diagnosis and
treatment are crucial, mathematical models in epidemiology and ecology remain essen-
tial tools for mitigating disease transmission, optimizing control measures, and advancing
eradication efforts.

In recent years, infectious disease modeling has become crucial in epidemiology, aiding
researchers in understanding transmission patterns and devising effective control strate-
gies. The foundational SIR model, which classifies populations into susceptible, infected,
and recovered groups, was first introduced by Bernoulli in 1760 [8] and later expanded
by McKendrick and Kermack [9]. To improve model accuracy, additional compartments,
such as “exposed” and “hospital isolation” [10–13], have been introduced to capture the
effects of latency periods and the role of hospital isolation in disease transmission.

In these models, the incidence rate is a key parameter for measuring new infections.
Due to the complexity of disease transmission, various nonlinear incidence models have
been developed, including bilinear incidence rates βSI describing the interaction between
susceptible and infected individuals [14, 15], fractional incidence rates βS I

S+I accounting
for memory effects [16], nonmonotonic incidence rates βSI

1+kI2 modeling varying infection
dynamics [17, 18], and saturated incidence models representing transmission limitations
due to factors like healthcare capacity or immunity [4, 19]. The saturated incidence model,
introduced by Capasso and Serio [20], is expressed as g(I) = βI

1+mI , where the suppression
term 1 + mI in the denominator limits transmission rates at high infection levels. Jan and
Bentaleb [6, 21] later enhanced this model by incorporating an infection saturation pa-
rameter m, which improves responsiveness under high infection levels and enables further
exploration of m’s impact on population dynamics.

To better capture latency and immune response delays, time-delay differential equations
are commonly used in infectious disease models [22–24]. Delay parameters account for
latent infection periods and immune response delays, which are crucial for understanding
disease dynamics and optimizing control strategies. For example, Wang and Zhu [25, 26]
explored global dynamics with dual delays, while Ilhem and Barman [22, 27, 28] examined
the effects of these delays on stability and Hopf bifurcations. Delays also play a key role in
evaluating vaccine-induced immunity, especially when natural delays in the viral lifecycle
are considered [29, 30], enhancing the biological realism of the model.

The introduction of fractional calculus has further expanded infectious disease mod-
eling. Fractional calculus describes derivatives of arbitrary orders, incorporating mem-
ory effects and nonlocal influences [31]. When combined with time-delay mechanisms,
fractional calculus allows for a better representation of complex immune delays and viral
mutations [22, 32]. Compared to integer-order systems, fractional-order systems provide a
broader range of stability properties, with applications in epidemiology, physics, and other
scientific fields [33–35]. The Caputo definition is widely used in biological modeling due
to its compatibility with standard initial condition settings [36, 37].

Currently, many studies have developed infectious disease models to analyze dynamic
interactions between population groups [10, 13], often assuming a fixed transmission rate
[4, 15] without accounting for how population density affects transmission variability. To
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address this, our study incorporates a saturated incidence rate model to better simulate

transmission changes. Existing models also have room for improvement in capturing com-

plex compartment interactions and immune response delays [24, 27, 28].

To this end, we propose a new time-delay fractional-order SEIHR model, which includes

traditional compartments (susceptible, exposed, infectious, and recovered) along with a

hospital isolation compartment. The fractional-order aspect adds biological realism by

incorporating memory effects, capturing how past infections and immune responses in-

fluence current dynamics. This model thus provides a more accurate depiction of disease

transmission, incorporating immune delays and nonlinear incidence rates for a more com-

prehensive analysis of epidemic dynamics.

The key contributions and innovations of this paper are outlined as follows:

a. Unlike previous studies [10, 22], this study presents a novel time-delay fractional

SEIHR model that combines fractional differential equations with time delays to

more accurately simulate infectious disease transmission. By incorporating memory

effects and persistent influences among population groups, as shown in Fig. 2 and

Fig. 3, this approach enhances the system’s biological realism.

b. The system incorporates a saturated incidence rate to reflect dynamic changes in

transmission at high infection levels. This nonlinear structure realistically depicts

transmission limitations in densely populated settings, thereby improving the

accuracy of epidemic trend predictions.

c. Using the Lyapunov method and Hopf bifurcation theory, this study provides an

in-depth analysis of the global dynamics and bifurcation behavior at equilibrium

points, revealing the conditions under which the system transitions from stability to

oscillatory behavior. This analysis offers new insights into the dynamic mechanisms

of infectious disease spread, as illustrated in Figs. 10–17.

The structure of the remainder of this paper is as follows: The second section provides

relevant preparatory knowledge. The third section presents the development of the new

system. The fourth section conducts a dynamic analysis of the system. The fifth section

performs numerical simulations to validate the theoretical results presented in the previ-

ous section. Finally, the paper concludes with a summary of the research and an overview

of future directions.

2 Model formulation and preliminaries
2.1 Model formulation

Building on previous research, this study introduces a system that integrates saturated

incidence rates, time-delay effects, and hospitalization dynamics to investigate epidemic

transmission under varying conditions of heterogeneity. The following new system is
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given:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS
dt

= � – g(I)S(t) – μS(t) + ξR(t),

dE
dt

= g(I(t))S(t) – μE(t) – δE(t),

dI
dt

= δE(t) – (μ + μ1 + r1 + η)I(t),

dH
dt

= ηI(t) – (μ + μ2 + r2)H(t),

dR
dt

= r1I(t) + r2H(t) – (μ + ξ )R(t).

(1)

Incorporating the Caputo fractional derivative of noninteger order, which more effectively
captures the memory effects and nonlocal characteristics of the system, we extend the
model to include time delays and saturated incidence rates g(I) = bI

1+mI . The resulting sys-

Figure 1 Flowchart of infectious disease transmission under the effect of time delay

Table 1 Definitions of parameters for system (2)

Parameters Profile Unit

� Recruitment rate day–1

β The transmission rate of the infection day–1

μ The level of mortality affecting the population day–1

δ The transition rate of the exposed population day–1

μ1 Mortality rate of infected individuals due to the disease day–1

μ2 Mortality rate of hospitalized isolated individuals due to the disease day–1

r1 The recovery rate of individuals in the infected compartment day–1

r2 The recovery rate of hospitalized isolated individuals day–1

η Isolation rate of infected individuals transitioning to hospitalization day–1

ξ The speed at which individuals transition from the recovered group back into
the susceptible group

day–1

m Suppression factor or infection saturation parameter person–1

S Susceptible population persons
E Exposed individuals persons
I Infected individuals persons
H Hospitalized population persons
R Recovered individuals persons
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tem is represented by the following fractional-order equations:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C
0Dα

t S(t) = � – μS(t) –
βS(t)I(t)
1 + mI(t)

+ ξR(t),

C
0Dα

t E(t) =
βS(t)I(t)
1 + mI(t)

– μE(t) – δE(t – τ ),

C
0Dα

t I(t) = δE(t – τ ) – (μ + μ1 + r1 + η)I(t),
C
0Dα

t H(t) = ηI(t) – (μ + μ2 + r2)H(t),
C
0Dα

t R(t) = r1I(t) + r2H(t) – (μ + ξ )R(t).

(2)

The basic transmission process is illustrated in Fig. 1, and the biological significance of
each parameter is summarized in Table 1. The initial conditions are specified as follows:

S(t0) = S0, E(t0) = E0, I(t0) = I0, H(t0) = H0, R(t0) = R0. (3)

2.2 Preliminaries
Definition 2.1 ([34]) The Caputo fractional derivative of order η > 0 for a function f :
Cn[t0,∞) → R is given by

Dηf (t) =
1


(n – η)

∫ t

t0

f (n)(τ )

(t – τ )η–n+1 dτ ,

where Cn[t0,∞) denotes the space of functions that are n times continuously differentiable
on [t0,∞), 
(n) is the gamma function, n is a positive integer satisfying n – 1 < η < n, and
t > t0. Specifically, when 0 < η < 1, the definition simplifies to

Dηf (t) =
1


(1 – η)

∫ t

t0

f ′(τ )

(t – τ )η
dτ .

Lemma 2.1 ([38]) Let g(t) ∈R+ be a continuous and differentiable function, then

Dθ
t

[

g(t) – g∗ – g∗ ln
g(t)
g∗

]

≤
(

1 –
g∗

g(t)

)

Dθ
t g(t),

where g∗ ∈R+, ∀θ ∈ (0, 1].

Lemma 2.2 ([39]) Assume f ∈ C[a, b] and Dθ f ∈ C[a, b] for 0 < θ ≤ 1. Then there exists a
point ξ (x) ∈ [a, x] such that

f (x) = f (a) +
1
θ

Dθ f (ξ )(x – a)θ .

Lemma 2.3 ([37]) Let θ ∈ (0, 1) and suppose G : [t0,∞) →R is a continuous function that
satisfies the condition below

Dθ G(t) + μG(t) ≤ ν, t ≥ t0, μ,ν ∈R, μ 
= 0.
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Then the following inequality holds:

G(t) ≤
(

G(t0) –
ν

μ

)

Eθ

(
–μ(t – t0)θ

)
+

ν

μ

for all t ≥ t0, where Eθ is the Mittag-Leffler function of one parameter defined by

Eθ (t) =
∞∑

k=0

tk


(θk + 1)
.

Lemma 2.4 ([40]) Suppose that x∗ ∈ ϒ ⊂ R
n is an equilibrium for system

Dθ x(t) = f (t, x(t)), t ≥ t0,

and consider a continuously differentiable function V (t, x) : [t0,∞) × ϒ → R that fulfills
the following conditions:

Q1(x) ≤ V (t, x) ≤ Q2(x),

DαV (t, x) ≤ –Q3(x),

for t ≥ t0 and x ∈ ϒ , where Qi(x), i = 1, 2, 3, are continuous and positive-definite functions
on ϒ . Under these conditions, x∗ is uniformly asymptotically stable.

Lemma 2.5 ([41]) Let α ∈ (0, 1], � ⊂ R
n be a domain, and let F : [t0,∞) × � → R

n

be a function satisfying the Lipschitz condition with respect to ξ . Consider the following
fractional-order differential equation:

Dαξ (t) = F(t, ξ (t)), t > t0,

subject to the initial condition ξ (t0) = ξ0 ∈ �. Under these conditions, the system has a
unique maximal solution.

3 The dynamical analysis of system (2)
3.1 Existence and uniqueness of solutions
We will rely on the following lemma as the basis for the proof.

Lemma 3.1 Consider the fractional-order system given by

C
0Dα

t u(t) = h(t, u), u(t0) = u0,

where α ∈ (0, 1] and t0 > 0. Let h : [t0,∞)×� →R
n satisfy the following Lipschitz condition

[41] with respect to u:

|h(t, u1) – h(t, u2)| ≤ L|u1 – u2|, ∀u1, u2 ∈ �, ∀t ≥ t0,

for some constant L > 0. Under these conditions, system (2) admits a unique solution u(t)
over the interval [t0,∞) × �.
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Theorem 3.1 For any initial point �t0 =
(
St0 , Et0 , It0 , Ht0 , Rt0

) ∈ � within system (2), there
exists a unique solution �t = (S(t), E(t), I(t), H(t), R(t)) ∈ � for all t > t0.

Proof First, consider the interval � × [t0, t1], where

� = {(S, E, I, H , R) ∈R
5 : max{|S|, |E|, |I|, |H|, |R|} ≤ K}.

In this region, all variables are constrained to not exceed the upper bound K . Here, t1 and
K are finite positive constants. Let U1 = (S, E, I, H , R) and U2 = (S1, E1, I1, H1, R1) be two
points within �, and define a mapping M : � → R

5 such that M(�) = (M1(�), M2(�),
M3(�), M4(�), M5(�)), where

M1(�) = � – μS(t) –
βS(t)I(t)
1 + mI(t)

+ ξR(t),

M2(�) =
βS(t)I(t)
1 + mI(t)

– μE(t) – δE(t – τ ),

M3(�) = δE(t – τ ) – (μ + μ1 + r1 + η)I(t),

M4(�) = ηI(t) – (μ + μ2 + r2)H(t),

M5(�) = r1I(t) + r2H(t) – (μ + ξ )R(t).

For any U1, U2 ∈ �, the following inequality holds:

‖M(U1) – M(U2)‖ ≤ N‖U1 – U2‖, (4)

where

M1(U1) – M1(U2) =
∣
∣
∣
∣–μ(S – S1) – β

(
SI

1 + mI
–

S1I1

1 + mI1

)

+ ξ (R – R1)

∣
∣
∣
∣ ,

M2(U1) – M2(U2) =
∣
∣
∣
∣β

(
SI

1 + mI
–

S1I1

1 + mI1

)

– δ (E(t – τ ) – E1(t – τ )) – μ(E – E1)

∣
∣
∣
∣ ,

M3(U1) – M3(U2) = |δ (E(t – τ ) – E1(t – τ )) – (μ + μ1 + r1 + η)(I – I1)| ,

M4(U1) – M4(U2) = |η(I – I1) – (μ + μ2 + r2)(H – H1)| ,

M5(U1) – M5(U2) = |r1(I – I1) + r2(H – H1) – (μ + ξ )(R – R1)| .

We can bound the differences as follows:

‖M(U1) – M(U2)‖ ≤ μ‖S – S1‖ + 2β

∣
∣
∣
∣

SI
1 + mI

–
S1I1

1 + mI1

∣
∣
∣
∣ + 2δ‖E(t – τ ) – E1(t – τ )‖

+ μ‖E – E1‖ + (μ + μ1 + 2r1 + 2η)‖I – I1‖
+ (μ + μ2 + 2r2)‖H – H1‖ + (μ + 2ξ )‖R – R1‖.

This simplifies to

‖M(U1) – M(U2)‖ ≤ (μ + 2βK)‖S – S1‖ + (2δK + μ)‖E – E1‖
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+ (μ + μ1 + 2r1 + 2η)‖I – I1‖
+ (μ + μ2 + 2r2)‖H – H1‖ + (μ + 2ξ )‖R – R1‖.

Finally, we define

N1 = μ + 2βK , N2 = 2δK + μ, N3 = μ + μ1 + 2r1 + 2η,

N4 = μ + μ2 + 2r2, N5 = μ + 2ξ ,

and consequently, the inequality can be expressed as

‖M(U1) – M(U2)‖ ≤ N1‖S – S1‖+ N2‖E – E1‖+ N3‖I – I1‖+ N4‖H – H1‖+ N5‖R – R1‖.

This leads to the validity of equation (4), where N = max{N1, N2, N3, N4, N5}.
Therefore, M satisfies the Lipschitz condition with respect to �t = (St , Et , It , Ht , Rt) ∈ �.

Thus, by Lemma 2.5, it ensures the existence of a unique solution �t for system (2) with
the initial condition �t0 = (St0 , Et0 , It0 , Ht0 , Rt0 ) ∈ �. □

3.2 Nonnegativity and boundedness of solutions
Positivity and boundedness are crucial for ensuring that the variables in a biological math-
ematical model stay within realistic and biologically meaningful limits, thereby enhancing
the model’s biological validity and predictive reliability. Therefore, the solution to system
(2) must satisfy these conditions to guarantee the system’s accuracy and practical applica-
bility.

Theorem 3.2 Given the initial state in (3), the fractional-order system (2) admits a unique
solution. Moreover, all solutions of systems (1)–(2) are positive, bounded, and asymptoti-
cally converge to a compact attractor.

Proof As known from Theorem 4.1, for any t, a singular solution exists, given the initial
state �t0 . To prove that S ≥ 0, we use a proof by contradiction. Suppose that there exists a
time t1 > t0 (or t1 > 0) such that S(t) > 0 for all t ∈ [0, t1), but S(t) < 0 for t ∈ (t1, t1 + ε1] with
S(t1) = 0, where ε1 > 0 is sufficiently small. Examining the first equation of system (2), we
can obtain

Dθ
t S(t)

∣
∣
∣
∣
t=t1

= � > 0.

Thus, by Lemma 2.2, there exists a value ξ1 ∈ (t1, t1 + ε1] such that

S(t1 + ε1) = S(t1) +
1
α

Dα
t S(ξ1)εα

1 .

By choosing ε1 to be sufficiently small, it follows that S(t1 + ε1) > 0, which contradicts the
assumption that S(t) < 0 for t ∈ (t1, t1 + ε1]. Therefore, we conclude that S(t) ≥ 0 for all
t ≥ 0.

To prove that E ≥ 0, we use a proof by contradiction. Suppose that there exists a time
t2 > 0 such that E(t) > 0 for all t ∈ [0, t2), but E(t) < 0 for t ∈ (t2, t2 +ε2] with E(t2) = 0, where
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ε2 > 0 is sufficiently small. Examining the second equation of system (2), we can obtain

Dθ
t E(t)

∣
∣
∣
∣
t=t2

=
βS(t)I(t)
1 + mI(t)

≥ 0.

According to Lemma 2.2, we obtain a value ξ2 ∈ (t2, t2 + ε2] such that

E(t2 + ε2) = E(t2) +
1
θ

Dθ
t E(ξ2)εθ

2 .

By selecting ε2 to be sufficiently small, it follows that E(t2 + ε2) > 0, which contradicts the
assumption that E(t) ≤ 0 for t ∈ [t2, t2 + ε2]. Therefore, we conclude that E(t) ≥ 0 for all
t ≥ 0.

Building upon the previous discussion regarding the groups S and E in system (2) and
utilizing the same theoretical framework, it can be demonstrated that I ≥ 0, H ≥ 0, and
R ≥ 0 also hold true.

Now, we proceed to establish the boundedness of system (2). To this end, let us define
the following quantity:

T(t) = S(t) + E(t) + I(t) + H(t) + R(t).

The fractional derivative of the above expression is

Dα
t T(t) = Dα

t S(t) + Dα
t E(t) + Dα

t I(t) + Dα
t H(t) + Dα

t R(t)

= � – μS – μE – (μ + μ1)I – (μ + μ2)H – μR

= � – μ(S + E + I + H + R) – (μ1I + μ2H)

≤ � – μT(t),

yielding Dα
t T(t) ≤ � – μT(t). By Lemma 2.3, it follows that

T(t) ≤ �

μ
+ (Tt0 (t) –

�

μ
)Eα(–μ(t – t0)α),

where Tt0 (t) = St0 (t) + Et0 (t) + It0 (t) + Ht0 (t) + Rt0 (t), ensuring the existence of a limit

lim
x→+∞ supT(t) ≤ �

μ
.

Consequently, the solutions of system (2) are reliably bounded, and the positive attractor
set for system (2) is given by

� =
{

(S, E, I, H , R) ∈R
5
+ : 0 < S + E + I + H + R ≤ �

δ

}

. (5)

Thus, Theorem 4.2 is proven. □
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3.3 Existence of equilibria
System (2) has two equilibria: one corresponding to the absence of disease and the other
representing a state of endemic disease persistence. To determine the equilibria where the
system’s variables are constant, the derivatives of all state variables must equal zero. This
ensures that each variable is in a steady state, satisfying the conditions for equilibrium. We
examine the conditions under which the right-hand side of system (2) equals zero, leading
to the system’s equilibria. This yields the following set of equations:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

� – βS(t)I(t)
1+mI(t) – μS(t) + ξR(t) = 0,

βS(t)I(t)
1+mI(t) – μE(t) – δE(t – τ ) = 0,

δE(t – τ ) – (μ + μ1 + r1 + η)I(t) = 0,

ηI(t) – (μ + μ2 + r2)H(t) = 0,

r1I(t) + r2H(t) – (μ + ξ )R(t) = 0.

(6)

System (2) consistently admits a disease-free equilibrium, denoted by ε0 =
(

�
μ

, 0, 0, 0, 0
)

.
When ε∗ = I = H = R = 0, this equilibrium fulfills the following equation:

� – μS(t) + ξR(t) –
βS(t)I(t)
1 + mI(t)

= 0.

When E, I , H , and R are all nonzero, and R0 > 1, the system features an endemic equilib-
rium, symbolized by ε∗ = (S∗, E∗, I∗, H∗, R∗). This equilibrium satisfies the following set of
equations:

� = μS∗ +
βS∗I∗

1 + mI∗ – ξR∗,
βS∗I∗

1 + mI∗ = μE∗ + δE∗(t – τ ),

(μ + μ1 + r1 + η)I∗ = δE∗(t – τ ), ηI∗ = (μ + μ2 + r2)H∗, r1I∗ + r2H∗ = (μ + ξ )R∗.

The equilibria expressions are subsequently obtained as

S∗ =
�(μ + μ2 + r2)(μ + ξ ) + ξ I∗ (r1(μ + μ2 + r2) + r2η)

(μ + μ2 + r2)(μ + ξ )
(
μ + βI∗

1+mI∗
) ,

E∗ =
(μ + μ1 + r1 + η)I∗

δ
,

H∗ =
ηI∗

μ + μ2 + r2
, R∗ =

r1I∗(μ + μ2 + r2) + r2ηI∗

(μ + ξ )(μ + μ2 + r2)
.

The value of I∗ is determined by solving the following cubic equation:

AI3 + BI2 + CI + D = 0,

where

A =
βξr1r2ηm

(μ + μ2 + r2)(μ + ξ )
,
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B =
β (ξr1(μ + μ2 + r2) + ξr2η) + (μ + δ)(μ + μ1 + r1 + η)m

(μ + μ2 + r2)(μ + ξ )
,

C =
β�(μ + μ2 + r2)(μ + ξ ) + (μ + δ)(μ + μ1 + r1 + η)

(μ + μ2 + r2)(μ + ξ )
,

D = –�.

3.4 Basic reproductive rate(R0)
The basic reproduction number R0 is a key parameter that indicates whether an infec-
tion will propagate or diminish in a population. Specifically, if R0 > 1, the infection will
likely spread, whereas if R0 < 1, it will typically decrease. R0 is computed using the next-
generation matrix [42] approach, given by HV–1, as

R0 = ρ(HV–1), (7)

where ρ represents the spectral radius of the matrix HV–1.
Here, H is a nonnegative matrix representing new infections caused by infected individ-

uals, and V is the transfer matrix that describes transitions between individual states. The
next-generation matrix HV–1 provides a means to compute R0, which serves as a critical
threshold for assessing disease transmission dynamics.

From the previous section’s proof regarding the existence of equilibria, we identify the
disease-free equilibrium as ε0 =

(
�
μ

, 0, 0, 0, 0
)

. Thus, we have

H(X) =

⎛

⎜
⎝

g(I)S(t)
0
0

⎞

⎟
⎠

and

V (X) =

⎛

⎜
⎝

μE(t) – δE(t – τ )

(r1 + μ1 + η + μ)I(t) – δE(t – τ )

(μ + μ2 + r2) – ηH(t)I(t)

⎞

⎟
⎠ .

Next, we evaluate the matrices at the disease-free equilibrium

HS= �
μ

=

⎛

⎜
⎝

0 �
μ

g ′(0) 0
0 0 0
0 0 0

⎞

⎟
⎠

and

VS= �
μ

=

⎛

⎜
⎝

μ + δ 0 0
–δ μ + μ1 + r1 + η 0
0 –η μ + μ2 + r2

⎞

⎟
⎠ .

We can now compute the next-generation matrix

HV–1 =

⎛

⎜
⎝

�δg′(0)
μ(μ+δ)(η+μ+μ1+r1)

�g′(0)
μ(η+μ+μ1+r1) 0

0 0 0
0 0 0

⎞

⎟
⎠ .
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Based on expression (7) and g(I) = βI
1+mI , we can calculate

R0 =
β�δ

μ(μ + δ)(η + μ + μ1 + r1)
. (8)

3.5 Local and global asymptotic stability of equilibria
When τ = 0, the basic reproduction number R0, the disease-free equilibrium, and the en-
demic equilibrium of system (2) remain unchanged. In this subsection, we demonstrate
that when τ ≥ 0, the disease-free equilibrium ε0 is both locally asymptotically stable and
globally asymptotically stable. Additionally, when τ = 0, we prove the global asymptotic
stability of the endemic equilibrium ε∗.

Theorem 3.3 If R0 < 1, the disease-free equilibrium ε0 of system (2) is locally asymptoti-
cally stable for all values of τ . In contrast, if R0 > 1, ε0 becomes unstable for any value of
τ .

Proof The Jacobian matrix of system (2) at the equilibrium ε0 is

JE0 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

–μ 0 – β�

μ
0 ξ

0 –μ – δe–λτ β�

μ
0 0

0 δe–λτ –(μ + μ1 + r1 + η) 0 0
0 0 η –(μ + μ2 + r2) 0
0 0 r1 r2 –(μ + ξ )

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Based on the equation det(J –λI) = 0, the characteristic equation that corresponds is �1 ×
�2 = 0, where

�1 = (μ + λ)(μ + ξ + λ)(μ + μ2 + r2 + λ)(μ + μ1 + r1 + η + λ),

�2 =
[

(μ + δe–λτ + λ) –
β�

μ(μ + μ1 + r1 + η + λ)
· δe–λτ

]

.

It is evident that system (2) at equilibrium E0 always has four negative real roots: λ01 = –μ,
λ02 = –μ – ξ , λ03 = –μ – μ2 – r2, λ04 = –μ – μ1 – r1 – η, the remaining eigenvalues satisfy
the equation

λ + μ + δe–λτ – (μ + δ)R0 · e–λτ = 0. (9)

When τ = 0, we have λ0 = (μ + δ)(R0 – 1). If R0 < 1, then λ0 < 0. Based on the Routh–
Hurwitz stability criterion [43, 44], it can be concluded that the disease-free equilibrium
ε0 of system (2) exhibits local asymptotic stability.

When τ 
= 0, according to equation (9), we have

λ = [(μ + δ)R0 – δ]e–λτ – μ,

Re(λ) = e–Re(λ)[(μ + δ)R0 – δ]cos(τ Imλ) – μ.

Assume Re(λ) ≥ 0, then

Re(λ) ≤ (μ + δ)R0 – (δ + μ) ≤ (μ + δ)(R0 – 1).



Wu et al. Advances in Continuous and Discrete Models          (2025) 2025:9 Page 13 of 33

Given that R0 < 1, it follows that Re(λ) < 0. Consequently, the equilibrium ε0 of system (2)
is locally asymptotically stable.

Additionally, for R0 > 1, define g(λ) = λ + μ + δe–λτ – (μ + δ)R0 · e–λτ . Since g(0) < 0 and
g(+∞) > 0, it follows that there exists at least one real positive root. Therefore, the disease-
free equilibrium ε0 of system (2) is unsteady.

To summarize the analysis, Theorem 4.3 is proven. □

Theorem 3.4 If R0 ≤ 1, the disease-free equilibrium ε0 =
(

�
μ

, 0, 0, 0, 0
)

of system (2) is glob-
ally asymptotically stable for all τ ≥ 0.

Proof Consider S(t), E(t), I(t), H(t), R(t) as any effective solution to system (2), given the
initial condition in (3). Therefore, we construct a Lyapunov function

V0 =
1
2

(S – S0)2 + θ1E + θ2I + θ3H + θ4R + θ5

∫ t

t–τ

E(s)ds. (10)

It is evident that V0 is strictly positive for all variables when they are greater than zero.
Thus,

Dα
t V0 ≤ (S – S0)Dα

t S + θ1Dα
t E + θ2Dα

t I + θ3Dα
t H + θ4Dα

t R.

Substituting the equations from system (2) into the expression above and setting f (I) =
1 + mI for simplicity, the equation reduces to

Dα
t V0 ≤ (S – S0)

(

� – μS –
βSI
f (I)

+ ξR(t)
)

+ θ1

(
βSI
f (I)

– μE – δE(t – τ )

)

+ θ2 (δE(t – τ ) – (μ + μ1 + r1 + η)I) + θ3 (ηI – (μ + μ2 + r2)H)

+ θ4 (r1I + r2H – (μ + ξ )R)

= –μ(S – S0)2 – (S – S0)
βSI
f (I)

+ ξ (S – S0)R +
θ1βSI
f (I)

– (θ1μ – θ5)E – (θ1δ – θ2δ + θ5)E(t – τ ) – [θ2(μ + μ1 + r1 + η) – θ3η – θ4r1] I

– [θ3(μ + μ2 + r2) – θ4r4] H – θ4(μ + ξ )R.

The following conditions are satisfied:

βSI
f (I)

=
βI

f (I)
(S – S0) +

�βI
μf (I)

, ξ (S – S0)R ≤ 0, S0 = θ1 =
�

μ
, θ1� – (S – S0)2 < 0, (11)

hence

Dα
t V0 ≤ –μ(S – S0)2 – (S – S0)

βI
f (I)

+
θ1β�I
μf (I)

+ ξ (S – S0)R

– (θ1μ – θ5)E – (θ1δ – θ2δ + θ5)E(t – τ ) – [θ2(μ + μ1 + r1 + η) – θ3η – θ4r1] I

– [θ3(μ + μ2 + r2) – θ4r2] H – θ4(μ + ξ )R

= –μ(S – S0)2 – (S – S0)
βI

f (I)
+

θ1β�I
f (I)(μ + δ)

+
θ1β�Iδ

μf (I)(μ + δ)
+ ξ (S – S0)R
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– (θ1μ – θ5)E – (θ1δ – θ2δ + θ5)E(t – τ ) – [θ2(μ + μ1 + r1 + η) – θ3η – θ4r1] I

– [θ3(μ + μ2 + r2) – θ4r2] H – θ4(μ + ξ )R

= –μ(S – S0)2 +
[θ1� – (S – S0)2]βI

f (I)(μ + δ)
+

θ1β�Iδ
μf (I)(μ + δ)

+ ξ (S – S0)R

– (θ1μ – θ5)E – (θ1δ – θ2δ + θ5)E(t – τ ) – [θ2(μ + μ1 + r1 + η) – θ3η – θ4r1] I

– [θ3(μ + μ2 + r2) – θ4r2] H – θ4(μ + ξ )R.

Case 1: When R0 < 1, we set θ1 = θ2, and since f (I) = f (0) + f ′(0)I + o(I), we obtain

θ1β�Iδ
μf (I)(μ + δ)

– [θ2(μ + μ1 + r1 + η) – θ3η – θ4r1] I

=
[

θ1β�δ – μf (I)(μ + δ)(θ2(μ + μ1 + r1 + η) – θ3η – θ4r1)

μf (I)(μ + δ)

]

.

For the expression

θ1β�δ – μf (I)(μ + δ)(θ2(μ + μ1 + r1 + η) – θ3η – θ4r1)

= θ1β�δ – f (0)μ(μ + δ)(θ2(μ + μ1 + r1 + η) – θ3η – θ4r1)

– μ(μ + δ)(θ2(μ + μ1 + r1 + η) – θ3η – θ4r1)(f ′(0)I + o(I))

≤ –θ1 [μ(μ + δ)(μ + μ1 + r1 + η)(1 – R0)] + (θ3η + θ4r1)μ(μ + δ)

– f ′(0)μ(μ + δ)[θ2(μ + μ1 + r1 + η) – θ3η – θ4r1].

Here, it is known that θ1 = θ2 = �
μ

, and for sufficiently small ε1, ε2 > 0, we define

θ3 =
θ1

2η
(μ + μ1 + r1 + η)(1 – R0) – ε1, θ4 =

θ1

2r1
(μ + μ1 + r1 + η)(1 – R0) – ε2, θ5 = �.

Therefore,

–θ1 [μ(μ + δ)(μ + μ1 + r1 + η)(1 – R0)] + (θ3η + θ4r1)μ(μ + δ) = –μ(μ + δ)(ηε1 + r1ε2),

θ2(μ + μ1 + r1 + η) – θ3η – θ4r1 = θ1(μ + μ1 + r1 + η)R0 + (ε1 + ε2).

To summarize the above analysis, we have

Dα
t V0 ≤ –μ(S – S0)2 +

[θ1� – (S – S0)2]βI
f (I)(μ + δ)

+ ξ (S – S0)R

– (θ1μ – θ5)E – (θ1δ – θ2δ + θ5)E(t – τ ) – [θ3(μ + μ2 + r2) – θ4r2] H

– θ4(μ + ξ )R +
θ1β�δ – μf (I)(μ + δ)(θ2(μ + μ1 + r1 + η) – θ3η – θ4r1)

μf (I)(μ + δ)

≤ –μ(S – S0)2 +
[θ1� – (S – S0)2]βI

f (I)(μ + δ)
+ ξ (S – S0)R
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– θ5E(t – τ ) – [θ3(μ + μ2 + r2) – θ4r2] H – θ4(μ + ξ )R

–
μ(μ + δ)(ηε1 + r1ε2) + μ(μ + δ)[θ1(μ + μ1 + r1 + η)R0 + (ε1 + ε2)]

μf (I)(μ + δ)
.

For nonnegative values of S, E, I , H , and R, the above equation satisfies the conditions
outlined in assumption (11). Consequently, we have Dα

t V0 ≤ 0, with equality Dα
t V0 = 0

occurring only when S = �
μ

and E = I = H = R = 0.
Case 2: When R0 = 1, based on the analysis of Case 1, we can define

θ1 = θ2 =
�

μ
, θ3 = θ4 = 0, θ5 = �.

Therefore, for the expression, we have

θ1β�δ – μf (I)(μ + δ)(θ2(μ + μ1 + r1 + η) – θ3η – θ4r1)

≤ –θ1 [μ(μ + δ)(μ + μ1 + r1 + η)(1 – R0)] + (θ3η + θ4r1)μ(μ + δ)

– f ′(0)μ(μ + δ)[θ2(μ + μ1 + r1 + η) – θ3η – θ4r1]

= –�(μ + δ)(μ + μ1 + r1 + η)(1 – R0) – �(μ + δ)(μ + μ1 + r1 + η)

= –�(μ + δ)(μ + μ1 + r1 + η).

Then

Dα
t V0 ≤ –μ(S – S0)2 +

[θ1� – (S – S0)2]βI
f (I)(μ + δ)

+ ξ (S – S0)R – θ5E(t – τ )

–
�(μ + δ)(μ + μ1 + r1 + η)

μf (I)(μ + δ)
.

For nonnegative S, E, I , H , R, the above equation satisfies the condition assumption (11);
accordingly, we obtain Dα

t V0 ≤ 0, with Dα
t V0 = 0 holding true only when S = �

μ
and E = I =

H = R = 0.
To summarize the two cases, based on LaSalle’s invariance principle [40], prerequisites

for global asymptotic stability described in Theorem 4.4 are satisfied. □

Theorem 3.5 If R0 > 1, the endemic equilibrium ε∗ = (S∗, E∗, I∗, H∗, R∗) is globally and
asymptotically stable in system (2).

Proof Construct the Lyapunov function

V1(t) = S – S∗(1 – ln
S
S∗ ),

V2(t) = E – E∗(1 – ln
E
E∗ ),

V3(t) = I – I∗(1 – ln
I
I∗ ),

V4(t) = H – H∗(1 – ln
H
H∗ ),
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V5(t) = R – R∗(1 – ln
R
R∗ ).

Deriving the fractional derivative of the previous equations based on system (2) gives

Dα
t V1(t) ≤

(

1 –
S∗

S

)(

� – μS –
βSI

1 + mI
+ ξR(t)

)

= μS∗
(

2 –
S
S∗ –

S∗

S

)

+
βS∗I∗

1 + mI∗

(

1 –
S∗

S
+

1 + mI∗

1 + mI
(

I
I∗ –

SI
S∗I∗ )

)

+ ξR∗
(

1 +
R
R∗ –

S∗

S
–

R
R∗

S∗

S

)

,

Dα
t V2(t) ≤

(

1 –
E∗

E

)(
βSI

1 + mI
– μE – δE

)

=
βS∗I∗

1 + mI∗

(

1 –
E
E∗ +

1 + mI∗

1 + mI
SI

S∗I∗ –
E∗

E
1 + mI∗

1 + mI
SI

S∗I∗

)

,

Dα
t V3(t) ≤

(

1 –
I∗

I

)

(δE(t) – (μ + μ1 + r1 + η)I)

= (μ + μ1 + r1 + η)

(

1 –
I∗

I
–

E
E∗

I∗

I
+

E
E∗

)

I∗,

Dα
t V4(t) ≤

(

1 –
H∗

H

)

(ηI – (μ + μ2 + r2)H)

= (μ + μ2 + r2)

(

1 +
1
I∗ –

H
H∗ –

1
I∗

H
H∗

)

H∗,

Dα
t V5(t) ≤

(

1 –
R∗

R

)

(r1I + r2H – (μ + ξ )R)

= r1I∗
(

1 +
I
I∗ –

R∗I
RI∗ –

R
R∗

)

+ r2H∗
(

1 +
H
H∗ –

R
R∗ –

R∗H
RH∗

)

.

Using the arithmetic-geometric mean inequality [45], we have

2 –
S
S∗ –

S∗

S
≤ 0, 1 –

S∗

S
+

1 + mI∗

1 + mI
(

I
I∗ –

SI
S∗I∗ ) ≤ 0,

1 +
R
R∗ –

S∗

S
–

R
R∗

S∗

S
≤ 0, 1 –

E
E∗ –

E∗

E
1 + mI∗

1 + mI
SI

S∗I∗ +
1 + mI∗

1 + mI
SI

S∗I∗ ≤ 0,

1 –
I∗

I
–

E
E∗

I∗

I
+

E
E∗ ≤ 0, 1 +

1
I∗ –

H
H∗ –

1
I∗

H
H∗ ≤ 0,

1 +
I
I∗ –

R∗I
RI∗ –

R
R∗ ≤ 0, 1 +

H
H∗ –

R
R∗ –

R∗H
RH∗ ≤ 0.

Then we can obtain

Dα
t V ≤ Dα

t V1 + Dα
t V2 + Dα

t V3 + Dα
t V4 + Dα

t V5 ≤ 0. (12)
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Moreover, Dα
t V = 0 occurs exclusively when S = S∗, E = E∗, I = I∗, H = H∗, R = R∗. Utilizing

LaSalle’s invariance principle [40], prerequisites for global asymptotic stability described
in Theorem 4.5 are satisfied. □

3.6 Hopf bifurcation analysis
In this subsection, we now proceed to investigating the conditions under which a local
bifurcation may occur at the endemic equilibrium ε∗ = (S∗, E∗, I∗, H∗, R∗) of system (2). At
the equilibrium ε∗, the characteristic equation for system (2) is given

λ5 + a4λ
4 + a3λ

3 + a2λ
2 + a1λ + a0 + (b4λ

4 + b3λ
3 + b2λ

2 + b1λ + b0)e–λτ = 0, (13)

where

a4 = A + C + D + E + 2μ,

a3 = μ2 + AC + AE + CD + CE + AD + DE + Aμ + 2μC + 2μD + 2μE,

a2 = Cμ2 + Dμ2 + Eμ2 + ACD + ACE + ADE + CDE + ACμ + ADμ + AEμ

+ 2CDμ + 2CEμ + 2DEμ,

a1 = CDμ2 + CEμ2 + DEμ2 + ACDE + ACDμ + ACEμ + ADEμ + 2CDEμ,

a0 = CDEμ2 + ACDEμ, b4 = δ, b3 = Aδ – Bδ + Cδ + Dδ + Eδ + δμ,

b2 = ACδ + ADδ + AEδ – BDδ – BEδ + CDδ + CEδ + DEδ – Bδμ + Cδμ

+ Dδμ + Eδμ,

b1 = –BDδμ – BEδμ + CDδμ + CEδμ + DEδμ – Aδr1ξ + ACDδ + ACEδ + ADEδ

– BDEδ + CDEδ,

b0 = –ADδr1ξ – Aδηr2ξ + ACDEδ – BDEδμ + CDEδμ

with A = βI∗
1+mI∗ ; B = βS∗

(1+mI∗)2 ; C = μ + μ1 + r1 + η; D = μ + μ2 + r2; and E = μ + ξ .
Case 1: Assume that when τ = 0, equation (13) transforms into

λ5 + ν4λ
4 + ν3λ

3 + ν2λ
2 + ν1λ + ν0 = 0, (14)

where ν1 = b1 + a1, ν2 = b2 + a2, ν3 = b3 + a3, ν4 = b4 + a4, ν0 = a0 + b0. Obviously, ν4 =
A + C + D + E + 2μ + δ > 0, let �1 = ν4 > 0. As a result, by applying the Routh–Hurwitz
criterion [43, 44], the following expressions are obtained:

�2 =

∣
∣
∣
∣
∣

ν4 ν2

1 ν3

∣
∣
∣
∣
∣

= ν3ν4 – ν2 > 0, (15)

�3 =

∣
∣
∣
∣
∣
∣
∣

ν4 ν2 ν0

1 ν3 ν1

0 ν4 ν2

∣
∣
∣
∣
∣
∣
∣

= ν4

∣
∣
∣
∣
∣

ν3 ν1

ν4 ν2

∣
∣
∣
∣
∣

= ν4(ν3ν2 – ν4ν1) > 0, (16)
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�4 =

∣
∣
∣
∣
∣
∣
∣
∣
∣

ν4 ν2 ν0 0
1 ν3 ν1 0
0 ν4 ν2 ν0

0 1 ν3 ν1

∣
∣
∣
∣
∣
∣
∣
∣
∣

> 0, (17)

�5 =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

ν4 ν2 ν0 0 0
1 ν3 ν1 0 0
0 ν4 ν2 ν0 0
0 1 ν3 ν1 0
0 0 ν4 ν2 ν0

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

> 0. (18)

According to the analysis of the above theoretical steps, if the requirements specified in
equations (15)–(18) are met, then system (2) without delay demonstrates local asymptotic
stability at the endemic equilibrium E∗.

Case 2: In the case where τ 
= 0, let λ = iω(ω > 0) be a root of expression (13). We sub-
stitute it into the equation. By distinguishing between the real and imaginary parts, we
have

⎧
⎨

⎩

N3(ω) = N1(ω) cos(τω) – N2(ω) sin(τω),

N6(ω) = N5(ω) cos(τω) + N4(ω) sin(τω),
(19)

where

N1(ω) = b1 – b3ω
2, N2(ω) = b2ω – b4ω

3, N3(ω) = a4ω
4 + a2ω

2 – a0,

N4(ω) = b3ω
2 – b1, N5(ω) = b2ω + b4ω

3, N6(ω) = ω5 – a3ω
3 + a1ω.

Further, according to equation (19), we have

cos(ωτ ) =
k8ω

8 + k7ω
7 + k6ω

6 + k5ω
5 + k4ω

4 + k3ω
3 + k2ω

2 + k1ω

p6ω6 + p5ω5 + p3ω3 , (20)

sin(ωτ ) =
q8ω

8 + q7ω
7 + q6ω

6 + q5ω
5 + q4ω

4 + q3ω
3 + q2ω

2 + q1ω

m5ω5 + m4ω4 + m3ω3 + m1ω + m0
(21)

with

k8 = –b4, k7 = a4b4, k6 = b2 – b4a3, k5 = a4b2 + a2b4,

k4 = a2b2 – b4a1, k3 = –a0b4 + b2a1, k2 = a2b2, k1 = –a0b2,

p6 = –2b3b4, p5 = –2b3b4, p3 = 2b1b4,

q8 = –a4b4, q7 = –a2b4 – b3, q6 = –a2b4, q5 = b1 – a4b2,

q4 = a1b1 – a0b2, q3 = a1b1, q2 = a1b1,

m5 = –b4b3, m4 = b2
3, m3 = b2b3 + b4b1, m1 = –b2b1, m0 = –b2

1.

Since sin2(ωτ ) + cos2(ωτ ) = 1, we have

d16ω
16 + d15ω

15 + d14ω
14 + · · · + d2ω

2 + d1ω + d0 = 0, (22)
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where

d16 = k2
8 + q2

8, d15 = 2k8k7 + 2q8q7, d14 = 2k8k6 + k2
7 + 2q8q6 + q2

7,

d13 = 2k8k5 + 2k7k6 + 2q8q5 + 2q7q6,

d12 = 2k8k4 + 2k7k5 + k2
6 + 2q8q4 + 2q7q5 + q2

6 – p2
6m2

5,

d11 = 2k8k3 + 2k7k4 + 2k6k5 + 2q8q3 + 2q7q4 + 2q6q5 – 2p6p5m2
5,

d10 = 2k8k2 + 2k7k3 + 2k6k4 + k2
5 + 2q8q2 + 2q7q3 + 2q6q4 + q2

5

– (p2
5m2

5 + 2p6p3m2
5 + 2p6p5m4m5),

d9 = 2k8k1 + 2k7k2 + 2k6k3 + 2k5k4 + 2q8q1 + 2q7q2 + 2q6q3 + 2q5q4

– 2(p5p3m2
5 + p6p3m4m5 + p6p5m3m5),

d8 = k2
7 + 2k8k0 + 2k6k2 + 2k5k3 + k2

4 + q2
7 + 2q8q0 + 2q6q2 + 2q5q3 + q2

4

– (p2
5m2

4 + 2p3p6m3m4 + p2
6m2m3),

d7 = 2k7k1 + 2k6k2 + 2k5k3 + 2q7q1 + 2q6q2 + 2q5q3 – 2(p5p3m3 + p6p3m2),

d6 = 2k6k0 + 2k5k1 + 2q6q0 + 2q5q1 – 2(p5p3m2 + p2
6m0), d5 = 2k5k0 + 2q5q0 – 2p5m0,

d4 = k2
4 + q2

4 – p2
5m0, d3 = 2k3k1 + q2

3 + 2q3q1 – p2
3m0, d2 = k2

1 + q2
1 – p2

2m2.

We now introduce the following assumptions: if equation (20) possesses a positive root ω0,
then expression (13) will have a completely imaginary root given by iω0. Thus, the critical
threshold for the delay τ in relation to ω0 can be identified as

τ0 =
arccos

(
k8ω8

0+k7ω7
0+k6ω6

0+k5ω5
0+k4ω4

0+k3ω3
0+k2ω2

0+k1ω0
p6ω6

0+p5ω5
0+p3ω3

0

)

ω0
. (23)

Moreover, applying differentiation to both sides of equation (13) regarding τ yields

[
dλ

dτ

]–1

=
O(λ)

V (λ)
–

τ

λ
, (24)

where

O(λ) = b4λ
5 + b3λ

4 + b2λ
3 + b1λ

2 + b0λ,

V (λ) = 5λ4 + 4a4λ
3 + 3a3λ

2 + 2a2λ + a1 + (4b4λ
3 + 3b3λ

2 + 2b2λ + b1)e–λτ .

Define

Re

[(
dλ

dτ

]–1
]

τ=τ0

=
Im(O)Im(V ) + Re(V )Re(O)

Im(V )2 + Re(V )2 .

Clearly, if the condition Im(O)Im(V ) + Re(V )Re(O) 
= 0 is satisfied, then Re
[( dλ

dτ

]–1
]

τ=τ0

=

0. Building on the preceding analysis and the Hopf bifurcation theory discussed in [28, 46],
the following conclusion can be drawn.
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Theorem 3.6 Given that the condition Re(V )Re(O)+Im(O)Im(V )
Im(V )2+Re(V )2 
= 0 is satisfied, the following

conclusions hold:
(i) The equilibrium ε∗ = (S∗, E∗, I∗, H∗, R∗) of system (2) is asymptotically stable when τ

lies within the interval [0, τ0).
(ii) When τ = τ0, system (2) experiences a Hopf bifurcation at the equilibrium

ε∗ = (S∗, E∗, I∗, H∗, R∗).
Here, τ0 is as defined in equation (23).

4 Numerical simulation
In this section, we perform computational simulations to explore the dynamic behavior of
system (2). Due to the complexity of obtaining an explicit analytical solution, numerical
methods are essential for the analysis. Using MATLAB R2018b, we visually demonstrate
the theoretical results presented earlier, with the initial conditions set as S0 = 5, E0 = 1, I0 =
2, H0 = 1, and R0 = 1. Various parameter configurations are explored to examine different
dynamic scenarios. The Adams–Bashforth–Moulton method, implemented in MATLAB
[22, 47], is used to adjust the fractional order α, time delay τ , and inhibition parameter m,
allowing us to observe their effects on the system, particularly in relation to the dynamics
of susceptible and infected populations under varying conditions.

In our simulations, the initial values are set based on typical epidemiological data and
real-world scenarios. For example, the initial number of infected individuals in certain
compartments is relatively low (usually set to 1 or 10) to reflect the early stages of an epi-
demic, while the initial value of susceptible individuals is typically set as a large proportion
of the total population.

Case 1: Dynamic analysis of system (2) with variable orders and distinct initial condi-
tions.

This analysis investigates the behavior of system (2) at the disease-free equilibrium. The
stability analysis (Fig. 2) shows that R0 = 0.6412 < 1, indicating a stable disease-free equi-
librium, meaning the disease will eventually subside. The dynamics, peak amplitudes, and
rates in each compartment are affected by different values of α, with weaker transmission
leading to a more manageable disease-free state.

The fractional order α also influences the system’s memory effect. For instance, when
α = 0.75, the peak values for the compartments E (Fig. 2 (b)) and I (Fig. 2 (c)) are higher,
and the return to equilibrium is slower, suggesting that earlier transmission has a stronger
lingering effect, leading to a prolonged infection period. In contrast, when α = 1, the sys-
tem stabilizes more rapidly with lower peak values, indicating better control over the dis-
ease. Thus, a larger α reduces the impact of past events, facilitating a quicker return to
equilibrium.

For the scenario where R0 = 1.9338 > 1 (Fig. 3), the system reaches an endemic equilib-
rium with ongoing disease spread. Different values of α influence the long-term dynam-
ics. Specifically, α = 0.75 results in higher peaks for the compartments E (Fig. 3 (b)) and
I (Fig. 3 (c)), indicating prolonged exposure and infection periods, which complicate dis-
ease control efforts. On the other hand, when α = 1, the system responds more swiftly,
with shorter peaks, suggesting improved control over the disease spread. Larger values
of α reduce the influence of historical dynamics, allowing for quicker stabilization at the
endemic equilibrium.

In Fig. 4, where R0 < 1, the disease cannot sustain itself, leading to a disease-free equi-
librium. Regardless of the initial conditions, the compartments S, E, and H all converge
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toward the disease-free equilibrium ε0, with a decline in S and reductions in both E and
H , ultimately stabilizing in a disease-free state. In contrast, Fig. 5 shows that when R0 > 1,
the disease persists, reaching an endemic equilibrium. Despite variations in initial values,
all trajectories converge toward the same endemic point ε∗, indicating that when R0 > 1,
the system stabilizes at a persistent level of infection. Overall, Figs. 4 and 5 further confirm
the dynamic behavior of disease extinction and sustained transmission under different R0

values, offering valuable simulation validation for the steady-state conditions described
above.

Case 2: Dynamic analysis of system (2) under different inhibition factors (infection satu-
ration parameter m) and delay effects τ .

As the inhibition factor or infection saturation parameter m increases, the dynamics
of the system’s compartments S, E, and R exhibit notable changes. In contrast, the dy-
namics of the I (infected) and H (isolated) compartments remain relatively stable under
the current experimental conditions and do not significantly influence the overall system
dynamics. Therefore, we did not prioritize their analysis. We believe that by focusing on
the dynamics of the S, E, and R compartments, we have effectively captured the primary
impact of the saturation control parameter m on disease transmission.

Figure 2 The dynamic behavior of system (2) at R0 = 0.6412 < 1 for different orders α and the parameter set
� = 1, β = 0.45, μ = 0.2, δ = 0.3, μ1 = 0.35, μ2 = 0.15, r1 = 0.7, r2 = 0.8, η = 0.65, ξ = 0.125,m = 0.65, and τ = 5
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Figure 3 The dynamic behavior of system (2) at R0 = 1.9338 > 1 for different orders α and the parameter set
� = 1, β = 0.5, μ = 0.2, δ = 0.65, μ1 = 0.15, μ2 = 0.1, r1 = 0.35, r2 = 0.65, η = 0.7, ξ = 0.125,m = 0.65, and τ = 3

Figure 4 Phase plane analysis of system (2) with four different initial values (y1, y2, y3, y4) when R0 < 1. The
remaining parameter values are consistent with those in Fig. 2

In the susceptible compartment S (Fig. 6(a)), increasing m values result in a slower initial
decrease in the susceptible group, eventually reaching a higher steady-state level. This im-
plies that an increase in m reduces the infection rate, allowing more individuals to remain
susceptible, thereby slowing the spread of infection.
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Figure 5 Phase plane analysis of system (2) with four different initial values (y1, y2, y3, y4) when R0 > 1. The
remaining parameter values are consistent with those in Fig. 3

Figure 6 The dynamic behavior of system (2) for different infection saturation parametersm and the
parameter set α = 0.95, � = 1, β = 0.5, μ = 0.2, δ = 0.65, μ1 = 0.15, μ2 = 0.125, r1 = 0.35, r2 = 0.75, η = 0.7,
ξ = 0.25, and τ = 3

In the exposed compartment E (Fig. 6(b)), higher m values result in a lower peak and
faster decline, ultimately reaching a lower steady-state. This suggests that a stronger inhi-
bition factor limits the accumulation of exposed individuals, thus restraining early trans-
mission.

Similarly, in the recovered compartment R (Fig. 6(c)), higher m values lead to a lower
peak and steady-state, indicating that increased infection saturation results in fewer recov-
eries. Therefore, larger m values inhibit transmission, reduce the accumulation of exposed
and recovered individuals, and slow the spread of infection, helping the system achieve
control and recovery more effectively.

In summary, the variation of the saturation inhibition parameter m reflects the impact
of factors such as immune barriers, treatment and isolation measures, and resource limi-
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Figure 7 The dynamic behavior of system (2) for different time delay effects τ and the parameter set � = 1,
β = 0.5, μ = 0.2, δ = 0.65, μ1 = 0.35, μ2 = 0.15, r1 = 0.5, r2 = 0.75, η = 0.7, ξ = 0.15,m = 0.75, and α = 0.95

tations. As the number of infected individuals increases, herd immunity effects or control
measures begin to take effect, reducing the transmission rate of the disease. Additionally,
as healthcare resources become strained, the efficiency of disease transmission is further
limited. Through this parameter, the model quantifies the inhibitory effects of these fac-
tors on disease spread, allowing for a more accurate description of the epidemic’s progres-
sion.

By adjusting the parameters, Fig. 7 illustrates how the delay parameter τ influences pop-
ulation dynamics. As τ increases, the adjustment rate across the compartments S, E, I , H ,
and R significantly slows down, with the most noticeable effect occurring at τ = 6. Larger
τ values result in a slower decline of S (Fig. 7(a)), a higher peak and longer duration for
E (Fig. 7(b)), and a delayed reduction in I (Fig. 7(c)), indicating a slower response to early
infection.

Moreover, the isolated compartment H (Fig. 7(d)) declines at a slower rate, suggesting
decreased efficiency in isolation measures. The recovery of individuals in R (Fig. 7(e)) is
also hindered, stabilizing at a lower level, which reflects delays in treatment and recovery.
Overall, increasing delays reduce the system’s responsiveness, prolong disease transmis-
sion and control, and complicate disease management. Thus, reducing τ to enable faster
responses is crucial for effective disease containment and treatment.
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Figure 8 The dynamic behavior of system (2) for different hospitalization isolation rate η and the parameter
set � = 1, β = 0.55, μ = 0.2, δ = 0.6, μ1 = 0.15, μ2 = 0.1, r1 = 0.55, r2 = 0.75, ξ = 0.125,m = 0.65 , τ = 3, S0 = 2,
E0 = 0.25, I0 = 0.25, H0 = 0.25, and R0 = 0.25

Case 3: Dynamic analysis of system (2) under different hospitalization isolation rates η.
The numerical simulation results in this study show that the hospitalization isolation

rate η has a significant impact on disease transmission. To examine the progression of the
disease, and based on the analysis in Case 1 with different initial values, we set the initial
values as S0 = 2, E0 = 0.25, I0 = 0.25, H0 = 0.25, and R0 = 0.25, which do not influence the
final steady state of the disease.

As shown in Fig. 8, as η increases from 0 to 0.95, the rate of decline in the suscepti-
ble population (Fig. 8(a)) slows down, and the final steady-state level significantly rises,
indicating that more people remain uninfected. The peak and steady-state levels of the
exposed population (Fig. 8(b)) decrease markedly with higher η; for example, when η = 0,
the peak of the exposed population is close to 0.7, but it drops below 0.3 when η = 0.95.
Similarly, the peak and duration of the infectious population (Fig. 8(c)) decrease as η in-
creases. The initial peak of the hospitalized population (Fig. 8(d)) rises at higher values of
η, but its steady-state level subsequently decreases. The total size of the recovered popu-
lation (Fig. 8(e)) also decreases with higher isolation rates.

These numerical changes indicate that a higher isolation rate significantly reduces the
sizes of the exposed, infectious, and recovered populations, effectively suppressing disease
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Figure 9 The time series of system (2) for α = 0.95 and τ = 6.85 with the following parameter values � = 1,
β = 0.35, μ = 0.02, δ = 0.25, μ1 = 0.15, μ2 = 0.2, r1 = 0.35, r2 = 0.15, η = 0.455, ξ = 0.15, andm = 1.25

transmission. Biologically, the isolation rate represents the proportion of infected individ-
uals who are separated from the population, either through hospitalization or quarantine.
By isolating infected individuals, disease transmission is reduced as they have less contact
with susceptible individuals, helping to control outbreaks and prevent secondary infec-
tions. In highly contagious diseases, effective isolation is crucial for controlling spread
and reducing the epidemic peak.

Case 4: Dynamic analysis of periodic oscillations in system (2) under different time delays.
By adjusting the parameter values of system (2) and conducting simulations, the results

demonstrate how fractional-order dynamics and time delays impact both the steady-state
and periodic responses.

In system (2) with an order of 0.95, increasing the time-delay parameter induces signif-
icant dynamic changes. As shown in Figs. 9–11, when the delay is set to τ = 6.95 < τ0, the
system achieves asymptotic stability at the endemic equilibrium. As the delay approaches
this value, the limit cycle narrows and converges to a stable focus. However, as τ increases
from 6.95 to 7.299, a Hopf bifurcation occurs, transitioning the system’s stability from
the equilibrium point to a periodic orbit. This indicates that once τ exceeds the critical
threshold τ0, stability is lost, and periodic oscillations emerge, as illustrated in Figs. 12–14.
In Figs. 13 and 14, the system stabilizes into a periodic solution.

At a delay of τ = 7.85 (beyond the critical threshold τ0), the amplitude of oscillations
increases, further compromising stability, as shown in Figs. 15–17. This Hopf bifurcation
behavior is particularly significant in infectious disease modeling, as the onset of periodic
oscillations highlights the necessity for timely interventions to manage transmission peaks
effectively.

From a biological perspective, time delay reflects the gap between exposure to the
pathogen and the onset of symptoms or treatment. This delay can lead to rapid disease
spread before effective control measures, such as isolation or vaccination, can be imple-
mented. Understanding the impact of time delays is crucial as even small changes in inter-
vention timing can significantly affect the outbreak trajectory. Managing delay parameters
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Figure 10 Attractor images for different state variables of system (2) with α = 0.95 and τ = 6.85. The
remaining parameter values are consistent with those in Fig. 9

Figure 11 Projection of different state variables of system (2) with α = 0.95 and τ = 6.85. The remaining
parameter values are consistent with those in Fig. 9

effectively allows for dynamic adjustments in transmission paths, improving model accu-
racy. In the context of antibiotic resistance, manipulating delay effects and monitoring
oscillations can optimize resource allocation, enhance vaccination strategies, and ensure
timely responses during transmission peaks, leading to more effective disease control.

Simulations reveal parameter-driven dynamic phenomena, where the system may either
exhibit stable periodic behavior or transition to a stable equilibrium as key parameters
vary. Notably, changes in initial conditions, transmission rates, inhibition levels, and delays
can lead to a transition from stable periodic behavior to chaotic dynamics. Such chaotic
behavior highlights the system’s sensitivity to nonlinear interactions, behavioral shifts, and
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Figure 12 The time series of system (2) with α = 0.95, τ = 7.299. The remaining parameter values are
consistent with those in Fig. 9

Figure 13 Attractor images for different state variables of system (2) with α = 0.95, τ = 7.299. The remaining
parameter values are consistent with those in Fig. 9

environmental factors, emphasizing the complexities inherent in disease management and
the unpredictable nature of transmission dynamics.

5 Conclusions
The rapid spread of infectious diseases presents a significant challenge in the field of public
health, particularly during outbreaks of new diseases, which can quickly affect large pop-
ulations and lead to widespread epidemics. To address this challenge, accurate infectious
disease transmission models are crucial. Through mathematical modeling, we can simu-
late disease spread, predict epidemic trends, and evaluate the effectiveness of intervention
measures. This paper proposes a new time-delay fractional-order SEIHR model aimed at
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Figure 14 Projection of different state variables of system (2) with α = 0.95, τ = 7.299. The remaining
parameter values are consistent with those in Fig. 9

Figure 15 The time series of system (2) with α = 0.95, τ = 7.85. The remaining parameter values are
consistent with those in Fig. 9

more accurately reflecting the complex process of infectious disease transmission. The
model incorporates the traditional compartments of susceptible, exposed, infected, and
recovered individuals, while also adding a hospitalized isolation compartment to simulate
the effect of patient isolation in reducing transmission.

Additionally, the model accounts for time-delay effects under fractional-order dynam-
ics, allowing for a more realistic representation of biological processes, particularly the
interactions between disease spread and immune responses. Furthermore, the system in-
troduces a nonlinear effect of saturated incidence rates. At high infection levels, as the
number of infected individuals rises, the rate of contact between individuals progressively
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Figure 16 Attractor images for different state variables of system (2) with α = 0.95, τ = 7.85. The remaining
parameter values are consistent with those in Fig. 9

Figure 17 Projection of different state variables of system (2) with α = 0.95, τ = 7.85. The remaining
parameter values are consistent with those in Fig. 9

declines, thereby slowing the spread of the disease. This effect enhances the system’s real-
ism, especially during large-scale epidemics, and aids in predicting the trends and extent
of disease transmission.

First, we conducted a comprehensive analysis of the system’s solution properties to en-
sure the biological feasibility of the system, proving the nonnegativity, uniqueness, and
existence of the equilibria. These properties guarantee that the model can reasonably de-
scribe the disease transmission process, avoiding nonphysical solutions and ensuring the
stability and consistency of the system. To validate the model’s effectiveness, we applied
the next-generation matrix technique to determine the basic reproduction number R0,
which reflects the disease’s transmission potential. When R0 < 1, the disease gradually
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dies out, indicating that the transmission source is insufficient to trigger a large-scale epi-
demic. When R0 > 1, the disease continues to spread, suggesting that the epidemic may
proliferate.

Subsequently, using Lyapunov functions, we found that when R0 < 1, the disease-free
equilibrium is globally asymptotically stable, consistent with the biological expectation
that control measures can eliminate the epidemic. In contrast, when R0 > 1, the disease
persists, and stronger control measures are required. Furthermore, the model accounts for
the delay effects of the latent period. When the delay τ exceeds a critical value τ0, the sys-
tem exhibits periodic oscillations, leading to periodic solutions, as shown in Figs. 10–17.
This reflects how infectious diseases with latent periods can capture the fluctuating na-
ture of epidemic spread via time delays, causing different phases of disease transmission
and control to exhibit varying patterns of outbreak and spread. By predicting the periodic
fluctuations of the disease, we can more effectively intervene and control the epidemic.

Numerical simulations were used to validate the theoretical analysis, and the results
showed significant phenomena of disease extinction or sustained transmission under dif-
ferent initial conditions and memory effects (denoted as α), as illustrated in Figs. 2–5,
which confirm theoretical predictions. Additionally, as shown in Fig. 6, increasing the pa-
rameter m reduces the infection rate, allowing more individuals to remain susceptible and
thereby slowing the transmission speed. As shown in Fig. 8, after introducing hospital iso-
lation treatment, higher isolation rates (η) effectively reduced the population densities of
exposed, infected, and recovered individuals, demonstrating the role of hospital isolation
measures in controlling the disease.

Currently, the system only considers disease transmission factors prior to treatment and
does not account for the dynamic changes in different populations after treatment. Future
research will incorporate various treatment strategies, such as vaccination, mask-wearing,
and government interventions, and apply optimal control theory to explore how to achieve
the best control outcomes with minimal treatment costs under limited resources.
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