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Abstract
The burden of influenza virus infection poses a challenge due to its significant
negative impact on public health. The implementation of intervention measures
including vaccination, treatment, and isolation can help alleviate this influence. In this
paper, we consider an optimal control problem with both pharmacological and
non-pharmacological interventions, which involves widely concerned issues such as
the decline of vaccine-based immunity and the emergence of drug resistance. We
prove the existence of the optimal control, solve the optimal control problem
through applying the Pontryagin’s maximum principle, and conduct some numerical
experiments to seek out effective prevention and control strategies. We arrive at a
conclusion that the best strategy to control the outbreak of influenza is to isolate
infected individuals as soon as possible when medical resources are abundant, such
as staying at home, avoiding crowded places and so on. Epidemiologically, we find
that reducing the waning rate of vaccine-based immunity is also an effective strategy
when there is energy available, and may be better than increasing treatment rates.

Keywords: Influenza epidemic model; Optimal control; Vaccination; Antiviral
treatment; Isolation

1 Introduction
We divide the total population (denoted by N(t)) into four compartments: susceptible S(t),
vaccinated V (t), infected I(t) and recovered R(t). Due to the presence of pharmacological
intervention, infected individuals I(t) are further divided into four classes, namely, those
untreated with drug-sensitive strains (Is(t)), those untreated with drug-resistant strains
Ir(t), those treated with drug-sensitive strains Istr(t), and those treated with drug-resistant
strains Irtr(t). And we describe the evolution of influenza disease based on the following
aspects:

(i) Vaccination: Before the infection, susceptible individuals with a proportion of φ will
consider receiving influenza vaccine to resist being infected by the influenza virus.
However, the imperfection of vaccines can lead to the loss of vaccine-based immunity
at the rate ω, making vaccinated individuals susceptible again.
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(ii) Transmission: The transmission of influenza virus is due to contact with infected
individuals, for example, susceptible individuals may come into contact with in-
fected individuals who shed wild-type (drug-sensitive) and drug-resistant virus at
rates βa (a = s, str) and βb (b = r, rtr), respectively, resulting in infection. In fact, drug
administration may reduce the likelihood of transmitting wild-type viruses, thus as-
suming βstr ≤ βs. Once drug resistance occurs, treatment is almost ineffective, thus
assuming that the infection rate is equal when encountering infected individuals
with drug-resistant strains, regardless of whether they receive treatment or not, i.e.,
βrtr = βr . Because vaccines cannot provide immunity to all vaccinated individuals,
they may be infected with influenza virus, but the infection rate is lower than that of
unvaccinated individuals (those in compartment S). We use 1 – σ to represent the
proportion of decrease, where σ refers to the effectiveness of the vaccine.

(iii) Treatment: Antiviral treatment is administered at rates κ1 and κ2 respectively to
drug-sensitive and drug-resistant cases to alleviate related symptoms. We assume
that drug-resistant viruses can be rarely recognized during a pandemic, resulting in
little difference in treatment rates between drug-sensitive and drug-resistant cases,
i.e., κ1 = κ2. Drug-resistant viruses rapidly emerge at the rate p after the start of treat-
ment, which means that the infected-treated individuals with drug-sensitive strains
become infected-treated individuals with drug-resistant strains at this rate.

(iv) Recovery: Infected-untreated individuals with drug-sensitive and drug-resistant
strains recover at rates ξ1 and ξ2, respectively, and they are equal, i.e., ξ1 = ξ2.
Infected-treated individuals with drug-sensitive and drug-resistant strains recover
at rates α1 and α2, respectively. Receiving treatment may to some extent reduce the
infection period and make recovery faster, but we assume this is only applicable to
drug-sensitive cases, as the presence of drug resistance makes treatment difficult to
work. Therefore, we suppose that infected-treated individuals with drug-resistant
strains have the same recovery rate as infected-untreated individuals. These indicate
that α1 > α2 = ξ1 = ξ2. Although individuals may develop some immunity after being
infected with the influenza virus, it may be lost over time. We assume that the immu-
nity acquired by infection will decrease at the rate γ , causing recovered individuals
become susceptible again.

If sufficient and appropriate measures are taken during the course of the epidemic, it
becomes possible for diseases to be pushed towards eradication [1, 2]. However, due to the
lack of adequate policies and opportune interventions to slow down the process of virus
transmission, some diseases eventually develop into endemic ones [3, 4]. Therefore, it is
necessary to adopt appropriate proactive strategies to contain the outbreak of epidemic,
especially for infectious diseases like influenza that have both vaccines and treatment [5–
8]. The optimal control model has been widely used to determine effective strategies to
minimize the economic and social impacts of infectious diseases through intervention
measures [9, 10]. This can provide solid theoretical support for public health authorities
to formulate prevention and control policies.

Naturally, a question arises: what is the optimal strategy to suppress the spread of the in-
fluenza (mainly reflected in reducing the number of infected individuals) at minimal cost?

Our contribution is to establish a mathematical model that can be used to characterize
the spread of influenza in a single wave by adding control variables to seek the optimal
control strategy. The rest of this paper is organized as follows. In Sect. 2, we propose an
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influenza epidemic model with controls aimed at minimizing the number of infected indi-
viduals and the costs associated with implementing intervention measures. In Sect. 3, we
prove the existence of the optimal control. In Sect. 4, we solve the optimal control problem
by using Pontryagin’s maximum principle. In Sect. 5, we carry out numerical experiments
to find the optimal control strategy to contain the outbreak of influenza. And in the last
section, Sect. 6, we collect some concluding remarks.

2 Influenza pandemic model with controls
In this section, we invest energy into establishing the control model with both pharmaco-
logical and non-pharmacological interventions by introducing control variables. What we
are trying to do while minimizing costs is to curb the major outbreak of influenza, which
is to reduce the epidemic size and bring the number of infected individuals closer to zero
as possible. For this purpose, we design the following control strategies:

(S1) Reducing the waning rate of vaccine-based immunity: assume that the waning rate of
vaccine-based immunity is decreased by u1(t). And (1 – u1(t))ω denotes the reduc-
tion in the rate of losing vaccine-based immunity ω by developing the new influenza
vaccine, improving vaccination strategies and enhancing individual physical fitness.

(S2) Improving the treatment rate: assume that the treatment rate of infected individuals
with drug-sensitive strains is increased by u2(t), and the treatment rate of infected
individuals with drug-resistant strains is increased by u3(t). These can be achieved
through reducing the severity level of the disease that requires antiviral therapy, im-
proving the effectiveness and supply of drugs and so on.

(S3) Isolating the infected individuals: The isolation intervention measures that can be
taken for infected individuals usually refer to staying at home, hospitalization, and
avoiding crowded places. Let u4(t) and u5(t) be the control variables that respec-
tively describe the isolation rates of the infected individuals without and with treat-
ment. The reason we differentiate is that patients receiving treatment are usually
more severe, which leads to a lower likelihood of them going out and possibly being
hospitalized.

Through adding these variables uj(t) (j = 1, 2, 3, 4, 5), based on the diagram shown in Fig. 1,
we obtain the following influenza model, incorporating the control measures designed
above:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS
dt

= 
 – (βsIs + βstrIstr + βrIr + βrtrIrtr)S – φS + (1 – u1)ωV + γ R – μS,

dV
dt

= φS – (1 – u1)ωV – (1 – σ )(βsIs + βstrIstr + βrIr + βrtrIrtr)V – μV ,

dIs

dt
= (βsIs + βstrIstr)S + (1 – σ )(βsIs + βstrIstr)V

– (1 + u2)κ1Is – ξ1Is – μIs – u4Is,
dIr

dt
= (βrIr + βrtrIrtr)S + (1 – σ )(βrIr + βrtrIrtr)V

– (1 + u3)κ2Ir – ξ2Ir – μIr – u4Ir ,
dIstr

dt
= (1 + u2)κ1Is – pIstr – α1Istr – μIstr – u5Istr ,

dIrtr

dt
= (1 + u3)κ2Ir + pIstr – α2Irtr – μIrtr – u5Irtr ,

dR
dt

= ξ1Is + ξ2Ir + α1Istr + α2Irtr – γ R – μR

(2.1)
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Figure 1 Transfer diagram of the influenza model incorporating intervention measures

with the initial conditions:

S(0) > 0, V (0) > 0, Is(0) > 0, Ir(0) > 0, Istr(0) > 0, Irtr(0) > 0, R(0) > 0.

Here, 
 and μ represent the recruitment rate of individuals (including birth and migra-
tion) and the rate of individuals leaving the population (including death and emigration),
respectively.

Note that the feasible region

� =
{

(S(t), V (t), Is(t), Ir(t), Istr(t), Irtr(t), R(t)) ∈R
7
+ : N(t) ≤ 


μ

}

(2.2)

is positively invariant for model (2.1), where N(t) = S(t)+V (t)+ Is(t)+ Ir(t)+ Istr(t)+ Irtr(t)+
R(t). Therefore, it is necessary to limit our dynamic analysis about the model to region �.

Our goal is to minimize the number of the infected individuals (including Is, Ir , Istr and
Irtr) and the cost due to apply three control strategies. Thus, setting

x(t) = [S(t), V (t), Is(t), Ir(t), Istr(t), Irtr(t), R(t)]T, u(t) = [u1(t), u2(t), u3(t), u4(t), u5(t)]T,

a control scheme is assumed to be optimal if it minimizes the objective functional:

J(u) =
∫ tf

0
[L(t, x, u)]dt, (2.3)

where

L(t, x, u) = Is(t) + Ir(t) + Istr(t) + Irtr(t) +
5∑

j=1

ζj

2
u2

j (t).

The first four terms in the objective functional (2.3) represent benefit of Is(t), Ir(t), Istr(t)
and Irtr(t) that we hope to reduce. In the quadratic term of (2.3), ζj(j = 1, 2, 3, 4, 5) are pos-
itive weight values associated with these controls uj(t)(j = 1, 2, 3, 4, 5), and the square of
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the control variable reflects the severity of the side effect of the adopted measures over
the time interval [0, tf ], where tf is the fixed final time. The optimal control problem is
to minimize objective functional (2.3) subject to control model (2.1), that is, to find the
optimal control [11] u∗ = (u∗

1, u∗
2, u∗

3, u∗
4, u∗

5) such that

J(u∗) = min
U

J(u), (2.4)

where U is the control set defined by

U =
{
(u1, u2, u3, u4, u5) | ui(t) ∈ L∞([0, tf ],R), 0 ≤ uj(t) ≤ 1, j = 1, 2, 3, 4, 5

}
.

The assumption of the upper bound of control variables uj(t) (j = 1, 2, 3, 4, 5) reflect the
reality of the practical limitation of the maximum rate (i.e., 1) that the control strategy
may be adopted.

Remark 2.1 According the next generation matrix method provided in [12], the basic re-
production number for model (2.1) without control strategies (i.e., uj(t) = 0, j = 1, 2, 3, 4, 5)
can be given as follows:

R0 = max{Rs,Rr}, (2.5)

where

Rs =

((1 – σ)φ + ω + μ) (βsα1 + βsμ + βsp + βstrκ1)

μ (μ + ω + φ) (κ1 + ξ1 + μ) (α1 + μ + p)
,

Rr =

((1 – σ)φ + ω + μ) (βrα2 + βrμ + βrtrκ2)

μ (μ + ω + φ) (κ2 + ξ2 + μ) (α2 + μ)
,

(2.6)

which accounts for the number of secondary cases generated by four groups: infected-
untreated individuals with drug-sensitive strains (Is), infected-untreated individuals with
drug-resistant strains (Ir), infected-treated individuals with drug-sensitive strains (Istr)

and infected-treated individuals with drug-resistant strains (Irtr). Generally, if R0 > 1, in-
fluenza disease will persist, while if R0 < 1, the influenza disease will go extinct, which can
be traced back to sufficient previous work [13–15].

3 Existence of optimal control
In this section, we need to present the results on the existence of optimal control given in
[16], as follows, which will guide us to complete this part of the proof.

Lemma 3.1 [16] Suppose that
(i) the set of controls and state variables is non-empty;

(ii) the control space U is closed and convex;
(iii) the right side of the control model is bounded by a linear function with the state and

control variables;
(iv) the integrand in the objective function is convex with respect to the control u;
(v) there exists a constant n > 1 and positive numbers C1, C2 such that

L(t, x, u) ≥ C1 | u |n –C2.

Then there exists u∗(·) ∈ U such that J(u∗(·)) = min
U

J(u(·)).
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Theorem 3.1 For the control problem with model (2.1), there exists the optimal control u∗

such that J(u∗) = min
U

J(u).

Proof What needs to be done now is to verify these conditions about Lemma 3.1 in the
following five steps in sequence.

Step 1: The control model (2.1) is uniformly Lipschitz continuous, thereby the set U and
the set of state variables (S, V , Is, Ir , Istr , Irtr , R) to initial values are non-empty.

Step 2: From the definition of U , it can be inferred that the control set U is allowed to be
closed and convex.

Step 3: In fact, the control model (2.1) can be written as

dx
dt

= A + Bu,

where A and B are defined as follows:

A =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝


 – (βsIs + βstrIstr + βrIr + βrtrIrtr)S – φS + ωV + γ R – μS

φS – ωV – (1 – σ )(βsIs + βstrIstr + βrIr + βrtrIrtr)V – μV

(βsIs + βstrIstr)S + (1 – σ )(βsIs + βstrIstr)V – κ1Is – ξ1Is – μIs

(βrIr + βrtrIrtr)S + (1 – σ )(βrIr + βrtrIrtr)V – κ2Ir – ξ2Ir – μIr

κ1Is – pIstr – α1Istr – μIstr

κ2Ir + pIstr – α2Irtr – μIrtr

ξ1Is + ξ2Ir + α1Istr + α2Irtr – γ R – μR

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

B =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

–ωV 0 0 0 0
ωV 0 0 0 0

0 –κ1Is 0 –Is 0
0 0 –κ2Ir –Ir 0
0 κ1Is 0 0 –Istr

0 0 κ2Ir 0 –Irtr

0 0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Therefore, we speculate that condition (iii) in the Lemma 3.1 holds.
Step 4: For all θ ∈ (0, 1),

L[t, x, θu + (1 – θ )v]

= Is + Ir + Istr + Irtr +
ζ1

2
(θu1 + (1 – θ )v1)2 +

ζ2

2
(θu2 + (1 – θ )v2)2

+
ζ3

2
(θu3 + (1 – θ )v3)2 +

ζ4

2
(θu4 + (1 – θ )v4)2 +

ζ5

2
(θu5 + (1 – θ )v5)2,

and

θL(t, x, u) + (1 – θ )L(t, x, v)

= Is + Ir + Istr + Irtr +
ζ1

2
(θu2

1 + (1 – θ )v2
1) +

ζ2

2
(θu2

2 + (1 – θ )v2
2)

+
ζ3

2
(θu2

3 + (1 – θ )v2
3) +

ζ4

2
(θu2

4 + (1 – θ )v2
4) +

ζ5

2
(θu2

5 + (1 – θ )v2
5),
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then

L[t, x, θu + (1 – θ )v] – (θL(t, x, u) + (1 – θ )L(t, x, v))

= θ (θ – 1)

(
ζ1

2
(u1 – v1)2 +

ζ2

2
(u2 – v2)2 +

ζ3

2
(u3 – v3)2 +

ζ4

2
(u4 – v4)2 +

ζ5

2
(u5 – v5)2

)

≤ 0,

which yields

L(t, x, θu + (1 – θ )v) ≤ θL(t, x, u) + (1 – θ )L(t, x, v).

Hence, condition (iv) is proven.
Step 5: Note that

L(t, x, u) = Is + Ir + Istr + Irtr +
ζ1

2
u2

1 +
ζ2

2
u2

2 +
ζ3

2
u2

3 +
ζ4

2
u2

4 +
ζ5

2
u2

5

≥ ζ1

2
u2

1 +
ζ2

2
u2

2 +
ζ3

2
u2

3 +
ζ4

2
u2

4 +
ζ5

2
u2

5

≥ ζmin

2
(u2

1 + u2
2 + u2

3 + u2
4 + u2

5),

where ζmin = min{ζ1, ζ2, ζ3, ζ4, ζ5}. So it follows that if we choose

C1 =
ζmin

2
, n = 2, C2 ≥ 0,

we have

L(t, x, u) ≥ C1 | u |n –C2,

which means that condition (v) is satisfied. □

4 Characterization of optimal control
In this section, our task is to solve the optimal control problem by using Pontryagin’s max-
imum principle [16]. To this end, the Hamiltonian function with respect to our problem
is constructed as follows:

H(t, x, u, q) = Is(t) + Ir(t) + Istr(t) + Irtr(t) +
ζ1

2
u2

1 +
ζ2

2
u2

2 +
ζ3

2
u2

3 +
ζ4

2
u2

4 +
ζ5

2
u2

5

+ q1
dS
dt

+ q2
dV
dt

+ q3
dIs

dt
+ q4

dIr

dt
+ q5

dIstr

dt
+ q6

dIrtr

dt
+ q7

dR
dt

,
(4.1)

where qi (i = 1, 2, 3, 4, 5, 6, 7) are the adjoint variables. Then, we obtain the following theo-
rem.

Theorem 4.1 Given the optimal control u∗ and the solutions S∗, V ∗, I∗
s , I∗

r , I∗
str , I∗

rtr and R∗

of the corresponding model (2.1), there exist adjoint variables qi (i = 1, 2, 3, 4, 5, 6, 7) that
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satisfy

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dq1

dt
= q1(βrI∗

r + βsI∗
s + βrtrI∗

rtr + βstrI∗
str + μ + φ) – q2φ

–q3(βsI∗
s + βstrI∗

str) – q4(βrI∗
r + βrtrI∗

rtr),

dq2

dt
= –q1(1 – u∗

1)ω + q2((1 – u∗
1)ω

+(1 – σ )(βrI∗
r + βsI∗

s + βrtrI∗
rtr + βstrI∗

str) + μ)

–q3(1 – σ )(βsI∗
s + βstrI∗

str) – q4(1 – σ )(βrI∗
r + βrtrI∗

rtr),

dq3

dt
= –1 + q1βsS∗ + q2(1 – σ )βsV ∗

–q3(βsS∗ + (1 – σ )βsV ∗ – (1 + u∗
2)κ1 – ξ1 – μ – u∗

4)

–q5(1 + u∗
2)κ1 – q7ξ1,

dq4

dt
= –1 + q1βrS∗ + q2(1 – σ )βrV ∗

–q4(βrS∗ + (1 – σ )βrV ∗ – (1 + u∗
3)κ2 – ξ2 – μ – u∗

4)

–q6(1 + u∗
3)κ2 – q7ξ2,

dq5

dt
= –1 + q1βstrS∗ + q2(1 – σ )βstrV ∗ – q3((1 – σ )βstrV ∗ + βstrS∗)

+q5(p + α1 + μ) – q6p – q7α1,

dq6

dt
= –1 + q1βrtrS∗ + q2(1 – σ )βrtrV ∗ – q4((1 – σ )βrtrV ∗ + βrtrS∗)

+q6(α2 + μ + u∗
5) – q7α2,

dq7

dt
= –q1γ + q7(γ + μ),

(4.2)

with transversality conditions

qi(tf ) = 0, i = 1, 2, 3, 4, 5, 6, 7. (4.3)

Furthermore, optimal controls u∗
j (j = 1, 2, 3, 4, 5) are given as

u∗
1 = max

{

min

{
ωV ∗(q1 – q2)

ζ1
, 1

}

, 0
}

,

u∗
2 = max

{

min

{
κ1I∗

s (q3 – q5)

ζ2
, 1

}

, 0
}

,

u∗
3 = max

{

min

{
κ2I∗

r (q4 – q6)

ζ3
, 1

}

, 0
}

,

u∗
4 = max

{

min

{
q4I∗

r + q3I∗
s

ζ4
, 1

}

, 0
}

,

u∗
5 = max

{

min

{
q6I∗

rtr + q5I∗
str

ζ5
, 1

}

, 0
}

.

(4.4)
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Proof From Pontryagin’s maximum principle [16], we know that if (x∗, u∗) is an optimal
control solution of the optimal control problem (2.1), then there exist the adjoint variables
vector q = (q1, q2, q3, q4, q5, q6, q7) satisfying the following inequalities:

∂H(t, x∗, u∗, q)

∂u
= 0, (4.5)

dq
dt

= –
∂H(t, x∗, u∗, q)

∂x
, (4.6)

q(tf ) = 0. (4.7)

Hence, we can calculate the adjoint equations shown in (4.2) by differentiating the Hamil-
tonian function (4.1) with respect to the states, that is,

dq1

dt
= –

∂H
∂S

,
dq2

dt
= –

∂H
∂V

,
dq3

dt
= –

∂H
∂Is

,
dq4

dt
= –

∂H
∂Ir

,

dq5

dt
= –

∂H
∂Istr

,
dq6

dt
= –

∂H
∂Irtr

,
dq7

dt
= –

∂H
∂R

.

Since there is no dependence on the states at the final time in the objective functional, the
final time boundary conditions (transversality conditions) are zero, i.e., q1(tf ) = q2(tf ) =
q3(tf ) = q4(tf ) = q5(tf ) = q6(tf ) = q7(tf ) = 0.

The optimal conditions for the Hamiltonian are given by

∂H
∂u1

|u1=u∗
1(t) = –q1ωV ∗ + q2ωV ∗ + ζ1u∗

1(t) = 0,

∂H
∂u2

|u2=u∗
2(t) = –q3κ1I∗

s + q5κ1I∗
s + ζ2u∗

2(t) = 0,

∂H
∂u3

|u3=u∗
3(t) = –q4κ2I∗

r + q6κ2I∗
r + ζ3u∗

3(t) = 0,

∂H
∂u4

|u4=u∗
4(t) = –q4I∗

r – q3I∗
s + ζ4u∗

4(t) = 0,

∂H
∂u5

|u5=u∗
5(t) = –q6I∗

rtr – q5I∗
str + ζ5u∗

5(t) = 0,

which yield that

u∗
1(t) =

ωV ∗(q1 – q2)

ζ1
, u∗

2(t) =
κ1I∗

s (q3 – q5)

ζ2
, u∗

3(t) =
κ2I∗

r (q4 – q6)

ζ3
,

u∗
4(t) =

q4I∗
r + q3I∗

s
ζ4

, u∗
5(t) =

q6I∗
rtr + q5I∗

str
ζ5

.

Considering the property of the control space, we obtain

u∗
1 =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

0 if
ωV ∗(q1 – q2)

ζ1
≤ 0,

ωV ∗(q1 – q2)

ζ1
if 0 <

ωV ∗(q1 – q2)

ζ1
< 1,

1 if
ωV ∗(q1 – q2)

ζ1
≥ 1,
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u∗
2 =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

0 if
κ1I∗

s (q3 – q5)

ζ2
≤ 0,

κ1I∗
s (q3 – q5)

ζ2
if 0 <

κ1I∗
s (q3 – q5)

ζ2
< 1,

1 if
κ1I∗

s (q3 – q5)

ζ2
≥ 1,

u∗
3 =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

0 if
κ2I∗

r (q4 – q6)

ζ3
≤ 0,

κ2I∗
r (q4 – q6)

ζ3
if 0 <

κ2I∗
r (q4 – q6)

ζ3
< 1,

1 if
κ2I∗

r (q4 – q6)

ζ3
≥ 1,

u∗
4 =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

0 if
q4I∗

r + q3I∗
s

ζ4
≤ 0,

q4I∗
r + q3I∗

s
ζ4

if 0 <
q4I∗

r + q3I∗
s

ζ4
< 1,

1 if
q4I∗

r + q3I∗
s

ζ4
≥ 1,

u∗
5 =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

0 if
q6I∗

rtr + q5I∗
str

ζ5
≤ 0,

q6I∗
rtr + q5I∗

str
ζ5

if 0 <
q6I∗

rtr + q5I∗
str

ζ5
< 1,

1 if
q6I∗

rtr + q5I∗
str

ζ5
≥ 1.

Therefore, the optimal control u∗ is characterized as (4.4). □

5 Numerical simulations
In this section, we present several purely illustrative experiments on model (2.1) to find
the optimal control strategies that can contain major outbreaks. Our aim is to signifi-
cantly control the number of infected individuals at an extremely low level, preferably to
zero (this situation is considered as the extinction of influenza in this work), with minimal
cost under the assumption of abundant medical resources. The specific implementation
plan is to study the evolution of the model dynamics with and without control, using the
forward-backward sweep method described in [17]. It should be noted that the dynam-
ics of the model are studied in a finite time interval, taking into account the seasonality
of the influenza pandemic. Here, infected individuals are only distinguished based on the
strain type (i.e. drug-sensitive or drug-resistant strain) of influenza virus they are infected
with. Given this, we use the numerical solutions of Is + Istr to measure the number of drug-
sensitive cases and Ir + Irtr to measure the number of drug-resistant cases.

According to the insightful work about the influenza dynamics by [18] and [19], the
parameter values are adopted as follows:


 = 5
365 , μ = 1

80×365 , βs = 6 × 10–3, βstr = 4.02 × 10–3, βr = 1.2 × 10–3,

βrtr = 1.2 × 10–3, φ = 0.03, ω = 0.003, γ = 0.011, σ = 0.85, κ1 = 0.7, ξ1 = 0.25,

κ2 = 0.7, ξ2 = 0.25, α1 = 0.3325, α2 = 0.25, p = 0.05,

where parameter σ , involved in the reduction proportion of infection rates caused by
vaccines, has no unit, while the units of other parameters are day–1. In this case, we ob-
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tain

R0 = 1.283 > 1,

indicating a major outbreak of influenza without control strategies.
We consider the optimal control problem developed by control model (2.1) over the

time horizon of half a year, that is, tf = 183 days. In particular, we assume that ζj = 0.8
(j = 1, 2, 3, 4, 5) in the objective functional (2.3). Generally speaking, there are differences
in the costs associated with these control strategies, and we ignore them here not only
because these cost differences are difficult to accurately measure, but also because of what
we plan to do. That is to say, we want to know which of the measures we design is more
effective, which requires ensuring that the results are not affected by cost differences or
other factors. Based on these considerations, the detailed exploration is as follows.

Strategy 1: Reducing the waning rate of vaccine-based immunity.
As the first scenario, we consider whether drug-sensitive and drug-resistant influenza

cases could be effectively eliminated within a certain period of time if efforts could be
made to reduce the waning rate of vaccine-based immunity. Figure 2(a) shows the time-
dependent optimal control variable u1 of strategy 1. It is interesting to observe that u1 to
reduce the waning rate of vaccine-based immunity does not need to reach its maximum
value at the beginning of the outbreak, as long as it can be achieved within about a month
and a half and then last almost the entire control period. Figure 2(b) and Fig. 2(c) show the
number of drug-sensitive and drug-resistant cases without control (solid line) and under
strategy 1 (dotted line). Unfortunately, we find that this strategy can only slightly cut down
the number of infected individuals (including those with drug-sensitive and drug-resistant
strains) and cannot suppress the outbreak.

Strategy 2: Improving the treatment rate.
We now shift our attention to the second scenario, which is that we can improve the

treatment rate for infected individuals with drug-sensitive and drug-resistant strains. The
time-varying optimal control variables u2 and u3 of strategy 2 are displayed in Fig. 3(a).
This suggests that in the days leading up to the outbreak of the epidemic, medical de-
partments increase treatment rate for drug-sensitive cases as much as possible, but then
reduce the treatment rate until the epidemic has passed the rapid growth period. How-
ever, during this control period, the effect of improving treatment rate for drug-resistant

Figure 2 (a) The optimal control variable u1(t) in the case of reducing the waning rate of vaccine-based
immunity (i.e., strategy 1) when weight constants ζj = 0.8 (j = 1, 2, 3, 4, 5). (b, c) The time-series plots of the
number of drug-sensitive cases (b) and drug-resistant cases (c) without (solid line) and with strategy 1 (dotted
line)
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Figure 3 (a) The optimal control variables u2(t) and u3(t) in the case of improving the treatment rate (i.e.,
strategy 2) when weight constants ζj = 0.8 (j = 1, 2, 3, 4, 5). (b, c) The time-series plots of the number of
drug-sensitive cases (b) and drug-resistant cases (c) without (solid line) and with strategy 2 (dotted line)

Figure 4 (a) The optimal control variables u4(t) and u5(t) in the case of isolating the infected individuals (i.e.,
strategy 3) when weight constants ζj = 0.8 (j = 1, 2, 3, 4, 5). (b, c) The time-series plots of the number of
drug-sensitive cases (b) and drug-resistant cases (c) without (solid line) and with strategy 3 (dotted line)

cases is actually minimal, which inspires us not to focus on the advancement of this mea-
sure. Figure 3(b) and Fig. 3(c) show the numerical and analytical results of the number of
drug-sensitive cases and drug-resistant cases. It can be seen that compared to when no
control is applied, the implementation of strategy 2 only significantly reduces the number
of drug-sensitive cases.

Strategy 3: Isolating the infected individuals.
Our envisioned third scenario is to isolate infected individuals and keep them at a dis-

tance from other healthy individuals. The optimal control profiles and the number of drug-
sensitive cases and drug-resistant cases under strategy 3 are shown in Fig. 4. The control
profiles displayed in Fig. 4(a) provides a justification for the implementation of a policy
aiming at immediately ensuring that as many infected individuals (regardless of whether
they receive antiviral treatment or not) as possible are in quarantine during the early stages
of the epidemic outbreak. As we expect to see, the outbreak of influenza may be effectively
contained within about half a month under strategy 3, which is supported by Fig. 4(b) and
Fig. 4(c).

Further explorations focus on what the optimal isolation strategy would be and how the
influenza dynamics would change if the weight values related to control variables u4 and
u5 are relatively large. The results obtained will be applicable to situations where the cost
and difficulty of implementing isolation measures are relatively high, or where isolation re-
sources are limited, such as facing a variety of sudden major epidemic. Figure 5 and Fig. 6
show the numerical results corresponding to weight constants ζ4 = ζ5 = 1000 or 5000, re-
spectively. We find that compared to the results shown in Fig. 4 with weight constants
ζ4 = ζ5 = 0.8, the time it takes to suppress influenza outbreaks is significantly longer in the
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Figure 5 (a) The optimal control variables u4(t) and u5(t) in the case of isolating the infected individuals (i.e.,
strategy 3) when weight constants ζj = 1000 (j = 1, 2, 3, 4, 5). (b, c) The time-series plots of the number of
drug-sensitive cases (b) and drug-resistant cases (c) without (solid line) and with strategy 3 (dotted line)

Figure 6 (a) The optimal control variables u4(t) and u5(t) in the case of isolating the infected individuals (i.e.,
strategy 3) when weight constants ζj = 5000 (j = 1, 2, 3, 4, 5). (b, c) The time-series plots of the number of
drug-sensitive cases (b) and drug-resistant cases (c) without (solid line) and with strategy 3 (dotted line)

case of ζ4 = ζ5 = 1000, especially for the extinction of drug-resistant cases, which takes
more than a month. When the side effect of implementing isolation measures is particu-
larly significant (such as weight constants ζ4 = ζ5 = 5000), unfortunately, the influenza will
continue to spread. Moreover, Fig. 5(a) and Fig. 6(a) tell us a fact that if the side effect of
implementing isolation strategies is too significant, they will only be implemented during
the rapid development stage of the epidemic.

In reality, the combination of any two measures explored, or even the combination of
these three measures, definitely have a better impact on controlling the spread of the epi-
demic than one of the measures included in the corresponding strategy. Nevertheless, we
will not conduct further numerical experiments to illustrate this.

6 Concluding remarks
Viral respiratory epidemics like influenza can lead to serious illness, hospitalization,
and even death, especially for the elderly, children, and certain chronic disease patients
[20–24]. However, when the pandemic occurs, the imperfect or delayed supply of vac-
cines, as well as the emergence of the drug resistance that may be caused by the current
antiviral treatment, are all obstacles on the road to prevention and control [25–27]. At this
point, non-pharmacological interventions such as isolation may bring surprises [28–30].
Therefore, how to alleviate the impact of ongoing influenza transmission by combining
pharmacological and non-pharmacological interventions has received great attention. In
this paper, we propose an optimal control problem in which three strategies are designed:
(i) reducing the waning rate of vaccine-based immunity; (ii) improving the treatment rate;
(iii) isolating the infected individuals. Our goal is to minimize the number of infected
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individuals with minimal cost as much as possible, preferably approaching zero. Mathe-
matically, we prove the existence of optimal control and obtain the solution to the optimal
control problem using Pontryagin’s maximum principle. Numerically, we find the optimal
control strategy by demonstrating the obtained optimal control and associated optimal
state solutions. The main findings are summarized as follows:

(1) Reducing the waning rate of vaccine-based immunity (Strategy 1). If efforts are made
to effectively reduce the waning rate of vaccine-based immunity, i.e., Strategy 1, the
size of infected individuals, including drug-sensitive and drug-resistant cases, may be
decreased (see Fig. 2).

(2) Improving the treatment rate (Strategy 2). Strategy 2 can only reduce the number of
infected individuals with the drug-sensitive strains to a certain extent (see Fig. 3).
This serves as a warning that increasing the treatment rate may not necessarily be an
extremely effective strategy, and should be carefully considered in conjunction with
the actual situation of the epidemic.

(3) Isolating the infected individuals (Strategy 3). We live up to expectations and find an
effective strategy to contain the outbreak of influenza, which is to isolate infected
individuals (e.g., staying at home), i.e., Strategy 3 (see Fig. 4). However, when encoun-
tering sudden major infectious diseases, if the side effect of isolation strategies is too
significant, it will evidently increase the difficulty of prevention and control, and even
the outbreak of the disease may not be controlled for a certain period of time (see
Fig. 5 and Fig. 6). In this case, whether isolation is still necessary will be a question,
and the best strategy may be to do nothing.

In the future, the interest may lie in exploring whether reducing the development rate of
drug resistance in drug-sensitive cases can ensure that antiviral treatment can definitely
be used to control the worsening of influenza outbreaks. Of course, if these works can be
further explored based on actual data, it may provide stronger support for government
departments to formulate prevention and control strategies.
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