
Advances in Continuous
and Discrete Models

Fei et al. Advances in Continuous and Discrete Models          (2025) 2025:6 
https://doi.org/10.1186/s13662-025-03866-3

R E S E A R C H Open Access

Computational thinking in complex problem
solving based on data analysis: exploring the
role of problem representation using the
Tower of Hanoi
Jinlong Fei1, Shuyuan Dong2 and Dingzhou Fei2*

*Correspondence:
feeding_psy@whu.edu.cn
2Speech Analysis and Artificial
Intelligence Lab, Wuhan University,
Wuhan, China
Full list of author information is
available at the end of the article

Abstract
This article investigates the role of problem representation in complex
problem-solving based on quasi-experimental data analysis, specifically within the
context of computational thinking. Using the Tower of Hanoi task, researchers
compared the performance of computer science students (with algorithmic
background) and non-computer science students (novices). The data research results
revealed that participants with stronger problem representation skills, i.e., computer
science students, demonstrated superior problem-solving abilities, particularly as task
difficulty increased. Additionally, practice was found to significantly improve
problem-solving efficiency for novices, suggesting that enhancing problem
representation skills through experience can effectively boost complex
problem-solving abilities. The data research highlights the critical role of problem
representation in computational thinking and provides valuable insights for
programming practices, emphasizing the importance of developing problem
representation skills to foster effective problem-solving in complex scenarios.

Keywords: Complex problem; The Tower of Hanoi; Problem representation;
Algorithm and procedures; Computational thinking; Big data

1 Introduction
The ability to solve complex problems in artificial intelligence has become pivotal for both
individual and societal development and has attracted more and more researchers’ at-
tention in recent years. Computational thinking, as a systematic approach to problem-
solving, underscores the central role of problem representation in addressing such chal-
lenges [1]. Encompassing dimensions such as problem decomposition, pattern recogni-
tion and knowledge discovery, abstraction, and algorithm design, computational think-
ing trains individuals to effectively analyze and resolve complex issues by breaking them
down into smaller, more manageable sub-problems and devising appropriate algorithms
to tackle them [2]. Moreover, it aids in identifying patterns and regularities among prob-
lems, thereby accelerating the discovery of solutions [3].
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While previous research has elucidated the connection between cognitive factors like
reasoning ability and working memory and problem-solving proficiency [4], recent lit-
erature has used different modes of presentations, i.e., computer, mental, or physical, in
the experiments and found that the mode of presentation affected problem-solving per-
formance, with the computer-based representation potentially reducing working memory
load. However, the conclusions of these studies seem to contradict our practices, especially
for complex problems. The reason for this is that these studies have overlooked the role
of computational thinking in problem-solving. Complex problems often have underlying
complex algorithmic mechanisms, and the understanding of these mechanisms differs be-
tween experts and novices.

As a result, the findings that there were no differences in the number of moves required
to complete the puzzle across experience levels or presentation modes may not be appli-
cable to more complex problems [5], where the representation modes are not reflected
by the solver’s understanding of the underlying algorithmic mechanisms, which truly play
a crucial role in problem-solving performance [6]. The study in [7] pointed out that in-
correct problem representation cannot lead to the correct resolution of problems. The
recent research has also confirmed that enhancing problem representation skills can ef-
fectively improve students’ abilities to solve mathematical and physical problems [8]. This
study, employing the Tower of Hanoi as a tool, aims to investigate how problem represen-
tation impacts the problem-solving capabilities of college students. Consequently, prior
research in complex problems solving appeared to overlook the importance and general-
ity of computational thinking, the ability to identify relevant information and make appro-
priate inferences and solving plans, and emphasize abstract reasoning and mental model
construction, which are crucial aspects of complex problem-solving. Like almost work-
ing mathematicians, we believe that complex problem solving essentially is an objective
and logical reasoning process, although it is affected by a lot of psychological factors. Our
philosophy for the study of complex problem solving is toward an objective and logical
view, contrary to current subjective view that complex problem solving is a psychological
process, controlled by various psychological factors, such as cognitive states.

The recursive algorithm underlying the Tower of Hanoi problem demands a certain de-
gree of logical and advanced thinking. By comparing the performance of computer sci-
ence students (with relevant algorithmic background) and non-computer science students
(novices), this research seeks to reveal the key role of problem representation in complex
problem-solving, hypothesizing that participants with stronger problem representation
skills will demonstrate superior problem-solving abilities.

Furthermore, this study also explores how practice can improve problem representa-
tion skills. Through a carefully designed experiment, we observed changes in participants’
problem-solving strategies and efficiency after a period of practice. These findings not
only provide a new perspective for understanding the cognitive mechanisms of complex
problem solving, but also offer valuable insights for educational practice and vocational
training. In the context of computational thinking, the ability to solve complex problems
is regarded as a crucial skill. Computational thinking is not merely a skill specific to pro-
gramming or computer science; it is a way of thinking that helps us better understand and
address complex issues [9].

While previous research on complex problem-solving has primarily focused on cogni-
tive factors such as reasoning and working memory, it has often neglected the intricate
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cognitive mechanisms underlying problem-solving strategies. This gap in understanding
stems from several limitations: behavioralist approaches prioritizing observable behav-
iors over internal processes; cognitive psychology’s emphasis on macro-level cognitive
structures and physical appearances rather than specific logical and computational mech-
anisms; and the lack of direct analysis framework for capturing the gist of thinking pro-
cesses. Computational thinking can fit this purpose for offering a explicit framework, as
which this study will show.

Despite these limitations, some potential features of thinking mechanisms have been
identified, including dynamism, hierarchical structure, and individual differences. To ad-
vance our understanding, future research should focus on developing effective measure-
ment tools, employing diverse methodologies, and constructing interdisciplinary theo-
retical frameworks. This will enable a more comprehensive exploration of the cognitive
mechanisms underlying problem-solving strategies, leading to a deeper understanding of
complex problem solving.

So, from the perspective of computational thinking, what is the key influencing factor in
the ability to solve complex problems? Generally speaking, individuals must go through
two cognitive stages when solving a problem: establishing problem representation and
finding problem solutions. This suggests that establishing correct problem representation
is the foundation of solving complex problems. Based on this, the present paper focuses
on the ability to solve complex problems, using college students as the subject group, to
explore the factors affecting this ability, discovering the critical role of problem representa-
tion in complex problem-solving, and further finding that practice can effectively enhance
problem representation skills, thereby improving the ability to solve complex problems.

The ability to solve complex problems simply refers to the interaction ability between
problem solver and dynamic task environment [10]. It is of great significance to explore the
influencing factors of the ability to solve complex problems. Most of the previous studies
focused on the education of primary and secondary school students, but there was no
relevant research based on good measurement tools. As a classic measurement tool in
the field of problem solving, the Tower of Hanoi has specific task rules, and due to the
recursive algorithm behind it, it requires a certain degree of logical ability and advanced
computational thinking process, which is more targeted and professional than previous
studies. Therefore, based on the perspective of problem representation, this paper finds
that problem representation plays a key role in solving complex problems, and practice
can effectively improve the ability of problem representation, thus improving the ability
to solve complex problems.

1.1 Complex problem
Problem solving refers to the behavior of transforming the current state into the goal state
by means of a series of goal-oriented cognitive operations when there is no clear solution.
According to the complexity of the problem situation, problems can be divided into simple
problems and complex problems. Simple problems are usually well structured, that is,
they provide all the relevant information to solve the problem, have a clear goal and a
limited number of solutions, such as solving an equation; Complex problems are poorly
structured and often lack information and unclear goals in the initial state of the problem.
It is necessary to gather information in the process of interaction with the task to find
solutions to the problem, such as writing a business plan.
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There are five characteristics of complex problems: 1) complexity, that is, the number
of variables associated with the problem is large; 2) Correlation, that is, the relationship
between various variables is complex and intensive; 3) Dynamic, that is, as the problem
solver takes action, the problem situation itself changes, and in some cases, the problem
situation even changes spontaneously over time; 4) Fuzziness, that is, the clarity of task
characteristics, such as variable relations, task objectives and operations that can be taken,
is low. Individuals must explore for themselves and constantly integrate information in
the process of exploration to obtain necessary information; 5) Multiple goals. Complex
problems usually have more than one goal, and there are often conflicts between different
goals. Therefore, problem solvers need to actively identify different goals and classify their
priority levels. Not all complex problems meet the above five characteristics at the same
time, but the more conditions a particular problem meets, the problem is considered to be
a complex problem, and dynamics is the most core characteristic of the complex problem.

The ability to solve complex problems refers to the collection of a series of self-regulating
psychological processes that are necessary in the face of complex problems with ill-
structured structure in the dynamic changing environment. This type of problem solving
cannot be achieved through conventional behavior, but requires the creative combination
of knowledge and advanced cognitive processes [11].

Studies have proved that reasoning ability is significantly correlated with the ability to
solve complex problems, and participants with higher reasoning ability usually have higher
ability to solve complex problem [12]. Other research results supported the important role
of working memory in complex problem solving based on the cognitive load model, for
instance, that the participants with higher working memory level show higher ability to
solve complex problem [13].

It is obvious that solving problems cannot do without knowledge. Some studies have
proved that it is an effective way to improve the ability to solve complex problems for
students to master general problem-solving knowledge [14]. There are even studies that
suggest motivation and emotion affect people’s ability to solve complex problem. [15]
found that individual intrinsic motivation was positively correlated with the performance
of complex problem solving, and the stronger the individual intrinsic motivation was, the
better the problem-solving result would be. Lin et al [16] found that positive emotions can
improve individuals’ performance in complex problem solving, possibly because positive
emotions have a positive effect on cognitive flexibility.

But these factors are not the core elements that affect the ability to solve complex prob-
lems. The thinking process of complex problem solving is more complex and comprehen-
sive, which requires not only knowledge but also knowledge integration and the appli-
cation of advanced cognitive processing ability, not simple reasoning ability or working
memory ability. In a study, Güss and Badibanga [17] compared the performance of busi-
ness managers and students on complex tasks involving running a chocolate company and
found that business managers performed better than students because they spent more
time exploring complex situations before making decisions and had the flexibility to ad-
just their solutions to suit the situation. This means that compared with novices, expert
problem solvers have better ability to extract effective information from problems due to
their experience, so that they can quickly find solutions to problems. In other words, they
have better problem representation ability, so they have higher ability to solve complex
problems.
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The study of [18] shows that individuals need to go through two cognitive stages to solve
a problem, namely, constructing problem representation and finding a problem solution.
The establishment of problem representation is the basis of solving complex problems,
that is, only the establishment of correct problem representation can solve problems more
quickly and accurately. At present, it has been proved that the improvement of problem
representation ability can effectively improve students’ ability to solve mathematical and
physical problems [19]. However, many wrong problem representations could not lead to
a correct solution of the problem.

From the above discussion, we conclude that the key to the improvement of the ability
to solve complex problems is not simply the increase of knowledge, nor the improvement
of reasoning ability and working memory level, but the improvement of the ability to es-
tablish correct problem representation. The establishment of correct problem represen-
tation is convenient for us to extract the required information from the problem, so as to
integrate the information, find the breakthrough to solve the problem, and then solve the
problem.

The prospects may involve the transferability of problem representation across domains:
to explore whether computational thinking in the Hanoi Tower task can be transferred to
other types of complex problem solving, such as programming, data analysis, mathemat-
ical modeling or engineering design, in particular, the chain of thought in large language
models.

Therefore, the following hypothesis is proposed.

Hypothesis 1 The key factor in the ability to solve complex problems is problem repre-
sentation, that is, individuals with higher problem representation ability will have a higher
ability to solve complex problems.

1.2 Problem representation
Problem representation mainly refers to the process in which problem solvers interpret
the perceived information of known conditions according to their own knowledge and
experience to discover the structure of the problem, construct the problem space, and
transform the external stimuli into internal psychological symbols, which is to construct
the cognitive structure of the problem and form the problem schema in their minds [20].
Problem representation plays an important role in solving the problem smoothly.

The research [21] has shown that constructing problem representation is a process of
continuous abstraction from surface to deep, which includes three stages: 1) Search and
extract problem information. This stage mainly involves perceptual processes and requires
the support of specialized knowledge, verbal and comprehension skills, and experience in
problem solving. 2) Understanding and internalization of problem information. This stage
involves the deep processing of perceived information, that is, the understanding, gener-
alization and internalization of information, which needs the support of knowledge base,
thinking ability and problem-solving skills. 3) Developing metaphorical constraints and
consciousness. In order to solve the problem, it is necessary to infer the implied informa-
tion not directly expressed and find the metaphorical constraints actively.

The paper [22] highlights that problem solvers’ specialized knowledge, experience, and
successful problem-solving history are key factors influencing problem representation
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ability. The stability, clarity and availability of these experiences directly affect the per-
ceptual system’s selection of information in the situation of the problem and its interpre-
tation of the perceived information, and even can become an analogy example of problem
representation.

Based on the above discussion, we infer that individuals with knowledge in the same pro-
fessional field as the problem may possess better problem representation ability compared
to those with knowledge in other fields. At the same time, Patrick, John, Ahmed, Afia [23]
showed that practices can contribute to the improvement of the level of representation.

The following hypothesis is proposed:

Hypothesis 2 Practices can improve problem representation ability and thus improve the
ability to solve complex problems.

1.3 Theoretic analysis framework
The complex problem solving in for the Tower of Hanoi required an evaluation calibrating
for the participants’ performances, The derived number of moves is exactly 2n – 1. This is
the minimum number of moves required to solve the Tower of Hanoi puzzle with n disks.
There is no way to solve it with fewer moves, while adhering to the rules.

The actual number of moves will always be greater than or equal to the derived number.
Any solution that solves the puzzle requires at least 2n – 1 moves. If a solution uses more
than 2n – 1 moves, it simply means it is not an optimal solution. The difference between
the actual and derived number represents the inefficiency of the solution strategy. In the
real contexts, people will stop trying to make more moves once they have achieved the
goal of the task, so, we can assume that:

Hypothesis 3 The number of 2n – 1 moves is exactly the correct number for the Tower
of Hanoi.

Figure 1 N-disks Hanoi Tower task can be done exactly with the recursion
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Now derive the exact move number of the Tower of Hanoi using the above Fig. 1, which
is a mathematical puzzle where the objective is to move a stack of disks of different sizes
from one rod to another, obeying the following rules:

– Only one disk can be moved at a time.
– Each move consists of taking the upper disk from one of the stacks and placing it on

top of another stack or on an empty rod.
– No larger disk may be placed on top of a smaller disk.

Let Tn be the minimum number of moves required to solve the Tower of Hanoi puzzle
with n disks.

• Base Case: For n = 1 disk, only one move is required. Therefore, T1 = 1.
• Recursive Step: To move n disks from the source rod to the destination rod, we can

break the problem into three steps:
i. Move the top n – 1 disks from the source rod to the auxiliary rod. This requires

Tn–1 moves.
ii. Move the largest disk (the nth disk) from the source rod to the destination rod.

This requires 1 move.
iii. Move the n – 1 disks from the auxiliary rod to the destination rod. This requires

another Tn–1 moves.
Therefore, the total number of moves required is:

Tn = Tn–1 + 1 + Tn–1 = 2Tn–1 + 1 (T1 = 1).

This is a recurrence relation. We can solve it iteratively. Its proof is below: let an = Tn + 1,
then this recurrence is rewritten as an – 1 = 2(an–1 – 1), so an – 1 = 2n(a1 = 2), Tn = 2n –
1(T1 = 1).

2 Method
Students from a college were selected as participants in the experiment. Since the students
majoring in computing have studied the algorithms associated with the Tower of Hanoi,
understand the arithmetic logic behind it, have a background in the same area of expertise
as it, and conform to the conditions capable of good problem representation constructed,
therefore, it is assumed that the students majoring in computing have better problem rep-
resentation ability than the students not majoring in computing. So, students majoring in
computing are the professional participants, while students not majoring in computing
are the newer participants.

It is warned that solving complex problems requires high reasoning abilities and special-
ized knowledge. Therefore, we chose college students as our subjects, the college students
generally possess high cognitive and reasoning abilities, making them an ideal group for
studying complex and hard problems.

The measuring tool is the Tower of Hanoi. It is the classic measurement tool in the field
of problem solving, satisfying the five characteristics of complex problems [24]. At the
same time, it is difficult and requires a certain logical ability, which can well meet the task
standard for the evaluation of the ability to solve complex problems of college students.
And the Tower of Hanoi has a clear and accurate quantitative index, so it is selected as the
measurement tool of this experiment. The whole study flowchart is followed by Fig. 2.



Fei et al. Advances in Continuous and Discrete Models          (2025) 2025:6 Page 8 of 23

Figure 2 The overview of study procedure

Figure 3 The flowchart for the Experiment 1

2.1 Experiment 1
The flowchart for Experiment 1 is given in Fig. 3.

2.1.1 Participants
The grouping of subjects into computer science majors and non-computer science ma-
jors is more reasonable than the other groupings, mainly because computer science ma-
jors have systematic knowledge of algorithms and data structures, as well as extensive
programming experience, which gives them a significant advantage in solving the Tower
of Hanoi problem. Non-computing majors, on the other hand, due to the lack of these
systematic knowledge and experience, although they may have occasional inspirations in
some cases, it is actually difficult for them to solve the Tower of Hanoi problem effectively
without the corresponding knowledge and experience. Therefore, this grouping better re-
flects the effect of different professional backgrounds on problem solving ability.

Our study has a basic premise based on the item response theory (IRT) that an individ-
ual’s performance on a test depends primarily on his or her latent abilities (e.g., knowl-
edge, skills, etc.) rather than other irrelevant factors (e.g., age, cognitive skills, and cogni-
tive state). In the Tower of Hanoi task, an individual’s performance depends primarily on
his or her knowledge of algorithms and data structures rather than age, cognitive skills,
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and cognitive state. Therefore, grouping subjects with computer science majors and non-
computer science majors is more reasonable than other groupings and better reflects the
effects of different professional backgrounds on problem-solving ability.

A total of 32 college students were randomly selected from a university, ranging in age
from 20 to 24 years old, including 12 boys. The professional: 15 students majoring in com-
puting, 7 boys. The newer: 17 students not majoring in computing, 5 boys. All participants
were right-handed, had normal visual acuity or corrected visual acuity, and were proficient
in computer operation.

2.1.2 The experiment design
The experiment was a two-factor mixed experimental design of 2 (participant type) × 2
(task difficulty). Participant type was a variable between participants, which was divided
into the newer and the professional; Task difficulty was a variable within participants,
which was divided into 3 disks and 5 disks. The dependent variables were the number
of moving steps and operation time of the participants to complete the Tower of Hanoi.

2.1.3 Instruments and materials
(1) Experimental instruments: the Tower of Hanoi software (automatically record the

number of moving steps and operation time), computer.
(2) Experimental materials for the Tower of Hanoi: 3 cylinders with trays and several

disks; The three cylinders are exactly the same; The disks are identical except in size;
The difference between the diameters of any two disks exceeds the difference
threshold and is easy to distinguish.

(3) Operation rules of the Tower of Hanoi: in the initial state, several disks are stacked
on the left cylinder in ascending order, and the task objective is to move all disks to
the right cylinder with the help of the middle cylinder, and also put them in
ascending order. Only one disk can be moved at a time. A large disk cannot be
placed on a small disk; Any disk that is not moving must be placed on the cylinder.

2.1.4 Experimental procedure
(1) Inform the participants of the Tower of Hanoi rules and matters needing attention

to ensure that each participant clearly defined the rules.
(2) The participants completed the Tower of Hanoi on the computer, and the software

automatically recorded the number of moving steps and operation time. All
participants were required to complete the tasks of 3 disks and 5 disks, and there
was no limit on the time to complete the tasks.

(3) Participants were given 2-5 minutes to rest between tasks.
(4) After the task is completed, the participants are asked whether there is any strategy

during the task. If so, please specify.

2.1.5 Data analysis
SPSS was used for repeated measures ANOVA.

2.1.6 Results
(1) Dependent variable is the number of moving steps
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Table 1 Descriptive statistical results of moving steps as dependent variable

Task difficulty Participant type M SD n

3 disks the professional 7.79 1.19 14
the newer 14.06 6.89 16

5 disks the professional 54.57 27.4 14
the newer 83.75 33.43 16

Table 2 ANOVA results of moving steps as dependent variable

Variables p Effect size

task difficulty <0.001 0.8
participant type 0.005 0.25
task difficulty*participant type 0.05 0.13

Figure 4 Interaction between task difficulty, participant type and the number of moving steps

Participant type was the variable between participants, task difficulty was the variable
within participants and the number of moving steps was a dependent variable. Repeated
measures ANOVA was performed.

1) Descriptive statistical results
After removing one extreme value data from the newer group and the professional

group, the statistical results were obtained as shown in Table 1.
2) ANOVA
As can be seen from Table 2, the main effect of task difficulty is significant, indicating

that the number of moving steps of participants under different task difficulty has signif-
icant difference; The main effect of the participant type was significant, indicating that
there was a significant difference in the number of moving steps between the newer and
the professional, and the speed of the professional was significantly higher than that of the
newer; The interaction between task difficulty and participant type was marginal signifi-
cant, indicating that with the change of task difficulty, the difference degree between the
newer and the professional also changed.

3) Interaction
Figure 4 shows that under different task difficulties, there are differences in the number

of moving steps of the newer and the professional. When the task difficulty was 3 disks,
there was little difference between the newer and the professional. When the task difficulty
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Table 3 Simple effect analysis results of moving steps as dependent variable

Variables Llevel p

task difficulty 3 disks 0.002
5 disks 0.015

participant type the professional <0.001
the newer <0.001

Table 4 Descriptive statistical results of operation time as dependent variable

Task difficulty Participant type M SD n

3 disks the professional 19.43 10.8 14
the newer 54.31 32.06 16

5 disks the professional 110.71 74.7 14
the newer 269.88 128.93 16

Table 5 ANOVA results of operation time as dependent variable

Variables p Effect size

task difficulty <0.001 0.7
participant type <0.001 0.43
task difficulty*participant type 0.003 0.27

was 5 disks, there was a large difference between the newer and the professional, so it can
be inferred that the greater the task difficulty, the greater the difference between the newer
and the professional.

4) Simple effect analysis
It can be seen from the above results that there is an interaction between the participant

type and the task difficulty, so the simple effect is analyzed. The statistical results are shown
in Table 3. As can be seen from Table 3, there is a significant difference in the number
of moving steps between the newer and the professional, regardless of 3 disks or 5 disks.
There was a significant difference in the number of moving steps at different task difficulty
for both the newer and the professional.

(2) Dependent variable is operation time
Participant type was the variable between participants, task difficulty was the variable

within participants and operation time was a dependent variable. Repeated measures
ANOVA was performed.

1) Descriptive statistical results
After removing one extreme value data from the newer group and the professional

group, the statistical results were obtained as shown in Table 4.
2) ANOVA
As can be seen from Table 5, the main effect of task difficulty is significant, indicating

that the operation time of participants under different task difficulty has significant dif-
ference; The main effect of the participant type was significant, indicating that there was
a significant difference in the operation time between the newer and the professional, and
the speed of the professional was significantly higher than that of the newer; The interac-
tion between task difficulty and participant type was significant, indicating that with the
change of task difficulty, the difference degree between the newer and the professional also
changed.

3) Interaction
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Figure 5 Interaction between task difficulty, participant type and the operation time

Table 6 Simple effect analysis results of the operation time as dependent variable

Variables Level p

task difficulty 3 disks 0.001
5 disks <0.001

participant type the professional 0.003
the newer <0.001

Figure 5 shows that under different task difficulties, there are differences in the operation
time of the newer and the professional. When the task difficulty was 3 disks, there was little
difference between the newer and the professional. When the task difficulty was 5 disks,
there was a large difference between the newer and the professional, so it can be inferred
that the greater the task difficulty, the greater the difference between the newer and the
professional.

4) Simple effect analysis
It can be seen from the above results that there is an interaction between the partic-

ipant type and the task difficulty, so the simple effect is analyzed. The statistical results
are shown in Table 6. As can be seen from Table 6, there is a significant difference in the
operation time between the newer and the professional, regardless of 3 or 5 disks. There
was a significant difference in the operation time at different task difficulty for both the
newer and the professional.

2.1.7 Discussion
The experimental results showed that there were significant differences in the number of
moving steps and operation time between the professional and the newer in both high
and low difficulty Tower of Hanoi, and the number of moving steps and operation time
of the professional was significantly lower than that of the newer, that is, the speed of the
professional solving the problem was significantly faster than that of the newer, supporting
Hypothesis 1. It was also found that the difference between the professional and the newer
became more significant as the task difficulty increased. Tables 1, 2, 3 and Fig. 4 collectively
support the conclusion that there is a significant interaction effect between participant
type and task difficulty in the experimental results. Tables 4, 5 and 6 are consistent with
the results for the operation time in Fig. 5.
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It can be seen from Experiment 1 that the efficiency of problem solving is greatly affected
by the problem representation ability, so whether the newer who do not have good prob-
lem representation ability can improve the speed of problem solving through practice, and
then improve the problem representation to improve the solving efficiency, Experiment 2
was designed to answer this issue.

2.2 Experiment 2
The flowchart for Experiment 2 is given in Fig. 6.

2.2.1 Participants
In selecting participants for the experiment, we were still guided by the knowledge and
skills required for solving the complex problem and IRT theory, as the same as the Exper-
iment 1.

A total of 36 college students were randomly selected from a university, ranging in age
from 20 to 24 years old, including 14 boys. The professional: 17 students majoring in com-
puter science, 7 boys. randomly assigned to the control group and the experimental group,
of which 8 were in the control group; The newer: 19 students not majoring in computer
science, 7 boys. Randomly assigned to the control group and the experimental group, of

Figure 6 The flowchart for Experiment 2
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which 9 were in the control group. All participants were right-handed, had normal visual
acuity or corrected visual acuity, and were proficient in computer operation.

2.2.2 The experiment design
The experiment was a two-factor experiment design between participants of 2 (partici-
pant type) × 2 (group: the experimental group, the control group). Participant type was
divided into the newer and the professional; Group was divided into the experimental
group and the control group. The experimental group completed 3 disk tasks first, then
4 disk tasks; The control group completed 4 disk tasks directly. The dependent variables
were the number of moving steps and operation time of the participants to complete the
4-disk Tower of Hanoi. The flowchart is given as below:

2.2.3 Instruments and materials
The experimental instruments and materials are the same as in Experiment 1.

2.2.4 Experimental procedure
(1) Inform the participants of the Tower of Hanoi rules and matters needing attention

to ensure that each participant clearly defined the rules.
(2) The participants completed the Tower of Hanoi on the computer, and the software

automatically recorded the number of moving steps and operation time. The
experimental group completed the task with 3 disks and 4 disks, while the control
group only completed the task with 4 disks. There was no limit on the time to
complete the tasks.

(3) Participants were given 2-5 minutes to rest between tasks.
(4) After the task is completed, the participants are asked whether there was any

strategy during the task. If so, please specify.

2.2.5 Data analysis
SPSS was used for MANOVA.

2.2.6 Results
(1) Dependent variable is the number of moving steps

The participant type and group were the independent variables and the number of mov-
ing steps was a dependent variable. MANOVA was performed.

1) Descriptive statistical results
See Table 7.
2) MANOVA
As can be seen from Table 8, the main effect of group is significant, indicating that the

number of moving steps of the control group and the experimental group has significant

Table 7 Descriptive statistical results of moving steps as dependent variable

Group Participant type M SD n

control group the professional 24.13 7.4 8
experimental group the professional 15.89 2 9
control group the newer 44 14.64 9
experimental group the newer 23 8.54 10
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Table 8 MANOVA results of moving steps as dependent variable

Variables p Effect size

group <0.001 0.41
participant type <0.001 0.37
group*participant type 0.049 0.12

Figure 7 Interaction between group participant type and the number of moving steps

Table 9 Simple effect analysis results of moving steps as dependent variable

Variables Group p

group control group <0.001
experimental group 0.107

participant type the professional 0.079
the newer <0.001

difference; The main effect of the participant type was significant, indicating that there
was a significant difference in the number of moving steps between the newer and the
professional, and the speed of the professional was significantly higher than that of the
newer; The interaction between group and participant type was marginal significant, in-
dicating that the difference degree between the newer and the professional is also different
in different groups.

3) Interaction
Figure 7 shows that both the control group and the experimental group have differences

in the number of moving steps of the newer and the professional. There was a great dif-
ference between the newer and the professional in the control group. After practice, there
was little difference between the newer and the professional in the experimental group.
It follows that, to some extent, practice can bridge the gap between the new and the pro-
fessional. Figure 7 further illustrates the interaction effect between experimental group
and participant type, with the results aligned with the analysis outcomes from Tables 7, 8
and 9.

4) Simple effect analysis
It can be seen from the above results that there is an interaction between the partici-

pant type and the group, so the simple effect is analyzed. The statistical results are shown
in Table 9. As can be seen from Table 9, there were significant differences in the number
of moving steps between the newer and the professional in the control group, and there
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Table 10 Descriptive statistical results of operation time as dependent variable

Group Participant type M SD n

control group the professional 53.25 32.78 8
experimental group the professional 22.56 9.28 9
control group the newer 187.11 152.43 9
experimental group the newer 55.6 24.15 10

Table 11 MANOVA results of operation time as dependent variable

Variables p Effect size

group 0.004 0.23
participant type 0.003 0.24
group ∗ participant type 0.065 0.1

was no significant difference between the newer and the professional in the experimental
group, indicating that after practice, the difference between the newer and the professional
became smaller. In the newer group, there was a significant difference in the number of
moving steps between the experimental group and the control group, indicating that af-
ter practice, the newer solving speed was effectively improved; In the professional group,
there was no significant difference in the number of moving steps between the experimen-
tal group and the control group, indicating that practice could not lead to a significant
improvement in the professional’s solving speed.

(2) Dependent variable is operation time
Participant type and group were the independent variables and operation time was a

dependent variable. MANOVA was performed.
1) Descriptive statistical results
See Table 10.
2) MANOVA
As can be seen from Table 11, the main effect of group is significant, indicating that the

operation time of the control group and the experimental group has significant difference;
The main effect of the participant type was significant, indicating that there was a signif-
icant difference in the operation time between the newer and the professional, and the
speed of the professional was significantly higher than that of the newer; The interaction
between group and participant type was marginal significant, indicating that the differ-
ence degree between the newer and the professional is also different in different groups.

3) Interaction
Figure 8 shows that both the control group and the experimental group have differences

in the operation time of the newer and the professional. There was a great difference be-
tween the new and the professional in the control group. After practice, there was little
difference between the new and the professional in the experimental group. It follows that,
to some extent, practice can bridge the gap between the new and the professional.

4) Simple effect analysis
It can be seen from the above results that there is an interaction between the participant

type and the group, so the simple effect is analyzed. The statistical results are shown in
Table 12. As can be seen from Table 12, there were significant differences in the opera-
tion time between the newer and the professional in the control group and there was no
significant difference between the newer and the professional in the experimental group,
indicating that after practice, the difference between the newer and the professional be-
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Figure 8 Interaction between group, participant type and the operation time

Table 12 Simple effect analysis results of operation time as dependent variable

Variables Group p

group control group 0.001
experimental group 0.369

participant type the professional 0.429
the newer 0.001

came smaller. In the newer group, there was a significant difference in the operation time
between the experimental group and the control group, indicating that after practice, the
novices’ solving speed was effectively improved; In the professional group, there was no
significant difference in the operation time between the experimental group and the con-
trol group, indicating that practice could not lead to a significant improvement in the pro-
fessional’s solving speed. Figure 8 further illustrates the interaction effect between experi-
mental group and participant type, with the results consistent with the analysis outcomes
from Tables 10, 11 and 12.

2.2.7 Discussion
Experiments showed that there was a significant difference between the experimental and

control groups of the newer group, and there was no significant difference between the
newer and the professional in the experimental group, indicating that practice can indeed
accelerate the speed of the newer to solve problems and bridge the gap between the newer
and the professional, verifying Hypothesis 2. Further analysis found that there was no sig-
nificant difference between the control group and the experimental group in the profes-
sional group, indicating that practice could not lead to a significant increase in the speed
of problem solving of the professional, which may be because the professional had a rel-
atively complete problem representation, so the ability to solve complex problems could
not be significantly improved through practice.

2.2.8 The supportive qualitive evidence from the interviews with participants
We collected some of the participants’ comments on doing the Hanoi Tower puzzle after
completing the tasks. The participants were from a variety of majors and not disciplinary.
They were randomly selected for interviews. We recorded the talks with emphasis on
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Table 13 The interviews for the participants in the two experiments

the strategies and understanding of problem solving, not psychological questionaries. We
used these comments in order to facilitate the understanding for the two main hypothe-
ses in this research: (1) whether the strategies are successful in solving complex problem
depends on the understanding of the hidden structures in complex problems; (2) these
hidden structures are explicated in problem representations; (3) the problem representa-
tion is abstract relations(not only in spatial or temporal forms) and organizes clues and
information in the solving problems in order to search for right solutions for the complex
problem; (4) the computational thinkings are the core elements for successfully solving
complex problems.

See Table 13 for the interviews.

3 Final discussion
The prior literature on complex problem-solving research has tended to focus on cogni-
tive factors, such as reasoning skills, working memory, etc., while ignoring the critical role
of problem representation skills in the process. These studies tend to view problem solving
as a purely mental process, influenced by various psychological factors, such as cognitive
state. However, we believe that complex problem solving is by its nature an objective log-
ical reasoning process, although it can indeed be influenced by psychological factors. In
contrast to this subjective view, we advocate studying complex problem solving from an
objective and logical perspective, emphasizing the role of objective knowledge hidden in
complex problems as a guide to problem solving strategies. This knowledge can be viewed
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as a concrete expression of computational thinking, with the appropriate problem repre-
sentation being the driving force behind the associated solution strategy.

Computational thinking is essential to mathematics, such as Newton’s iterative method
for differential equations, the proof of Stokes’ Theorem with its recursive approach, and
problem-solving in mathematical modeling. These applications highlight the significance
of iterative approximation, recursive problem-solving, and effective problem representa-
tion in advancing mathematical research. In artificial intelligence, the chain of thought
(CoT) is crucial to improve the reasoning of large language models, and appropriate prob-
lems and task representations will booster the model’s performances.

Recursion and iteration are the core elements in computational thinking, then are essen-
tial to theoretical computer science and discrete mathematics. On the one hand, problem
representation determines algorithm selection: Problem representation involves under-
standing and analyzing the problem, which dictates how we break it down into smaller
sub-problems and the relationships between them. Different problem representations lead
to different algorithm choices. For instance, with the Tower of Hanoi, if we represent it as
“moving all disks from one rod to another,” we might opt for a recursive algorithm. Con-
versely, if we represent it as “moving a single disk,” we might choose an iterative algorithm.
On the other hand, algorithm selection affects problem representation: Algorithm choice
can also influence how we represent the problem. For example, if we choose a recursive
algorithm to solve the Tower of Hanoi, we need to represent the problem as “moving n – 1
disks, moving the nth disk, and then moving n – 1 disks again.” This representation aligns
with the structure of the recursive algorithm. The difference between the professional and
the newer lies in their different representation of the same problem, and the difficulty of
the problem is just an appearance. The key lies in their different analysis of the compo-
sition and structure of the problem. The representation of the newer is more superficial,
while the professional master the internal deep structure of the problem. Therefore, the
problem representation constructed by the newer is far worse than that of the professional,
and the professional can grasp more effective problem-solving strategies, thus the ability
to solve complex problems of the professional is far better than that of the newer.

Patsenko and Altmann’s attentional selection model [25] based on the Tower of Hanoi
showed that individuals with different concerns into the problem, namely selective atten-
tion, had different efficiency in solving the Tower of Hanoi; The research of Luigi [26] also
shows that search and problem representation can affect the rate of problem solving. But
neither study shows the key underlying factors that really affect the ability to solve complex
problems. Some study verified that targeted training could improve the rate of individu-
als solving the Tower of Hanoi, but it does not reveal the mechanism through which the
training improves the individual’s ability to solve complex problem.

Based on the Tower of Hanoi, we found that problem representation ability is a key vari-
able that affects the ability to solve complex problems. The number of moving steps and
operation time of participants with good problem representation ability (the moderate
expertise) were significantly less than those with poor problem representation ability (the
novice), and with the increase of task difficulty, the difference between the professional
and the newer became larger. This result is consistent with the results of previous stud-
ies. In addition, it was found that practice can effectively reduce the number of moving
steps and operation time for the newer to complete the Tower of Hanoi. Although there
is still a certain gap with the professional, compared with Experiment 1, the gap has been
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significantly reduced. Which shows that practice can indeed improve the problem rep-
resentation ability of the newer, thus improving the ability to solve complex problems.
This result also supports that practice can improve the ability of problem representation
construction ability. In addition, it was found that the improvement of the problem repre-
sentation construction ability of the professional was less than that of the newer. Although
there was some improvement, it was significantly less than that of the newer. We conclude
that this result may be due to the shortcomings of the problem representation established
by the newer, and practice can improve the problem representation. However, since the
problem representation established by the professional at the beginning tends to be per-
fected, practice cannot play a better role in improvement on this basis, but can only play
a practice effect and simply improve their proficiency in problem solving. In conclusion,
this study finds that problem representation plays a key role in the ability to solve complex
problems, and practice can improve the problem representation construction ability of in-
dividuals with poor problem representation, thus improving the ability to solve complex
problems [27].

To advance the study’s support for computational thinking, it is essential to broaden the
discussion to include applications in AI and machine learning. The strategies employed by
participants, such as trial and error, recursive algorithms, and iterative approaches, align
with principles utilized in AI algorithms like Monte Carlo Tree Search (MCTS) and Rein-
forcement Learning (RL). For instance, trial and error resembles the exploration phase of
reinforcement learning, where the algorithm experiments with different actions to learn
the optimal strategy. Recursive algorithms, on the other hand, are analogous to the recur-
sive nature of MCTS, where the algorithm builds a search tree by recursively simulating
possible moves. By integrating multidisciplinary references based on the intelligence on
human inspiration, including AI and machine learning, the study can demonstrate the
practical relevance of computational thinking beyond academic settings, further reinforc-
ing its importance as a fundamental skill for solving complex problems.

4 Limitations and prospects
This paper found that the ability to solve complex problems is problem representation,
and practice can improve the problem representation of novice students and thus improve
their solving speed. But there are still several problems as follows.

(1) The definition of the newer and the expertise is vague and lacks specific professional
definition. Although students majoring in computer science have learned relevant
algorithms of the Tower of Hanoi, it can be regarded as their professional ability to
solve the Tower of Hanoi to a large extent, but there is no clear evidence. Students
not majoring in computer science do not exclude students who have studied the
Tower of Hanoi, who may not belong to the newer group.

(2) The ability to solve complex problems is not directly measured, but inferred through
other data. In the experiment, the number of moving steps and operation time of
problem solving were used to determine the ability to solve complex problems of the
participants. Although it has a certain predictive effect, it is not a direct and
accurate measurement data of the ability to solve complex problems.

(3) The cognitive process of formation new representations, such as the sudden
moments for discovery of new ideas for solution is not fully provided. The
Aha!-insight problem solving in this study has come into the minds of participants
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in the experiments a few times, and this occurrence needs to be further explored,
and the methods to effectively improve the ability to solve complex problems need
to be further explored.

The prospects may involve the transferability of problem representation across domains:
to explore whether computational thinking in the Hanoi Tower task can be transferred to
other types of complex problem solving, such as programming, data analysis, mathemat-
ical modeling or engineering design, in particular, the chain of thought in large language
models.

Historically, George Polya, a renowned mathematician and problem-solving expert, ex-
plored themes such as mathematical discovery, plausible reasoning, and creative think-
ing in his works. Polya emphasizes the importance of problem representation, proposes
a four-step problem-solving framework (“Understand the Problem, Devise a Plan, Carry
Out the Plan, and Look Back”), and introduces strategies like induction, deduction, and
analogy. His ideas have profoundly influenced the fields of mathematics, education and
problem-solving. His work is much deeper than ones by cognitive sciences and psychol-
ogy of reasoning. Moreover, his work was from examples covering many professional and
mathematical fields, such as analysis and combinatorial mathematics, and shown that the
highest creativity lies in the study in modern mathematics.

It is important to note that the study was on the Hanoi Tower task, whereas Polya’s
theory is for a broader range of problem-solving processes. Therefore, the findings of the
paper do not fully validate Polya’s theory, but they provide important empirical support
for Polya’s theory.

To enhance the study’s impact and scope, future research should adopt a compre-
hensive roadmap. and holistic approach: including but not limited in analyzing demo-
graphic factors—age, gender, and cultural background—to explore their influence on
problem-solving strategies and computational thinking effectiveness. Additionally, inter-
disciplinary applications in fields like mathematics, artificial intelligence, and engineering
should be highlighted surprised relevance. Grasping computational thinking will be great
helpful in improving educational practices and real-world problem solving.

5 Conclusions
This study provides valuable insights into the role of problem representation in complex
problem-solving, particularly within the context of computational thinking. The findings
demonstrate a clear link between stronger problem representation abilities and superior
performance in solving the Tower of Hanoi task. This relationship becomes increasingly
pronounced as task complexity increases, highlighting the crucial role of problem repre-
sentation in addressing complex challenges.

The study’s results contribute to existing literature by specifically focusing on the prob-
lem representation skills of college students and exploring the impact of practice on these
skills. The findings indicate that novices can significantly improve their problem-solving
abilities through practice, effectively narrowing the gap between novices and experts. This
discovery has important implications for educational practices and vocational training,
emphasizing the importance of incorporating problem representation skill development
into curricula and professional development programs.

While the study’s focus on the Tower of Hanoi provides a specific context for exploring
problem representation, its findings have broader implications for understanding complex
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problem-solving in various domains. The study suggests that developing strong problem
representation skills through practice and structured learning is essential for effectively
addressing complex challenges in diverse areas, including academia, industry, and every-
day life.

Future research could explore the transferability of problem representation skills across
different problem domains and investigate the effectiveness of specific training interven-
tions for improving problem representation abilities. Additionally, investigating the neural
mechanisms underlying problem representation and its relationship with other cognitive
processes, such as working memory and reasoning, would provide further insights into
the complex nature of complex problem-solving.

Overall, this study provides a compelling case for the importance of problem represen-
tation in complex problem-solving and offers valuable insights for educators, researchers,
and practitioners seeking to enhance problem-solving abilities.
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