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Abstract
Advertising and promotion strategies are crucial marketing tools for increasing sales.
In this paper, we primarily investigate the mathematical mechanisms for increasing
sales by inducing a single-parameter sales promotion strategy into a differential
advertising model. Based on the continuous model, we derive the discrete governing
system for sales. By leveraging the existence, stability, and bifurcation and chaotic
behavior of fixed points of the discrete system, we have elucidated the dynamic
behavior of sales in the continuous model. The specific parameter ranges for the
existence of a T-period solution and its stability conditions are given. Furthermore, we
perform a flip bifurcation analysis of the positive fixed point. This analysis helps us to
obtain the existence and stability conditions for nT-period solutions. Interestingly, for
the same model, when we take different parameter values, flip bifurcation and inverse
flip bifurcation can coexist. The bifurcation provides a route to chaos. In the
simulations, we find that in some situations, there exists a pathway for the system to
enter into chaos from a stable state through flip bifurcation, and then enter into a
stable state through inverse flip bifurcation, while in other situations, there exists no
such pathway. We propose an effective control strategy that serves to suppress flip
bifurcation and promote inverse flip bifurcation to eliminate chaos. These findings
have significant theoretical implications and practical applications in relevant markets.

Keywords: Single parameter sales promotion strategy; Flip bifurcation; Inverse flip
bifurcation; Chaos; Control strategy

1 Introduction
With the rapid development of the commodity economy and the proliferation of mass
media, advertising has become more prevalent than ever [1]. Advertising is an indispens-
able tool in the competitive strategies of enterprises. It plays an important role in market
expansion and the generation of economic benefits. Numerous studies on consumer be-
havior have shown that consumers’ acceptance of advertising information significantly
influences their responses to products. One of the primary challenges any company must
address when implementing its advertising strategy is determining the optimal allocation
of advertising expenditures over the planning horizon within a constrained budget [2].
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Over the past few decades, research based on advertising models has been steadily grow-
ing and evolving. Scholars have continuously developed numerous models to examine the
influences of advertising on product sales from various perspectives.

For instance, Vidale and Wolfe [3] conducted numerous controlled experiments. They
employed a linear differential equation to analyze the influence of advertising on prod-
uct sales. In [4], the author extended the V-W model to a duopoly. Wang et al. [5] intro-
duced a bipolar model of dynamic competitive advertising, which outlined the differential
game model for competitive advertising decision-making concerning non-durable prod-
ucts. Bass [6] categorized purchasers into innovators (the initial group of purchasers) and
imitators (those who follow suit due to certain factors), and developed a quadratic differ-
ential equation based on the infectious disease model in their mathematical framework.
In [7], scholars utilized the diffusion model to investigate optimal advertising strategies
following the introduction and diffusion of a new product. The advertising capital model
[8] was used to explore the interconnected effects of three advertising oscillator models.
The SEM-ANN model [9] was used to explore the impact of advertising on consumer
purchasing behavior by analyzing consumers’ trust in advertising. In [10], Chenavaz et
al. investigated the interplay between price, advertising, and quality in an optimal con-
trol model. For more advertising models, one can refer to the references [11–13] and the
references therein.

Though numerous scholars have developed many advertising-based models, a majority
of these models rely on linear differential equations. This is mainly because linear differen-
tial equations are easy to analyze to some extent. There is a scarcity of studies focusing on
the creation of more intricate differential equations to comprehensively depict and ana-
lyze the influences of advertising and promotion on product sales, as well as their practical
applications.

As an essential component of a company’s marketing communication strategy, promo-
tional activities have the potential to promptly increase sales [14, 15]. Currently, research
on promotion strategies primarily focuses on their applications within supply chain-
related cooperation models [16–20]. These models optimize advertising and promotional
strategies throughout the entire sales process, from manufacturers and sellers to con-
sumers. Competitive models related to promotion strategies are also derived within this
cooperative framework. Furthermore, a linear differential model for export commodities
has been developed. This model, with promotion cost as the control variable, identified
the optimal promotion strategy across various stages of the export commodity life cycle
and established a predictive demand model for export commodities at specific time [21].

Advertising and promotion represent two distinct marketing communication tools
whose dissemination significantly influences product sales, thereby enabling companies to
achieve their target market share [22]. In [23], Bandyopadhyay et al. investigated whether
various types of sales promotions together with hedonic shopping motivation (value shop-
ping) and positive effects drive impulse buying. Although sales promotion strategy is very
important and popular in the real market [24, 25], there have been limited studies on the
immediate impact of promotions on sales levels. Jiang et al. [26] established a linear adver-
tising competition model incorporating a two-parameter promotion strategy. However,
this two-parameter promotion strategy fails to guarantee consistent positive changes in
sales.
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It is worth noting that linear models have some shortcomings, the most significant of
which is their inability to describe the complexity of advertising’s impacts on sales. The re-
lationship between advertising and sales is very complex. Initial advertising investments
can lead to a significant increase in sales. However, as market saturation increases, the
incremental growth in sales gradually decreases. Moreover, consumers’ responses to ad-
vertising are influenced by a variety of factors, such as product characteristics, advertise-
ment content, and consumer preferences. There may be nonlinear relationships among
these factors. Consumers might become weary of repeated advertisements, thereby re-
ducing their willingness to purchase the product. All of these factors indicate that the
impact of advertising on sales is not a simple linear relationship and cannot be adequately
described by a straightforward linear model. Nonlinear models, on the other hand, are
more capable of uncovering the complexity of advertising’s impact on sales. At present,
some nonlinear models are available. However, the existing models rarely study periodic
solutions and complex bifurcation phenomena. In fact, when advertising expenditure sur-
passes a certain threshold, there may be a significant increase in sales levels. The sales of
some products may also exhibit periodic fluctuations, which can be explained by the bi-
furcation behavior of nonlinear models. Moreover, when the market is subject to minor
disturbances, the sales of products can become unpredictable, a phenomenon that may be
explained by the chaotic behavior of the system. In [27], Ma et al. introduced a quadratic
term to describe the advertising model within a promotional strategy framework. How-
ever, due to the complexity of changes in actual sales levels, it is necessary to introduce a
higher-order term to accurately describe the advertising model.

From the literature mentioned above, we find that there is a scarcity of discussions
regarding the periodic solution and its bifurcation within the extended nonlinear V-W
model, particularly concerning promotions within a differential model. Consequently, this
study aims to address this gap by integrating the promotion strategy and cubic nonlinear
term into the differential advertising model. We focus on exploring the complex dynamics
of the model and understanding the influence mechanism of the promotion strategy on
sales.

The structure of this paper is outlined as follows. In the second section, we introduce the
cubic term and incorporate the promotion strategy into the V-M model to derive the dif-
ferential advertising model based on a single-parameter promotion strategy. In the third
section, we delve into the examination of the existence and stability of periodic solutions
of this model. Via utilizing numerical simulations, we illustrate periodic solutions and bi-
furcation diagrams generated by the system. Furthermore, we explore the stability of the
solutions under the other four different parameter sets and propose a control strategy by
utilizing the promotion coefficient. In the forth section, we propose a promotional control
strategy that realizes the elimination of chaos by suppressing flip bifurcation and promot-
ing inverse flip bifurcation. In the fifth section, we provide a summary and discussion of
our findings.

2 Model description
Vidale and Wolfe established a linear differential model [3]:

˙S(t) =
r

M
u(t)(M – S(t)) – λS(t), (1)
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to analyze the impact of advertising on the company’s product sales. Here, S(t) represents
the current sales level at time t, M denotes the potential market size and market saturation
level, u(t) stands for the advertising expenditure at the moment t, r means the advertising
response rate, and λ represents the sales decay constant. Bass established a growth model
for the initial purchase time of new products [6]:

˙S(t) = (p + qS(t))(M – S(t)). (2)

Among them, p > 0 and q > 0 are innovation and imitation parameters. M is the fixed
market potential of the product.

The model (1) only considers the linear term; given the complexity of the impact of
advertising on sales, it becomes necessary to employ nonlinear equations to describe the
changes in product sales. Motivated by the nonlinear model (2), we use r

M u(t)S(t)2(M –
S(t)) to replace the effect of advertising r

M u(t)(M – S(t)), so the model (1) can be written
as follows:

˙S(t) =
r

M
u(t)S(t)2(M – S(t)) – ρS(t). (3)

For some products, estimating their potential market size and market saturation level
M proves challenging, as they are influenced by various factors. Hence, we do not con-
sider the potential market size and market saturation level M [27]. Since M–S(t)

M = 1 – S(t)
M

represents the proportion of remaining market demand in the total demand, which is de-
noted by b. This means that the market’s remaining demand generated per unit of sales
is b. Now the sales level is S(t), and therefore, the remaining market size is bS(t). Addi-
tionally, we assume that the company’s advertising expenditure remains constant, namely,
u(t) = U . Therefore, the advertising effect r

M u(t)S(t)2(M – S(t)) in (3) can be replaced with
rUbS(t)3. Let: m = rUb, model (3) can be written as follows:

dS(t)
dt

= –ρS(t) + mS(t)3, (4)

where S(t) is the sales level at the moment t, ρ is the sales decay constant, m is the response
rate to advertising.

Model (4) also can be written as

dS(t)
dt

= mS(t)3[1 –
ρ

mS(t)2 ]. (5)

If S(t)2 > ρ

m , then dS(t)
dt > 0, S(t) is an increasing function of time t. Conversely, if S(t)2 < ρ

m ,
then dS(t)

dt < 0, S(t) is a decreasing function of time t. Therefore, it can be inferred that
ρ

m represents a critical threshold. When the sales level deceases over time, it becomes
necessary to introduce a promotion strategy to rapidly enhance the sales level. Thus, in
this paper, we mainly discuss strategies to increase product sales when S(t)2 < ρ

m .
There are many strategies for promotion. In [26], the authors used the impulsive pro-

motion strategy �S(t) = S(t+) – S(t) = (b – cS(t))S(t). The shortcoming is that it can not
guarantee the value of �S(t) is always greater than 0. To avoid the emergence of negative
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values of �S(t), in our paper, the selection of promotion strategies primarily draws on
reference [27]:

�S(t) = S(t+) – S(t) =
α

S(t)
, t = nT , n = 1, 2, 3, . . ., (6)

where α > 0 represents the promotion coefficient, and S(t+) = lim
ε→0+

S(t + ε). Equation (6)
is called a single-parameter sales promotion strategy, which indicates that the promotion
strategies are introduced at t = nT . At this time, sales level S(t) increases from S(nT) to
S(nT+), where S(nT+) = S(nT) + α

S(nT) , and α
S(nT) is the increment of sales. Unlike literature

[26], the promotion strategy (6) ensures that the increment of sales �S(t) is always greater
than zero.

According to the advertising model (4) and promotion strategy (6), the following dif-
ferential advertising model based on single parameter sales promotion strategy can be
established:

dS(t)
dt

= –ρS(t) + mS(t)3, t �= nT , (7a)

�S(t) =
α

S(t)
, t = nT , (7b)

where n = 1, 2, 3, . . . .
Further, we analyze the related dynamical behavior of model (7a)–(7b). The dynamical

behavior of the model (7a)–(7b) consists of two stages: a dynamical evolution over time
(govern by (7a)) and the influence of the promotion strategy (govern by (7b)). In Fig. 1,
we present a sketch to explain the mechanism of the promotion strategy on a solution of
model (7a)–(7b). The solution starting from the initial point (0, S(0)) reaches the point
(T , S(T)) at t = T under the control of (7a), then jumps to the point (T , S(T+)) under the
promotion strategy (7b). The point (T , S(T+)) serves as the new initial point, and the tra-
jectory starting from it reaches the point (2T , S(2T)) under the control of (7a) at t = 2T .
Under the promotion strategy (7b), the trajectory then jumps to the point (2T , S(2T+))

and so on. According to (7a) and the initial condition (0, S(0)), we obtain the solution of

Figure 1 The mechanism of the promotion strategy on a solution of model (7a)–(7b)
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(7a):

S(t) =

√
ρS(0)2

mS(0)2 + [ρ – mS(0)2]e2ρt , 0 ≤ t ≤ T .

Obviously, with the increase in t, the sales level S(t) decreases. When t = T , the sales
level decreases to S(T). After introducing the promotion strategy (7b), the sales level S(t)
rapidly increases to (T , S(T+)), where S(T+) satisfies:

S(T+) = S(T) +
α

S(T)
.

When t ∈ (T , 2T], the solution S(t) of the system (7a)–(7b) satisfies:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

S(t) =

√
ρS(T+)2

mS(T+)2 + [ρ – mS(T+)2]e2ρ(t–T)
, T < t ≤ 2T ,

S(2T+) = S(2T) +
α

S(2T)
.

Similarly, for any t ∈ (kT , (k + 1)T], the solution of (7a)–(7b) can be described as follows:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

S(t) =

√
ρS((k – 1)T+)2

mS((k – 1)T+)2 + [ρ – mS((k – 1)T+)2]e2ρ(t–(k–1)T)
, (k – 1)T < t ≤ kT ,

S(kT+) = S(kT) +
α

S(kT)
,

where k = 0, 1, 2, . . . .

3 Dynamical analysis of system (7a)–(7b)
Product sales fluctuate over time, and certain product sales may exhibit periodic behavior.
To better grasp the periodic behavior of product sales, we mainly discuss the dynamical
behavior of the system (7a)–(7b) in this section.

3.1 Existence of T-period solution
Suppose the solution of the system (7a)–(7b) arrives at the point (kT , Sk) at the moment
t = kT , where

Sk = S(kT). (8)

Due to the effect of sales promotion, the solution jumps to the point (kT , S+
k ) at the moment

t = kT+, where

S+
k = S(kT+) = Sk +

α

Sk
, (9)

please see Fig. 2. At the moment t = (k + 1)T , the solution S(t) reaches to the point ((k +
1)T , Sk+1), where

Sk+1 = S((k + 1)T) =

√
ρS(kT+)2

ρe2ρT + mS(kT+)2(1 – e2ρT )
. (10)
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Figure 2 Promotion strategy leads to a sudden increase in sales

Substituting (9) into (10), the solution of (7a)–(7b) satisfies the following discrete system:

Sk+1 =

√√√√ ρ(Sk + α
Sk

)2

ρe2ρT + m(Sk + α
Sk

)2(1 – e2ρT )
. (11)

This means that the fixed point of the discrete system (11) is a T-period solution of
(7a)–(7b). For the convenience of calculations, we set

T =
1

2ρ
ln(1 +

ρ

m
), (12)

namely,

e2ρT = 1 +
ρ

m
. (13)

Substituting (12) into (11), we arrive at

Sk+1 =

√√√√ (Sk + α
Sk

)2

1 + ρ

m – (Sk + α
Sk

)2 = f (α,ρ, m, Sk). (14)

The fixed point of (14) corresponds to a T-period solution of the system (7a)–(7b), and
they exhibit the same stability. To explore the existence and stability of T-period solutions
of the system (7a)–(7b), we investigate the existence and stability of fixed points of the
system (14).

The fixed point S of the system (14) can be obtained by solving Sk = Sk+1, which indicates
that S satisfies

S =

√
(S + α

S )2

1 + ρ

m – (S + α
S )2 ,

namely,

S6 + (2α –
ρ

m
)S4 + (α2 + 2α)S2 + α2 = 0. (15)
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Since we do not want the sales to be zero, we only consider positive fixed points, and
therefore, S > 0. Let S2 = y, then we have

y3 + (2α –
ρ

m
)y2 + (α2 + 2α)y + α2 = 0.

Let

h(y) = y3 + (2α –
ρ

m
)y2 + (α2 + 2α)y + α2, y ∈ [0, +∞). (16)

Then, the existence of a positive zero point of h(y) means the existence of a positive fixed
point S. In the Appendix, we provide detailed information about the parameter conditions
for the existence of positive zero points. Therefore, we have the following conclusion about
the existence of fixed points of the system (14):

Lemma 1 If 0 < ρ < 1
8 m(20α –α2 +

√
α(8 + α)3), the system (14) has no positive fixed point.

If ρ = 1
8 m(20α – α2 +

√
α(8 + α)3), the system (14) has only one positive fixed point. If ρ >

1
8 m(20α – α2 +

√
α(8 + α)3), the system (14) has two different positive fixed points S1 and

S2, which are given by (A.4) and (A.5) in the Appendix.

From the relationship between the solution of the system (7a)–(7b) and the fixed point
of the system (14), the following conclusions can be obtained:

Theorem 1 If 0 < ρ < 1
8 m(20α – α2 +

√
α(8 + α)3), there is no T-period solution for the sys-

tem (7a)–(7b). If ρ = 1
8 m(20α – α2 +

√
α(8 + α)3), the system (7a)–(7b) has only one unique

T-period solution. If ρ > 1
8 m(20α – α2 +

√
α(8 + α)3), the system (7a)–(7b) has the following

two T-period solutions:

S1(t) =

√√√√ ρ(S1 + α
S1

)2

m(S1 + α
S1

)2 + [ρ – m(S1 + α
S1

)2]e2ρ(t–kT)
, kT < t ≤ (k + 1)T , (17)

and

S2(t) =

√√√√ ρ(S2 + α
S2

)2

m(S2 + α
S2

)2 + [ρ – m(S2 + α
S2

)2]e2ρ(t–kT)
, kT < t ≤ (k + 1)T , (18)

corresponding to the two fixed points S1 and S2 of the system (14), respectively.

In this paper, we only consider the case when the system (14) has two fixed points. In
this situation, we suppose that ρ > 1

8 m(20α – α2 +
√

α(8 + α)3) holds. Next, we discuss
the stability of the two positive fixed points to obtain the stability conditions of the two
T-period solutions S1(t) and S2(t) of system (7a)–(7b).
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3.2 Stability of the two T-period solutions
The eigenvalues of the fixed point Si(i = 1, 2) is

λi =
df (α,ρ, m, Si)

dSi

=
(1 + ρ

m )Si(S4
i – α2)

(S4
i + 2αS2

i + α2 – S2
i – ρ

m S2
i )2

√
(S2

i +α2)2

–(S4
i +2αS2

i +α2–S2
i – ρ

m S2
i )

.

From equation (15), we can get

λi =
(1 + ρ

m )y2
i (yi – α)

(yi + α)3 . (19)

According to [28], we can get the following lemma for determining the stability of the fixed
points.

Lemma 2 Suppose that ρ > 1
8 m(20α – α2 +

√
α(8 + α)3) holds, the fixed point Si of the

system (14) is stable if the corresponding eigenvalue |λi| < 1, and it is unstable if |λi| > 1,
where i = 1, 2.

The stability of the fixed point Si(i = 1, 2) of the system (14) can be used to determine the
stability of the solution Si(t)(i = 1, 2) of the system (7a)–(7b), so we arrive at the following
conclusions.

Theorem 2 Suppose that ρ > 1
8 m(20α – α2 +

√
α(8 + α)3), the T-period solution Si(t)(i =

1, 2) of the system (7a)–(7b) is stable if the corresponding eigenvalue |λi| < 1; and it is un-
stable if |λi| > 1, where i = 1, 2.

It is easy to verify that 1
8 m(20α – α2 +

√
α(8 + α)3) is an increasing function with α > 0.

Let m = 0.1, for α ∈ (0, 9.3326], the maximum of 1
8 m(20α –α2 +

√
α(8 + α)3) is 3.99997. Let

ρ = 4.0, so ρ > 1
8 m(20α–α2 +

√
α(8 + α)3) always holds. At this time, we can get T = 0.4642.

From Lemma 1, the system (14) has two positive fixed points S1 and S2, as shown in Fig. 3.
Correspondingly, the system (7a)–(7b) has two T-period solutions S1(t) and S2(t).

For the stability of the two T-period solutions Si(t), (i = 1, 2), we consider the stability of
the two fixed points Si. When m = 0.1, ρ = 4.0, we plot the images of the eigenvalues λ1

and λ2 of the positive fixed points S1 and S2 in Fig. 4. From Fig. 4(a), we find that when
α ∈ (2.6804, 8.7862), we have |λ1| > 1, and thus the fixed point S1 is unstable, so the cor-
responding T-period solution S1(t) is unstable. When α ∈ [2, 2.6804) ∪ (8.7862, 9.3326],
we have |λ1| < 1, thus S1 is stable, so the corresponding T-periodic solution S1(t) is stable.
From Fig. 4(b), we find that |λ2| > 1 always holds for α ∈ [2, 9.3326], and therefore, the
fixed point S2 is always unstable, thus the T-period solution S2(t) of the corresponding
system (7a)–(7b) is always unstable.

Let m = 0.1, ρ = 4.0, α = 2.0, then T = 0.4642. Using equations (A.2)–(A.5), we have
S1 ≈ 0.6830, S2 ≈ 5.9811, so S1 + α

S1
≈ 3.6113, S2 + α

S2
≈ 6.3155. According to (17) and

(18), when α = 2.0, the system (7a)–(7b) has two T-period solutions:

S1(t) =

√
40 × 3.61132

3.61132 + (40 – 3.61132)e8.0×(t–kT)
, kT < t ≤ (k + 1)T , (20)
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Figure 3 Two fixed points S1 and S2 of the system (14) whenm = 0.1, ρ = 4.0

Figure 4 The images of the two eigenvalues of the two fixed points withm = 0.1, ρ = 4.0. (a) The eigenvalue
λ1 of the fixed point S1; (b) the eigenvalue λ2 of the fixed point S2

and

S2(t) =

√
40 × 6.31552

6.31552 + (40 – 6.31552)e8.0×(t–kT)
, kT < t ≤ (k + 1)T . (21)

The stability of the two T-period solutions S1(t) and S2(t) are shown in Fig. 5 and Fig. 6,
respectively.

In Fig. 5, the solution S(t) (red line) starting from the initial point (0, 3.9) converges to
S1(t) (blue line) as time increases. It indicates that the T-period solution S1(t) is stable.

In Fig. 6, the solution S(t) (red line) starting from the initial point (0, 6.3) goes far away
from the T-period solution S2(t) (blue line). Therefore, the T-period solution S2(t) is un-
stable.

3.3 Flip bifurcation analysis
Let m = 0.1, ρ = 4.0, so it can be seen from Fig. 4 that when α = 2.6804 and α = 8.7862, the
eigenvalue λ1 of the system (14) at the fixed point S1 is –1. According to [28], the system
(14) may undergo flip bifurcation or inverse flip bifurcation. At this time, a period-2 orbit
can be bifurcated from the fixed point S1. Corresponding to the period-2 orbit, there exists
a 2T-period solution of the system (7a)–(7b).
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Figure 5 The stable T-period solution S1(t)

Figure 6 The unstable T-period solution S2(t)

In the next, we will investigate the existence and stability of the 2T-period solution of
the system (7a)–(7b) by carrying out a bifurcation analysis of the fixed point S1 for the
system (14) in the case of m = 0.1, ρ = 4.0, and α is around 2.6804.

Lemma 3 in [29] is instrumental in determining the stability and bifurcation direction
of the period-2 orbit of the system (14).

Lemma 3 Let fμ : R→R be a one-parameter family of map such that fμ0 has a fixed point
x0 with eigenvalue –1. Assume the following conditions:

(C1) ∂f
∂μ

∂2f
∂2x + 2 ∂2f

∂x∂μ
�= 0, at (x0,μ0);

(C2) g(x,μ) = 1
2 ( ∂2f

∂2x )2 + 1
3

∂3f
∂3x �= 0, at (x0,μ0).

Then, there is a smooth curve of fixed points of fμ passing through (x0,μ0), the stability of
which changes at (x0,μ0). There is also a smooth curve γ passing through (x0,μ0) so that
γ \(x0,μ0) is a union of hyperbolic period-2 orbits.

When m = 0.1, ρ = 4.0, α = 2.6804, then S1 ≈ 0.8248, and ∂f (α,Sk )
∂α

∂2f (α,Sk )
∂2Sk

+

2 ∂2f (α,Sk )
∂Sk∂α

|(0.8248,2.6804) = –0.2669 �= 0, so condition (C1) is satisfied. In condition (C2), the
sign of g(x0,μ0) determines the stability and bifurcation direction of the period-2 orbit. If
g(x0,μ0) is positive, the period-2 orbit is stable. If g(x0,μ0) is negative, the period-2 orbit
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Figure 7 The stable 2T-period solution S2T (t) of the system (7a)–(7b)

is unstable. In our example, g(S1,α) = 0.8656 > 0. Therefore, the system (14) will expe-
rience flip bifurcation at the fixed point S1 with α = 2.6804, and the bifurcated period-
2 orbit is stable. Furthermore, the system (7a)–(7b) has a stable 2T-period solution for
α ∈ (2.6804, 2.6804 + ε), ε > 0.

To obtain the expression of the 2T-period solution S2T (t) of model (7a)–(7b), we con-
sider the following quadratic iterative map:

Sk+1 =

Sk + α
Sk√

1+ ρ
m –(Sk + α

Sk
)2 +

α
√

1+ ρ
m –(Sk + α

Sk
)2

Sk + α
Sk√√√√1 + ρ

m –

[
Sk + α

Sk√
1+ ρ

m –(Sk + α
Sk

)2 +
α
√

1+ ρ
m –(Sk + α

Sk
)2

Sk + α
Sk

]2

= f 2(α,ρ, m, Sk).

(22)

The system (22) has four positive fixed points. Two of them satisfy f (α,ρ, m, Si) = Sj,
f (α,ρ, m, Sj) = Si and Si �= Sj. These two fixed points are denoted as S11 and S12. They are
actually the stable period-2 points of the system (14) for α ∈ (2.6804, 2.6804+ε). Therefore,
the system (7a)–(7b) has a stable 2T-period solution S2T (t):

S2T (t) =

⎧⎪⎪⎨
⎪⎪⎩

ρ(S11+ α
S11

)√
m(S11+ α

S11
)2+[ρ–m(S11+ α

S11
)2]e2ρ(t–kT)

, t ∈ (kT , (k + 1)T],
ρ(S12+ α

S12
)√

m(S12+ α
S12

)2+[ρ–m(S12+ α
S12

)2]e2ρ(t–(k+1)T)
, t ∈ ((k + 1)T , (k + 2)T].

(23)

Let α = 4.4382, then S11 = 0.8849, S12 = 2.3728. The blue line in Fig. 7 is the 2T-period
solution S2T (t). The red line in Fig. 7 shows the solution S(t) starting from the initial point
(0, 6.1). It can be seen that with the change of time, the solution S(t) of the system (7a)–(7b)
gradually tends to the 2T-period solution S2T (t). It indicates that S2T (t) is stable in this
case.

Figure 8 shows the flip bifurcation of the fixed point S1 of the system (14) when ρ = 4.0,
m = 0.1, α ∈ [2, 9.3326]. According to Fig. 8, the flip bifurcation occurs at α = 2.6804, and
the 2T-period solution is generated. When α ∈ (2.6804, 4.4198), the 2T-period solution
S2T (t) is stable. The stable 2T-period solution S2T (t) can also undergo flip bifurcation
when α = 4.4198, and the 4T-period solution can be bifurcated. As the increase of α, the
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Figure 8 The bifurcation diagram of the system (14) when ρ = 4.0,m = 0.1

Figure 9 The diagram of the maximum Lyapunov
exponent corresponding to the bifurcation diagram
in Fig. 8

solution may enter into chaos. While for enough large α, we observe that an inverse flip
bifurcation occurs when α = 8.7862. There also exists a stable 2T-period solution S2T (t)
for α ∈ (8.2327, 8.7862).

To distinguish the chaos and regular dynamical behavior, we draw the maximum Lya-
punov exponent corresponding to the bifurcation diagram, see Fig. 9. It can be seen that
there are some cases where the maximum Lyapunov exponent is greater than 0, so the
system (14) enters into chaos for some α. From Fig. 8 and Fig. 9, we find that there exists
a pathway for the solution to move from a stable state into chaos and then back to a stable
state.

3.4 Numerical simulations under different parameters values
In Sect. 3.3, we selected a set of values for m and ρ , and used α as the main bifurcation
parameter to numerically explain the existence of flip bifurcation and inverse flip bifurca-
tion. In this part, we aim to investigate numerically whether the system’s dynamic behavior
shows significant differences with varying values of m and ρ . Through extensive numeri-
cal simulations, we found that the system exhibits five distinct dynamic behaviors under
different parameter values. One of these scenarios has already been presented in Sect. 3.3.
Next, we will present the other four scenarios. The four sets of values for m and ρ and the
corresponding ranges of α are shown in Table 1. We will discuss numerically the existence,
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Table 1 Four different cases with different ρ andm

Case ρ m ρ
m the range of α ( 18m(20α – α2 +

√
α(8 + α)3))max

Case I 9.0 0.36 25 [0.5, 5.6] 8.9697
Case II 5.0 0.175 28.5714 [2.5,6.5] 4.9988
Case III 18.0 0.5 36 [2,8] 17.3137
Case IV 23.71 0.58 40.8793 [2,9.3] 23.1237

Figure 10 The graphs of eigenvalues λ1 under the four cases

stability, and bifurcation of the solution of the system (7a)–(7b). This paper mainly uses
Matlab 2021 for numerical simulations.

From Table 1, we know that ρ > ( 1
8 m(20α –α2 +

√
α(8 + α)3))max always holds. According

to Lemma 1, the system (14) has two different positive fixed points S1 and S2 in the four
cases, which are given by (A.4) and (A.5), respectively.

In Fig. 10, we draw the eigenvalues λ1 for the four cases. It can be seen from Fig. 10 that
|λ1| < 1 of the system (14) always holds under Case I (blue line). It indicates that the T-
period solution S1(t) of the system (7a)–(7b) is stable. While in the other three cases, the
modulus of eigenvalue λ1 is larger than 1 for some α (red, orange and purple lines), which
means that the T-period solution S1(t) of the system (7a)–(7b) has different stability as α

changes.
In Fig. 11, we draw the eigenvalues λ2 for the four cases. It can be seen from Fig. 11

that |λ2| > 1 of the system (14) is always valid under all four cases. It means that the fixed
point S2 is always unstable, thus the T-period solution S2(t) of the corresponding system
(7a)–(7b) is always unstable. So for the rest of this section, we will not discuss S2 anymore.

For ρ = 9.0, m = 0.36, then we can get ρ

m = 25. When α ∈ [0.5, 5.6], the eigenvalue of the
system (14) has |λ1| < 1, see the blue line in Fig. 10. Therefore, for α ∈ [0.5, 5.6], the fixed
point S1 is always stable, which means that system (7a)–(7b) has only one stable T-period
solution under the Case I, as shown in Fig. 12. In this case, no bifurcation will occur. The
dynamical behavior of the system is relatively simple in this case.

For ρ = 5.0, m = 0.175, then we get ρ

m = 28.5714 and T = 0.3387. For α ∈ [2.5, 3.2007) ∪
(5.4346, 6.5], the modulus of eigenvalue λ1 is smaller than 1. For α ∈ (3.2007, 5.4346), the
modulus of eigenvalue λ1 is larger than 1, see the red line in Fig. 10. The bifurcation dia-
gram of the fixed point S1 under this case is shown in Fig. 13. The system (7a)–(7b) has
a stable T-period solution for α ∈ [2.5, 3.2007) ∪ (5.4346, 6.5], and a stable 2T-period so-
lution for α ∈ (3.2007, 5.4346). Let α = 4, the trajectory S(t) starting from the initial value



Li and Xiao Advances in Continuous and Discrete Models         (2025) 2025:10 Page 15 of 26

Figure 11 The graphs of eigenvalues λ2 under the four cases

Figure 12 The stable fixed point S1 under Case I

Figure 13 The bifurcation diagram of the fixed point S1 under Case II

(0, 4.39) tends to the stable 2T-period solution S2T (t), see Fig. 14. Except for the stable T-
period and 2T-period solutions, there are no other types of period solutions in the system
(7a)–(7b) under Case II.

For ρ = 18.0, m = 0.5, then we get ρ

m = 36 and T = 0.1003. For α ∈ [2, 2.7824)∪(7.6921, 8],
the modulus of the eigenvalue λ1 of the system (14) is smaller than 1, and for α ∈



Li and Xiao Advances in Continuous and Discrete Models         (2025) 2025:10 Page 16 of 26

Figure 14 The stable 2T-period solution S2T (t) under Case II

Figure 15 The stability and corresponding Lyapunov exponents of fixed point S1 under Case III. In the
diagram on the left, the horizontal axis is the promotion coefficient α , and the vertical axis is the sales level
and the maximum Lyapunov value

(2.7824, 7.6921) the modulus of the eigenvalue λ1 of the system (14) is larger than 1, please
see the orange line in Fig. 10. The bifurcation diagram of the fixed point S1 and the cor-
responding maximum Lyapunov exponent under Case III are shown in Fig. 15. It can be
seen from Fig. 15 that all the exponent values are less than 0, which indicates that there is
no chaos in the system (7a)–(7b). On the right of the Fig. 15, we show its local enlargement
of the bifurcation diagram.

When α ∈ (2.7824, 4.9041) ∪ (6.7623, 7.6921), the system (7a)–(7b) has a stable 2T-
period solution. For α ∈ (4.9041, 5.8425) ∪ (6.0102, 6.7623), system (7a)–(7b) has a sta-
ble 4T-period solution. Let α = 5.8, the trajectory S(t) starting from the initial value (0, 5)

gradually tends to the stable 4T-period solution S4T (t) under Case III, please see Fig. 16.
From the localized enlargement of Fig. 15, we can see that there exists an 8T-period solu-
tion when α ∈ (5.8425, 6.0102). In Fig. 17, we show the stable 8T-period solution. It is also
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Figure 16 The stable 4T-period solution under Case III

Figure 17 The stable 8T-period solution under Case III

shown that there are no other nT-period solutions in the system (7a)–(7b) under the Case
III, except for T-period solution, 2T-period solution, 4T-period solution, and 8T-period
solution.

For ρ = 23.71, m = 0.58, then we can get ρ

m = 40.8793 and T = 0.0788. When α ∈
[2, 2.6625) ∪ (9.0233, 9.3], the fixed point S1 of the system (14) has the eigenvalue |λ1| < 1.
When α ∈ (2.6625, 9.0233), the fixed point S1 of system (14) has the eigenvalue |λ1| > 1.
Please see the purple line in Fig. 10. From the bifurcation diagram, shown in Fig. 18(a),
we find that the system (7a)–(7b) can undergo both flip bifurcation and inverse flip bifur-
cation at α = 2.6625 and α = 9.0233 respectively. In Fig. 18(b), we plot the corresponding
maximum Lyapunov exponents. It indicates that chaos is generated by flip bifurcation or
inverse flip bifurcation. Though the system (7a)–(7b) can experience flip and inverse flip
bifurcations, it is clearly different from the one presented in Fig. 8 in Sect. 3.3. There is
no pathway in the Case IV. This implies that once sales enter a chaotic state, they will
eventually become disorganized and uncontrollable.

4 Bifurcation control
In Sect. 3, we have carried out a detailed analysis of the dynamical behaviors of the system
(7a)–(7b). We find that the system can experience flip and inverse flip bifurcation if proper
parameter values are given. What is more, the system (7a)–(7b) can also enter into chaos.
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Figure 18 (a) The bifurcation diagram of the fixed point S1 under Case IV; (b) The corresponding maximum
Lyapunov exponents under Case IV

For example, when ρ = 4.0, m = 0.1 and α = 6, the maximum Lyapunov exponent is 0.4034.
It means that system (7a)–(7b) has a chaotic solution.

If product sales are chaotic, they will fluctuate erratically and uncontrollably. We would
prefer that this situation does not occur. Therefore, we must adopt measures to control the
bifurcation and eliminate chaos to reduce unpredictability. For our system, we introduce
a constant β into promotion strategy, namely,

�S(t) =
α

S(t)
+ β , t = nT , (24)

where β is a small increase in the sales level at the promotion time t = nT . Thus, we obtain
the following bifurcation control system:

dS(t)
dt

= –ρS(t) + mS(t)3, t �= nT , (25a)

�S(t) =
α

S(t)
+ β , t = nT , (25b)

where n = 1, 2, 3, . . . .
Similar to Sect. 3, let T = 1

2ρ
ln(1 + ρ

m ), then we get the following map:

Sk+1 =

√√√√ (Sk + α
Sk

+ β)2

1 + ρ

m – (Sk + α
Sk

+ β)2 . (26)

Denote the fixed point of the map (26) with Si
∗, i = 1, 2. Its stability can be determined

by the length of the corresponding eigenvalue:

λ∗
i =

√
1 + ρ

m – (Si
∗ + α

Si∗ + β)2(1 + ρ

m )Si
∗(–α + Si

∗2)(α + Si
∗(β + Si

∗))

(Si
∗ + α

Si∗ + β)(α2 + 2αSi
∗(β + Si

∗) + Si
∗2(–1 – ρ

m + β2 + 2βSi
∗ + Si

∗2))2
, i = 1, 2.

(27)
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Figure 19 The parameters are β = 0.28, ρ = 4.0 andm = 0.1. The blue line represents the system (13), and the
red line represents the bifurcation control system (26), (a) the fixed point lines for the system (13) and (26); (b)
the eigenvalues corresponding to the fixed point lines of (13) and (26)

From the numerical simulations of the previous section, we note that when chaos hap-
pens, there are two cases: one is the existence of a pathway, and the other is not. Therefore,
in this section, we mainly focus on these two cases to explain the bifurcation control.

First, let β = 0.28, ρ = 4.0, m = 0.1, it is easy to verify that the fixed point S∗
2 is always

unstable since the length of the eigenvalue λ2
∗ is larger than 1. Therefore, we only consider

the stability of the fixed point S1
∗ in the latter part. The two fixed point lines S1 and S1

∗

of the original map (13) and the bifurcation control map (26) are indicated by the blue
(α ∈ [2, 9.3326]) and red (α ∈ [2, 8.4]) respectively in Fig. 19(a). For the convenience of the
reader, the eigenvalue corresponding to the fixed point S1 (denoted by the blue with α ∈
[2, 9.3326]) and the eigenvalue corresponding to the fixed point S1

∗ (denoted by the red
with α ∈ [2, 8.4]) are shown in Fig. 19(b), from which we have λ∗

1 = –1 when α1
∗ = 3.3004

and α2
∗ = 7.6804. The flip bifurcation is inhibited from α1 = 2.6804 to α1

∗ = 3.3004, while
the inverse flip bifurcation occurs in advanced from α2 = 8.7862 to α2

∗ = 7.6804.
Then, let β = 0.28, ρ = 23.71 and m = 0.58, the fixed point S2

∗ is always unstable since
the length of the eigenvalue λ∗

2 is larger than 1. Therefore, only the fixed point S1
∗ is con-

sidered. The two fixed point lines of the original map (13) and the bifurcation control
map (26) are indicated by the blue (α ∈ [2, 9.3]) and red (α ∈ [2, 8.2]) lines, respectively
in Fig. 20(a). In Fig. 20(b), we draw that eigenvalues corresponding to S1 and S1

∗. From
Fig. 20(b), we see that λ1

∗ = –1 when α1
∗ = 3.3524 and α2

∗ = 7.9296. The flip bifurcation is
inhibited from α1 = 2.6503 to α1

∗ = 3.3524, while the inverse flip bifurcation occurs from
α2 = 9.0754 to α2

∗ = 7.9296 in advance.
Obviously, from Fig. 19(b) and Fig. 20(b), we find that the flip bifurcation can be sup-

pressed while the inverse flip bifurcation can occur in advance when the effect of the bi-
furcation control strategy (24) is considered. This means the chaos may be eliminated.

In Sect. 3.3 and Sect. 3.4, we have plotted the bifurcation diagrams when ρ = 4.0, m = 0.1,
and ρ = 23.71, m = 0.58. For convenience, we show them in blue in Fig. 21(a) and 21(b),
respectively. The effects of bifurcation control on system (13) are also shown in Fig. 21, see
the red lines. From Fig. 21(a), we observe that the chaos in system (13) is controlled into
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Figure 20 The parameters are β = 0.28, ρ = 23.71 andm = 0.58. The blue line represents the system (13), and
the red one represents the bifurcation control system (26), (a) the fixed point lines for the system (13) and (26);
(b) the eigenvalues corresponding to the fixed point lines of (13) and (26)

Figure 21 The effects of bifurcation control on system (13), (a) the parameters are ρ = 4.0,m = 0.1; (b) the
parameters are ρ = 23.71,m = 0.58

T-period and 2T-period solutions. From Fig. 21(b), we observe that the chaos in system
(13) is controlled into T-period, 2T-period, and 4T-period solutions.

To better understand the chaos control on the sales, we plot the dynamics of sales be-
fore and after the implementation of control measures �S(t) = α

S(t) + 0.28 in Fig. 22. In the
Fig. 22(a), it can be seen that the map (13) with parameters ρ = 4, m = 0.1 and α = 6 is in a
chaotic state without bifurcation control (denoted by the blue points), whereas when the
control measures �S(t) = α

S(t) + 0.28 are added at t = kT , (k > 150, T = 0.4642), it proceeds
to the stable period-2 points (denoted as the red points). Similarly, for system (7a)–(7b),
the sale S(t) is in a chaotic state before bifurcation control is applied, while the sale S(t)
converses to a stable 2T-period solution (denoted by red) after bifurcation control is ap-
plied. Please see Fig. 22(b).

For the case with ρ = 23.71, m = 0.58 and α = 8.1, we can also eliminate the chaos with
the control measures �S(t) = α

S(t) + 0.28. As shown in Fig. 23, the blue points are the disor-
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Figure 22 The effects of bifurcation control on the Sk and S(t) with ρ = 4.0,m = 0.1 and α = 6, (a) a chaotic
state of Sk is controlled to a stable period-2 orbit; (b) a chaotic state of sale S(t) is controlled to a stable
2T-period solution

Figure 23 A chaotic state of Sk is controlled to a stable fixed point with ρ = 23.71,m = 0.58 and α = 8.1

dered ones produced by the map (13). Before k = 160, we do not add the bifurcation control
strategy, the orbits of the system (13) are in a chaotic state. After the implementation of
the bifurcation control; the orbits are governed by a stable state (red line). Correspond-
ingly, the effects of the bifurcation control of the sale S(t) of system (7a)–(7b) is shown in
the Fig. 24(a). The chaotic behavior (blue) is taken over by a stable T-period solution (red)
after t = kT(k > 160, T = 0.0788). By appropriately choosing other values of α, the chaotic
behavior can be taken over by 2T-period and 4T-period solutions.

5 Conclusion and discussion
In this research, a nonlinear differential advertising model with a single parameter sales
promotion strategy is developed. To find the mathematical mechanisms of how the pro-
motion strategy affects sales, we conduct a series of theoretical analyses and numerical
simulations. We identify the threshold for adopting a promotion strategy: S(t)2 < ρ

m . Un-
der this condition, we further explore the important roles of the parameters α, ρ and m
in the complex and rich dynamical behaviors. An important and interesting phenomenon
is that both flip bifurcation and inverse flip bifurcation can occur in this system, giving
rise to the occurrence of chaos. What is more interesting is that under some values of
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Figure 24 The effects of bifurcation control on the S(t) with ρ = 23.71,m = 0.58 and α = 8.1, (a) a chaotic
state of sale S(t) is controlled to a stable T-period solution; (b) Localized enlarged view of Fig. 24(a) at
α ∈ [11, 12.9]

the parameters, there exists a pathway in the parameter space for the system (7a)–(7b)
to enter into chaos from a stable state via flip bifurcation and exit chaos to a stable state
via inverse flip bifurcation. While in other values of the parameters, though flip bifurca-
tion and inverse flip bifurcation coexist, in the parameter space, there is no such pathway
between them. The promotion coefficient α plays an important role in the rich and com-
plex dynamical behaviors. According to the theoretical analysis and the actual situation,
firms can make appropriate adjustments to the promotion coefficient α to develop a sales
promotion strategy and ensure the sales volume is steered towards greater stability and
predictability.

The instability and unpredictability of chaos spell a lot of difficulties for practical appli-
cations. Therefore, we propose an effective bifurcation control strategy to eliminate chaos
by inhibiting flip bifurcation and facilitating the occurrence of inverse flip bifurcation. Af-
ter a company formulates and implements certain promotional strategies, the sales volume
of the products will increase significantly. Through the analysis of the system (7a)–(7b),
we found that under certain promotional strategies, sales may enter a state of chaos. To
avoid this situation, the company can make fine adjustments to the existing promotional
strategies. By controlling the parameter β , the company can thus control the increment of
sales volume, thereby suppressing the chaotic phenomena and transforming it into a con-
trollable sales pattern. This can help the company avoid unpredictable and uncontrolled
fluctuations in sales volume.

It is worth noting that this research is primarily a theoretical analysis. The conditions
which are responsible for the dynamic behaviors of the sales are obtained. A firm can refer
to the actual data to get the sales decay constant ρ , the response rate to advertising m.
Before conducting a promotional event, it is important to conduct research, analysis, and
testing in advance to obtain the optimal promotion coefficient α and promotional control
parameter β to improve sales level and maximize firm’s profit.
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Appendix: Detailed information about the parameter conditions for the
existence of positive zero points of h(y)
It is easy to get that

h′(y) = 3y2 + 2(2α –
ρ

m
)y + (α2 + 2α). (A.1)

Then when ρ

m – 2α ≤ 0, i.e., 0 < ρ ≤ 2αm, for any y ≥ 0, we have h′(y) ≥ 0, so h(y) is an
increasing function on [0, +∞). Since h(0) = α2 > 0, we have h(y) > 0, ∀y ≥ 0. The sketch
of the function h(y) is shown in Fig. 25. So, when 0 < ρ ≤ 2αm, h(y) has no positive zero
point. Thus, the system (14) has no positive fixed point in this case.

When ρ

m – 2α > 0 and 4(2α – ρ

m )2 – 12(α2 + 2α) ≤ 0, i.e. 2αm < ρ ≤ (2α +
√

3(α2 + 2α))m,
we have h′(y) ≥ 0 for any y ≥ 0, so h(y) is an increasing function on [0, +∞). In addition,
h(0) = α2 > 0, so h(y) also has no positive zero point. Therefore, the system (14) does not
have a positive fixed point when 2αm < ρ ≤ (2α +

√
3(α2 + 2α))m.

When ρ

m –2α > 0 and 4(2α – ρ

m )2 –12(α2 +2α) > 0, that is to say ρ > (2α +
√

3(α2 + 2α))m.
At this situation, on [0, +∞), h′(y) has two positive real roots:

y01 =
ρ

m – 2α –
√

α2 + 4α
ρ

m + ( ρ

m )2 – 6α

3
,

y02 =
ρ

m – 2α +
√

α2 + 4α
ρ

m + ( ρ

m )2 – 6α

3
.

The sketch of function h′(y) is shown in Fig. 26.
From Fig. 26, when y ∈ (0, y01), h(y) is an increasing function. Because h(0) = α2 > 0, so

h(y01) > 0. When y ∈ (y01, y02), h(y) is a decreasing function, so h(y01) is the local maximum
value. When y ∈ (y02, +∞), h(y) is an increasing function, so h(y02) is a local minimum
value. There are three possible values for h(y02): h(y02) > 0, h(y02) = 0 and h(y02) < 0. These
three cases result in three different images of the function h(y). In Fig. 27, we show the
three different sketches of h(y).

In Fig. 27(a), we have h(y02) > 0, this can be satisfied if given (2α +
√

3(α2 + 2α))m < ρ <
1
8 m(20α – α2 +

√
α(8 + α)3). It shows that h(y) has no positive zero point for any y > 0.

Together with the cases that when 0 < ρ < 2αm and 2αm < ρ ≤ (2α +
√

3(α2 + 2α))m, h(y)

Figure 25 A sketch of h(y) when ρ
m – 2α ≤ 0
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Figure 26 A sketch of h′(y) when ρ > (2α +
√
3(α2 + 2α))m

Figure 27 Three different sketches of h(y) corresponding to three different values of h(y02): (a) h(y02) > 0; (b)
h(y02) = 0; (c) h(y02) < 0

also has no positive zero point, so when 0 < ρ < 1
8 m(20α – α2 +

√
α(8 + α)3), the system

(14) has no positive fixed point.
In Fig. 27(b), h(y02) = 0, this can be satisfied if given ρ = 1

8 m(20α – α2 +
√

α(8 + α)3).
Therefore, when ρ = 1

8 m(20α – α2 +
√

α(8 + α)3), the system (14) has only one positive
fixed point.

In Fig. 27(c), h(y02) < 0, this can be satisfied if given ρ > 1
8 m(20α – α2 +

√
α(8 + α)3). It is

shown that h(y) has two positive zero points. We denote them as y1 and y2. According to
the root formula, the two positive zeros y1 and y2 are

y1 =
ρ

m – 2α +
√

(2α – ρ

m )2 – 3(α2 + 2α)(cos( θ
3 ) –

√
3 sin( θ

3 ))

3
, (A.2)

and

y2 =
ρ

m – 2α +
√

(2α – ρ

m )2 – 3(α2 + 2α)(cos( θ
3 ) +

√
3 sin( θ

3 ))

3
, (A.3)

where

R =
2((2α – ρ

m )2 – 3(α2 + 2α))(2α – ρ

m ) – 3((2α – ρ

m )(α2 + 2α) – 9α2)

2
√

((2α – ρ

m )2 – 3(α2 + 2α))3
, 0 < R < 1,

θ = arccos(R).
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Therefore, the system (14) has two positive fixed points

S1 =
√

y1, (A.4)

and

S2 =
√

y2. (A.5)
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