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Abstract
Gestation is a very significant phenomenon in predator-prey dynamics. It influences
the future predation rates and the growth of species. Gestation is the period of
development of an embryo or fetus in a female mammal, from conception to birth. It
plays a critical role in population dynamics and reproductive strategies in ecological
studies. This article presents a comparative study of eco-epidemic models with and
without time delay terms. The model takes into account a prey-predator system,
dividing the prey population into susceptible and infected compartments. This article
incorporates a time delay into the predator growth term to represent gestation delay.
This article investigates the impact of time delay as a gestation delay on the model’s
dynamics and compares the results with those of the non-delay model. Our analytical
and numerical studies reveal that the time delay stabilizes the model, exhibits
switching behaviour, and leads to chaotic behaviour through periodic doubling.
Moreover, the gestation delay destabilizes the model by causing Hopf bifurcations to
emerge at multiple points. Our findings indicate that the delay model has richer
dynamics than the non-delay model. The numerical simulations using MATLAB, along
with the DDE-biftool and Matcont packages, illustrate the bifurcation analysis, phase
portraits, and time series plots for both models. Our findings highlight the significant
effects of gestation delay on the dynamics of eco-epidemic models.

Keywords: Eco-epidemic predator-prey model; Stability analysis; Hopf bifurcation;
Gestation Delay; Switching behaviour; Chaos

1 Introduction
In recent years, there has been a significant increase in the study of eco-epidemiological
models as scientists strive to understand the intricate relationships between ecological
and epidemiological processes. These models investigate the interspecies relationship and
transmission of infectious diseases by combining ecological dynamics, such as predator-
prey relationships, with epidemic dynamics. Time delays, representing the temporal lag
in population responses to shifting environmental factors or disease dynamics, add a new
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dimension to these models. The use of mathematical models is crucial for comprehending
the mechanisms behind species persistence and extinction. Theoretical biologists, physi-
cists, and mathematicians extensively studied the dynamics of ecological models and pro-
vided important insights about complex biological processes [1]. Ecology has a rich his-
torical background in studying predator-prey interactions, which continues to be a highly
captivating research area for scientists worldwide. The eco-epidemiological systems field
focuses on examining ecological systems, while considering the influence of epidemiolog-
ical issues. Anderson and May [2] were the pioneering researchers who integrated ecolog-
ical and epidemiological systems. Chattopadhyay and Arino are credited with coining the
term “eco-epidemiology” to describe these systems [9]. Within the natural realm, individ-
ual species do not exist in isolation; rather, they engage in competitive interactions with
other species present in their environment, struggling for resources such as habitat, sus-
tenance, and opportunities for predation. Investigating parasites’ impact on biodiversity
and ecosystem dynamics is a significant concern in conservation biology. It is important
to find the threshold between populations staying alive and going extinct in systems with
two or more species interacting and parasitism acting on them [13, 47]. Researchers have
looked at the eco-epidemic predator-prey model and thought about infected prey where
they are not considered any type of time delay term in their model [3, 9, 24, 33–35, 37, 41].
The researchers also considered predator diseases and studied them in their paper without
incorporating a time delay term [11, 25, 42]. As we know, many ecological and biological
phenomena are not instantaneous; they take time to unfold. These processes depend not
only on the present state but also on past conditions. Therefore, such processes cannot
be accurately described solely using ordinary differential equations (ODEs); instead, delay
differential equations (DDEs) should be employed for more precise results. While ODEs
only account for instantaneous changes, DDEs take into consideration the system’s past
history, for example, maturation delay, reforestation, incubation delay, and gestation de-
lay. Maturation delay refers to the time it takes for an animal to reach sexual maturity and
reproductive capability. This delay varies significantly among different species, including
lions, tigers, and dogs. A brief overview of the maturation delays for these animals: Fe-
male lions typically reach sexual maturity around 2 to 3 years of age, while males may take
longer, generally maturing between 3 to 4 years. Female lions can breed every 2 to 3 years,
with a gestation period of about 110 days [36]. The age at which dogs reach sexual matu-
rity varies widely by breed. Smaller breeds may mature as early as 6 months, while larger
breeds can take up to 18 to 24 months [10, 14]. Maturation delay in humans refers to the
period it takes for an individual to reach full physical, sexual, and psychological maturity.
Most girls reach their full adult height by around ages 16 to 18, while boys may continue
to grow until about ages 18 to 21. Many researchers studied the impact of time delay and
discovered that it had much richer dynamics than the non-delay model. The researchers
have studied the ecological and biological model with time delay [5, 7, 29, 31, 38]. The time
delay effect in the single-species model was studied, and it was found that the system has
chaotic behaviour [22]. The prey-predator model with maturation delay has been stud-
ied [4, 12, 32]. The phenomenon of time delay has a significant influence on a system’s
dynamics. Several eco-epidemiological models have been created and studied. Some of
them include parts that happen over time delays [13, 16, 21, 26]. These articles studied
the impact of time delay and found that the models have become chaotic about the delay
parameter. The articles discuss the impact of incubation delay on predator-prey models
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[19, 21, 28, 39]. Recent research in 2024 has focused on modelling infection spreading in
tissue using a delay reaction-diffusion system [20]. The researchers have examined the
multiple time delay models [15]. The researchers looked at the gestation delay model with
prey refuge and found that Hopf bifurcation happens because of gestation delay [27]. In
ecology modelling, gestation delay refers to the time lag between when a predator con-
sumes its prey and when the predator gives birth to its offspring. Eco-epidemic models
often incorporate this delay to reflect that predators do not immediately reproduce after
consuming their prey. Gestation periods vary significantly across species, influenced by
factors like size and reproductive strategies. For example, elephants have the longest gesta-
tion, lasting 18 to 22 months, while the Virginian opossum has one of the shortest at about
12 days. Other mammals, like Rhesus monkeys, have a gestation period of approximately
164 days and baboons around 187 days. Few researchers have studied the gestation delay
in eco-epidemic models where infection is present in prey [18, 40, 44]. The researchers
[44] looked at how gestation delay affected the dynamics of an eco-epidemic model with
prey infection. In 2018, the researchers [46] looked into the complicated dynamics caused
by gestation delay in Gause-type competition models. The model’s findings show that the
gestation delay causes Hopf bifurcation and switching properties. The study focussed on
the effects of incubation and gestation periods in a prey-predator model with infection in
prey [6]. The article [27] studied the impact of delay-induced eco-epidemiological mod-
els with a prey refuge. Their findings suggest that the gestation delay can destabilize the
system due to the appearance of a Hopf bifurcation.

This article explores the impact of time delay, represented as τ , on an eco-epidemic
model, particularly in the context of a SIP (susceptible-infected-predator) compartmental
model, where (S) represents susceptible prey, (I) represents infected prey, and (P) repre-
sents predator. In this model, the disease can spread between prey populations and the
predator preys on both susceptible and infected prey. However, the predation process in-
volves a delay term, which represents a gestation delay.

Research objective of this article: The objective of this study is to investigate and com-
pare the dynamics of an eco-epidemic model with and without a time delay, specifically
focusing on the effects of gestation delay in the predator growth term on the stability and
behaviour of the model. The study aims to analyze how the inclusion of time delay in-
fluences the model’s dynamics, including the emergence of chaotic behaviour, switching
dynamics, and Hopf bifurcations, thereby demonstrating that the delay model exhibits
richer and more complex behaviours than the non-delay model. How does gestation delay
impact stable equilibrium and unstable equilibrium?

Section 1 of the article provides an overview of previous research on eco-epidemiology
modelling and its delayed effects. The proposed model is constructed in Sect. 2, while
Sects. 3 and 4 examine the theoretical studies, including positivity, boundedness, equilib-
rium analysis, stability, and Hopf-bifurcation for the model with τ = 0. Section 2.1 delves
into the stability and bifurcation of the delay model, while Sect. 5 presents the numer-
ical simulations for both models (Model (6)) and the delay model (Model (8)). The re-
sults and discussions are presented in Sect. 6, and the article concludes with a summary
of the key findings in Sect. 7. The article aims to provide a comprehensive analysis of
the eco-epidemic model, taking into account the time delay and its implications for the
predator’s reproduction rate. By examining the stability, bifurcation, and numerical simu-
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lations of the model, the study offers valuable insights into the complex dynamics of eco-
epidemiology.

2 Model formulation
Let the total population of prey be represented by N , which can be further divided into two
compartments: susceptible individuals, denoted by S, and infected individuals, denoted
by I . Additionally, consider the predator density, denoted by P. Assuming the absence of
infected viruses, the prey population undergoes logistic growth. Therefore,

dN
dt

= rN
(

1 –
N
k

)
. (1)

Furthermore, we assume that reproduction is exclusive to susceptible prey, while infected
prey lacks the ability to reproduce. Nevertheless, the infected prey still plays a role in in-
fluencing the growth of the susceptible prey towards reaching the carrying capacity k.
Therefore,

dS
dt

= rS
(

1 –
S + I

k

)
. (2)

The predator, denoted as P, engages in predation on susceptible prey, exhibiting a Holling
type-II functional response. Susceptible prey becomes infected upon contact with infected
prey, and the transmission of infection follows the law of mass action with an infection rate
denoted as L. Additionally, it is assumed that infected prey can recover, with the recovery
process occurring at a rate of γ . Therefore,

dS
dt

= rS
(

1 –
S + I

k

)
– LSI –

αSP
1 + hS

+ γ I. (3)

The density of infected prey rises through interactions with susceptible prey, while re-
covering individuals contribute to a decrease in the infected prey density. Furthermore,
infected prey experiences natural mortality at a rate, denoted as d. In this scenario, con-
sidering that the predator also engages in predation on infected prey, following a Holling
type II functional response, the dynamics of the system can be described as follows;

dI
dt

= LSI – trI – dI –
βIP

1 + hI
. (4)

The predation on susceptible and infected prey increases predator density, characterised
by the Holling type II functional response with rates α1 and β1, respectively.

dP
dt

= β1
PI

1 + hI
+ α1

PS
1 + hS

– d1P. (5)
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By combining all the above assumptions, the model can be represented as follows:

dS
dt = rS

(
1 – S+I

K
)

– LSI – αSP
1+hS + γ I = Sf1(S, I, P),

dI
dt = LSI – trI – dI – βIP

1+hI = If2(S, I, P),

dP
dt = β1

PI
1+hI + α1

PS
1+hS – d1P = Pf3(S, I, P),

(6)

where S(0) ≥ 0, I(0) ≥ 0, and P(0) ≥ 0, respectively. Assume β1 = cβ and α1 = c1α, where
c1, c ∈ (0, 1) are conversation rate. All the parameters mentioned in Table 1 are taken as
positive

2.1 Model (6) with delay term
To obtain more accurate results, we incorporated a gestation delay in the growth rate
of the predator population in the model (6). Specifically, we modified the growth rate of
the predator population to account for the gestation delay. The other assumptions of the
model remained unchanged. The following equation describes the resulting growth of the
predator population with gestation delay:

dP
dt

= β1
P(t – τ )I(t – τ )

1 + hI(t – τ )
+ α1

P(t – τ )S(t – τ )

1 + hS(t – τ )
– d1P. (7)

The model (6) with the gestation delay is as follows:

dS
dt = rS

(
1 – S+I

k
)

– LSI – αSP
1+hS + γ I,

dI
dt = LSI – trI – dI – βIP

1+h1I ,

dP
dt = β1

P(t–τ )I(t–τ )
1+h1I(t–τ ) + α1

P(t–τ )S(t–τ )
1+hS(t–τ ) – d1P,

(8)

where the initial function is φ = (φ1,φ2,φ3), defined in the Banach space C+ = {φ ∈
C([–τ , 0], R3

+) : S(ξ ) = φ1(ξ ), I(ξ ) = φ2(ξ ), P(ξ ) = φ3(ξ )}, where φi(ξ ) ≥ 0, ξ ∈ [–τ , 0], φi > 0,
i = 1, 2, 3 and φ = {φ1,φ2,φ3} ∈ C([–τ , 0], R3

+). Then the Banach space of all continuous
function mapped from [–τ , 0] → R3

+, where we define R3
+ = {(S, I, P) : S ≥ 0, I ≥ 0, P ≥ 0}.

This initial condition is similar to the articles published by researchers [23, 45] If the value
of τ = 0, the model (8) can be categorized as a simple non-delay model (ODE model).
On the other hand, in cases when τ �= 0, the model (8) is often denoted as a delay differ-
ential equation (DDE) model. All parameters are positive constant, and τ represents the
gestation delay in the reproduction of the predator after consuming the prey (both suscep-
tible and infected prey). The meaning of all other parameters is the same as in the model
(6).

3 Theoretical studies for the model (6)
3.1 Positivity
Theorem 3.1 The solutions of the given model (6) with initial value S(0) ≥ 0, I(0) ≥ 0 and
P1(0) ≥ 0 are positive.
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Table 1 Parameters used in the model (6) and model (8)

Parameters

r Intrinsic growth rate of susceptible prey
k Carrying capacity of prey
L Disease transmission rate
α Attack rate of predator on susceptible prey
β Attack rate of predator on infected prey
d Death rate of infected prey
tr Treatment rate
d1 Death rate of predator
β1 conversion rate of Infected prey into predator biomass
h Handling time
γ Recovery rate.

Proof Since the function Sf1(S, I, P), If2(S, I, P), and Pf3(S, I, P) are taken from right side of
model (6) are continuous function and locally Lipschitzian on R3

+, implies that the solu-
tion (S(t), I(t), P(t)) exists and is unique on [0, ε], where 0 < ε < ∞ [17]. For the positive
integrating model (6), with respect to the initial condition, we get the solution as follows;

S(t) = S(0)e
∫ t

0 f1(S(s),I(s),P(s))ds ≥ 0,

I(t) = I(0)e
∫ t

0 f2(S(s),I(s),P(s))ds ≥ 0,

P(t) = P(0)e
∫ t

0 f3(S(s),I(s),P(s))ds ≥ 0,

where S(0) ≥ 0, I(0) ≥ 0, and P(0) ≥ 0. Hence, all the solutions of the model (6) are positive.
□

3.2 Boundedness of the solution
Theorem 3.2 In R3

+, all the solutions of the model (6) are uniformly bounded.

Proof let us assume Z = S + I + P, by differentiate it we get;

dZ
dt

=
dS
dt

+
dI
dt

+
dP
dt

, (9)

taking the value of dS
dt , dI

dt and dP
dt from model (6), we have,

dZ
dt

= rS
(

1 –
S + I

k

)
– LSI –

αSP
1 + hS

+ γ ∗ I + LSI – trI – dI –
αIP

1 + hI

+ β1
PI

1 + h1I
+ α1

PS
1 + hS

– d1P.

dZ
dt

+ μp = S
[

r
(

1 –
S + I

k

)
+ μ

]
– I(d + tr – μ) – P(d1 – μ)

≤
(

k(r + μ)2

2r

)
= φ.

If φ > min(d + tr, d1) and using upper bound (1 + μ), we define φ > 0 such that

dZ
dt

+ μp ≤ φ, ∀t ∈ (0, tb)
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with the theory of differential inequality (Grönwall’s inequality) [8], we obtain

0 < p(x, y, I1)

≤ φ

μ
(1 – e–μt) + Z(S(0), I(0), P(0))e–μt .

We have 0 < Z < φ

μ
for t → ∞. Hence, it is clear that all solutions to the system will remain

in the region

τ = {(S, I, P) ∈ R3
+ : Z ≤ φ

μ
} for all time. □

3.3 Equilibrium analysis
By solving the equation dS

dt = 0, dI
dt = 0 and dP

dt = 0 simultaneously we get the following equi-
librium point. (i) Trivial equilibrium E0 = (0, 0, 0) always exists for the model. (ii) One
disease and predator-free equilibrium E1 = (k, 0, 0) exist. (iii) Disease-free equilibrium
E2 = (S∗, 0, P∗), where S∗ = d1

α1–hd1
and P∗ = r

α

(
1 – S∗

k

)(
d1

α1–hd1

)
provided kβ > hd1k + d1,

Predator-free equilibrium E3 = (S∗, I∗, 0), S∗ = d+tr
L and I∗ = r(k–S∗)

r+Lk–γ k . Interior equilib-
rium point E4 = (S∗, I∗, P∗), where S∗ = d1+I∗(d1h–β1)

(α1–d1h+I∗(α1hβh–d1h2)
, P∗ = B

β(α1–d1h+I∗(α1hβh–d1h2)
,

B = L {d1(1 + hI∗) – β1I∗)} (1hI∗) – (tr + d)(1 + hI∗) {α1(1 + hI∗) + β1I∗h – d1h(1 + hI∗)} and
I∗ calculated from the equation

r(k – S∗)(1 + hS∗) – LI∗k – αP∗ + γ I∗ = 0. (10)

From Equation (10), we have only one I∗ as I∗ = r(k–S∗)(1+hS∗)–αP∗
Lk–γ

.

4 Local stability of model (6)
For local stability, first linearise the nonlinear system about the equilibrium, find the Jaco-
bian matrix, and calculate the eigenvalue. The eigenvalue of the Jacobian matrix indicates
stability. If all the eigenvalues values have a negative real part, then that equilibrium point
is asymptotically stable, [30]. So, the Jacobian matrix of the linearised system is as follows;

J =

⎡
⎢⎣

A1 A2 A3

A4 A5 A6

A7 A8 A9

⎤
⎥⎦ , (11)

where A1 = r – 2S∗
k – LI∗ – αP∗

(1+hS∗)2 , A2 = – S
k – LS∗ + γ , A3 = αS∗

(1+hS∗) ,A4 = LI∗, A5 = LS∗ –
tr – d – βP∗

(1+hI∗)2 , A6 = αI∗
(1+hI∗) , A7 = α1P∗

(1+h1S∗)2 , A8 = β1P∗
(1+hI∗)2 , A9 = β1I∗

(1+hI∗) + α1S∗
(1+hs∗) – d2. Jacobian

matrix at trivial equilibrium as follows:

J0 =

⎡
⎢⎣

r 0 0
0 –d 0
0 0 –d1

⎤
⎥⎦ (12)

Here eigenvalues are r, -d, –d1 so equilibrium point is unstable.

Theorem 4.1 The equilibrium point (k,0,0) is asymptotically stable if r < 2 and d1 > αk
1+h1k
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Proof Jacobian matrix of (K,0,0);

J1 =

⎡
⎢⎣

r – 2 Lk αk
1+hk

0 –tr – d 0
0 0 αk

1+hk – d1

⎤
⎥⎦ (13)

In the above matrix, we can easily see that all the eigenvalues of the matrix are negative if
r < 2 and αk

1+h1k < d1. Hence, the equilibrium point (k,0,0) is asymptotically stable. □

Theorem 4.2 Diseases-free and interior equilibrium are asymptotically stable if they fol-
low the Routh–Hurwitz criterion.

Proof The theorem follows from Routh–Hurwitz, so the proof is omitted. □

4.1 Hopf bifurcation analysis
Theorem 4.3 Hopf bifurcation for the interior E(S∗, I∗, P∗) appear when the carrying ca-
pacity attains r = rhb in the domain Dhb = r[hb]

Dhb =
{

r|hb] ∈R
+ : H

(
k[hb|)

[c1(r)c2(r) – c3(r)]r=r(hb) = 0 with.

a2
(
r[hb|) > 0,

[
dH(k)

dr

]
r=r|hb

�= 0

}
.

Proof The characteristic equation of J∗ is

λ3 + c1λ
2 + c2λ + c3 = 0, (14)

where c1, c2, and c3 are mentioned in equation (14), by differentiating characteristic equa-
tion (14), we have

dλ

dθ
=

–(λ2ċ1 + λċ2 + ċ3)

3λ2 + 2c1λ + c2
. (15)

Put λ = i√c2 in (15), we have

dλ

dk
=

ċ3 – c2ċ1 + iċ2
√c2

2(c2 – ic1
√c2)

.

After rationalization, we have

dλ

dk
=

ċ3 – (c2ċ1 + c2ċ1)

2(c2
1 + c2)

+
(i√c2(c1ċ3 + c2ċ2 – c1c2ċ1)

2c2(c2
1 + c2)

= –
–dH
dk

2(c2
1 + c2)

+ i

[√c2ċ2

2c2
–

c1
√c2

dH
dk

2c2(c2
1 + c2)

]
.

Here,
[

dRe(λ)
dr

]
=

–dH
dr

2(a2
1+a2)

�= 0, by monotonicity restriction in the real part of the complex

root
[

dR(λ)
dr

]
�= 0 [25, 43], the transversality condition dH

dr �= 0 ensure the existence of Hopf
bifurcation. □
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4.2 Theoretical study of model (8)
This section studied the theoretical aspects of the model (8), in which the positivity of the
model and the stability of the solution about the interior equilibrium have been investi-
gated. Additionally, the Hopf bifurcation about τ was studied. The equilibrium analysis of
the model (8) is the same as that of the model (6).

4.2.1 Positivity of the delay model (8)
For the biological significance, we need to demonstrate that the model we constructed has
a positive solution. The positivity of the solution implies the survival of the population. To
show positivity, follow the method of Yang et al. [45].

Theorem 4.4 All solutions of model (8) with the with initial value S(0) ≥ 0, I(0) ≥ 0 and
P1(0) ≥ 0 are positive.

Proof The proof is similar to that presented in paper [26]. By integrating the equations of
the model (8) separately, we have:

S(t) = S(0)e
∫ t

0

(
r
(

1– S(θ )+I(θ )
K

)
–LI(θ)– αP(θ )

1+hS(θ ) +γ I(θ )
)

dθ ≥ 0. (16)

This implies that S(t) > 0 for all t whenever S(0) ≥ 0. Similarly, I(t) ≥ 0 for all t whenever
I(0) > 0. Now, from the last equation of the model (8),

dP
dt

= β1
P(t – τ )I(t – τ )

1 + h1I(t – τ )
+ α1

P(t – τ )S(t – τ )

1 + hS(t – τ )
– d1P, (17)

by dividing both sides of this equation by P and integrating, we obtain:

P(t) = P(0)e
∫ t

0

(
β1

P(θ–τ )I(θ–τ )
1+h1I(θ–τ ) +α1

P(θ–τ )S(θ–τ )
1+hS(θ–τ ) –d1P(θ )

)
dθ ≥ 0. (18)

Thus, P(t) > 0 for all t whenever P(0) > 0. Hence, all the solutions of model (8) are positive.
□

4.2.2 Stability and bifurcation
To study the local stability and bifurcation of the model (8) around point E4, we need to
linearise the model and find the Jacobian matrix around that point.

dX
dt

=

⎡
⎢⎣

A1 A2 A3

A4 A5 A6

k3 A7 k4

⎤
⎥⎦X(t) +

⎡
⎢⎣

0 0 0
0 0 0
k1 0 k2

⎤
⎥⎦X(t – τ ), (19)

where K3 = 0, k1 = α1P
(1+hS)2 , k2 = α1S

(1+hS) , k4 = –d1 + β1y
1+hy and other elements are same as de-

fined in (11). The required characteristic equation of the matrix (19) Det(λI – A – Be(–λτ ))

as follows:

λ3 + a1λ
2 + a2λ + a3 + e–λτ (b1λ

2 + b2λ + b3) = 0, (20)
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where a1 = –k4 – A5 – A1, a2 = k4A5 – A1A5 + A1A5 – A2A4, a3 = A1A5k4 + A2A4k4 –
A3A4k2, b1 = –k3, b2 = –A1k3 + A5k3 – A6k2 – k1A3, b3 = –A1A5k3 + A1A6k2 + A2A4k3 –
A2A6k1 – A3A4k2 + k1A5A3.

Equation (20) has infinitely many roots τ > 0. By putting λ = iw(w > 0) in the equation
(20), we have

(a1w2 – w3) = (b3 – b1w2)cos(wτ ) + b2wsin(wτ ), (21a)

w3 – a2w = b2wcos(wτ ) – (b3 – b1w2)sin(wτ ). (21b)

From equation (21a–21b), we can write the above system of equations as,

cos(ωτ ) =
(a1ω

2 – a3)(b3 – b1ω
2) + (ω3 – a2ω)b2ω

(b3 – b1w2)2 + b2
2w2 , (22a)

sin(ωτ ) =
b2w(a1w2 – a3) – (w3 – a2w)(b3 – b1w2)

(b3 – b1w2)2 + b2
2w2 . (22b)

The critical value of time delay under the condition b2w(a1w2 – a3) – (w3 – a2w)(b3 –
b1w2) > 0

τ
j
k =

2π j
ωk

+
1

wk
arsin

(
b2w(a1w2 – a3) – (w3 – a2w)(b3 – b1w2)

(b3 – b1w2)2 + b2
2w2

)
(23)

and if b2w(a1w2 – a3) – (w3 – a2w)(b3 – b1w2) < 0, then

τ
j
k =

2π j
ωk

+
2π

ω
–

1
wk

arsin
(

b2w(a1w2 – a3) – (w3 – a2w)(b3 – b1w2)

(b3 – b1w2)2 + b2
2w2

)
, (24)

where k = 1, 2, 3, j = 0, 1, 2, . . . , and τ0 = min
k=123

τ 0
k . After squaring and adding them, we have,

w6 + (a2
1 – b2

1 – 2a2)w4 + (a2
2 – 2a1a3 + 2b1b3 – b2

2)w2 + (a2
3 – b2

3) = 0. (25)

Putting w2 = ε, we have

h(ε) = ε3 + c1ε
2 + c2ε + c3, (26)

where c1 = a2
1 – b2

1 – 2a2, c2 = a2
2 – 2a1a3 + 2b1b3 – b2

2, c3 = a2
3 – b2

3.
The equation (26) has at least one positive if c1 > 0, c3 > 0 by Descartes’ rule of sign.

Lemma 4.5 If τ = τ1 and h′
1(w2) �= 0, the equation (20) has a pair of purely imaginary roots

±iw and d(Realλ(τ ))
dτ

|τ1 �= 0

Proof Let us assume f1(λ) = λ3 + a1λ
2 + a2λ + a3 and g(λ) = b1λ

2 + b2λ + b3, the equation
(20) be written as the form;

f (λ) + g(λ)e–λτ = 0 (27)
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put λ = iw into equation (27), we get

f (iw) + g(iw)(cos(iw) – sin(iw)) = 0 (28)

Thus, we have

f (iw) + f̄ (iw)

2
= –

g(iw) + ḡ(iw)

2
cos(wτ ) + i

g(iw) – ḡiw
2

sin(iw)

f (iw) – f̄ (iw)

2
=

g(iw) – ḡ(iw)

2
cos(wτ ) + i

g(iw)) + ḡiw
2

sin(iw)

Then we get

f (iw)f̄ (iw) – g(iw)ḡ(iw) = 0 (29)

Using Equation (26), we have

h(w2) = f (iw)f̄ (iw) – g(iw)ḡ(iw) = 0. (30)

Next, assume that λ = iw is not a purely imaginary roots of Eq. (20), differentiating Eq. (27)
with respect to λ = iw, we get

f ′(iw) + g ′(iw)e–iwτ1 – τ1g(iw)e–iwτ1. (31)

Using equation (27), we write

f (wi) + g(iw)e–wτ1. (32)

Solving equation (31) and using equation (32) and (29), we get

τ1 =
g ′(iw)

g(iw)
–

f ′(iw)

f (iw)

=
g ′(iw)ḡ(iw) – f ′(iw)f̄ (iw)

f (iw)f̄ (iw)
.

It is easy to show that

Imτ1 = Im
g ′(iw)ḡ(iw) – f ′(iw)f̄ (iw)

f (iw)f̄ (iw)

= –i
g ′(iw)ḡ(iw) – f ′(iw)f̄ (iw)

2f (iw)f̄ (iw)
–

f ′(iw)f̄ (iw) – g ′(iw)ḡ(iw)

2f (iw)f̄ (iw)
.

Differentiating equation (30) w.r.t w, we have

2wh′(w2) = if ′(iw)f̄ (iw) – if̄ (iw)f (iw) – ig ′(iw)ḡ(iw) + iḡ ′(iw)g(iw). (33)

So,
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Imτ1 = wh′(w2)
f (iw)f̄ (iw)

.

Thus h′(iw2) �= 0 indicates that Im τ1 �= 0, which contradicts that imaginary of τ is zero.
Hence, λ = iw is purely the imaginary root of Equation (20).

Now we move to show transversality condition in the other part of the lemma. Differn-
tiating equation (27) over τ , we get

f ′(λ)
dλ

dτ
+ g ′(λ)e–λτ dλ

dτ
– τg(λ)e–λτ dλ

dτ
– λg(λ)e–λτ = 0 (34)

After simplifying, we get

(dλ(τ ))

dτ
|τ1 =

λg(λ)e–λτ

g ′(λ)e–λτ + f ′(λ) – τg(λ)e–λτ

=
λg(λ)e–λτ [g ′(λ)e–λτ + f ′(λ) – τg(λ)e–λτ ]

[g ′(λ)e–λτ + f ′(λ) – τg(λ)e–λτ ]2

=
λ[g(λ)ḡ ′(λ) + f ′(λ) – τ ḡ2(λ)]

[g ′(λ)e–λτ + –f̄ ′(λ)f (λ) – τg(λ)e–λτ ]2
.

Obviously, we have

d(Reλ(τ ))

dτ
=

Reλ[g(λ)ḡ ′(λ) + f ′(λ) – τ ḡ(λ)2] – λ̄[ḡ ′(λ)g(λ) – f ′(λ)f̄ (λ) – τ ḡ2(λ)]

2[g ′(λ)e–λτ + –f̄ ′(λ)f (λ) – τg(λ)e–λτ ]2
|τ1

=
w2h′(w2)

[g ′(λ)e–λτ + –f̄ ′(λ)f (λ) – τg(λ)e–λτ ]2
�= 0.

It is clear that the sign of dRe(λ)
dτ

depends on w2h′(w2). Proof completed. □

Now from Lemma 1, we can say that for τ = τ ∗ and h ∗′ (w∗) �= 0 the Equation (20) has a
pair of purely imaginary roots ±iw and d(Reλ(τ ))

τ
�= 0 at τ ∗ �= 0, Hence the important result

on equilibrium point E4.

Theorem 4.6 The interior equilibrium point E4 is asymptotically stable for τ = 0 if and
only if the following conditions are satisfied: a1 > 0, a3 > 0, and a1a2 > a3. If τ �= 0 and
h′(w2) �= 0, the system undergoes a Hopf bifurcation around E4.

Proof The characteristic equation for τ = 0 is obtained by putting τ = 0 in Equation (20).
By the Routh–Hurwitz criteria, we can conclude that if the conditions a1 > 0, a3 > 0, and
a1a2 > a3 are satisfied, then the interior equilibrium is asymptotically stable. The proof of
this part is omitted.

Now, we move on to the other part of the theorem. If τ �= 0 and h′(w2) �= 0, then the
transversality condition d(Re,λ(τ ))

dτ
�= 0 at τ ∗ �= 0 is satisfied (see the proof in Lemma 4.5).

Hence, the theorem is proved. □

5 Numerical simulation
This section encompasses numerical simulations of both the model without delay (τ = 0)
and with delay (τ �= 0). The delay model is tackled using MATLAB’s DDE solvers, while
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Figure 1 One-parameter bifurcation diagram about the bifurcation parameter r. The Hopf bifurcations
appeared at points H1 = 0.963496, H2 = 2.4941, and H3 = 12.711846, respectively. All the parameters set
mentioned in equation (35)

ODE solvers like ode45 are employed for the non-delay model. Bifurcation analysis of the
model is conducted using Matcont for the non-delay scenario and DDE Biftool for the
delay case in MATLAB.

For the entire numerical simulation, we set the following fixed parameters, as men-
tioned:

k = 5,α = 0.5,β = 0.61, L = 1.5, h = 0.5,α1 = 0.1,β1 = 0.5,

tr = 0.5,γ = 0.2, d = 0.1, d1 = 0.2.
(35)

Now, let’s first discuss the numerical simulation for the non-delay model, where τ = 0. The
bifurcation diagram in Fig. 1 illustrates the switching behaviour of the model as r is taken
as the bifurcation parameter. Population oscillations or fluctuations are depicted through
time series plotting.

5.1 Bifurcation diagram, time series and phase portraits for non-delayed model
(6)

Figure 1 expresses the bifurcation about the parameter r, which describes three Hopf
points: 0.963496, 2.4941, and 12.711846, respectively, around the interior equilibrium
point. The interior equilibrium is stable for (i) 0.476 < r < 0.963496, unstable in the region
(ii) 0.9634 < r < 2.4941, again stable in (iii) 2.4941 < r < 12.711846, and lastly becomes un-
stable after 12.71184. The stable equilibrium loses its stability at Hopf points and emerges
into a limit cycle. There is more than one Hopf point obtained in the region 0 < r < 20;
hence, it shows the switching behaviour of model (6). The limit cycle and periodic solu-
tion are obtained after the Hopf point in the unstable region, shown in Fig. 2 (b) and Fig. 3
(b), respectively.

Figure 3 (a) demonstrates the absence of any oscillation or fluctuation in the population
over a longer time frame. This observation suggests that the solution of model (6) regard-
ing the interior equilibrium remains stable when r = 0.8. Figure 3 (b) demonstrates that
all populations exhibit oscillatory motion, as shown by the periodic solution that repre-
sents the long-term behaviour of model (6). This indicates that the model referenced as
(6) exhibits instability in relation to the inner equilibrium for r = 2.3. Similarly, the model
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Figure 2 (a) For r = 0.8, (b) for r = 2.3, (c) for r = 2.6 taking all the parameters same as Fig. 1

Figure 3 Time series corresponding to the Fig. 2. (a) for r = 0.8, (b) for r = 2.3, (c) for r = 2.6

remains stable when r = 2.6, as seen in Fig. 3 (c). The model (6) demonstrates the phe-
nomenon of switching behaviour with respect to the parameter r in the vicinity of the in-
terior equilibrium. The model’s switching behaviour, as represented by (6), is seen in Fig. 1.
The stability of model (6) undergoes a transition from stable to unstable and then back to
stable via a Hopf bifurcation. This bifurcation is seen at three specific points: 0.963496,
2.4941, and 12.711846, respectively. There is no text provided.

5.2 Numerical simulation of the delay model with non-zero delay (τ �= 0)
The present subsection primarily examines the influence of the time delay parameter τ

on the model (8) in two scenarios: stable and unstable equilibrium, with τ = 0. To denote
the occurrence of Hopf Bifurcation, Period Doubling (PD), and Chaos in a bifurcation dia-
gram, use the following visual indicators: Hopf Bifurcation: In a bifurcation diagram, the
existence of Hopf bifurcation may be identified by observing the following visual indica-
tors: The Hopf bifurcation in a bifurcation diagram is defined by the appearance of a limit
cycle originating from a fixed point when a parameter is altered. This transition happens
when a pair of eigenvalues, which are complex conjugates, of the linearized system cross
the imaginary axis, moving from the left half-plane to the right half-plane. A tiny ampli-
tude oscillation, known as a limit cycle, may be seen visually in the bifurcation diagram.
This oscillation emerges from a steady state, also known as a fixed point, and increases in
amplitude when the parameter is adjusted. Period Doubling (PD): PD in the bifurcation
diagram is characterised by the abrupt appearance of a new branch or curve replicating
the existing branch. The new branch has a period of twice as long as the previous one. In
the plot of Smax against τ , the phenomenon known as PD is shown by a distinctive “fork”
or “pitchfork” form. This shape indicates that the original branch divides into two new
branches, as seen in Fig. 5. Chaos: Chaos is shown in the bifurcation diagram as a densely
populated, seemingly haphazard, and unexpected arrangement of data points. Usually,
chaos is preceded by a sequence of period-doubling bifurcations, resulting in an unlim-
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Figure 4 Bifurcation diagram illustrating the impact of the time delay parameter τ on the system. It shows
the transition of the unstable equilibrium point’s behavior from unstable to stable, and vice versa, as τ varies.
Hopf bifurcations occur at points τ = 2.313, τ = 5.107, τ = 9.282, and τ = 10.31 within the specified region. All
parameters are the same as those specified in Equation (35), with r = 2.3

Figure 5 The bifurcation diagram showing that the Hopf bifurcations occur at points τ = 2.313, τ = 5.107,
τ = 9.282, and τ = 10.31. The periodic doubling at τ = 5.39 and chaos behaviour after τ = 11. Taking all the
parameters same as Fig. 4

ited number of periodic orbits. In the Smax versus τ parameter diagram, Chaos is repre-
sented as a cluster or band of points that seem to be scattered randomly. Given the fixed
parameters described in Equation (35) and the starting circumstances (1.981, 0.223, 5.32),
we can conclude that a stable interior equilibrium point E occurs when r is equal to 2.6.
As the value of τ grows, the stability of E undergoes a shift, characterised by a switching
behaviour (Fig. 8). The internal equilibrium, which is not stable, exhibits switching be-
haviour (Fig. 5). It becomes stable via Hopf bifurcation, loses stability, and shows periodic
doubling and chaos. The system experiences Hopf bifurcations at τ = 5.107, τ = 9.282, and
τ = 10.31, resulting in the emergence of periodic and chaotic solutions.

5.2.1 Impact of time delay on the model for the unstable equilibrium
This section shows the impact of the time delay on the model (8) for the unstable inte-
rior equilibrium for τ = 0. Figure 4 bifurcation diagram about the parameter τ and Fig. 5
bifurcation diagram Smax/min vs τ .

In Fig. 6 (a), (c), and (e), respectively, periodic oscillations are shown. Figure 6 (b) and
(f ) show that the solution of the model (8) is stable, as there are zero amplitudes, which
means no fluctuations in the solution for a long time. Figure 6 (d) shows that the solu-
tion of the model (8) exists in periodic doubling, with two types of periods obtained. The
chaotic behaviour of the model (8) about the parameter time delay τ is obtained, as shown
in Fig. 6 (g) and (h) through time series plot. The chaotic behaviour of the model is also
shown through the bifurcation diagram 5 and through the phase portrait, shown in Fig. 7
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Figure 6 This is the time series plot for the different values of τ according to the bifurcation diagram 5. All
the parameters remains same as Figure (5)

(f ). Figure 7 explains the dynamical behaviour of the model (8) for different values of τ

according to the bifurcation diagram 5. These phase portraits clearly show that the be-
haviour of the solution of the model (8) changes with the parameter time delay τ . We have
shown it clearly: as time delay increases, the unstable equilibrium becomes stable, show-
ing the switching behaviour. For τ = 0.5, a stable limit cycle is plotted in Fig. 7 (a) and
(b). For τ = 2.5, a stable spiral about the interior equilibrium is drawn. For τ = 6, periodic
doubling is plotted, with two types of cycles obtained for the same value. Finally, chaos is
shown in Fig. 7 (f ) for τ = 12 using the phase portrait.
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Figure 7 These phase portaits for the different value of τ according the bifurcation 6 show the stability
behaviour of model (8). (a), (b) for τ = 0.1, τ = 0.1, (c) for τ = 2.5. All parameters are same as Fig. 5

5.2.2 Impact of time delay on the model for the stable equilibrium
The time delay τ also impacts the stable equilibrium, as switching behaviour through the
Hopf bifurcation appeared about the parameter τ shown in Fig. 8.

Figure 9 (a) shows a stable spiral equilibrium, Fig. 9 (b) shows a limit cycle, Fig. 9 (c)
shows another stable spiral equilibrium, and Fig. 9 (d) shows a limit cycle or periodic be-
haviour. These phase portraits correspond to different bifurcation regions of Fig. 7.

6 Results and discussions
Time delay significantly impacts eco-epidemiological models, yielding more realistic re-
sults than non-delay models, as many ecological and biological processes inherently in-
volve time delays. In this article, we analyse the existence and equilibrium points of both
delay and non-delay models, along with their stability, using analytical and numerical
methods. We observe that in the non-delay model, the interior equilibrium point exhibits
switching behaviour with respect to parameter r. As depicted in Fig. 1, stability shifts from
stable to unstable, then back to stable, and ultimately becomes unstable (oscillatory) as r
increases. Figures 2 and 3 illustrate the stability and oscillatory behaviour of all species.
Hopf bifurcation points are identified for Model (6) concerning the intrinsic growth rate
parameter (r).
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Figure 8 This bifurcation diagram shows the switching behaviour as many Hopf points obtained between
0 < τ ≤ 12. The Hopf point are as follows τ = 0.2,τ = 1.8,τ = 5.462,τ = 8.4,τ = 10.71 respectively, where all
the parameters are defined as in equation (35) fixed and r = 2.6

Figure 9 Phase portraits for the different values of τ in the different region of the Fig. 8. All parameters are
the same as in Fig. 8

Model (6) with τ �= 0, shown in Model (8), experiences Hopf bifurcation regarding the
time delay parameter τ , indicating that the time delay alters the system’s stability. The
model with time delay τ shows complex dynamics behaviour. As time delay induces Hopf
bifurcation, periodic doubling and chaotic behaviour also show switching behaviour, as
shown in Figs. 4 and 5 for the unstable equilibrium. The unstable equilibrium Model (6)
becomes stable, periodic, and chaotic as time delay is incorporated. The time series plot 6
and corresponding phase portraits shown in Fig. 7 for different values of τ clearly describe
the impact of time delay on the same. The periodic doubling and chaotic behaviour of the
model (8) is shown through time series and phase portraits in Figs. 6 and 7. The equi-
librium point, which is stable in the non-delay model, exhibits oscillatory and switching
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behaviour as the time delay value increases, with multiple Hopf points obtained, as shown
in Fig. 8. The phase portraits and time series demonstrate the stability and oscillatory be-
haviour of all species in the delay model for various bifurcation regions of τ . Figure 9 (a)
and (c) depict the stable spiral interior equilibrium point, while Fig. 9 (b) and (d) show the
oscillatory behaviour, respectively.

In the eco-epidemic model, incorporated with a time delay as a gestation delay, differ-
ent dynamics are shown compared to the non-delay model. We discuss the impact of the
gestation delay τ for both cases: stable and unstable equilibrium. Without gestation de-
lay, the model has very simple dynamics, with only periodic solutions obtained in that
case. However, in the case of the delay model, we have seen that the unstable equilibrium
shows stable, oscillatory, periodic doubling, and chaotic behaviour with τ . Therefore, the
time delay as gestation delay has a huge impact on the eco-epidemic model.

7 Conclusions
In conclusion, this study has thoroughly investigated the impact of time delay on eco-
epidemiological models. The results show that the time delay significantly affects the sta-
bility and behaviour of the model, leading to complex dynamics, including Hopf bifurca-
tion, periodic doubling, and chaotic behaviour. The incorporation of time delay as a gesta-
tion delay has been shown to alter the model’s behaviour, leading to switching behaviour
and multiple Hopf points. The study’s findings highlight the importance of considering
time delay in eco-epidemiological models, as it can significantly affect the model’s predic-
tions and realism. In future work, researchers may consider incorporating multiple time
delay terms into the same model, such as maturation delay in prey growth, gestation delay
in predators, and incubation delay in infected prey, further enhancing the model’s realism
and predictive capabilities.
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